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The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets,
such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach
by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple
pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners
in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its
prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic
effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer
dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data
on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense.
Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it
enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data
and towards the understanding of biological processes involved in disease susceptibility.
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1. Introduction

Many human diseases are complex in nature. They are
caused by an interplay of several, often moderate genetic
effects and environmental factors (i.e., demographic, clinical,
and other nongenetic data [1]). Their genetic architecture is
often analyzed in genome-wide association studies (GWAS).
Herein, genetic information is represented by the genotypes
of a multitude of single-nucleotide polymorphisms (SNPs)
located across the whole genome. Numerous SNPs asso-
ciated with various diseases have already been discovered
in GWAS analyses; however they cannot account for the
full heritability of the corresponding disease [2]. Different
methods to approach this problem ofmissing heritability have
been proposed, including the joint analysis of several SNPs
representing a particular part of the genetic information, such
as a gene or gene set.

Gene-set analysis methods facilitate the detection of
associations between an individual’s genetic information and
a phenotype of interest, for example, disease status. The joint
analysis of several genes often leads to increased power, as
it reduces the overall number of conducted tests and assists
in the detection of moderate associations [3]. Furthermore,
the results are usually more meaningful, as they are based
on functional units rather than on single SNPs. One form
of gene-set analysis is the investigation of pathways, such
as networks of interacting genes responsible for a specific
cell function or regulation [4]. The proteins coded by genes
within a pathway can enhance or reduce the expression of
other genes, to which we refer as activation or inhibition.
Thus, genes interact directly as well as indirectly in a series
of interconnected steps within pathways. Different types of
biological pathway exist, for example, involved inmetabolism
or signal transduction. Faults in function can occur and such
malfunction of biological pathways may lead to disease onset
and development.

Large sample sizes are required to detect weak genetic
effects influencing disease risk. Thanks to technical advances
and the formation of data-sharing consortia in particular,
larger GWAS datasets have become available over recent
years. However, genotyping and participant recruitment are
still cost and work intensive. Especially in rare diseases,
taking as an example the analysis of histological subtypes of
a disease, it is very challenging to achieve sample sizes that
result in adequate power in analyses [5]. Another challenge
we face is to understand the biological meaning of detected
associations. It is often difficult to interpret the results of
GWAS analysis in the elucidation of the precise biological
processes and corresponding functional units influencing
disease susceptibility. Single-pathway analysis methods are
often successful in the identification of genetic effects influ-
encing disease susceptibility. However, they usually can not
discriminate causal biological processes from isolated effects
included in pathways due to gene overlap [6, 7]. Another
limitation ofmany pathway analysis approaches is the lacking
ability to predict the disease state, or other outcomes of
interest, based on the identified genetic effects.

Kernel methods in statistics have already been dem-
onstrated as dealing well with the challenges faced when

analyzing GWAS data [8, 9]. They are capable of han-
dling high-dimensional data, without requiring any direct
specification of the functional relationship between genetic
effects. Furthermore, kernel methods are computationally
efficient and allow the straightforward incorporation of
environmental covariates [9–11]. Kernels are used to calculate
a quantitative value from genotype data, which may be
interpreted as reflecting the genetic similarity between each
pair of individuals. Different kernels have been proposed
in the analysis of pathways [9, 12, 13]. While some kernels
only evaluate SNP membership in genes, others can also
adjust for differing gene numbers and sizes or even include
gene interaction structures or other information (please refer
to Materials and Methods and [13] for an overview). We
focussed on the network-based kernel, as it allows us to
include interaction structures and has been demonstrated as
being superior in performance for interconnected effects [13].

We extend kernel-based analysis of GWAS data by inte-
grating a network-based kernel function into a boosting
framework, in order to identify genetic variation modulat-
ing disease susceptibility. Boosting emerged from the field
of machine learning and was later transferred to statisti-
cal modelling. It implements an ensemble of many weak
learners (so-called base-learners, simple models that are
slightly improved over random guessing) to optimize the
predictive accuracy of a model [14]. Since it is able to
combine the power from several predictors with weak signals
into a strong prediction set [15, 16], it may prove to be a
powerful tool in the analysis of GWAS. Component-wise
boosting enforces variable selection and includes additional
effect regularization, which makes it especially useful for
high-dimensional data [17]. Model-based boosting can be
seen as an extension of classic boosting approaches (see,
e.g., [18, 19]). Diverse base-learners, which represent special
effect types, may be chosen and combined arbitrarily [20].
Thus, boosting allows the simultaneous inclusion of genetic
information and demographic or other environmental data.
This joint investigation of multiple variables allows taking
into account correlations between different pathways andwill
likely facilitate discrimination of causal biological processes
from effects included in pathways only due to gene overlap.
The derived models can be assessed and interpreted directly.
Our kernel boosting approach overcomes the problem of
multiple testing thanks to its inherent variable selection
property [21]. Thereby the overall gain in power in the
analysis of GWAS supports the analysis of smaller samples
and moderate-to-weak genetic effects. Of note, the main
focus of boosting (as well as of other machine learning
methods) is not on hypothesis testing but on the development
of a multivariable prediction model.

We applied our approach to two GWAS datasets, one on
lung cancer and one on rheumatoid arthritis. Lung cancer
is one of the most common forms of cancer, especially in
industrialized nations. It is responsible for the greatest pro-
portion of deaths caused by cancer worldwide [22]. Although
the exposure to tobacco is known to be the major risk factor
for lung cancer susceptibility, a number of genetic influences
have been revealed by many studies [23]. The actual number
of known genetic influences, excepting some specific lung
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cancer syndromes, is still limited, and each only accounts
for a minor increase in disease risk. Rheumatoid arthritis is
the most frequently occurring inflammatory disease of the
joints, predominantly affecting the hands and feet. It is one
of the major causes of disability and is strongly influenced
by genetic factors in the human leukocyte antigen (HLA)
region located on chromosome 6 [24, 25]. The investigation
into these two diseases with different genetic architectures
provides the ideal platform to evaluate the performance of
our novel method.

In Section 2, we introduce the model structure utilized
and describe the construction of network-based kernel func-
tions. We provide a short introduction to boosting and
derive the novel boosting algorithm with kernel-based base-
learners. Section 3 comprises a description of the simulation
study used to evaluate the method’s performance and an
overview of the application to rheumatoid arthritis and lung
cancer GWAS datasets. The results of the simulation study
and GWAS analyses are summarized in Section 4. Finally, we
end the paper with a discussion and an outlook.

1.1. Software. Weused the statistical software environment R

[26] to perform all analyses unless stated otherwise. The
methodological developments were implemented in the R
packages kangar00 [27] and mboost [28]. An exemplary
application of the kernel boostingmethod to a simulated data
set is given in Supplementary Material 2, available online at
https://doi.org/10.1155/2017/6742763.

2. Materials and Methods

We aim tomodel the disease status of an individual, based on
environmental covariates and genetic information obtained
fromGWAS.The genetic information given by the genotypes
of different SNPs is mapped via genes to pathways. For
each pathway, we compute a kernel matrix transforming the
genotype vectors of each two individuals into a numeric
value, which may be interpreted as the genetic similarity
of the two individuals. Based on these matrices, we fit a
kernel-based boosting model to identify relevant pathways
and to find a prediction model for disease status. In the
following paragraphs, we define all the relevant parts to this
approach.

