
Mutations in GABRB3
From febrile seizures to epileptic encephalopathies

ABSTRACT

Objective: To examine the role of mutations in GABRB3 encoding the b3 subunit of the GABAA

receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic
variants, their pathophysiology, and associated phenotypes.

Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of
epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with
epilepsy with GABRB3 mutations from other research and diagnostic programs.

Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands
frommultiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile
seizures, genetic epilepsies with febrile seizures plus, and epilepsy withmyoclonic-atonic seizures to
West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysio-
logic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant
b3, together with a5 and g2s subunits and an automated 2-microelectrode voltage-clamp system,
revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations.

Conclusions: Our results indicate thatGABRB3mutations are associated with a broad phenotypic
spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition
represents the relevant disease mechanism. Neurology® 2017;88:483–492

GLOSSARY
DS 5 Dravet syndrome; EE 5 epileptic encephalopathies; EOAE 5 early-onset absence epilepsy; ExAC 5 Exome Aggrega-
tion Consortium; FS 5 febrile seizures; GFS1 5 genetic epilepsies with febrile seizures plus; GGE 5 genetic generalized
epilepsies; ID 5 intellectual disability; LGS 5 Lennox-Gastaut syndrome; MAE 5 epilepsy with myoclonic atonic seizures;
WS 5 West syndrome; WT 5 wild-type.

Disruption of GABAergic inhibition has been shown to cause epileptic seizures.1 GABAA receptors
are ligand-gated anion channels, and mutations in genes encoding different receptor subunits, e.g.,
GABRG2, GABRA1, GABRD, GABRB2, and GABRB3, have been associated with a wide spectrum
of epilepsies frommild genetic generalized epilepsies (GGE)2–6 to epileptic encephalopathies (EE).7–10
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Mutations in GABRB3 encoding the b3

subunit of the GABAA receptor have recently
been reported in patients with severe epilepsies
through large-scale studies.7,9,11–14 However,
the specific role of GABRB3 pathogenic var-
iants in the disease context has only recently
been assessed in a single study for a small num-
ber of mutations,15 and data on the functional
consequences of most of the mutations are still
lacking.

Here, we systematically analyze a large cohort
of patients with various epilepsies for mutations
in GABRB3 and integrate clinical and genetic
data from additional, unreported patients. We
provide insight into the mutational landscape of
GABRB3, including several recurrent muta-
tions, and characterize the functional conse-
quences of mutations for milder and more
severe phenotypes using 2-microelectrode volt-
age clamping in Xenopus laevis oocytes.

METHODS Patients. We screened a cohort of 416 patients

sequentially referred for testing with various childhood-onset

epilepsies for mutations in the GABRB3 gene using a next-

generation sequencing panel. Genomic DNA from blood was

extracted with standard methods, and a next-generation

sequencing panel screening method was applied that was based

on the Ion Torrent PGM platform. Ion AmpliSeq (kit version

2.0) or Sureselect library building methods were used with

subsequent clonal amplification and enrichment on an Ion

OneTouch 2 system with the Ion PGM Template OT2 200

Kit, followed by sequencing on the Ion Torrent system with

the Ion PGM 200 Sequencing Kit. In parallel, we ascertained

additional, previously unreported patients through centers in

Europe and the United States. The probands and their families

underwent detailed clinical examinations, review of the medical

files, MRIs, and EEG investigations. Seizures were diagnosed

according to the International League Against Epilepsy, and

epilepsy syndromes were established when possible.16

Mutation analysis. In 2 cases, mutations were identified with

the gene panel mentioned above, which included targeted capture

of all exons and at least 5 base pairs of flanking intronic sequence

of GABRB3.
Patients with GABRB3mutations ascertained through collab-

orators were diagnosed through established diagnostic programs

or research studies. Sanger sequencing was used to confirm all

mutations and to perform segregation analysis.

Standard protocol approvals, registrations, and patient
consents. The study was approved by the local ethics commit-

tees. All probands or, in case of minors, their parents or legal

guardians gave informed consent.

