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Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning
approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit
regularization of effect estimates.They are extremely flexible, as the underlying base-learners (regression functions defining the type
of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining
the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical
boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a
short overview on relevant applications of statistical boosting in biomedicine.

1. Introduction

Statistical boosting algorithms are one of the advancedmeth-
ods in the toolbox of a modern statistician or data scientist
[1]. While still yielding classical statistical models with well-
known interpretability, they offer multiple advantages in the
presence of high-dimensional data as they are applicable
in 𝑝 > 𝑛 situations with more explanatory variables than
observations [2, 3]. Key features in this context are automated
variable selection and model choice [4, 5].

The research field embraces the world of statistics and
computer science, bridging the gap between two rather dif-
ferent points of view on how to extract information from data
[6]: on the one hand, there is the classical statisticalmodelling
community who focus on models describing and explaining
the outcome to find an approximation to the underlying
stochastic data generating process. On the other hand, there
is the machine learning community who focus primarily on
algorithmic models predicting the outcome while treating
the nature of the underlying process as unknown. Statistical
boosting algorithms have their roots in machine learning
[7] but were later adapted to estimate classical statistical

models [8, 9]. A pivotal aspect of these algorithms is that they
incorporate data-driven variable selection and shrinkage of
effect estimates similar to classical penalized regression [10].

In a review some years ago [1], we highlighted this
evolution of boosting from machine learning to statistical
modelling. Furthermore, we emphasized the similarity of two
boosting approaches, gradient boosting [2] and likelihood-
based boosting [3], introducing statistical boosting as a
generic term for these algorithms.

An accompanying article [11] highlighted the multiple
extension of the basic algorithms towards (i) enhanced vari-
able selection properties, (ii) new types of predictor effects,
and (iii) new regression settings. Substantial methodological
developments on statistical boosting algorithms throughout
the last few years (e.g., stability selection [12]) and a growing
community have opened the door to new model classes and
frameworks (e.g., joint models [13] and functional data [14]),
asking for an up-to-date review on the available extensions.

This article is structured as follows: In Section 2 we
shortly highlight both basic structure and properties of
statistical boosting algorithms and point to their connections
to classical penalization approaches such as the lasso. In
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Section 3 we focus on new developments regarding variable
selection (including exemplary analysis of gene expression
data), which can also be combined with boosted functional
regression models presented in Section 4. Section 5 focuses
on advanced survival models such as joint modelling; in
Section 6 we briefly summarize other relevant developments
and applications in the framework of statistical boosting.

2. Statistical Boosting

2.1. FromMachine Learning to StatisticalModels. Theoriginal
boosting concept by Schapire [15] and Freund [7] emerged
from the field of supervised learning where typically a
function is trained based on datawith knownoutcome classes
or labels to correctly classify new observations. The aim
of the boosting concept is to boost (i.e., to improve) the
accuracy of weak classifiers (i.e., classifiers with poor correct
classification rates) by iteratively applying them to reweighted
data. Even if these so called base-learners individually only
slightly outperform random guessing, the ensemble solution
can often be boosted to a perfect classification [16].

The introduction of AdaBoost [17] was the breakthrough
for boosting in the field of supervised machine learning,
allegedly leading Leo Breiman to praise its performance:
Boosting is the best off-the-shelf classifier in the world [18].

The main target of classical machine learning approaches
is predicting observations 𝑦new of the outcome 𝑌 given one
or more input variables X = {𝑋1, . . . , 𝑋𝑝}. The estimation
of the prediction rule (also called generalization function) is
based on an observed sample (𝑦1, x1), . . . , (𝑦𝑛, x𝑛). However,
the focus is not on quantifying or describing the underlying
data generating process, but on predicting 𝑦new for new
observations 𝑥new as accurately as possible. As a conse-
quence, many machine learning approaches (also including
the original AdaBoost with trees or stumps as base-learners)
can be regarded as black box prediction schemes. Although
typically yielding accurate predictions [19], they do not offer
much insight into the structure of the relationship between
explanatory variables X and the outcome 𝑌.

