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Phagocytes and especially neutrophils belong to the first 
line of defense against invading pathogens and use a 

broad spectrum of weaponry to eliminate microorganisms and 
further activate adaptive immunity.1,2 Besides the discharge 
of granule proteins (eg, antimicrobial peptides), proteases, 
and reactive oxygen metabolites, neutrophils have also been 
recognized to respond to infectious challenges via the forma-
tion of neutrophil extracellular traps (NETs). NETs are de-
fined as large web-like structures composed of decondensed 
chromatin and neutrophil-derived nuclear, cytoplasmatic, and 
granular proteins, which are capable of ensnaring and kill-
ing pathogens. In this context, NET structures may function 
as a platform providing high local concentrations of effector 
molecules eliminating the intruder.3–5 The process of NET 
formation is termed NETosis and was introduced to discrimi-
nate this route of dying from other forms of cell death, eg, 
necrosis and apoptosis.3 Notably, other cell types such as 
macrophages6 or mast cells7 can also release decondensed 
chromatin, which is referred to as ETosis. Hence, NETs (and 
ETs) are believed to represent an important defense tool of 
innate immunity fighting pathogens8 but have also been impli-
cated in the pathophysiology of cancer,9 autoimmunity,10 and 
chronic inflammation.11 The latter also encompasses a variety 
of cardiovascular diseases and syndromes including coronary 
artery disease and stroke as the most frequent entities. The 
underlying pathophysiology termed atherosclerosis refers to a 
lipid-driven inflammatory disease of arteries, which develops 
at predilection sites with disturbed flow, where endothelial ac-
tivation facilitates intimal retention of lipoproteins. Modified 
lipoproteins, eg, oxidized low-density lipoprotein, augment 

endothelial damage and trigger recruitment of leukocytes, 
which eventually fail to clear lipoproteins, undergo cell death, 
and maintain inflammation. Ultimately, growing lesions will 
lead to vessel occlusion and subsequent ischemia or (arte-
rial) thrombosis.12,13 Neutrophils and their specific contribu-
tion to the pathophysiology of atherosclerosis have long been 
denied; however, during the last years, we14–18 and others19–26 
have provided substantial evidence underlining presence and 
actions of neutrophils in early and established human and mu-
rine atherosclerotic lesions. In a nutshell, neutrophils aggra-
vate endothelial dysfunction, attract leukocytes, in particular 
monocytes, to atherosclerotic lesions and promote foam cell 
formation. Advanced plaques are exposed to neutrophil-de-
rived proteases and reactive oxygen species leading to plaque 
destabilization.17,27,28 NET formation may occur at all stages of 
disease progression and particularly high local concentrations 
of effector molecules are suspected to be proinflammatory29 
and therefore also atherogenic.

This review will focus on current findings of the involve-
ment of NETs in atherosclerosis, arterial thrombosis (athero-
thrombosis), and myocardial infarction.

Mechanisms and Initiators of NET Formation
Among the 2 types of NETosis (lytic and vital) defined to date, 
lytic or suicidal NETosis is best known as a slow (hours) active 
form of cell death distinct from, for example, necrosis or apop-
tosis.8 Most of the mechanistic insight on lytic NETosis stems 
from studies investigating NETosis by treating isolated neutro-
phils with phorbol 12-myristate 13-acetate in vitro, which ac-
tivates the neutrophil respiratory burst leading to the assembly 
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of multicomponent nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase and subsequent reactive oxygen spe-
cies formation.30 Reactive oxygen species can liberate nuclear, 
granular, and cytoplasmic contents, including neutrophil elas-
tase (NE) and myeloperoxidase, which degrade linker histones 
and enhance chromatin decondensation.31 Furthermore, pepti-
dyl arginine deiminase 4 (PAD4) mediates histone deimination 
by citrullinating histones, which then mix with granule pro-
teins and are expelled from the neutrophil.32 However, phorbol 
12-myristate 13-acetate is an artificial stimulus, and although 
in vivo NET formation in mice seems to indeed depend on NE 
and PAD4 activity, it may not rely on reactive oxygen species 
generated by NADPH oxidase.33