Functional data. Mutagenesis and RNA preparation. We

used the Quick Change kit (Stratagene, La Jolla, CA) to engineer

7 variants (p.V37G, p.R111*, p.T157M, p.Y184H, p.L256Q,

p.Y302C, and p.R429Q) in cDNA encoding the GABAA receptor

subunit b3 (NM_000814.4, Origene Technologies, Rockville,

MD). cRNAs were prepared with a custom laboratory protocol

or the T7 mMessage mMachine kit from Ambion (Thermo Fisher

Scientific, Waltham, MA).

Oocyte preparation and injection. The use of animals and

all experimental procedures were approved by local authorities

(Regierungspraesidium Tuebingen, Tuebingen, Germany).

Oocytes were obtained from the Institute of Physiology I,

Tuebingen and prepared as previously described.10 Briefly, the

procedure included treatment with collagenase (1 mg/mL of type

CLS II collagenase, Biochrom KG, Berlin, Germany) in OR-2

solution (mmol/L: 82.5 NaCl, 2.5 KCl, 1 MgCl2, and 5 Hepes,

pH 7.6), followed by thorough washing and storing at 168C in

Barth solution [mmol/L: 88 NaCl, 2.4 NaHCO3, 1 KCl, 0.33

Ca(NO3)2, 0.41 CaCl2, 0.82 MgSO4, and 5 Tris/HCl, pH 7.4

with NaOH] supplemented with 50 mg/mL gentamicin (Bio-

chrom KG, Berlin, Germany). Equivalent amounts of cRNA

were injected in parallel in oocytes from the same batch, plated in

96-well plates, and recorded at day 3 after injection.10,17 The

subunit combination was a5, b3, and g2s in a 1:1:2 ratio. All

cRNA concentrations were adjusted to 2 mg/mL and 70 nL of the

corresponding cRNA mixtures injected with the Robooinject

system (Multi Channel Systems, Reutlingen, Germany).

Automated oocyte 2-microelectrode voltage clamp. GABAA

receptor–mediated currents were recorded in oocytes at room

temperature (208C–228C) with the Roboocyte2 system (Multi

Channel Systems). Intracellular glass microelectrodes had a resis-

tance of 0.3 to 1 MV when filled with 1 mol/L KCl/1.5 mol/L

K-acetate. ND96 (mmol/L: 93.5 NaCl, 2 KCl, 1.8 CaCl2, 2

MgCl2, and 5 Hepes, pH 7.5) was used as the bath solution.

Currents were sampled at 1 kHz, and the holding membrane

potential was 270 mV.10

Electrophysiologic data analysis. Currents were analyzed

with Roboocyte21 (Multi Channel Systems), Microsoft Excel

(Microsoft, Redmond, WA), and GraphPad Prism software

(GraphPad Software, La Jolla, CA). Current amplitudes in

response to 1 mmol/L GABA recorded on the same day were

normalized to the mean value of the wild-type (WT) so that

normalized data from different experiments could be pooled

together. To obtain dose-response curves, the current response to

each GABA concentration was normalized to the maximum

response evoked by the highest GABA concentration (1 mmol/L),

plotted against the respective concentration and for each cell fit to

the following 4-parameter equation:

YðXÞ5Bmax 3Xh
.�

Kh
d 1Xh

�

where Bmax is the maximum response to GABA, Kd is the con-

centration to achieve half-maximum response, and h is the

Hill slope.

Data and statistical analyses. Data were tested for normal

distribution with GraphPad Prism 6. Groups were compared

with the use of one-way analysis of variance with the Tukey

post hoc test. All data are presented as mean 6 SEM.