2.1. Model Definition and Notation. We assume an additive
logistic regression model for the conditional probability of
being a case for individual 𝑖, 𝑖 = 1, . . . , 𝑛:

logit [𝑃 (𝑦𝑖 = 1 | x𝑖, z𝑖)] = 𝜂 (x𝑖, z𝑖) , (1)

with additive predictor

𝜂 (x𝑖, z𝑖) = x𝑖𝛽 + 𝑓1 (z𝑖) + ⋅ ⋅ ⋅ + 𝑓𝑃 (z𝑖) , (2)

where 𝑦𝑖 is the case-control indicator (𝑦𝑖 = 0 control; 𝑦𝑖 =
1 case), x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛𝑐) is the 𝑛𝑐 dimensional environ-
mental covariate vector, and z𝑖 denotes the genotype vector
of the 𝑛𝑠 SNPs of the 𝑖th individual. Note that the non- or
semiparametrically modelled genetic effects 𝑓𝑝(z𝑖) usually

only depend on a pathway specific subset of SNPs, z(𝑝)𝑖 .
However, for the sake of notational convenience we dropped
the pathway index (𝑝).

The vector 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑛𝑐)
⊤ represents the regres-

sion coefficients (including an intercept 𝛽0) related to the
environmental covariates.They typically include information
on age, sex, or other traits relevant to the disease investigated.
The genotype variables z𝑖 are coded as number of minor
alleles, resulting in 𝑧𝑖,𝑠 ∈ {0, 1, 2} for any SNP 𝑠 and individual
𝑖. The nonparametric functions 𝑓𝑝, 𝑝 = 1, . . . , 𝑃, describe
how the risk of being affected by the disease depends on
the observed genotypes. Here, we aggregate the genotype
information according to SNP membership in 𝑃 different
gene interaction pathways.

2.2. Network-Based Kernels. Liu et al. [10] introduced the
kernel machine framework to the field of pathway analysis.
Since genes in pathways can include complex interactions,
nonparametric approaches are advisable. The logistic kernel
machine test (LKMT) can model the effect of a pathway on a
binary outcome nonparametrically, while including paramet-
ricallymodelled covariates. In the resulting logistic regression
model, the genetic influence is incorporated by a function
from the reproducing kernel Hilbert space generated by a
positive definite kernel function𝐾.

In a genetic application, this kernel function is evaluated
for the genotypes of each two individuals 𝑖 and 𝑗, whereby the
kernel matrix element 𝐾𝑖𝑗 = 𝐾(z𝑖, z𝑗) is obtained. This value
can be understood as the genetic similarity between the two
individuals. To embed this definition into themathematically
well-defined framework of a reproducing kernel Hilbert
space, the kernel matrix has to fulfill some requirements: it
has to be quadratic, symmetric, and positive semidefinite.
A variety of kernel functions are available. In the pathway-
based analysis of GWAS data, a network-based kernel can
be used, which is able to incorporate the pathway topology
[13].

Assume Z = (z1, . . . , z𝑛)
⊤ denotes the 𝑛 × 𝑛𝑠 pathway

specific genotype matrix consisting of the genotype vectors
z𝑖, which include only the SNPs relevant for pathway 𝑝, for
all 𝑖 = 1, . . . , 𝑛 individuals. Then, the network-based kernel is
defined by

K = ZANA⊤Z⊤, (3)

where A is an 𝑛𝑠 × 𝑛𝑔 matrix mapping all SNPs to the 𝑛𝑔
investigated genes (including an adjustment to account for
differing sizes of genes) and N represents the (modified) 𝑛𝑔 ×
𝑛𝑔 matrix network adjacency matrix of gene interactions. To
ensure positive semidefiniteness of the kernel, the network
adjacency matrix is processed in a number of preparatory
steps: if a gene is not represented by any SNPs in the investi-
gated GWAS dataset, it cannot be considered in the analysis.
To prevent loss of information about interactions in the
network, genes which have previously been connected via the
omitted gene will be linked directly. The new link’s weight is
determined in a multiplicative fashion, based on the weights
of the two omitted links. For a graphical representation refer
to Figure 1. The resulting matrix is further mirrored along
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Figure 1: Graphical representation of rewiring step in data prepa-
ration. Nodes are representing genes in the pathway, while edges
indicate interactions between the corresponding genes. Assume the
gene depicted in grey is not represented by any genetic markers
in the considered study and thus cannot be analyzed. To retain
information about the (indirect) interaction of the two genes
previously linked to the omitted gene, a new direct link is established
between them. Its interaction type is determined by multiplication
of the weights inherent to the two dropped links.

its diagonal and transformed to obtain positive semidefinite-
ness. The applied transformation is given by

𝜌N + (1 − 𝜌) I, (4)

where I denotes the identity matrix and 𝜌 is a weight based
on the smallest eigenvalue of N. For more details, see [13].

2.3. Model-Based Boosting. Model fitting in general aims to
minimize the loss when relating observed responses 𝑦𝑖 to
an estimated model characterized by the additive predictor
𝜂𝑖 fl 𝜂(x𝑖, z𝑖) as defined in (2). Thus, boosting minimizes the
empirical risk

1
𝑛

𝑛

∑
𝑖=1

− 𝑙 (𝑦𝑖, 𝜂𝑖) , (5)

where −𝑙(⋅) denotes a suitable loss function. Here, we use
the negative binomial log-likelihood as loss function, which
results in additive logistic regression models in analogy to
the LKMT. In general, the loss function characterizes the
model and can be defined in terms of a suitable negative log-
likelihood or other appropriate loss functions, for example,
the quadratic error loss for Gaussian regression or the
absolute error loss for quantile regression. For an overview
on loss functions see Hofner et al. [20]. Boosting solves
this optimization problem via functional gradient descent by
moving in the direction of the loss function’s steepest descent
along the additive effects of predictor (2). This can be seen in
the following (simplified) algorithm:

(1) Initialize the additive predictor with 𝜂[0]𝑖 = 𝑦, 𝑖 =
1, . . . , 𝑛, and all function estimates with 𝑓[0]𝑝 = 0, 𝑝 =
1, . . . , 𝑃+. Note that 𝑃+ includes all 𝑃 kernels and pos-
sibly additional effects for environmental covariates.

(2) For𝑚 = 1, . . . , 𝑚stop do the following:

(a) Compute the negative gradient of the loss func-
tion evaluated at the estimates of the previous
iteration:

𝑢[𝑚]𝑖 = −
𝜕 (−𝑙 (𝑦𝑖, 𝜂𝑖))

𝜕𝜂

𝜂𝑖=𝜂[𝑚−1](x𝑖 ,z𝑖)
, 𝑖 = 1, . . . , 𝑛. (6)

(b) Estimate the negative gradient vector u[𝑚] =
(𝑢[𝑚]1 , . . . , 𝑢[𝑚]𝑛 ) separately for each effect in the
additive predictor (2) by base-learners û[𝑚] =
f̂𝑝, 𝑝 = 1, . . . , 𝑃+, with f̂𝑝 fl (𝑓𝑝(x𝑖, z𝑖))𝑖=1,...,𝑛 by
fitting simple regression models via (penalized)
least squares. Thus, each base-learner regresses
the negative gradient vector u[𝑚] separately on
each of the predictors.