More recently the term vital NETosis has been introduced, 
describing a fast (minutes) process in vivo (humans and mice) 
where cell viability and functions are retained. Discharge of 
nuclear material is enabled by bleb formation and vesicular 
exportation. Vital NETosis can be specifically induced by mi-
crobial-specific molecular patterns (eg, lipopolysaccharides), 
which bind to host pattern recognition receptors and does not 
necessarily involve NADPH oxidase. Remaining anuclear neu-
trophils show integrity of the plasma membrane and still con-
tain granules.34–37 Hence, the question remains, whether vital 
NETosis might even be the more physiologically relevant of the 
2 processes because conclusions on lytic NETosis are mainly 
based on phorbol 12-myristate 13-acetate–stimulated in vitro 
assays. On the contrary, recent study suggests that NETosis in 
general may have been confused or misleadingly recognized as 
leukotoxic hypercitrullination and defective mitophagy leaving 
us with the notion that real NETosis is dependent on NADPH 
oxidase but not associated with hypercitrullination.38

Another phenomenon solely observed in vitro seems to be 
the formation of (N)ETs composed of mitochondrial DNA,39,40 
whereas in vivo mitochondrial DNA released by neutrophils, 
for example, after major surgery, rather triggers NET for-
mation.37,41,42 Besides the well-documented NET-inducers 
(phorbol 12-myristate 13-acetate, lipopolysaccharide, and mi-
tochondrial DNA), many other stimuli have been reported to 
initiate NET formation in vitro and in vivo (human and mouse), 
including pathogens such as Gram-positive and Gram-negative 
bacteria,3,8,34,43 fungi,44 parasites,45 and viruses.46 Moreover, 
NET formation may also be propagated by intrinsic mediators, 
such as hydrogen peroxide,8 cytokines,47,48 chemokines,3,49 cho-
lesterol,50 monosodium urate crystals,51 autoantibodies,52 and 
antibody–antigen complexes.53 Initiators of NET formation 
that have already been described in the context of atherosclero-
sis/atherothrombosis comprise antibody–antigen complexes,54 
cholesterol crystals,50 or activated platelets.55

NET Content
Decondensed nuclear chromatin consisting of nucleic ac-
ids (DNA and RNA) and proteins (predominantly positively 
charged histones) constitute the backbone of a NET. Histones 
(accounting for ≈70% of the NET protein content) facili-
tate the adhesion of (negatively charged) microbial and viral 
pathogens and both; histones56 and nucleic acids57 can per se 
exert bactericidal activity. Other NET-associated antimicrobial 
peptides comprise granule, cytoplasmic and cytoskeletal pro-
teins, and metabolic enzymes of neutrophil origin.31,58,59 In ad-
dition, it is conceivable that NETs contain effector molecules 
or constituents released by neighboring cells, as evidenced by 
a study showing trapping and degradation of proinflammatory 
mediators by aggregated NET structures in vitro and in vivo 
(mouse).51 Thus, not only the stimuli inducing NET formation 
are manifold but also the NET proteome may differ depend-
ing on the localization (tissue versus circulation) and disease 
(acute versus chronic).29,43,60,61 Nevertheless ≈20 (mostly neu-
trophil-derived) proteins have been proposed as a core NET 
proteome including histones, myeloperoxidase, NE, protein-
ase 3, cathepsin G, and α-defensins.61–63 Yet, disease-specific 
NETome patterns await to be properly defined.