RESULTS Mutation analysis. In our screening cohort
of 416 patients, we identified 2 patients (0.4%) with
de novo GABRB3 mutations and ascertained 20 addi-
tional patients through collaborators, yielding in total
22 patients with presumed pathogenic variants in
GABRB3 (table 1). Three patients have previously
been reported (patients 3, 12, and 13).9,18 Eighteen
of 22 mutations were missense; 3 of 22 were truncating
mutations; and one alteration was a partial duplication
of exons 1 through 9.
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Table 1 Phenotypic features of the 22 novel patients with GABRB3 mutations

Patient
Epilepsy
syndrome

Seizure
onset Seizure types/fsens

Seizure outcome/
age at offset

Intellectual
disability EEG Additional features MRI

cDNA*/protein position detected
by (1), (2)

Familial epilepsies with
febrile and generalized
seizures (n 5 2)

1 (female) EOAE,a Fam1 9 mo FS, A, GTCS, fsens1 Sz-free/4 y Normal intellect GSW, PSW None None c.110T.G, p.V37G, paternal, (1)

2 (male) GEFS1,a Fam2 6 mo FS, dyscognitive, GTCS,
fsens1

Sz-free/10 y Normal intellect PSW, R frontal None Normal c.1286G.A, p.R429Q, maternal, (1)

Focal/multifocal/
unclassifiable
epilepsies (n 5 4)

3 (male) Focal epilepsy 7 mo Focal, unclassified, fsens1 Rare Sz Mild, plateau at
7 mo

Focal IED Mild ataxia, hypotonia Normal c.905A.G, p.Y302C, de novo (2)

4 (female) Focal epilepsy 15 mo Focal clonic, focal,
myoclonic, fsens1

Sz-free/2 y Mild Multifocal, focal
IED, 1diffuse SW
activated by sleep

Ataxia, hypotonia Normal c.902C.T, p.P301L, de novo (2)

5 (female) Unclassified 4 mo SE, clonic, hypomotor,
GTCS, fsens2

Sz-free/3 y Moderate Multifocal Autistic features Bifrontal
heterotopia

c.695G.A, p.R232Q, de novo (1)

6 (male) Unclassified 11 mo A, EM, unclassified, fsens1 Sz-free for 2 y/
rare seizures

Moderate Multifocal None Normal c.695G.A, p.R232Q, de novo (2)

EE with mild to severe
intellectual disability
(n 5 16)

7 (male) MAE 36 mo M, MA, GTCS, fsens2 Sz-free/4 y Moderate, plateau
at 3 y

GSW, PSW None Normal c.8delG, p.Gly3fs*26, unknown (1)

8 (male) MAE 9 mo FS, GTCS, MA, fsens1 Daily Sz Mild, stagnation at
16 mo

GSW Mild ataxia Normal c.227C.G, p.S76C, de novo (1)

9 (male) MAE 12 mo FS, MA, GTCS, fsens1 Sz-free/4 y Severe, 24 mo
regression

Multifocal Autism Normal c.331C.T, p.R111*, maternal (1)

10 (female) MAE 12 mo MA, fsens1 Sz-free/18 mo Mild PSW Behavioral issues
(aggression)

Normal c.425G.T, p.R142L, maternal
(mosaic: 10%–20%) (1)

11 (male) MAE 14 mo MA, GTCS, fsens1 GTCS in clusters Mild GSW Normal Normal c.550T.C, p.Y184H, de novo (1)

12 (male) DS-like,a Fam3 8 mo FS, GTCS, Abs, M, A, fsens1 Weekly Sz Mild, delays at 2.5 y Bilateral SW ADHD Normal c.470C.T, p.T157M, maternal, (2)

13 (male) EE/WS 1 d Focal, GTCS, IS, tonic, fsens- Daily Sz Severe, 3 mo
stagnation

Hypsarrhythmia,
GSSW

Hypotonia, dyskinesia Hypomyelination c.767T.A, p.L256Q, de novo (1)

14 (male) EE/WS 4 mo Dyscognitive, clonic,
IS, fsens-

Sz-free/1 y Moderate Multifocal, burst
sup

Hypotonia Hypomyelination Exon 1–9 duplication, de novo (1)

15 (male) EE/WS 8 mo IS, tonic, FS, GTCS, fsens2 Rare Sz Moderate,
regression (12 m)

Multifocal Autism, ataxia, tremor Normal c.205G.A, p.A69T, transcript:
ENST00000541819.2 unknown (1)

16 (female) EE/LGS 17 mo A, tonic, dyscognitive,
GTCS, fsens2

Frequent Sz Severe Multifocal Strabismus,
hyperactivity and
aggression

Normal c.905A.G, p.Y302C, de novo (1)