(c) Choose the best-fitting base-learner f̂𝑝⋆ with the
minimal residual sum of squares.

(d) Compute the update for the additive predictor
by adding the best-fitting base-learner with a
step-length factor 0 < ] ≤ 1:

�̂�
[𝑚] = �̂�[𝑚−1] + ] ⋅ f̂𝑝⋆ . (7)

The corresponding update of function estimate
f̂𝑝⋆ is given by

f̂[𝑚]𝑝⋆ = f̂[𝑚−1]𝑝⋆ + ] ⋅ f̂𝑝⋆ , (8)

while

f̂[𝑚]𝑝 = f̂[𝑚−1]𝑝 , (9)

for all 𝑝 ̸= 𝑝⋆.

Note that each base-learner f̂𝑝 usually depends on only one
environmental covariate or one pathway based on a suitable
subset of the genotypes of z. However, other dependencies
are also possible. For details on the algorithm, see [20]. A
graphical display of the main features of the kernel boosting
algorithm is given in Figure 2.

2.4. Model Tuning. The major tuning parameter of the func-
tional gradient descent boosting algorithm is the number of
iterations𝑚stop. We usually choose𝑚stop via cross-validation
methods (such as bootstrap, 𝑘-fold cross-validation, or sub-
sampling) in order to avoid overfitting: one fits the model on
the selected subset of the data and chooses 𝑚stop such that it
minimizes the empirical risk on the data that were not used
to estimate themodel. Subsampling is recommended to avoid
overly complex models [29]. The step-length ] is another
tuning parameter. In general it is ofminor importance as long
as it is relatively small. It determines the trade-off between
speed of convergence and variable selection ability and is
typically set to 0.1 [30].

The current estimate �̂�[𝑚] of the additive predictor 𝜂
usually depends on only a subset of the possible predictors:
as we select the best-fitting base-learner in each step and
choose 𝑚stop such that it maximizes prediction accuracy
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Figure 2: Graphical representation of the main features of the kernel boosting algorithm.

(i.e., usually relatively small so that not all base-learners are
selected), boosting selects base-learners and thus variables.
In our approach, we exploit this behaviour to identify genetic
associations. Note that a base-learner can be selectedmultiple
times. Hence, its function estimate f̂𝑝, 𝑝 ∈ 1, . . . , 𝑃+, is the
weighted sum with weights ] of the individual estimates over
all iterations in which the base-learner was selected (see (8)).

2.5. Boosting with Network-Based Kernel as Base-Learner.
To incorporate genotype data, aggregated to represent a

particular pathway, we utilize kernel-based base-learners.
Using a kernel function 𝐾, we transform the definition of
the genotypic information of all pairs of individuals to 𝐾𝑖𝑗 =
𝐾(z𝑖, z𝑗), 𝑖, 𝑗 = 1, . . . , 𝑛, as mentioned before, and collect
them in the kernel matrix K. With this matrix, we can
estimate

𝑓 (Z) = K𝛾 = ZANA⊤Z⊤𝛾, (10)

The function 𝑓(Z) is used to map the influence of SNP
profiles to the clinical outcome (see (2)). As we expect
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patients with similar SNP profiles to have similar outcomes,
we aim to discourage large differences in 𝑓(Z) for genetically
similar individuals. According to the standard penalization
approaches in the boosting context, we thus introduce an
additional smoothness constraint on the coefficient vector
𝛾 = (𝛾1, . . . , 𝛾𝑛)

⊤ based on the kernel distances:

J (𝛾) = 𝛾⊤K𝛾. (11)

Thus, we define a separate kernel base-learner for each
pathway in the boosting framework. Using the negative
gradient vector u[𝑚] = (𝑢[𝑚]1 , . . . , 𝑢[𝑚]𝑛 ) from the𝑚th boosting
iteration, we can estimate the coefficient vector 𝛾 of each
base-learner (see step 2b of the algorithm) via penalized least
squares

�̂�
[𝑚] = (K⊤K + 𝜆K)−1 K⊤u[𝑚], (12)

where we dropped the function index 𝑝 for the sake of
notational convenience. Note that kernel matrix K plays the
role of design matrix as well as the role of penalty matrix
with penalty parameter 𝜆, which governs the smoothness of
the estimate. Usually, the penalty parameter 𝜆 is chosen such
that all base-learners have equal degrees of freedom to allow
an unbiased selection. A common choice is four degrees of
freedom if only smooth effects are used or one degree of
freedom if linear effects are to be included; see Hofner et al.
[21] for details.

In some rare cases, the derived kernelmatrixK is numeri-
cally not positive semidefinite (i.e., minimal deviationsmight
occur), even though this should theoretically always be the
case. To ensure a numerically positive semidefinite matrix
K, we apply transformation (4) not only to N but also on
the resulting kernel matrix K. The proposed approach is very
fast and results in smaller absolute differences in the matrix
elements than alternatives such as the procedure suggested by
Higham [31] (results not shown).

For numerical reasons, we reformulate the estimation
problem from (12) by multiplying the design matrix with the
inverse of the square root of the penalty matrix [32].Thus, we
obtain the design matrix

K̃ = KK−1/2, (13)

while the penalty matrix simplifies to the identity matrix I.
Now, we can equivalently write

�̂�
[𝑚] = (K̃⊤K̃ + 𝜆I)

−1
K̃⊤u[𝑚]. (14)

A similar approach based on radial basis functions,
which, for example, uses correlation functions to measure
distances, was introduced to the boosting framework by
Hofner [33].

2.6. Model Prediction Using Kernels. Boosting specifically
aims to optimize prediction accuracy. As in all regression
models, we can use the estimated coefficients to predict the
outcome for new observations. However, some extra work is
required to set up the kernel, that is, the design matrix, with

new genotype data Z∗ = (z∗1 , . . . , z
∗
𝑛⋆)
⊤. In this context, the

kernel can be understood to compute the similarity between
genotype information of individuals to be predicted and the
observations used to fit the model, the training data Z itself.
Thus,

K⋆ = (𝐾 (z⋆𝑖 , z𝑗))𝑖=1,...,𝑛⋆ , 𝑗=1,...,𝑛 = Z⋆ANA⊤Z⊤. (15)

The resulting kernel K∗ has the dimension 𝑛∗ × 𝑛, with 𝑛∗
being new and 𝑛 previously used observations. Note that
kernel matrix K∗ must no longer be of full rank nor be
positive semidefinite. Using K∗, we can predict the effect of
a pathway on the outcome as

𝑓 (Z∗) = K∗�̂�, (16)

where �̂� is obtained as the weighted sum with weights ] over
the estimates from (14) for all iterations inwhich the𝑝th base-
learner was selected (see (8)).

2.7. Incorporation of Environmental Covariates. To incorpo-
rate environmental variables into the boosting model, we
can choose different base-learners suited to different types of
effect. Linear effect base-learners are suited to a continuous
covariate 𝑥 such as patient age, while categorical effect base-
learners facilitate the incorporation of categorical environ-
mental variables such as gender. For details on inclusion of
environmental variables, refer to [20].