NETs in Innate Immune Defense
Initially, NETs were discovered and described as an important 
tool to fight invading pathogens, in particular bacteria.3 On 
the contrary, NET-associated microbes have also been found 
to remain alive and pathogenic.64,65 Nevertheless, restoration 
of NET formation in a patient with chronic granulomatous 
disease (strong decrease in NADPH oxidase function) and 
Aspergillus infection significantly improved the immune re-
sponse against the fungi.66 Accordingly, PAD4-deficient mice, 
which are incapable of generating NETs,32 are more suscep-
tible to bacterial infection, as shown in a mouse model of in-
fectious necrotizing fasciitis.67 However, another study using 
PAD4 knockout mice did not reveal differences in morbid-
ity or mortality compared with wild-type mice in a model 
of peritonitis (cecal ligation puncture).68 Similarly, patients 
having Papillon–Lefèvre Syndrome are unable to generate 
NETs—except in saliva—because of the lack of all neutrophil 
serine proteases but do not exhibit severe immunodeficiencies. 
Instead, they have pronounced juvenile periodontitis caused 
by fungi and bacteria although saliva (containing NETs) is 
supposed to prevent periodontal disease.69–71 In conclusion, the 
overall importance of NET-mediated killing of microbes may 
differ depending on the type of pathogen and the specific loca-
tion versus a more systemic affliction; it is hence conceivable 
that NETs deficiency may be compensated by other antimi-
crobial mechanisms during inflammatory immune responses.

NETs in Atherosclerosis
Atherosclerosis, widely recognized as a lipid-driven inflam-
matory disease of the arterial vessel wall, results in intimal 
lesion growth. Progressing lesions may eventually rupture, 
thereby inducing intraluminal thrombosis leading to acute car-
diac events and ischemic stroke.72 Of note, extracellular DNA 
(eg, NET derived) exerts cytotoxic and prothrombotic effects, 
possibly providing a causative link between inflammation and 
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coagulation. In line with this, NETs were identified in luminal 
location in murine and human atherosclerotic lesions50,73,74 and 
implicated in arterial thrombosis (see subsequent section).

In apolipoprotein E–deficient knock-out (Apoe−/−) mice, 
we could elucidate a mechanism of NET-driven atherogen-
esis, involving the autoimmune activation of plasmacytoid 
dendritic cells. Mechanistically, complexes of self-DNA 
(presumably NET-borne DNA but also self-DNA from dying 
cells) and neutrophil-derived granule proteins (eg, cathelici-
din) stimulate plasmacytoid dendritic cells in the vessel wall, 
resulting in a strong type I interferon response, which drives 
atherogenesis.54 Depletion of plasmacytoid dendritic cells in-
stead resulted in reduced plaque burden and type I interferon 
response.54,75 Moreover, NETs have been suggested to directly 
induce endothelial dysfunction (as a starting point for athero-
sclerosis) by activation and damage of endothelial cells.76–78 
Findings by Knight et al79 further underscore the importance 
of NETs in atherosclerotic lesion development by showing 
that inhibition of PAD4 (described to be important in NET for-
mation32) by chloramidine treatment prevents NET formation, 
thereby decreasing atherosclerotic lesion size and delaying 
carotid artery thrombosis in a mouse model of atherosclerosis. 
Comparable effects could not be reproduced in mice treated 
with a neutrophil-depleting antibody or in mice lacking a 
functional type I interferon receptor. In summary, these data 
suggest an important role of NETs in the instigation of a type 
I interferon response driving atherogenesis.79 On the contrary, 
the importance of a NET-driven type I interferon response in 
atherogenesis is called into doubt by Warnatsch et al,50 instead 
showing that cholesterol crystals, as a sterile danger signal, 
induce lesional NET formation in Apoe−/− mice after a high-fat 
diet for only 8 weeks. These NETs are thought to subsequent-
ly prime macrophages for production of interleukin (IL)-1β, 
resulting in activation of a Th17 response, which further am-
plifies immune cell recruitment into atherosclerotic lesions. 
To render Apoe−/− mice devoid of NETs, the authors used dif-
ferent approaches; however, in their hands, only inhibition of 
NADPH oxidase with diphenylene iodonium or blocking of 
the neutrophil-specific proteases NE and proteinase 3 (PR3)31 
abrogated NET formation, whereas chloramidine treatment 
was ineffective. As a consequence, they used Apoe−/− mice 
lacking NE and PR3 (Apoe−/−Elane−/−Prtn3−/−) to study ath-
erosclerosis in the absence of NETs, revealing reduced le-
sions size in Apoe−/−Elane−/−Prtn3−/− animals after 8 but not 
after 4 weeks of high-fat diet feeding. Likewise, they found 
diminished plaque growth in Apoe−/− mice treated with deoxy-
ribonuclease to degrade NETs. Excluding the possibility that 
NE/PR3 deficiency causes intrinsic defects in neutrophil che-
motaxis or extravasation, which would add to reduced lesions 
sizes in Apoe−/−Elane−/−Prtn3−/−animals, the authors conclude 
that NET-mediated priming of macrophages induces a strong 
IL-1β/Th17 response driving atherogenesis.50 In our hands,80 
however, Apoe−/−Elane−/−Prtn3−/− animals showed reduced ath-
erosclerotic lesion size only at early but not at advanced stag-
es of lesion development and lack of NE alone did not affect 
plaque growth. In addition, we could not observe any effect on 
lesion size after NET degradation through repetitive deoxyri-
bonuclease injection. Hence, our findings do not support the 