Statistical regression models on the other hand par-
ticularly aim at describing and explaining the underlying
relationship in a structured way. Not only can the impact of
single explanatory variables be quantified in terms of variable
importance measures [20, 21], but also the actual effect of
these variables is interpretable. The work of Friedman et
al. [8, 9] laid the groundwork to understand the concept
of boosting from a statistical perspective and to adapt the
general idea in order to estimate statistical models.

2.2. General Model Structure. The aim of statistical boosting
algorithms is to estimate and select the effects in structured
additive regression models. The most important model class
are generalized additive models (“GAM” [22]), where the
conditional distribution of the response variable is assumed
to follow an exponential family distribution. The expected
response is modelled given the observed value x of one or
more explanatory variables using a link function 𝑔 as

𝑔 (E (𝑌 | X = x)) = 𝑓 (x) . (1)

In the typical case ofmultiple explanatory variables, the func-
tion 𝑓(x), which is often called additive predictor, consists of
the additive effects of the single predictors:

𝑓 (x) = 𝛽0 + 𝑓1 (𝑥1) + ⋅ ⋅ ⋅ + 𝑓𝑝 (𝑥𝑝) , (2)

where 𝛽0 represents a common intercept and the functions
𝑓𝑗(𝑥𝑗), 𝑗 = 1, . . . 𝑝, are the individual effects of the variables
𝑥𝑗. The generic notation 𝑓𝑗(𝑥𝑗)may comprise different types
of predictor effects such as classical linear effects, 𝑥𝑗𝛽𝑗,
smooth nonlinear effects constructed via regression splines,
spatial effects, or random effects of the explanatory variable
𝑥𝑗, to name but a few.

In statistical boosting algorithms, like the two approaches
described in the following sections, the different effects are
estimated by separate base-learners ℎ1(⋅), . . . , ℎ𝑝(⋅) (compo-
nentwise boosting [2]). These base-learners are typically the
corresponding simple regression-type prediction functions;
for a linear effect, the corresponding base-learner would be a
simple linear model: ℎ𝑗(𝑥𝑗) = 𝛽0 + 𝛽1𝑥𝑗.
2.3.TheGeneric Structure of Statistical Boosting. For a generic
overview on the structure of statistical boosting algorithms,
see Box 1. The base-learners are applied one by one, and in
every iteration only the best performing base-learner 𝑗∗ is
selected to be updated. The final additive model is hence the
sum of all selected base-learner fits.

The main tuning parameter is 𝑚stop, the number of
boosting iterations that is carried out. In order to avoid
overfitting and to ensure variable selection, the algorithm
is typically stopped before convergence (early stopping). The
selection of 𝑚stop is based on the predictive performance
evaluated via cross-validation or resampling [23]. This early
stopping leads to an implicit penalization [24], similar to the
lasso (see Section 2.6).

2.4. Gradient Boosting. In gradient boosting [2, 8], the iter-
ative procedure fits the base-learners ℎ1(𝑥1), . . . , ℎ𝑝(𝑥𝑝) one
by one to the negative gradient of the loss function 𝜌(𝑦, 𝑓(⋅)),
evaluated at the previous iteration:

u[𝑚] = (− 𝜕
𝜕𝑓𝜌 (𝑦𝑖, 𝑓 (x𝑖))𝑓=𝑓[𝑚−1](𝑥𝑖))

𝑖=1,...,𝑛

. (3)

The loss function describes the discrepancy between the
observed outcome 𝑦 and the additive predictor 𝑓(x𝑖) and
is the target function that should be minimized to get an
optimal fit. In case of GAMs, the loss function is typically
the negative log-likelihood of the corresponding exponential
family. ForGaussian distributed outcomes, this reduces to the
𝐿2 loss 𝜌(𝑦, 𝑓(x)) = (𝑦 − 𝑓(x))2, where the gradient vector
u[𝑚] is simply the vector of residuals 𝑦 − 𝑓(x) from iteration
𝑚−1 and boosting hence corresponds to refitting of residuals.