With the inclusion of environmental variables as base-
learners, these are also subject to the selection process
inherent to boosting and compete with the pathway-based
genetic effects. However, one usually wishes to consider only
the added effect of genetic pathways. To ascertain that the
model is corrected for environmental variables, one may
include them as mandatory effects. This can be done by
fitting a standard logistic regression model for the effect
of the environmental variables on the clinical outcome and
using the estimates as a start model (offset) for the boosting
algorithm (see [34, 35]). This approach is very similar to
the LKMT procedure, which tests if the logistic regression
model can be improved via addition of a nonparametric effect
incorporating a particular pathway.

3. Simulations and Applications

3.1. Simulation Study. To evaluate the performance of ker-
nel boosting, we conducted a simulation study based on
simulated SNP data in combination with gene networks
from existing biological pathways. Pathway information
was extracted from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [36]. For simulation purposes, we con-
sidered a sample of 50 networks, randomly chosen from the
total of 284 pathways available in January 2015. Please refer
to Figure 3 for a list of these pathways and refer to Table 1
for their network topology characteristics. The primary aim
of this study was to determine whether kernel boosting
can detect associated pathways and is able to distinguish
them fromnoninfluential pathways.Thus, we investigated the
method’s performance on data without genetic effects (null
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Kernel boosting results on noninformative genetic data
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Figure 3: Relative frequency of datasets in which a pathway was selected for 50 pathways in the noninformative simulation scenario.

Table 1: Description of network properties for pathway topology of pathways used in simulations, compared to the properties of the two
effect pathways hsa04020 and hsa04022. Nodes equal the number of included genes, links give the number of interactions, inhibition links
the count of interactions of inhibiting type, the average degree of a node is the mean number of adjacent edges, density is the ratio between
numbers of existing links and possible links, diameter denotes the distance to the farthest node in the graph, transitivity (also called cluster
coefficient) calculates the probability of adjacent vertices of a vertex being connected, and signed transitivity considers the type of interaction
in this calculation.

Min Mean Median Max hsa04020 hsa04022
Nodes 29.00 103.60 86.5 398.00 180.00 167.00
Links 1.00 197.81 87.5 1493.00 297.00 372.00
Inhibition links 0.00 27.08 10.50 148.00 7.00 67.00
Average degree 0.07 3.18 2.36 15.62 3.30 4.46
Density 0.00 0.03 0.03 0.16 0.02 0.03
Inhibition degree 0.00 0.52 0.24 2.62 0.08 0.80
Diameter 1.00 7.36 7.00 18.00 6.00 7.00
Transitivity 0.00 0.02 0.00 0.14 0.00 0.03
Signed transitivity −0.02 0.01 0.00 0.10 0.00 0.03

case) including 1000 individuals and in six effect scenarios,
differing in effect strengths (relative risk of 1.1 and 1.5 per
allele) and sample sizes (𝑛 ∈ {500, 1000, 2000} with a 1 : 1
ratio of cases to controls). Datasets for all scenarios were
simulated for 100 replications. Note that these scenarios are
small compared to typically available sample sizes nowadays.
The reason can be found in the computational demands of the
method for an insightful number of replications. Accordingly,
comparably strong effects of markers were chosen to match
the sample sizes used in our simulations.

For each simulated dataset, we fitted a boosting model
with pathway kernels. In order to tune the model, that is,
to derive the optimal number of boosting steps 𝑚stop, we
used 20-fold subsampling for each model on each of the
datasets with a maximum number of 200 iterations. Using
the network-based kernel function in both methods, we
compared the results from our kernel boosting approach on
multiple pathways to those obtained from the single-pathway

LKMT [9–11]. Additional simulations with cross-validated
models and amaximumnumber of up to 1000 iterations were
conducted to gain more insight into the proposed algorithm
and are presented in Supplementary Material 1, Section A.

All genotypes were simulated with the help of a reference
dataset from the International HapMap Consortium [37].
The reference data include 1,184 individuals of European
descent (CEU) and a total of 1,440,616 SNPs, of which 116,565
are located on chromosome one. For each gene included
in at least one of the 50 selected pathways, we defined a
pseudogene to represent the gene within our simulations.
Such a pseudogenewas a randomly selected DNA segment on
chromosome one of the reference data including five different
SNPs. Between each two sampled regions, we ensured a
distance of at least 100 kilo base pairs to prevent distortive LD
correlations between them [38]. The location of pseudogenes
was left unchanged for all simulations, resulting in a realistic
correlation structure for all simulation scenarios. In each of
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Table 2: Counts of included influential genes within pathways used for simulation purposes. Pathways without simulated causal genes are
not displayed.

KEGG id Name of pathway Effect genes included
hsa04020 Calcium signaling pathway 4
hsa04022 cGMP-PKG signaling pathway 5
hsa04024 cAMP signaling pathway 1
hsa04080 Neuroactive ligand-receptor interaction 2
hsa04270 Vascular smooth muscle contraction 2
hsa04540 Gap junction 2
hsa04610 Complement and coagulation cascades 1
hsa05200 Pathways in cancer 2

the 100 simulation runs, new genotype data for a total of
11, 665 SNPs in 2, 333 pseudogenes were simulated using the
HAPGEN2 software. This software generates new haplotype
data by combining a given set of reference haplotypes
with previously simulated data. The detailed procedure is
described in [39].

In the null case, noninformative genetic data were sim-
ulated for 1000 individuals. In each replication, new geno-
types without association signals were generated for 11, 665
SNPs. The disease status was assigned at random with 0.5
binomial probability of being a case, completely independent
of genotype information. In each of the six effect scenarios,
genotype data for a previously chosen equal number of cases
and controls were simulated such that two pathways affected
disease status. Association signals were included in three
genes per causal pathway. In each of the resulting six genes,
two randomly selected SNPs were chosen to be influential on
the binary clinical outcome. Within one simulation scenario,
all associated SNPs had the same effect strength and for
each SNP the minor allele was influential. All effects were
simulated as additive. To simplify the evaluation, we decided
not to include environmental variables in these settings.

We chose two typical pathways (KEGG ids hsa04020
and hsa04022) to include causal genes. In accordance with
the findings in [13], the influential genes in the two causal
pathways were chosen to be interconnected within the
corresponding pathway. Here, we additionally sampled one
effect gene in each pathway, with the probability of being
selected set to its betweenness centrality. Betweenness cen-
trality measures the amount of shortest connections between
each two genes in the network passing through the gene.
Different studies have indicated that genes in topologically
relevant positions of a pathway are more likely to be involved
in disease association [40]. Two neighbouring genes of
the sampled gene were randomly chosen to complete the
connected scenario. In hsa04020, the genes GNA11, TACR1,
and BDKRB2 were simulated to include SNPs influencing
disease susceptibility. For hsa04022, genetic effects were
placed on the genes PRKG2, ATP2B2, and KCNU1. For each
of these genes, two SNPs were simulated as being influential
on disease status. Note that existing biological pathways
can have genes in common. Thus, beside our two pathways
chosen to include influential effects, six additional pathways

contain association signals. Refer to Table 2 for an overview
of influential genes included in simulation pathways.