17 (female) EOEE 2.5 mo Focal, clonic, migrating,
fsens2

Weekly Sz Severe Multifocal Acquired microcephaly
(HC , 22 SD),
hypotonia, quadriplegia

Severe, diffuse
brain atrophy

c.372A.C, p.L124F, de novo (1)
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Table 1 Continued

Patient
Epilepsy
syndrome

Seizure
onset Seizure types/fsens

Seizure outcome/
age at offset

Intellectual
disability EEG Additional features MRI

cDNA*/protein position detected
by (1), (2)

18 (male) EOEE 3 mo Focal, tonic, fsens2 Rare tonic Sz Severe Multifocal Acquired microcephaly
(HC , 23 SD),
quadriplegia

Hypoplastic
cerebellum

c.761C.T, p.S254F, de novo (1)

19 (female) EOEE 2.5 mo Hypomotor, M, fsens1 Rare Sz Severe Multifocal Hypotonia Atrophy,
hypomyelination,
thin CC

c.554C.T, p.T185I, de novo (2)

20 (male) EOEE 5 mo A, tonic, SE, fsens NA Weekly Sz Severe Multifocal Hypotonia Volume loss,
brainstem
atrophy

c.380A.G, p.K127R, de novo (1)

21 (male) Focal epilepsy/
EE

11 mo Dyscognitive, GTCS,
unclassified, A, fsens NA

Frequent Sz up to
300 Sz/d

Severe Multifocal Autistic features, hand
stereotypies, Rett-like

Normal c.758C.T, p.P253L, (mosaic: 20%),
de novo (1)

22 (male) EE/LGS 11 mo Febrile GTCS, dyscognitive,
Abs-like, tonic, fsens NA

Daily Severe, regression
(5 y)

Multifocal Self-injury episodes,
hand stereotypies,
hyperventilation
episodes

Normal c.694C.T, pArg232*, paternal (1)

Family members with
GABRB3 mutations
(n 5 9)

Fam1, I.2 (male) FS1 ,5 y,
14 y

FS, GTCS Multiple FSs,
single GTCS Sz-
free

Normal intellect NA None Not done c.110T.G, p.V37G, paternal

Fam1, II.2 (female) FS 9 mo FS 6 FS, Sz-free Normal intellect NA None Not done c.110T.G, p.V37G, paternal

Fam2, I.1 (female) No Sz — — No Sz Normal intellect NA None Not done c.1286G.A, p.R429Q, maternal

Fam2, II.2 (male) FS1 2 y, 5 y FS, GTCS Sz-free Normal intellect Occipital sharp-
slow waves (9 y)

None Not done c.1286G.A, p.R429Q, maternal

Fam3, I.1 (female) FS NA FS Multiple FSs, Sz-
free

Normal intellect NA None Not done c.470C.T, p.T157M,

Fam3, II.2 (female) GEFS1 First
year of
life

FS, GTCS, Abs Sz-free Normal intellect NA None Not done c.470C.T, p.T157M, maternal

Fam3, II.3 (female) FS First
year of
life

FS Multiple FSs, Sz-
free

Normal intellect NA None Not done c.470C.T, p.T157M, maternal

Fam3 III.1 (male) GEFS1 First
year of
life

FS, GTCS Sz-free Normal intellect Normal None Not done c.470C.T, p.T157M, maternal