In each boosting iteration, only the best-fitting base-
learner ℎ𝑗∗ is selected based on the residual sum of squares
of the base-learner fit

𝑗∗[𝑚] = argmin
1≤𝑗≤𝑝

𝑛

∑
𝑖=1

(𝑢[𝑚]𝑖 − ℎ̂[𝑚]𝑗 (𝑥𝑖𝑗))2 . (4)
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Initialization
(1) Start with iteration counter𝑚 = 0. Initialize the additive predictor 𝑓[0] with an offset value.

Specify a set of prediction functions as base-learners ℎ1(𝑥1), . . . , ℎ𝑝(𝑥𝑝); typically each
base-learner is a regression function incorporating one possible candidate variable.

Component-wise fitting of base-learners
(2) Set iteration counter𝑚 := 𝑚 + 1.
(3) Fit the base-learners ℎ̂𝑗(⋅), 𝑗 = 1, . . . , 𝑝, one-by-one:

Gradient boosting
Base-learners are fitted to the negative gradient vector of the loss function (e.g. the negative
log-likelihood), evaluated at the current additive predictor 𝑓[𝑚−1]. To ensure small steps, the
base-learner fits are multiplied by a small step-length factor ], 0 ≤ ] ≤ 1: ℎ̂[𝑚]𝑗 (⋅) fl ] ⋅ ℎ̂[𝑚]𝑗 (⋅).
Likelihood-based boosting
Base-learners are estimated via maximizing the overall likelihood, using one step of Fisher
scoring with the current additive predictor 𝑓[𝑚−1] as offset. To ensure small steps, a penalty
term is attached to the likelihood.

Update best performing component
(4) Select the best performing base-learner 𝑗∗[𝑚]:

Gradient boosting
Based on the smallest residual sum of squares with respect to the negative gradient vector.
Likelihood-based boosting
Based on the largest overall likelihood after the update.

(5) Update the additive predictor via the corresponding base-learner:
𝑓[𝑚] = 𝑓[𝑚−1] + ℎ̂[𝑚]

𝑗∗
(𝑥𝑗∗ )

Iteration
Iterate steps (2) to (5) until𝑚 = 𝑚stop. The parameter𝑚stop is the main tuning parameter,
typically selected via resampling procedures.

Box 1: The structure of statistical boosting algorithms.

Only this base-learner ℎ𝑗∗ is added to the current additive
predictor 𝑓(⋅). In order to ensure small updates, only a small
proportion of the base-learner fit (typically the step length is
] = 0.1 [2]) is actually added. Note that the base-learner ℎ𝑗(⋅)
can be selected and updated various times; the partial effect
of variable 𝑥𝑗 is the sum of all corresponding base-learners
that had been selected:

𝑓𝑗 (𝑥𝑗) = ∑
𝑚

] ⋅ ℎ̂[𝑚]𝑗 (𝑥𝑗) I𝑗=𝑗∗[𝑚]. (5)

This componentwise procedure of fitting the base-learners
one by one to the current gradient of the loss function can be
described as gradient descent in function space [25], where the
function space is spanned by the base-learners.The algorithm
effectively optimizes the loss function step by step, eventually
converging to the minimum.

Gradient boosting is implemented in the add-on package
mboost [26] for the open source programming environment
R [27], providing a large number of preimplemented loss
functions for various regression settings, as well as different
base-learners to represent various types of effects (see [28] for
an overview; recent updates are summarized in Appendix).

2.5. Likelihood-Based Boosting. Likelihood-based boosting
[3, 29] is the other general approach in the framework of
statistical boosting algorithms; it received much attention
particularly in the context of high-dimensional biomedical

data (see [11] and the references therein). Although it follows
a very similar structure to gradient boosting (see Box 1), both
approaches only coincide in special cases such as classical
Gaussian regression via the 𝐿2 loss [1, 30]. In contrast to
gradient boosting, the base-learners are directly estimated via
optimizing the overall likelihood, using the additive predictor
from the previous iteration as offset. In case of the 𝐿2 loss, this
has a similar consequence as refitting the residuals.