Application: GWAS for Rheumatoid Arthritis and Lung Can-
cer. We considered the German Lung Cancer study (GLC)
with 488 cases and 478 controls, based on the data of par-
ticipants taken from the following three individual studies:
Lung Cancer in the Young (LUCY), a population-based
multicentre study run by the Helmholtz Zentrum Munich,
and the University Medical Centre of the Georg-August-
University in Goettingen. This study includes data of lung
cancer patients under the age of 51 and family members
recruited in German hospitals [41, 42]. The Heidelberg
lung cancer case-control study, conducted by the German
Cancer Research Centre (DKFZ) and the Thoraxklinik in
Heidelberg, Germany, recruited cases and controls in a
hospital-based study [43]. Additional controls were provided
by Cooperative Health Research in the Augsburg Region
(KORA), a population-based genome-wide study carried out
by the Helmholtz Zentrum Munich [44]. A subset of the
study participants of these three studies was chosen to form
the German Lung Cancer GWAS. These individuals were
genotyped on a HumanHap 550K SNP chip.

The second GWAS is a rheumatoid arthritis study of
the North American Rheumatoid Arthritis Consortium
(NARAC). It includes 868 cases from New York hospitals, in
which rheumatoid arthritis was diagnosed based on the cri-
teria of the American College of Rheumatology. Additionally,
1,194 controls matching in self-reported ethnic background
were collected. All individuals were genotyped with the
HumanHap500v1 array [45, 46].

For the rheumatoid arthritis study, we utilized gender
as environmental covariate. In the lung cancer study, age
and smoking exposure, measured in pack years, were also
considered. To determine the pack year, one multiplies the
number of packs of cigarettes smoked per day by the number
of years an individual has smoked.

All GWAS data were subjected to strict quality control.
Only individuals with a genotype call rate of at least 95%
were considered. SNPs with more than 10% missing values
or with a minor allele frequency (MAF) below 0.1% were
excluded from further analysis. Missing values in remaining
markers were imputed with BEAGLE [47]. No SNPs beyond
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Table 3: Characteristics of analyzed GWAS datasets. Numbers of case and control individuals after quality control and SNP numbers for
several analysis stages are displayed. Preprocessing of SNPs included quality control of genotype data, as well as updating genomic SNP
positions according to the latest information (genomic build 38). The last column indicates the total number of all SNPs annotated to a
pathway under investigation.

Study Cases/controls SNPs genotyped SNPs after preprocessing SNPs in analysis
Lung cancer 467/468 561,466 533,062 148,938
Rheumatoid arthritis 866/1189 545,080 491,695 137,839

the original chip were imputed. The base pair positions
of all SNPs were updated to NCBI build 38 using the
Ensembl database [48], which was accessed using the R
package biomaRt [49, 50]. Gene start and end positions were
extracted from the same database, also using NCBI build 38.
SNPs with no unique position were excluded. Refer to Table 3
for an overview of the study characteristics. Note that, during
analysis, only SNPs mapped to genes within pathways were
considered. The assignment of SNPs to genes was based on
their base pair location and gene boundaries. SNPs closely
located to each other are often in linkage disequilibrium (LD).
For SNP annotation, we specified gene regions including LD-
blocks extending beyond gene boundaries, as recommended
in [51].

The KEGG database groups pathways in disjoint subsets
according to their biological functionality. In the analysis of
the rheumatoid arthritis and lung cancer data, we used a
subgroup of 73 pathways connected to human diseases (see
Table 4). The information on this group of pathways was
downloaded in April 2016. An offset model containing only
the environmental covariates was fitted for each of the studies
to serve as start model for the kernel boosting of pathways.

For each pathway analyzed, the network-based kernel
function with 4 degrees of freedom served as base-learner.
The optimal number of iterations 𝑚stop was derived via 20-
fold subsampling and the default step length of 0.1 was
used. For the purpose of comparison, each of the pathways
considered in GWAS data analysis was also tested individu-
ally on the corresponding data using the LKMT. The same
environmental variables that were used in the offset model
for boosting were also considered for the LKMT. Prediction
accuracy was measured by the misclassification rate and the
area under the ROC curve (AUC) for both datasets. Of note,
prediction accuracy is influenced by the applied model but
also by the dataset at hand, that is, the amount of information
contained in the data. Additionally, we provided the cross-
validation results, that is, the (average) negative binomial
likelihood on the data that was not used for model fitting (see
Supplementary Material 1, Section B, for these results).

4. Results

4.1. Simulation Results. We compared the number of path-
ways each approach identified as associated with disease risk
and considered the respective overlap in the results. The
noninformative genetic data simulation comprised genotype
data for 50 pathways and 1,000 individuals. Figure 3 displays
the percentage of runs in which a pathway was selected.
We can observe that the application of kernel boosting to

these data does not lead to a high selection frequency for
any pathway. Selection of pathways appears to be distributed
randomly across all networks, not suggesting any clearly
recognizable association with disease status. Note that, in
kernel boosting, we do not conduct tests to evaluate the
pathways’ influence but select pathways based on their
predictive performance. Thus, we cannot calculate a type I
error to evaluate ourmethod’s performance. However, we can
quantify the empirical type I error. Within 100 simulation
runs on 50 pathways, a total number of 88 false selections
occurred. Thus, a pathway was falsely selected in 1.76% of all
possible cases. In 51 out of the 100 simulation runs, no single
pathway was chosen by the algorithm. Hence, we conclude
that kernel boosting can be trusted to reliably avoid false
positive selections in noninformative data.

Figures 4 and 5 compare the results of effect simulations
with a relative risk of 1.5 per allele for 1,000 cases and 1,000
controls to those for 250 cases and 250 controls. (a) in each
figure contains barplots indicating selection frequencies of
the 50 pathways across all simulation runs when applying
kernel boosting to the corresponding simulation scenario.
(b) compares these results with the selection frequencies
using the LKMT. Here, both the percentages of results with
a 𝑝 value below 0.05 (lighter grey bars) and those with 𝑝
values below the Bonferroni-corrected significance level of
0.001 (darker grey bars) are indicated. Pathways containing
influential genes are additionally highlighted in italics.