conclusion that the absence of elastase-provoked NET release 
or deoxyribonuclease treatment alters atherosclerotic lesion 
development. In summary, these results point toward PR3 
rather than toward NE triggering early atherosclerosis, giv-
ing rise to the notion that PR3-mediated cytokine maturation 
(in particular cleavage of pro–IL-1β81) seems to be more im-
portant for lesion formation than NET-mediated macrophage 
priming.80

At a diagnostic or prognostic level, NETs (or their compo-
nents) have been suggested to serve as biomarkers predicting 
the severity of atherosclerosis and the risk of future cardio-
vascular events.82 In this study, 282 human individuals with 
suspected coronary artery disease were examined about the 
prevalence of double-stranded DNA, nucleosomes, citrulli-
nated histone H4, and myeloperoxidase–DNA complexes in 
coronary atherosclerosis. Furthermore, plasma markers of co-
agulation activation and inflammation were determined. The 
results demonstrated that plasma levels of double-stranded 
DNA, nucleosomes, and myeloperoxidase–DNA complexes 
were positively associated with thrombin generation and sig-
nificantly elevated in patients with severe coronary athero-
sclerosis or extremely calcified coronary arteries. In addition, 
high plasma nucleosome levels were found to be an indepen-
dent risk factor of severe coronary stenosis, and the load of 
myeloperoxidase–DNA complexes correlated with the num-
ber of atherosclerotic coronary vessels and the occurrence of 
major adverse cardiac events.82 A synopsis of potential NET-
mediated mechanisms driving atherosclerosis has been visual-
ized in a Figure. However, NET localization in atherosclerosis 
(mouse and human) was mostly luminal or—in a lesional 
context—somewhat associative by identifying single NET 
relevant structures/proteins rather than a real NET-releasing 
neutrophil. Clearly, further in-depth studies will be required 
to detail the role of lesional NETs and their interactions with 
potential immune cells (plasmacytoid dendritic cells and 
macrophages) triggering proinflammatory immune responses 
such as type I interferon and Th17 responses, which can fuel 
atherosclerosis.

NETs in Atherothrombosis and Myocardial 
Infarction

Studies specifically investigating the role of NETs in the con-
text of atherothrombosis are scarce, whereas more detailed 
knowledge is available about their involvement in venous 
thrombosis.83–85 However, circulating leukocytes, in particular 
monocytes, play a crucial role in atherothrombosis,86,87 and 
systemic neutrophil counts are robust predictors of acute coro-
nary events88 and impact outcomes89 in humans. Furthermore, 
neutrophils are present in coronary thrombi90,91 and have been 
detected in surgical thrombectomies and abdominal aortic 
aneurysms.92 Following on these findings, recent research 
specifically addressed whether and how NETs (and NETosis) 
may affect arterial thrombus formation and its complications.