In every step, the algorithm hence optimizes regression
models as base-learners one by one by maximizing the
likelihood (using one-step Fisher scoring), selecting only
the base-learner 𝑗∗ which leads to the largest increase in
the likelihood. In order to obtain small boosting steps, a
quadratic penalty term is attached to this likelihood. This
has a similar effect to multiplying the fitted base-learner by
a small step length factor as in gradient boosting.

Likelihood-based boosting for generalized linear and
additive regression models is provided by the R add-on pack-
age GAMBoost [31], and an adapted version for boosting Cox
regression is provided with CoxBoost [32]. For a comparison
of both statistical boosting approaches, that is, likelihood-
based and gradient boosting in case of Cox proportional
hazard models, we refer to [33].

2.6. Connections to 𝐿1-Regularization. Statistical boosting
algorithms result in regularized models with shrunk effect
estimates although they only apply implicit penalization [24]
by stopping the algorithmbefore convergence. By performing
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regularization without the use of an explicit penalty term,
boosting algorithms clearly differ from other direct reg-
ularization techniques like the lasso [34]. However, both
approaches sometimes result in very similar models after
being tuned to a comparable degree of regularization [10].

This close connection has been first noted between the
lasso and forward stagewise regression, which can be viewed
as special case of the gradient boosting algorithm (Box 1),
and led, along with the development of least angle regression
(LARS), to the formulation of the positive cone condition
(PCC) [35].

If this condition holds, LARS, lasso, and forward stage-
wise regression coincide. Figuratively speaking, the PCC
requires that all coefficient estimates monotonically increase
or decreasewith relaxing degree of regularization and applies,
for example, to the case of low-dimensional settings with
orthogonal𝑋. It should be noted that the PCC is connected to
the diagonal dominance condition for the inverse covariance
matrix of𝑋, which allows for amore convenient way to inves-
tigate the equivalence of these approaches in practice [36, 37].

Given that the solution of the lasso is optimal with
respect to the𝐿1-normof the coefficient vector, these findings
led to the notion of boosting as some “sort of 𝐿1-sparse”
regularization technique [38], but it remained unclear which
optimality constraints possibly apply to forward stagewise
regression if the PCC is violated.

By extending X with a negative version of each variable
and enforcing only positive updates in each iteration, Hastie
et al. [39] demonstrated that forward stagewise regression
always approximates the solution path of a similarlymodified
version of the lasso. From this perspective, they showed that
forward stagewise regression minimizes the loss function
subject to the 𝐿1-arc-length: This means that the travelled
path of the coefficients is penalized (allowing as little overall
changes in the coefficients as possible, regardless of their
direction), whereas the 𝐿1-norm considers only the absolute
sum of the current set of estimates.

In the same article, Hastie et al. [39] further showed
that these properties hold for general convex loss functions
and therefore apply not only to forward stagewise regression
but also for the more general gradient boosting method (in
case of logistic regression models as well as for many other
generalized linear regression settings).

The consequence of these differing optimization con-
straints can be observed in the presence of strong collinearity,
where the lasso estimates tend to be very unstable regarding
different degrees of regularization while boosting approaches
avoid too many changes in the coefficients as they consider
the overall travelled path [10].

It has to be acknowledged, however, that direct regular-
ization approaches as the lasso are applied more often in
practice [38]. Statistical boosting, on the other hand, is far
more flexible due to its modular nature allowing combining
any base-learner with any type of loss function [10, 38].

3. Enhanced Variable Selection

Early stopping of statistical boosting algorithms via cross-
validation approaches plays a vital role in ensuring a sparse

model with optimal prediction performance on new data.
Resampling, that is, random sampling of the data drawn
without replacement, tends to result in sparser models
compared to other sampling schemes [23], including the
popular bootstrap [40]. By using base-learners of comparable
complexity (in terms of degrees of freedom) selection bias
can be strongly reduced [4]. The resulting models have
optimal prediction accuracy on the test data. Yet, despite
regularization the final models are often relatively rich [23].