The results of kernel boosting in the sample of 2,000
individuals (Figure 4(a)) display three pathways clearly iden-
tified as influential on the clinical outcome, as their selection
frequency is close to 100%.These are the pathways originally
chosen to include genetic effects, hsa04020 and hsa04022,
and the pathway hsa04610. It seems that the latter pathway
is able to depict some of the information of the influential
gene more effectively than the causal pathway for which it
was originally simulated. This can be explained, as hsa04610
has the highest transitivity (0.14), also known as global
clustering coefficient, of all simulation pathways and contains
an effect gene. As the network kernel was designed to work
especially well in detection of interconnected genetic effects,
the causal gene is identified very well in the pathway when
using this base-learner. Note that the same pathway did not
stand out in the noninformative simulation scenario. Thus,
we conclude that high transitivity facilitates the detection
of causal effects when using the network-based kernel but
does not lead to false positives (i.e., here, pathways which
do not contain any effect gene). Several other pathways
were also selected, but only with very low frequencies. In
the same simulation scenario, the LKMT had very high



10 Computational and Mathematical Methods in Medicine

hs
a0

40
62

hs
a0

41
14

hs
a0

41
15

hs
a0

41
30

hs
a0

41
41

hs
a0

42
10

hs
a0

43
40

hs
a0

43
50

hs
a0

43
90

hs
a0

45
10

hs
a0

45
12

hs
a0

46
21

hs
a0

46
22

hs
a0

46
60

hs
a0

46
62

hs
a0

46
66

hs
a0

46
68

hs
a0

47
42

hs
a0

49
13

hs
a0

49
14

hs
a0

49
15

hs
a0

49
17

hs
a0

49
20

hs
a0

50
14

hs
a0

50
16

hs
a0

51
30

hs
a0

51
33

hs
a0

51
34

hs
a0

51
40

hs
a0

51
44

hs
a0

51
45

hs
a0

51
52

hs
a0

51
60

hs
a0

51
61

hs
a0

52
10

hs
a0

52
12

hs
a0

52
13

hs
a0

52
15

hs
a0

52
16

hs
a0

52
31

hs
a0

53
10

hs
a0

53
23

hs
a0

40
20

 (4
)

hs
a0

40
22

 (5
)

hs
a0

40
24

 (1
)

hs
a0

40
80

 (2
)

hs
a0

42
70

 (2
)

hs
a0

45
40

 (2
)

hs
a0

46
10

 (1
)

hs
a0

52
00

 (2
)0.0

0.2

0.4

0.6

0.8

1.0

Se
le

ct
io

n 
fre

qu
en

ci
es

(a)

Unadjusted
Bonferroni

hs
a0

40
62

hs
a0

41
14

hs
a0

41
15

hs
a0

41
30

hs
a0

41
41

hs
a0

42
10

hs
a0

43
40

hs
a0

43
50

hs
a0

43
90

hs
a0

45
10

hs
a0

45
12

hs
a0

46
21

hs
a0

46
22

hs
a0

46
60

hs
a0

46
62

hs
a0

46
66

hs
a0

46
68

hs
a0

47
42

hs
a0

49
13

hs
a0

49
14

hs
a0

49
15

hs
a0

49
17

hs
a0

49
20

hs
a0

50
14

hs
a0

50
16

hs
a0

51
30

hs
a0

51
33

hs
a0

51
34

hs
a0

51
40

hs
a0

51
44

hs
a0

51
45

hs
a0

51
52

hs
a0

51
60

hs
a0

51
61

hs
a0

52
10

hs
a0

52
12

hs
a0

52
13

hs
a0

52
15

hs
a0

52
16

hs
a0

52
31

hs
a0

53
10

hs
a0

53
23

hs
a0

40
20

 (4
)

hs
a0

40
22

 (5
)

hs
a0

40
24

 (1
)

hs
a0

40
80

 (2
)

hs
a0

42
70

 (2
)

hs
a0

45
40

 (2
)

hs
a0

46
10

 (1
)

hs
a0

52
00

 (2
)0.0

0.2
0.4
0.6
0.8
1.0

LK
M

T 
sig

ni
fic

an
t 

(fr
ac

tio
n)

(b)

Figure 4: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 2000, RR = 1.5) and (b) LKMT
(𝑛 = 2000, RR = 1.5) for a sample size of 2000 individuals. Pathways including effect genes are labeled in bold; numbers in brackets denote
the count of included influential genes within the pathway. All effects were simulated with a relative risk of 1.5 per allele.
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Figure 5: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 500, RR = 1.5) and (b) LKMT
(𝑛 = 500, RR = 1.5) for a sample size of 500 individuals. Pathways including effect genes are labeled in bold; numbers in brackets denote the
count of included influential genes within the pathway. All effects were simulated with a relative risk of 1.5 per allele.
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Table 4: KEGG pathways in the human diseases class as downloaded in April 2016. Pathways are sorted according to 𝑝 value, derived from
LKMT application on the rheumatoid arthritis dataset, in ascending order. 𝑝 values for pathways significantly associated after Bonferroni
correction are listed. Pathways selected by kernel boosting on the same dataset are marked in italics. Pathways containing one or several
genes belonging to the HLA complex are marked with an asterisk behind the id number.

KEGG id Name of pathway 𝑝 value
hsa05133 Pertussis 1.562 × 10−32

hsa05150∗ Staphylococcus aureus infection 1.029 × 10−30

hsa04933 AGE-RAGE signaling pathway in diabetic complications 3.877 × 10−17

hsa05169∗ Epstein-Barr virus infection 2.651 × 10−16

hsa05144 Malaria 3.087 × 10−15

hsa05206 MicroRNAs in cancer 3.969 × 10−15

hsa05330∗ Allograft rejection 4.131 × 10−12

hsa05200 Pathways in cancer 7.695 × 10−11

hsa05166∗ HTLV-I infection 1.344 × 10−11

hsa05030 Cocaine addiction 1.353 × 10−11

hsa05323∗ Rheumatoid arthritis 1.466 × 10−11

hsa05310∗ Asthma 2.268 × 10−11

hsa05134 Legionellosis 1.699 × 10−05

hsa04940∗ Type I diabetes mellitus 3.591 × 10−10

hsa05031 Amphetamine addiction 3.735 × 10−10

hsa05145∗ Toxoplasmosis 4.555 × 10−10

hsa05203∗ Viral carcinogenesis 1.814 × 10−09

hsa05332∗ Graft-versus-host disease 5.940 × 10−09

hsa05020 Prion diseases 1.530 × 10−07

hsa05143 African trypanosomiasis 2.114 × 10−07

hsa05222 Small-cell lung cancer 3.782 × 10−07

hsa05205 Proteoglycans in cancer 1.236 × 10−06

hsa05322∗ Systemic lupus erythematosus 1.702 × 10−06

hsa05161 Hepatitis B 1.757 × 10−06

hsa05410 Hypertrophic cardiomyopathy (HCM) 1.980 × 10−06

hsa05010 Alzheimer’s disease 7.234 × 10−06

hsa05142 Chagas disease (American trypanosomiasis) 1.048 × 10−05

hsa05168∗ Herpes simplex infection 1.109 × 10−05

hsa05012 Parkinson’s disease 1.368 × 10−05

hsa04932 Nonalcoholic fatty liver disease (NAFLD) 1.823 × 10−05

hsa05321∗ Inflammatory bowel disease (IBD) 2.124 × 10−05

hsa04931 Insulin resistance 3.625 × 10−05

hsa05219 Bladder cancer 4.133 × 10−05

hsa05215 Prostate cancer 4.220 × 10−05

hsa05202 Transcriptional misregulation in cancer 7.697 × 10−05

hsa05220 Chronic myeloid leukemia 8.464 × 10−05

hsa05146 Amoebiasis 1.003 × 10−04

hsa05414 Dilated cardiomyopathy 1.014 × 10−04

hsa05231 Choline metabolism in cancer 1.504 × 10−04

hsa05032 Morphine addiction 1.672 × 10−04

hsa05162 Measles 2.390 × 10−04

hsa05214 Glioma 2.506 × 10−04

hsa05164∗ Influenza A 2.720 × 10−04

hsa05416∗ Viral myocarditis 3.384 × 10−04

hsa05132 Salmonella infection 5.147 × 10−04

hsa05014 Amyotrophic lateral sclerosis (ALS) 5.568 × 10−04

hsa04930 Type II diabetes mellitus Not significant
hsa05218 Melanoma Not significant
hsa05140∗ Leishmaniasis Not significant
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Table 4: Continued.