Fam3, III.5 (female) DS-like 5 mo FS, febrile SE, GTCS, Abs, M,
fsens1

Weekly to
monthly Sz

Mild delay since age
1.5 y

Normal Hyperactivity,
aggressiveness

Not done c.470C.T, p.T157M, maternal

Abbreviations: A 5 atonic; Abs 5 absence seizure; ADHD 5 attention-deficit/hyperactivity disorder; CC 5 corpus callosum; DS 5 Dravet syndrome; dyscognitive 5 focal dyscognitive seizure; EE 5 epileptic
encephalopathies; EM 5 eyelid myoclonia; EOAE 5 early-onset absence epilepsy; EOEE 5 early-onset epileptic encephalopathy; Fam 5 family; FS 5 febrile seizures; FS1 5 febrile seizures plus; fsens1/2 5 fever
sensitivity positive/negative; GSSW 5 generalized synchronized spike wave; GSW 5 generalized spike wave; GTCS 5 generalized tonic-clonic seizure; IED 5 interictal epileptic discharges; IS 5 infantile spasm;
LGS 5 Lennox-Gastaut syndrome; M 5 myoclonic; MA 5 myoclonic atonic; MAE 5 myoclonic atonic epilepsy; NA 5 not applicable; PSW 5 poly spike wave; SE 5 status epilepticus; SW 5 spike wave; Sz 5 seizure;
WS 5 West syndrome; *Transcript 5 NM_000814.4.
cDNA*/protein position detected by next-generation sequencing panel diagnostic (1) or whole-exome sequencing (2).
a Family history (see figure 1B).
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Concerning the inheritance mode, 14 of 22 muta-
tions occurred de novo, including in one patient who
was mosaic; 3 of 22 mutations segregated within the
family in a dominant fashion; 1 of 22 was inherited
from an unaffected mother who was mosaic for the
mutation; and 2 of 22 were inherited from an unaf-
fected parent. Complete segregation analysis could
not be performed for 2 of 22 mutations, including
one recurrent mutation that occurred de novo in 2
other patients in this study.

All missense mutations were predicted to be dam-
aging by 1 or 2 prediction tools (Polyphen2 or SIFT;
table e-1 at Neurology.org). Twenty-one of 22 muta-
tions were not present in the Exome Aggregation
Consortium (ExAC) database, whereas one mutation
(p.A69T) found in an alternative GABRB3 transcript
was observed in 2 of 14,132 chromosomes. The pro-
tein positions of the different GABRB3 mutations are
shown in figure 1A.

Overall mutational landscape. Mining the available lit-
erature and databases, we were able to identify 16
additional previously reported GABRB3 cases (table
e-1).7,9,11,12,14,19 The majority of the published muta-
tions occurred de novo and were associated with EE.
From the complete dataset of 38 patients with
GABRB3 mutations, 5 sites with recurring mutations
at identical amino acid positions emerged: p.D120N
(2x), p.K127R (2x), p.R232Q (2x)/p.R232*(1x),
p.Y302C (3x), and p.A305V/p.A305T (1x each)
(figure 1A).

Phenotypic analysis. Index patients. The phenotypic
spectrum in our study varied from genetic epilepsies
with febrile seizures plus (GEFS1) and early-onset
absence epilepsy (EOAE) to multifocal epilepsy, EE
within the Dravet syndrome (DS) spectrum, epilepsy
with myoclonic atonic seizures (MAE), West syn-
drome (WS), Lennox-Gastaut syndrome (LGS), and
other unclassifiable types of EE. The median age at
seizure onset was 8.5 months (range 1 day–36
months). Fever-associated seizures were reported in
11 of 19 patients for whom data were available (2
of 2 with GGE, 3 of 4 with unclassified epilepsies,
1 of 1 with DS-like EE, 4 of 5 with MAE, and 1 of 7
with other EE/EOEE).

Sixteen of 22 patients (73%) had EE, including
DS-like EE (n 5 1), MAE (n 5 5), WS (n 5 3),
LGS (n 5 2), and unclassifiable EE/EOEE (n 5 5).
These patients had various seizure types, including
infantile spasms, focal dyscognitive seizures, tonic seiz-
ures, myoclonic seizures, atonic seizures, myoclonic-
atonic seizures, and generalized tonic-clonic seizures.
Four of 22 patients had focal or unclassifiable epilepsy
with onset between 4 and 15 months and various sei-
zure types. One patient (patient 4) with focal epilepsy
had focal EEG abnormalities, which were activated by

sleep and became bilaterally diffuse. Three of 4 patients
with focal/unclassifiable epilepsy (patients 4–6) became
seizure-free between 2 and 3 years of age. However,
patient 6 had single seizures after he was tapered off
medication. The last patient (patient 3) in this group
had rare seizures. Two of 22 patients had generalized
epilepsies well controlled on antiepileptic medication,
EOAE (patient 1) and GEFS1 (patient 2) with offset
at age 4 and 10 years, respectively.