3.1. Stability Selection. Meinshausen and Bühlmann [41] pro-
posed a generic approach called stability selection to further
refine the models and enhance sparsity. This approach was
then transferred to boosting [12].

In general, stability selection can be combined with any
variable selection approach and is particularly useful for
high-dimensional data with many potential predictors. To
assess how stable the selection of a variable is, 𝐵 random
subsets that comprise half of the data are drawn. On each of
these subsets, the model is fitted until a predefined number
of 𝑞 base-learners are selected. Usually, 𝐵 = 100 subsets
are sufficient. Computing the relative frequencies of random
subsamples in which specific base-learners were selected
gives a notion of how stable the selection is with respect
to perturbations of the data. Base-learners are considered
to be of importance if the selection frequency exceeds a
prespecified threshold level 𝜋thr ∈ [0.5, 1].

Meinshausen and Bühlmann [41] showed that this
approach controls the per-family error rate (PFER); that is,
it provides an upper bound for the expected number of false
positive selections (𝑉):

E (𝑉) ≤ 𝑞2
(2𝜋thr − 1) 𝑝 , (6)

where 𝑝 is the number of base-learners. This upper bound
is rather conservative and hence was further refined by
Shah and Samworth [42] for specific assumptions on the
distribution of the selection frequencies. Stability selection
with all available error bounds is implemented for a variety
of modelling techniques in the R package stabs [43].

An important issue is the choice of the hyperparam-
eters of stability selection. The choice of a fixed value of
𝑞 should be made such that it is large enough to select
all hypothetically influential variables [12, 44]. A sensible
value for 𝑞 should usually be smaller than or equal to the
number of base-learners selected via early stopping with
cross-validation.

In general, the size of 𝑞 is of minor importance if it is in a
sensible range. With fixed 𝑞, either the threshold 𝜋thr can be
chosen or, as can be seen from (6) using equality, the upper
bound for the PFER can be prespecified and the threshold
can be derived accordingly. The latter would be the preferred
choice if error control is of major importance and the former
if error control is just considered a byproduct (see, e.g., [44]).
For an interpretation of the PFER, particularly with regard to
standard error rates such as the per-comparison error rate or
the familywise error rate, we refer to Hofner et al. [12]. Note
that, for fixed 𝑞, it is computationally easy to change any of the
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other two parameters (𝜋thr or the upper bound for the PFER)
as the resampling results can be reused [12].

The result of stability selection is not a new prediction
model but a set of stable base-learners: In fact they might not
reflect anymodel which can be derivedwith a specific penalty
parameter using the originalmodelling approach.Thismeans
that, for boosting, no𝑚stop value might exist that results in a
model with the stably selected base-learners.The provided set
of stable base-learners is a fundamentally new solution and
not necessarily one with a high prediction accuracy [44].

3.2. Extension and Application of Boosting with Stability Selec-
tion. Variable selection is particularly important in high-
dimensional gene expression data and other large scale
biomedical data sources. Recently, stability selection with
boosting was successfully applied to select a small number of
informative biomarkers for survival of breast cancer patients
[44]. The model was derived based on a novel boosting
approach that optimizes the concordance index [45, 46].
Hence, the resulting prediction rule was optimal with respect
to its ability to discriminate between patients with longer and
shorter survival, that is, its discriminatory power.

Thomas et al. [47] derived a modified algorithm for
boosted generalized additive models for location, scale, and
shape (GAMLSS [48]) to allow a combination of this very
flexible model class with stability selection. The basic idea
of GAMLSS is to model all parameters of the conditional
distribution by their own additive predictor and associated
link function. Extensive simulation studies showed that the
new fitting algorithm leads to comparable models as the
previous algorithm [49, 50] but is superior regarding the
computational speed, especially in combination with cross-
validation approaches. Furthermore, simulations showed that
this algorithm can be successfully combined with stability
selection to select sparser models identifying a smaller subset
of truly informative variables from high-dimensional data.
The algorithm is implemented in the R add-on package
gamboostLSS [51].