KEGG id Name of pathway 𝑝 value
hsa05213 Endometrial cancer Not significant
hsa05211 Renal cell carcinoma Not significant
hsa05340 Primary immunodeficiency Not significant
hsa05160 Hepatitis C Not significant
hsa05212 Pancreatic cancer Not significant
hsa05016 Huntington’s disease Not significant
hsa05221 Acute myeloid leukemia Not significant
hsa04950 Maturity onset diabetes of the young Not significant
hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) Not significant
hsa05223 Non-small-cell lung cancer Not significant
hsa05034 Alcoholism Not significant
hsa05130 Pathogenic Escherichia coli infection Not significant
hsa05120 Epithelial cell signaling in Helicobacter pylori infection Not significant
hsa05131 Shigellosis Not significant
hsa05204 Chemical carcinogenesis Not significant
hsa05100 Bacterial invasion of epithelial cells Not significant
hsa05216 Thyroid cancer Not significant
hsa05152∗ Tuberculosis Not significant
hsa05210 Colorectal cancer Not significant
hsa05230 Central carbon metabolism in cancer Not significant
hsa05217 Basal cell carcinoma Not significant
hsa05320∗ Autoimmune thyroid disease Not significant
hsa05033 Nicotine addiction Not significant
hsa05110 Vibrio cholerae infection Not significant

power to detect the two pathways simulated to affect disease
risk, however, also detected other pathways including any
of the causal genes on the Bonferroni-adjusted significance
level (Figure 4(b)). Three of the six other effect-containing
pathwayswere selected in almost 100%of the replications and
two of the remaining ones in more than 60% and one other
pathway which contained an effect gene was hardly selected.

Overall, this indicates that kernel boosting can identify
the pathwayswith themost explanatory powerwith respect to
disease status and is less likely than LKMT to select pathways
due to overlapping effect genes (see [6] for a discussion).
The reason can be found in the multivariate nature of the
kernel boosting approach, in which pathways are not tested
separately for their influence, but a multivariate model is
fitted to incorporate multiple influential predictors at the
same time.

Figure 5(a) reveals that the selection frequencies of asso-
ciated pathways drop noticeably when sample size decreases.
The same three pathways as in the larger sample reached
the highest selection frequencies but here only between
20% and 60%. Simultaneously, the number of selections
across nonassociated pathways increased slightly compared
to the larger sample. This indicates that a reduction in
sample size leads to less clear identification of the main
influential pathways by kernel boosting. In Figure 5(b), we
notice a similar behaviour of the selection frequency in
LKMT analysis. Here again, the power to identify pathways,
previously well detected in the larger sample, drops clearly

with the smaller dataset. Regarding the percentage of detected
pathways on the Bonferroni-corrected significance level, the
drop is even more pronounced in the LKMT than for kernel
boosting. This indicates that kernel boosting is less strongly
influenced by sample size and may have greater potential
in the identification of causal effects in smaller datasets for
which the LKMT is underpowered.

Figures 6 and 7 compare the results of kernel boosting and
the LKMT for differing effect sizes in equally sized samples
of 1, 000 individuals. The graphics are structured as Figures
4 and 5, with kernel boosting selection frequencies plotted in
(a) and LKMT selection frequencies in (b). Figure 6 contains
a simulation scenario with relative risk of 1.5 per causal allele
and Figure 7 the results for a relative risk of 1.1 per allele.
Again, pathways containing influential genes are additionally
highlighted.

In the kernel boosting plot in Figure 6(a), the three
pathways standing out in Figure 4 again reached very high
selection frequencies. All three bars decreased slightly in
size compared to the scenario with 2, 000 individuals but
still illustrate selections in more than 80% of simulation
runs. Selection frequencies of the other effect pathways
increased compared to the scenarios in Figure 4. However,
as selections across noninfluential pathways occurred more
frequently here, they cannot clearly be identified as influential
based on their selection frequencies alone. In the LKMT
analysis of this sample, the power to detect causal effects
noticeably drops compared to the 2, 000 individuals’ sample
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Figure 6: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 1000, RR = 1.5) and (b) LKMT
(𝑛 = 1000, RR = 1.5) for sample sizes of 1000 individuals. Effect strength was set to relative risks of 1.5 per allele. Pathways including effect
genes are labeled in bold; numbers in brackets denote the count of included influential genes within the pathway.
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Figure 7: Relative frequency of datasets in which a pathway was selected using (a) kernel boosting (𝑛 = 1000, RR = 1.1) and (b) LKMT
(𝑛 = 1000, RR = 1.1) for sample sizes of 1000 individuals. Effect strength was set to relative risks of 1.1 per allele. Pathways including effect
genes are labeled in bold; numbers in brackets denote the count of included influential genes within the pathway.
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illustrated in Figure 4(b). Comparing Figures 6 with 7, we
can see a drop in selection frequencies as well as in power to
detect associated pathways. In Figure 6, the two chosen effect
pathways were detected in almost 100% and around 80% of
simulation runs for both methods. In Figure 7, we observe
that kernel boosting reaches selection frequencies of around
80% and 40%, while the LKMT with Bonferroni correction
only achieves selection frequencies slightly greater than 60%
and 20%, respectively. In a similar fashion to the results of
the scenarios compared in Figures 4 and 5, both methods
have higher power to detect associations for stronger effects;
however the drop in power is less pronounced for kernel
boosting. We conclude that kernel boosting firstly has no
inferior performance in terms of power compared to the
LKMT. It may even prove more likely to identify influential
pathways with smaller genetic effects as it overcomes the
multiple testing problem. Secondly, we infer that, in contrast
to single-pathway testing approaches, kernel boosting has the
ability to discriminate crucial biological processes associated
with disease risk from effects included in pathways only due
to overlapping genes.

4.2. GWAS Analysis Results. Kernel boosting on the human
disease pathways in the lung cancer dataset resulted in
selection of only the prion diseases pathway (KEGG id
hsa05020). No other pathway was selected. The misclassi-
fication error of the tuned boosting model for lung cancer
(evaluated at the optimal cut point as defined by the minimal
Youden index) was 24.5% and the AUC was 0.785. The
ROC curve and the cross-validation results are presented in
the Supplementary Material 1, Section B. The LKMT with
network-based kernel did not detect any associated pathway
on the Bonferroni-corrected significance level. The prion
diseases pathway appears ranked 20 out of 73 pathways,
when sorting pathways according to ascending Bonferroni-
corrected 𝑝 values. Prions are misfolded proteins capable of
changing the structure of other, properly folded proteins into
their own incorrect prion structure. They have mostly been
reported in connection with neurodegenerative diseases [52].
Nevertheless, a connection with different forms of cancer has
also previously been suspected [53, 54]. A full table of results
from the analysis of the lung cancer dataset can be found in
Supplementary Material 1, Section B.

