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A chloride channel in rat and human axons 
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Current recordings from single chloride channels were obtained from excised and cell-attached patches of rat and human axons. In rat axons 
the channels showed an outwardly rectifying current-voltage relationship with a slope conductance of 33 pS at negative membrane potentials and 
65 pS at positive potentials (symmetrical 150 mM CsC1). They were measurably permeable for cations (Ps,/Pcs/Pa = 0.1/0.2/1). Channel currents 
were independent of cytoplasmatic calcium concentration. Inactivation was not observed and gating was weakly voltage dependent. CI- channels 
in human axons showed similar gating behavior but had a lower conductance. 

Enzymatic dissociation and demyelination of myeli- 
nated axons enables single channel current recordings 
from the nodal and paranodal region [11]. Using this 
method one type of Na + channel and several types of 
K + channel have been described [11, 12]. Another axo- 
nal conductance known from macroscopic current 
recordings in squid axons [10], non-myelinated rat axons 
[3] and myelinated rabbit axons [4] is CI-  dependent. To 
our knowledge, single chloride channels have not been 
described previously in mammalian axons. 

A certain type of CI-  channel with distinctive proper- 
ties has been found in a variety of other cells, e.g. cul- 
tured hippocampal neurons [5, 16], Drosophila neurons 
[18], crustacean axons [13] or tracheal epithelial cells 
[17]. This channel has an intermediate conductance (10- 
100 pS), is significantly permeable to cations (permeabi- 
lity ratio in the range of  0.1-0.35) and shows weak vol- 
tage-dependent gating. This type of channel has been 
designated as a 'background' CI- channel by Francio- 
lini and Petris [6]. A C1- channel with similar electro- 
physiological characteristics was observed in about 5% 
of all gigaseal recordings from axonal patches obtained 
in the present study. 

Experiments were performed on ventral rat spinal 
roots and specimens of human sural nerves. Male Wistar 
rats (250-350 g) were anaesthetized with urethane (1.25 
mg/kg, i.p.). After laminectomy 5 - 10 ventral roots were 
removed and transferred into a culture dish. Enzymatic 
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dissociation and paranodal demyeiination were per- 
formed in two steps according to the procedures de- 
scribed by Jonas and coworkers [11] with some modifica- 
tions. Spinal roots were first treated at 37°C with colla- 
genase ('Worthington' type CLS II, 135 U/mg; Bio- 
chrom, Berlin; 3 mg/ml, diluted in normal Ringer sol- 
ution) for 80 min and subsequently incubated for 30 min 
in protease (type XXIV; 8 U/mg; Sigma, Deisenhofen, 
F.R.G.; 1 mg/ml, diluted in calcium-free Ringer sol- 
ution). After this procedure the spinal roots were cut 
into 3 mm segments and single fibers were dissociated by 
gentle shaking. Finally, they were transferred into dishes 
precoated with poly-L-lysine (1 mg/ml; Sigma). Sural 
nerves were obtained from patients who required nerve 
biopsy for clinical diagnosis at the Department of Neu- 
rology, Technical University of  Munich. Human nerves 
were treated as described above. However, in the first 
step, collagenase plus protease (type X, 62 U/mg; Sigma; 
0.03 mg/ml) were used for 120 min. 

Single channel recordings were performed in solutions 
of the following composition (in mM): (a) 'CsCr: 150 
CsC1, 0.464 CaCI 2, 1.18 MgCI 2, 1 EGTA, 10 HEPES; (b) 
'NaCI': 150 NaC1, 0.464 CaCI2, 1.18 MgCI 2, 1 EGTA, 
10 HEPES and (c) 'NMDG-CI':  150 N-methyl-D-gluca- 
mine chloride, 0.464 CaCI 2, 1.18 MgCI2, 1 EGTA, 10 
HEPES; pH 7.4 (adjusted with NaOH). Wherever solu- 
tions did not have one of the compositions given above, 
it is explicitly mentioned in the text. Experiments were 
done at room temperature, approximately 22°C. 
Recordings were performed by standard patch-clamp 
technique [8]. Patch pipettes were drawn (DMZ puller; 
Zeitz, Augsburg, F.R.G.) from borosilicate glass tubings 
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(GC 150 TF - 10, Clark Electromedical Instruments, 
Pangbourne, U.K.),  coated with Sylgard and fire- 
polished immediately before the experiment. The 
pipettes had a resistance of 10-20 MI2 (150 mM CsCI). 
Recordings were made with an Axopatch 200 amplifier 