Riegger et al91 analyzed 253 samples from patients with 
stent thrombosis after percutaneous coronary intervention. 
Around 23% of the specimens investigated contained NETs, 
but no differences in the number of NETs could be detect-
ed within these thrombi with respect to the timing of stent 
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thrombosis (early versus late), the stent type, or in comparison 
to samples from patients with spontaneous myocardial infarc-
tion. Nevertheless, analysis of thrombi from 111 patients with 
ST-segment elevation as a sign of acute coronary syndrome 
and subjected to the primary percutaneous coronary interven-
tion revealed highly activated neutrophils at culprit lesional 
sites compared with femoral neutrophils. Moreover, the NET 
burden in these thrombi correlated positively with infarct size 
and negatively with ST-segment resolution, whereas deoxyri-
bonuclease activity in these lesions showed a negative correla-
tion with infarct size but positive with ST-segment resolution. 
Notably, ex vivo addition of deoxyribonuclease to these 
thrombi accelerated their lysis. In conclusion, the authors pos-
tulate that the balance of NETing neutrophils at rupture-prone 
lesion sites and endogenous deoxyribonuclease activity is pre-
dictors of ST-segment resolution and myocardial infarct size.93

Along these lines, Maugeri et al94 performed histol-
ogy on 26 thrombectomies from patients after acute myo-
cardial infarction, revealing that activated platelets present 

high-mobility group box 1 protein to neutrophils thereby 
inducing NET formation. The authors speculate that these 
NETs may have contributed to plaque rupture with subsequent 
thrombus formation. In accordance with these findings, plate-
let-derived high-mobility group box 1 protein has also been 
shown to facilitate NET formation and coagulation in a mouse 
model of venous thrombosis.95 Another study examined 45 
coronary thrombectomy specimens (15 fresh, 15 lytic, and 15 
organized thrombi) obtained from patients after acute myo-
cardial infarction and detected NETs in fresh and lytic, but not 
in organized thrombi.96 Notably, these NETs were found to be 
coated with IL-17A and IL-17F, which has been described to 
promote thrombosis by enhancing platelet aggregation.96

As the main initiator of coagulation critically involved in 
arterial thrombosis,97 tissue factor has also been investigated 
in patients with acute ST-segment–elevation myocardial in-
farction. Samples of thrombotic material and surrounding 
blood from the infarct-related coronary artery and the nonin-
farcted area of 18 patients were collected during the primary 

Figure. Emerging roles of neutrophil extracellular traps (NETs) in atherosclerosis and atherothrombosis. (A) Luminally netting 
neutrophils activate leukocytes, platelets, and endothelial cells creating a proinflammatory milieu presumably resulting in endothelial 
dysfunction, the initial trigger of lesion development. (B/C) Lesional NETs may initiate a interleukin-1β/TH17 (T helper 17) and type I 
interferon response, which leads to further activation of lesional leukocytes, releasing more proinflammatory mediators. (D/E) Furthermore, 
it may be assumed that NET-driven proinflammatory responses will cause an inflammatory environment that favors plaque destabilization 
and rupture. During atherothrombosis, NETs may trigger activation of the coagulation cascade and increase thrombus stability thus 
orchestrating arterial occlusion.
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percutaneous revascularization. Analysis of these specimens 
revealed local accumulation of tissue factor–bearing NETs at 
sites of coronary thrombosis and blood neutrophils releasing 
NETs and exposing tissue factor in the infarct-related area, 
but not in the noninfarcted area of these patients. In addition, 
neutrophil islets and NETs decorated with tissue factor were 
detected in thrombi obtained from the infarcted region.98 As a 
conclusion, the authors state that the interactions of activated 
platelets with neutrophils at sites of plaque rupture during 
acute myocardial infarction result in local NET formation and 
delivery of active tissue factor altogether fostering thrombus 
formation.98 Interestingly, another study investigating carotid 
culprit plaque samples from 157 patients showed the presence 
of periodontal bacteria especially in hemorrhagic atheroscle-
rotic carotid plaques, correlating with an increased prevalence 
of activated neutrophils, as evidenced for example by mea-
suring myeloperoxidase–DNA complexes, which would be 
indicative of NET release.99 Taken together, these data suggest 
a potential role of periodontal microorganisms, inducing NET 
formation and subsequent plaque rupture.99