3.3. Stability Selection for Gene Expression Data. In the fol-
lowing, we demonstrate the application of stability selection
based on gradient boosting on three high-dimensional
datasets comprising gene expression levels. This includes
oligonucleotide arrays for colon cancer detection (with 𝑛 =
62 observations and 𝑝 = 2000 gene expression levels) [52],
prediction of metastasis of breast carcinoma (𝑛 = 168, 𝑝 =
2905) [53], andRiboflavin production byBacillus subtilis (𝑛 =
71,𝑝 = 4088) [54]. All three datasets are publicly available via
the R packages datamicroarray [55] and hdi [56].

Regarding the parameters needed to be specified for
stability selection, we investigate two different error rates
PFER ∈ {1, 3} and a constant 𝑞 = 20. For the sake of
comparison, we additionally apply 25-fold bootstrap for
variable selection, which is the default setting for cross-
validation inmboost.

Table 1 shows the total number of variables selected by
each method. It can be seen that stability selection consid-
erably reduces the set of variables in comparison with 25-
fold bootstrap. In addition, relaxing the error bound results

Table 1: Number of variables considered to be informative in differ-
ent scenarios of stability selection and the default 25-fold bootstrap
tuning of mboost without stability selection for comparison.

Colon
cancer

Breast
carcinoma

Riboflavin
production

PFER = 1, 𝑞 = 20 2 1 4
PFER = 3, 𝑞 = 20 3 1 5
25-fold bootstrap 11 28 39

in larger sets except for the data on breast carcinoma, where
only 1 base-learner entered the stable set.

3.4. Further Approaches for Sparse Models. In order to con-
struct risk prediction signatures on molecular data, such as
DNA methylation, Sariyar et al. [57] proposed an adaptive
likelihood-based boosting algorithm. The authors included
a step size modification factor 𝑐𝑓 which represents an addi-
tional tuning parameter, adaptively controlling the size of the
updates. In case of sparse settings, the approach decreases
shrinkage of effect estimates (by using a larger step length)
leading to a smaller bias. In settings with larger numbers
of informative variables, the approach allows fitting models
with lower degree of sparsity when necessary by smaller
updates.Themodification factor 𝑐𝑓 has to be selected together
with 𝑚stop via cross-validation or resampling on a two-
dimensional grid.

Zhang et al. [58] argue that variable ranking in practice
is more favourable than variable selection, as ranking allows
easily applying a thresholding rule in order to identify a
subset of informative variables. The authors implemented a
pseudo-boosting approach, which is technically not based on
statistical boosting but is adapted to rank and select variables
for statistical models. Note that also stability selection can be
seen as a variable ranking scheme based on their selection
frequency, as its selection feature is only triggered by imple-
menting the threshold 𝜋thr.

Another recent proposal is to incorporate shadow-
variables (probing) which are permuted variants of the orig-
inal predictors in the candidate model [59]. The statistical
boosting algorithm is stopped,when the first shadow-variable
is selected. This way the focus of the tuning procedure is
effectively shifted from prediction accuracy towards selection
accuracy, which could be a fast and promising procedure to
ensure sparse models.

Following a gradient based approach, Huang et al. [60]
adapted the sparse boosting approach by Bühlmann and
Yu [61] in order to promote similarity of model sparsity
structures in the integrative analysis of multiple datasets,
which is an important topic regarding the trend towards big
data.

4. Functional Regression

Due to technological developments, more and more data is
measured continuously over time. Over the last years, a lot of
methodological research focused on regression methods for
this type of functional data. A groundbreaking work in this
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new and evolving field of statistics is provided by Ramsay and
Silverman [62].

Functional regression models can contain either func-
tional responses (defined on a continuous domain), func-
tional covariates, or both. This leads basically to three
different classes of functional regressionmodels, that is, func-
tion-on-scalar (response is functional), scalar-on-function
(functional explanatory variable), and function-on-function
regression. For recent reviews on functional regression, see
Greven and Scheipl [63] and Morris [64].