The 2 patients with GGE had normal cognitive
skills, in contrast to patients with focal/unclassifiable
epilepsy and EE, who presented with mild to severe
intellectual disability (ID). Behavioral and psychiatric
disturbances, including attention-deficit/hyperactivity
disorder, autistic features, agitation, hyperactivity, and
aggression, were reported in 8 of the 22 patients (36%).

Seven of 22 patients (32%) had MRI abnormali-
ties, including bilateral frontal heterotopia with sus-
pected polymicrogyria (patient 5), hypomyelination
(patients 13 and 14), severe diffuse brain atrophy
(patient 17), hypoplastic cerebellum (patient 18), gen-
eralized volume loss with thin corpus callosum (patient
19), or prominent cortical and subcortical volume loss
with brainstem atrophy (patient 20). However, no
clear pattern typical for GABRB3 mutations emerged
from these observations. Except for one patient
(patient 5), all MRI abnormalities were detected in
patients of the EE subgroup.

Family members. The 2 individuals with GGE
(patient 1/family 1, patient 2/family 2) and the
patient with a DS-like phenotype (patient 12/family
3; e-supplement) were index patients of multiplex
families (table 1 and figure 1B). In total, we identified
9 family members carrying pathogenic GABBR3 var-
iants, including one unaffected carrier. Seven of the 8
affected family members became seizure-free and had
a normal intellect. The sister of patient 12 was classified
as DS-like (e-supplement), whereas the remaining
affected family members of family 3 had GEFS1 or
simple FS (table 1). The 2 sibs in family 3 with a DS-
like phenotype have previously tested negative for mu-
tations in other DS-associated genes, including SCN1A,
GABRG2, and GABRA1. Phenocopies presenting with
simple FS were observed in each family.

Functional data. To cover the described phenotypic
spectrum, a set of 7 mutations was assorted for func-
tional analysis using 2-microelectrode voltage clamp
experiments in Xenopus laevis oocytes (figure 2A). The
spectrum included mutations associated with familial
GEFS1/DS-like (p.R429Q and p.T157M), familial
GEFS1 and EOAE (p.V37G), MAE (p.Y184H,
p.R111*), WS (p.L256Q), and focal epilepsy/EE/
LGS (p.Y302C).

Recordings of different mutations were performed
in parallel with the WT in every batch of oocytes.
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Current amplitudes obtained after application of
1 mmol/L GABA showed tentatively but not signifi-
cantly smaller currents for p.R429Q and p.T157M.
In contrast, strongly and significantly reduced current
amplitudes were found for p.V37G, p.Y184H,
p.L256Q, p.R111*, and p.Y302C (figure 2B).

To investigate whether a change in the GABA sen-
sitivity of the mutated receptors could be an additional
underlying pathophysiologic mechanism, we recorded
concentration curves for WT and the mutations with
current amplitudes large enough for this type of record-
ing, including p.T157M, the recurring mutation
p.Y302C, and p.Y184H. Whereas the dose-response
curve obtained for p.T157M revealed no significant
difference compared to the WT, the 2 remaining mu-
tations caused a pronounced rightward shift, indicating
a significantly reduced GABA sensitivity. This shift ap-
pears to explain, at least in part, the pronounced reduc-
tion of current amplitudes observed at 1 mmol/L
GABA for the 2 mutations because dose-response
curves did not saturate at 1 mmol/L GABA.

DISCUSSION Even though individual mutations in
GABRB3 have recently been reported in patients with
severe epilepsies,7,11,12,14 the role of GABRB3 in
human epilepsies in terms of causality and associated
phenotypes has remained largely unclear. In this
study, we describe a comprehensive cohort of patients
carrying GABRB3 mutations, delineate the muta-
tional and phenotypic spectrum, and demonstrate
loss of protein function as the causative disease mech-
anism in severe cases.