In mice, neutrophil-derived externalized nucleosomes, 
which may turn into NETs, have been studied in an arterial 
vessel injury model induced by ferric chloride application. 
Infusion of the anti–H2A-H2B-DNA antibody (neutralizing 
histones as major components of these nucleosomes) into 
ferric chloride–treated wild-type mice leads to prolonged 
time to occlusion and lower thrombus stability in carotid ar-
teries. Notably, no effect of antibody infusion is observed in 
the NE/cathepsin G–deficient mice after induction of ves-
sel injury. Mechanistically, externalized nucleosomes can 
enable the coassembly of NE and its substrate tissue fac-
tor pathway inhibitor on the surface of activated neutro-
phils triggering thrombosis. Hence, in sterile inflammation, 
neutrophil-derived serine proteases and nucleosomes may 
contribute to large-vessel thrombosis, leading to myocardial 
infarction and stroke.55

The role of NETs has also been examined in an alternative 
model of myocardial ischemia-reperfusion and myocardial no-
reflow. Male Wistar rats were treated with deoxyribonuclease, 
recombinant tissue-type plasminogen activator (r-tPA), a com-
bination of deoxyribonuclease and r-tPA or left untreated for 
45 minutes after induction of myocardial ischemia. Comparing 
control rats with those treated with a combination of deoxyri-
bonuclease and r-tPA revealed reduced NET density and no-
flow area in the ischemic region, as well as reduced infarct 
size in deoxyribonuclease/r-tPA–treated animals. In addition, 
deoxyribonuclease/r-tPA treatment significantly ameliorated 
ischemia-reperfusion injury–induced left ventricular remodel-
ing, as compared to controls. The authors conclude that NETs 
have a detrimental effect in ischemia-reperfusion–challenged 
myocardium and suggest deoxyribonuclease treatment regi-
mens in patients with myocardial ischemia reperfusion in-
jury and coronary no-reflow.100 Similarly and again using a 
mouse model of myocardial ischemia reperfusion, Savchenko 
et al101 showed a significant cardioprotective effect of deoxy-
ribonuclease I treatment on myocardial ischemia reperfusion 
injury. In the same study, PAD4-deficient mice, which are not 
capable of producing NETs, were significantly protected from 

myocardial ischemia reperfusion injury and deoxyribonucle-
ase I treatment had no added beneficial effect in these animals. 
Deoxyribonuclease I treatment also protects mice from cere-
bral ischemia reperfusion injury,102 suggesting that chromatin/
NET degradation by deoxyribonuclease and consequently re-
moval of extracellular histones significantly alleviates tissue 
damage after ischemia-reperfusion injury. Hence, removal of 
extracellular chromatin generated at the sites of infarction not 
only implicates NETs in the myocardial damage but may also 
offer promising therapeutic options.

Summary, Outlook, and Conclusion
As evident from the studies highlighted and discussed above, 
NETs clearly do matter and significantly affect the initiation 
and progression of atherosclerotic lesions. Moreover, NETs 
can induce and contribute to arterial thrombus formation, 
stability, and growth (Figure). Although deoxyribonuclease 
treatment, likely enhancing thrombus lysis, seems to harbor 
a relevant therapeutic potential in acute cardiac events,103 
its utility and applicability in preventing NET formation or 
in digesting already established NETs to reduce atheroscle-
rotic lesion growth is at least debatable and will remain con-
troversial. Undoubtedly, more in-depth studies are needed to 
meticulously dissect the exact mechanisms of in vivo NET 
formation36 and to clarify the importance of histone citrullina-
tion for NETosis.38 A better understanding of in vivo NETosis, 
both with regards to the structural constituents and to their 
context-specific functional decoration, will be a prerequisite 
to further elucidate the role of NETs in the development of 
atherosclerotic plaques and will be of paramount importance 
to identify, validate, and enable the best molecular candidates 
for therapeutic targeting.
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