(Axon Instruments, Foster City, CA, U.S.A.). The cur- 
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Fig. 1. A: single channel recordings of the C1- channel from rat axons 
in symmetrical 150 mM CsC1 solution (excised, outside-out configu- 
ration), in symmetrical 150 mM NaC1 solution (excised, inside-out 
configuration) and in symmetrical 150 mM N-methyl-D-glucamine C1- 
(NMDG-CI) solution (cell-attached configuration). Voltages given are 
membrane potentials. Closed and open states are indicated by c and 
o, respectively. B: single channel current-voltage relationship of the 
CI- channel from rat spinal roots. Illustrated data are averaged 
(mean+S.D.) from 4 recordings in symmetrical CsCI (©) and from 4 
recordings in symmetrical NaC1 (0) and each current value is the aver- 
age of 5 amplitude measurements from these 4 channels. In CsC1 solu- 
tions the slope conductance ranged from 33+ 3 pS (mean _+ S.D.) at 
negative membrane potentials to 65+2 pS at positive membrane 
potentials with a reversal potential close to 0 mV. The slope conduc- 
tance in NaC1 was 24_ 1 pS for inward currents and 46 + 6 pS for 

outward currents. The curves were fitted by a polynomial function. 

rent signals were low pass filtered at 1.2 kHz and digi- 
tized at a sampling rate of  l0 kHz. They were stored and 
analyzed using a Tandon 386/33 computer and pClamp 
5.5 software (Axon Instruments). Voltages given indi- 
cate membrane potential. 

The recordings illustrated in Fig. 1A were obtained 
from patches of  the (presumed) paranodal  area in differ- 
ent symmetrical solutions: CsC1, NaC1 and NMDG-C1. 
Channel activity was observed in the cell-attached as 

well as in the excised configuration. Current-voltage re- 
lationships shown in Fig. l B reveal an outward rectifica- 
tion, which is typical for most of  the non-transmitter 
gated C l -  channels [6, 7]. In 150 mM CsC1 solutions 
slope conductance ranged from 33_+ 3 pS (mean_+ S.D., 
n =4)  at negative membrane potentials ( - 5 0  to - 2 0  
mV) to 65 _+ 2 pS at positive membrane potentials ( +  20 
to + 50 mV) with a reversal potential close to 0 mV. In 
symmetrical NaC1 solutions the slope conductance was 
24 +1 pS (n = 4) for inward currents and 46_+ 6 pS for 

outward currents. Channel activity was also found in 
solutions with NMDG-Cl .  

We have observed different patterns of  gating. Single 
channel gating was mainly characterized by long lasting 
open and short closed states (see Fig. 1A) and no in-acti- 
vation. In < 10% the channel spontaneously shifted to a 
rapid 'flickering' behavior during the recordings. In ad- 
dition, long lasting closed states were found. Similar gat- 
ing behavior was described for a C1- channel from lob- 
ster walking leg nerves [13]. Open probability (Po) was 
calculated from the all point amplitude histogram of 
patches with only one channel. For  each voltage a mini- 
mal time of 15 s was analyzed. In most recordings Po was 
high (0.80~.95; not shown). Po showed a weak voltage 
dependence; in some patches it increased with depolari- 
zation. Since a Ca-dependent C1- conductance has been 
reported, e.g. in cultured mouse spinal neurones [14], we 
tested the effects of  different Ca concentrations (ranged 
from 2.2 mM to nominally Ca-free solutions). In our 
experiments single channel currents were not influenced 
by cytoplasmatic calcium (not shown). 