As expected, analysis of the rheumatoid arthritis dataset
discovered a variety of pathways (compare results in [13]).
Kernel boosting constructed an explanatory model for dis-
ease status based on 32 selected pathways (see pathways
written in italics in Table 4). It is well known that genes
belonging to the human leukocyte antigen (HLA) complex
are highly correlatedwith rheumatoid arthritis [55].TheHLA
family, located on the short arm of chromosome 6, is a
highly polymorphic genetic system mainly responsible for
the regulation of the immune system [56]. In the human
disease class, 18 pathways contain at least one of the HLA
genes.These pathways are marked with an asterisk in Table 4.
Between the 18 pathways containing HLA genes and the 32
pathways selected by kernel boosting, there is an overlap
of 10 pathways. This may be explained by the multivariate
nature of the method, in which only the pathwaymost clearly

representing a particular genetic effect will be selected, con-
ditionally on previously selected effects. Testing the human
disease pathways’ influence on disease status with the LKMT
resulted in a large number of 46 significantly associated
pathways out of 73 pathways after Bonferroni correction
(see pathways with 𝑝 values in Table 4). These included
almost all HLA pathways (15 out of 18). The more specific
identification of influential pathways by kernel boosting
provides a more complete basis to the understanding of the
crucial biological processes involved in disease susceptibility.
The misclassification error of the tuned boosting model for
rheumatoid arthritis (evaluated at the optimal cut point as
defined by the minimal Youden index) was 22.7% and the
AUC was 0.850. The ROC curve and the cross-validation
results are presented in Supplementary Material 1, Section B.

5. Discussion

We extend a successful method for single-pathway tests to
a multivariate selection approach for simultaneous analysis
of several pathways. The resulting kernel boosting method
benefits from the advantages of a kernel-based analysis, while
at the same time overcomes some of the limitations inherent
to testing procedures.

Moreover, our multivariable approach to GWAS data
analysis does not provide 𝑝 values, which only provide
limited information on the relevance of a genetic effect.
A more meaningful result would be an effect measure for
the investigated trait or better still the ability to predict an
outcome. Kernel boosting facilitates prediction, based on
the selected influential variables, as was elucidated in the
application where the overall prediction accuracy of each of
the models was reported. Thus, it is also possible to interpret
the influence of a specific genetic alteration by comparing
the change in the predicted outcomes. A high degree of
prediction accuracy for the model is ensured through the
convenient evaluation of its performance on subsamples of
the investigated dataset. This procedure usually results in
good prediction accuracy and a sparse model.

Owing to the built-in shrinkage, our boosting approach is
capable of dealing with correlated effects. Hence, correlated
pathways, which partly include the same genes, can be
handled within this framework. Thanks to the multivariable
nature of the approach, only the best-fitting pathways, evalu-
ated in terms of prediction accuracy, will be chosen to enter
themodel.Thus, only the pathwaymost clearly representing a
particular genetic effect will be selected, depending on those
pathways selected previously. Our observations support the
statement by de Leeuw et al. [57] that competitive gene-set
analysis methods (multivariate approach, pathways in com-
petition), in contrast to self-contained approaches (univariate
approach, one pathway at a time), can potentially differentiate
widely spread heritability of polygenetic outcomes from
causal biological processes. This property can be very helpful
in the identification and understanding of specific biological
functions involved in disease susceptibility.

We consider pathways as analysis units; however various
other options exist. Single SNPs in transcribed or untran-
scribed regions, and SNP sets aggregated to represent a
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specific genomic region, environmental variables, or other
variables, may be investigated and even combined arbi-
trarily within one model. For example, the application of
our method to the genes comprising a pathway may help
to identify key influential genes within the network (for
gene boosting, see also the work of Ma et al. [58]; for
good overviews of feature selection methods and machine
learning tools in bioinformatics refer to [59, 60]). Known
influential factors may be embedded in an initial model prior
to the selection procedure to adjust for environmental or
genetic effects. Furthermore, the considered effects can be
incorporated into the model via a multitude of possible base-
learners.

The choice of a base-learner can influence effect selec-
tions. We observed this behaviour during the simulations,
in which the highly connected pathway containing only
one effect gene was identified owing to the network-based
kernel’s high power on interconnected effects. Thus, the
well-considered selection of base-learners to be utilized is
advisable. We account for the high complexity of possible
gene interactions in pathways via the use of a kernel function,
which accounts for additive and interaction effects. Such a
kernel function will likely lead to a higher degree of predic-
tion accuracy than a simple linear kernel. The application of
our method to GWAS datasets on rheumatoid arthritis and
lung cancer returned biologically plausible results. Particu-
larly with the rheumatoid arthritis dataset, the number of
identified pathways could be reduced considerably compared
to single-pathway tests. While the LKMT resulted in 46
significantly associated pathways, kernel boosting narrowed
the selection down to 32 pathways. Genes within the HLA
region are known to have a strong influence on rheumatoid
arthritis.Their effects can reach far across pathways, such that
the LKMT detects many pathways including HLA genes as
significantly associated. Boosting seems to help to pinpoint
down signals even among those pathways and reduces the
number of identified pathways to a more reasonable level.

Our results indicate that kernel boosting outperforms
single kernel machine tests, as exemplified by the LKMT,
in certain genetic scenarios. It may help to discriminate
causal biological processes from isolated effects included in
pathways only due to gene overlap and facilitate discovering
weak signals, especially in studies of limited size. This is of
particular interest in the investigation of rare diseases and
disease subtypes, in which established methods often fail to
find any significantly associated pathways owing to a lack of
power.

Datasets of the size investigated here can be analyzed
with kernel boosting quite efficiently on current high-
performance cluster computing (HPCC) systems. However,
such analysis of very large datasets places a rather high
demand even on the most powerful HPCC systems to date.
Usually, our kernel base-learners are based on the pairwise
similarities of all observations. This leads to 𝑛 × 𝑛 similarity
matrices as design matrices and hence to parameter vectors
𝛾 of size 𝑛. Instead of using all pairwise similarities, it is
possible to compute the similarities only to a representative
subset of the observations, or so-called knots. These knots
can be chosen as subset of the observations which covers

the complete observation space (space-filling algorithm; see
[33, 61, 62]). Consequently, we obtain reduced-rank design
matrices of dimension 𝑛 × 𝑛, where 𝑛 is the number of
knots, and a parameter vector of size 𝑛. This reduces the
computational burden for the construction of the kernel base-
learners and effect estimation and makes kernel-based meth-
ods even feasible in situations with many observations. The
exact number of observations that can be processed depends,
among others, on the considered number of individuals,
SNPs, base-learners chosen, and the available hardware.

Kernel boosting constitutes a new and potentially pow-
erful tool in the analysis of GWAS data. It offers a highly
flexible and extensible framework, suitable for a wide range
of application scenarios. We account for the high complexity
of possible gene interactions via the use of kernel functions,
while reducing the complexity of the resulting model with
the built-in shrinkage of the boosting approach.The resulting
model enables us to predict traits and returns moremeaning-
ful results than a testing procedure. We conclude that kernel
boosting is a suitablemethodological addition for the analysis
of GWAS, which supports the detection and interpretation of
genetic risk factors influencing disease susceptibility.
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