We found a wide phenotypic spectrum associated
with GABRB3 mutations, ranging from FS/GEFS1
and EOAE to unclassified focal epilepsies, MAE,
DS-like EE, WS, LGS, and other types of EE. Among
the group of patients with EE, the cognitive impair-
ment was more severe and the epilepsy more refractory
compared to the group of patients with GEFS1,
EOAE, and unclassified focal epilepsy. Within the
EE group, patients with MAE had a less severe out-
come; 4 of 5 MAE patients became seizure-free, and
most of them had mild ID.

We also tested 7 GABRB3 mutations functionally.
For 2 mutations (family 2, patient 2: p.R429Q; family
3, patient 12: p.T157M), we did not find significant
changes compared to WT receptors. Such a finding is
not unusual for the functional screening in Xenopus
oocytes, which are not perfectly suited to detect minor
abnormalities. Even though the severity of the pheno-
types within families was variable, the overall familial
phenotype was milder for both mutations compared
to patients carrying de novo mutations. Furthermore,
the phenotypes are compatible with the knownGEFS1
spectrum, including FS, FS1, GEFS1, MAE, and DS,
which is also well known from families carrying

Figure 1 GABRB3 mutations in epilepsy and pedigrees of GABRB3 multiplex
families

(A) The amino acid locations of the identified GABRB3 missense mutations. (B) Pedigrees of
multiplex families carrying GABRB3mutations. DS5 Dravet syndrome; EOAE5 early-onset
absence epilepsy; FS5 febrile seizures; GEFS15 generalized epilepsy with febrile seizures
plus; GTCS 5 generalized tonic-clonic seizure.
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mutations in other GEFS1 genes, e.g., SCN1A or
GABRG2.20,21 Moreover, these mutations are not found
in the general population, are evolutionarily conserved,
and are predicted to be damaging by bioinformatic pro-
grams. In contrast, the third mutation (family 1, patient
1: p.V37G) identified in a family with GGE was found
to cause a significant loss-of-function effect. These dis-
crepancies between the genotypes and phenotypes with
a severe loss of function in a family with a mild pheno-
type (family 1) and a virtual lack of GABRB3 impair-
ment in a family with a more severe phenotype (family
3) suggest that factors other than the GABRB3 variant
must be contributing to the disease phenotype. Possible
reasons include the overall genetic background, i.e.,
a complex combination of different genetic variations,
or more specific genetic factors with larger detrimental
or protective effects. Both phenomena have been
described in mouse models,22,23 but their role in human
epilepsy is not understood.

The remaining 4 mutations that were investigated
functionally showed a clear loss of function, including
a strong reduction in GABA-evoked current amplitudes

and, as demonstrated for p.Y302C and p.Y184H, in
GABA sensitivity. This is in line with previous findings
in other GABAA receptor subunits causing similar
syndromes.2,4,5,24,25 Accordingly, our results suggest
GABAergic disinhibition as a major disease mechanism
in genetic epilepsies due to pathogenic GABRB3 var-
iants. This is corroborated in a recent study in which 4
EE-associated GABRB3mutations showed loss of func-
tion with a possible genotype-phenotype correlation.26

Future studies will clarify whether these findings may
extend to a number of novel mutations reported in our
publication.

We identified several recurrent mutations and
observed a wide range of phenotypic variability for
mutation carriers. For example, p.Y302C was
observed in 2 patients in this study. Patient 3 had
focal epilepsy with onset at 7 months of age, rare seiz-
ures, and mild ID. In contrast, patient 16 had intrac-
table EE starting at the age of 17 months, which
evolved into LGS with severe ID. The mutation has
previously been reported in a patient with onset of
focal epilepsy starting at the age of 10 months that

Figure 2 Functional analysis of GABRB3 mutations using Xenopus laevis oocytes

(A) Schematic representation of the b3 subunit of the GABAA receptor, including the predicted positions of the mutated amino acids. (B) Examples of current
responses to application of increasing GABA concentrations (mmol/L: 1, 3, 10, 40, 100, 300, and 1,000) recorded from Xenopus oocytes expressing wild-type (WT)
a5b3g2s receptors. (C) Normalized current response to 1mmol/L GABA application forWT (n5 120), R429Q (n5 41), T157M (n5 39), V37G (n5 29), Y184H (n5