Further experiments were performed in asymmetrical 
solutions to estimate permeability ratios for cations ver- 
sus C1-. Therefore, the shift of  the reversal potential of  
the current-voltage relationship was measured. By 
means of the Goldman-Hodgkin-Katz  equation (using 
ion activities as given by Robinson and Stokes [15]) per- 
meability ratios were calculated after subtraction of  
junction potentials. In all experiments, unilateral 
changes in the C l -  concentration shifted the reversal 
potential in the direction expected for a C l -  channel (see 
Fig. 2). In one set of  experiments the bath contained 150 
mM NaC1 and the pipette was filled with 75 mM NaC1 
(50% of NaC1 was replaced isoosmotically by sucrose). 
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Fig. 2. Single channel current-voltage relationship of the CI- channel 
from rat axons in symmetrical and asymmetrical solutions. Illustrated 
data are averaged (mean + S.D.) and determined as described in Fig. 
1. A: data from recordings in the inside-out configuration. Unfilled cir- 
cles ((3) show the current-voltage relationship under conditions of 
symmetrical NaC1 (n = 4). The reversal potential was + 1.5 mV. Filled 
circles ( 0 )  represent data (n =4) with 150 mM NaCI in the bath and 
75 mM NaCI in the patch pipette (50% of NaCI substituted isoomoti- 
cally by sucrose). Note the reversal potential of + 14 mV, i.e. there was 
a shift of + 12.5 mV. B: data from recordings in the outside-out confi- 
guration. Unfilled circles ((3) show data under conditions of symmetri- 
cal 150 mM CsC1 (n=4). The reversal potential was +0.5 mV. Filled 
circles ( 0 )  show the current-voltage relationship with 150 mM CsCI 
in the pipette and 300 mM CsCI in the bath (n = 3). The reversal poten- 
tial was -9 .5  mV, i.e. the shift was - 1 0  mV. For calculation of per- 
meability ratios see text. The curves were fitted by a polynomial func- 

tion. 

As illustrated in Fig. 2A, this caused a shift of the rever- 
sal potential of ~ + 12.5 mV, i.e. the permeabitity ratio 
PNa/Po was ~ 0.1. In a second set of experiments per- 
formed in the outside-out configuration the pipette con- 
tained 150 mM CsC1 solution and the bath solution con- 
sisted of 300 mM CsC1 (Fig. 2B). The shift of  the reversal 
potential of ~ - 10 mV measured under these conditions 

revealed a permeability ratio of Pcs/Pci ~0.2. Experi- 
ments with potassium were not performed because there 
is a high density of K + channels in axons, which makes 
it difficult to identify C1- channels. The observed signif- 
icant permeability for cations was not unexpected, be- 
cause in serveral tissues CI- channels with such charac- 
teristics have been described [2, 5, 17]. 

Fig. 3A shows single channel recordings from a hu- 
man axon performed in symmetrical NaC1. In human 
axons, we also observed a CI- channel, which, however, 
had a lower conductance. The current-voltage relation- 
ship revealed outward rectification (see Fig. 3B). Slope 
conductance was 14_ 1 pS at negative membrane poten- 
tials ( -  50 to - 20 mV) and 20___ 1 pS (n = 3) at positive 
potentials. Gating characteristics of human and rat C1- 
channels were similar (see above). 
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Fig. 3. A: single channel recordings of the C1- channel from specimens 
of human sural nerve in symmetrical 150 mM NaC1 solution (excised, 
inside-out configuration). Closed and open states are indicated by c 
and o, respectively. B: single channel current-voltage relationship of 
the CI- channel. Illustrated data are averaged (mean_S.D.) from 3 
recordings in symmetrical NaCI and each current value is the average 
of 5 amplitude determinations from these 3 channels. At potentials 
from - 5 0  to - 2 0  mV the slope conductance was 14+ 1 pS and at 

potentials from 20 to 50 mV it was 20 + 1 pS. 
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In contrast to sodium and potassium currents, there 
are very few reports of  macroscopic C1- currents in 
axons. Since most CI- channels show weak voltage- and 
time-dependent behavior [6], they may have been dis- 
missed as leak current. The C1- channel found in our 
experiments may thus contribute to leakage current. 
Chiu and Schwartz [3] described a presumed C1- cur- 
rent in rabbit axons, which accounts for about 5% of to- 
tal current. In squid axon, Inoue [10] recorded a C1- 
current, which showed strong outward rectification and 
no time-dependent properties. At resting potential this 
current contributed < 10% of the total conductance. 
These macroscopic currents have many similarities with 
the C1- channel described in this study. 

In summary, we observed a C1- channel on rat and 
human axons which is (a) open within a wide voltage 
range, (b) does not inactivate and (c) shows outward rec- 
tification. Functionally, this channel may contribute to 
the background conductance found in axons (see for dis- 
cussion refs. 1, 9), which stabilizes membrane potential 
and consequently maintains normal cell excitability. 
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