36), L256Q (n 5 31), R111X (n 5 31), and Y302C (n 5 34). ****p , 0.0001, one-way analysis of variance with the Tukey multiple-comparisons test. (D) Dose-
response curve for a5b3g2sWT (n5 11), T157M (n5 6), Y302C (n5 3), and Y184H (n5 7) receptors recorded on application of different GABA concentrations (as
in A) and normalized to themaximal response (1,000mmol/L) for each cell. EC50 valueswere25.3, 38.0, 326.4, and552.3mmol/Lwith the95%confidence intervals
ranging from 20.7 to 29.9, 35.4 to 40.6, 293.8 to 359.0, and 433.9 to 670.7 mmol/L for WT, T157M, Y302C, and Y184H, respectively.
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evolved into LGS with severe ID. Furthermore, p.
R232Q was observed in 2 individuals (patients 5
and 6) with moderate ID and treatable multifocal epi-
lepsy with onset at 4 and 11 months of age, respec-
tively. Patient 5 had autistic features and bifrontal
heterotopias on MRI, features that were not present
in patient 6, indicating that the phenotypic variability
of single mutations may also include the presence of
brain malformations. These results indicate a consid-
erable pleiotropy even for single mutations. We were
not able to identify a straightforward genotype-
phenotype correlation, as previously described for
other genes associated with genetic epilepsy.15,27

Of note, we found 5 patients with a phenotype
compatible with MAE, forming a separate subgroup
within the spectrum of GABRB3-related phenotypes.
A genetic etiology for MAE has been suggested for
decades, and several studies have shown that MAE
can occur in GEFS1 families with SCN1A or
GABRG2 mutations.6,13,28–33 Furthermore, mutations
in SLC2A1 have been found in a subset of patients
with MAE and paroxysmal exertional dyskinesia/
motor dysfunction.34,35 Recently, we described muta-
tions in SLC6A1, encoding one of the major GABA
transporters, in several probands with MAE36; in
addition, de novo mutations in GABRG2 and
CHD2 have been reported.37 The present study adds
GABRB3 to the growing list of genes associated with
MAE.

For some of theGABRB3 variants identified in our
cohort, the evidence for pathogenicity is limited, and
further validating studies are required to understand
their significance. This limitation applies to all var-
iants found in familial cases, given that none of the
families were large enough to generate significant
linkage. In addition, the fact that 2 of the familial
variants did not show a significant change in function
in Xenopus oocytes further complicates the interpre-
tation. Interestingly, all families contained phenocop-
ies. While this phenomenon is well known in familial
fever-related epilepsies, it does not support our cur-
rent evidence of the pathogenicity of the variants.
Two individuals in the ExAC database were found
to carry the predicted p.A69T variant, which we de-
tected in our EE group. While there is no clear con-
sensus in the field on how very-low-frequency ExAC
mutations should be interpreted, the apparent pres-
ence of these variants in presumably unaffected indi-
viduals casts some doubt on the role of the variant in
the etiology of the patient’s disease. Furthermore, 2
truncating variants were inherited from unaffected
parents, suggesting that the loss of one allele in these
patients either is not associated with the disease or
does not show full penetrance. The fact that GABRB3
truncations have not been reported in the ExAC data-
base argues for the latter hypothesis. It has also been

shown that the epileptic phenotype observed in
mouse models lacking one allele of a GABAA receptor
subunit gene may be milder compared to missense
mutation carriers,38 although this may depend on the
functional interactions of the truncated protein and
the remaining WT subunits.39 Lastly, we cannot
completely exclude that the parents carry these muta-
tions in a mosaic state, as seen in the mother of
patient 9, even though this is not obvious from the
blood DNA analysis.40

This study demonstrates that GABRB3 mutations
are associated with a phenotypic spectrum ranging
from simple FSs, GEFS1, and EOAE to MAE, EE
within the DS spectrum, and other severe EE, defin-
ing a novel genetic entity within the GEFS1 and
EOEE spectrum. GABRB3 mutations cause reduced
receptor function, predicting impairment of GABA-
mediated inhibition as disease mechanism.
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