4.1. Boosting Functional Data. The first statistical boosting
algorithm for functional regression, allowing for data-driven
variable selection, was proposed by Brockhaus et al. [65].
The authors’ approach focused on linear array models [66]
providing a unified framework for all three settings outlined
above. Since the general structure of their gradient boosting
algorithm is similar to the one in Box 1, the resulting models
still have the same form as in (2), only that the response𝑌 and
the covariates may be functions. The underlying functional
partial effects ℎ𝑗(x) can be represented using tensor product
basis

ℎ𝑗 (x) (𝑡) = (𝑏𝑗 (x)⊤ ⊗ 𝑏𝑌 (𝑡)⊤) 𝜃𝑗, (7)

where 𝜃𝑗 is the vector of coefficients, 𝑏𝑗 and 𝑏𝑌 are basis
functions, and ⊗ denotes the Kronecker product.

This functional array model is limited in two ways: (i)
the functional responses need to be measured on a common
grid and (ii) covariates need to be constant over the domain
of the response. As particularly the second assumption
might often not be fulfilled in practice, Brockhaus et al. [14]
soon thereafter proposed a general framework for boosting
functional regression models avoiding this assumption and
dropping the linear array structure.

This newer framework [14] comprises also all threemodel
classes outlined above and particularly focuses on historical
effects, where functional response and functional covariates
are observed over the same time interval. The underlying
assumption is that observations of the covariate affect the
response only up to the corresponding time point 𝑡

E (𝑌 (𝑡) | 𝑋 = 𝑥) =
𝐽

∑
𝑗=1

∫𝑡
𝑡1

𝑥𝑗 (𝑠) 𝛽𝑗 (𝑠, 𝑡) 𝑑𝑠, (8)

where 𝑠 represents the time points the covariate was observed
for. In other words, only the part of the covariate function
lying in the past (not the future) can affect the present
response. However, this is a sensible restriction in most
practical applications.

Both approaches for boosting functional regression are
implemented in the R add-on package FDboost [67], which
relies on the fitting methods and infrastructure ofmboost.

4.2. Extensions of Boosting Functional Regression. Boosting
functional data can be combined with stability selection (see
Section 3.1) to enhance the variable selection properties of the
algorithm [14, 65].

The boosting approach for functional data has already
been extended towards the model class of generalized addi-
tive models for location, scale, and shape (GAMLSS) for
a scalar-on-function setting by Brockhaus et al. [68]. The
functional approach was named signal regression models for
location, scale, and shape [68]. The estimation via gradient
boosting is based on the corresponding gamboostLSS algo-
rithm for boosting GAMLSS [49, 50].

In an approach to analyse the functional relationship
between bioelectrical signals like electroencephalography
(EEG) and facial electromyography (EMG), Rügamer et al.
[69] focused on extending the framework of boosting func-
tional regression by incorporating factor-specific historical
effects, similar to (8).

Although functional data analysis triggered a lot of
methodological research, a recent systematic review by Ullah
and Finch [70] revealed that the number of actual biomedical
applications of functional data analysis in general and func-
tional regression in particular is rather small. The authors
argued that the potential benefits of these flexible models
(like richer interpretation and more flexible structures) are
not yet well understood by practitioners and that further
efforts are necessary to promote the actual usage of these
novel techniques.

5. Boosting Advanced Survival Models

Cox regression is still the dominant model class for boosting
time-to-event data; see [33] for a comparison of two different
boosting algorithms and [71] for different general approaches
to estimate Cox models in the presence of high-dimensional
data.However, over the last years several alternatives emerged
[45, 46, 72]. In this sectionwewill particularly focus on boost-
ing joint models of time-to-event outcomes and longitudinal
markers but will also briefly refer to other recent extensions.

5.1. Boosting Joint Models. The concept of joint modelling
of longitudinal and time-to-event data [73] has found its
way into the statistical literature in the last few years
as it thoroughly addresses questions on continuous data
recorded over time and event times related to this continuous
data. Modelling those two processes independently leads to
misspecified models prone to bias. There are various joint
modelling approaches and thus also various different model
equations based on different covariates, distributions, and
covariance structures.The type we are going to refer to in this
review is the following:

𝑦𝑖𝑗 = 𝜂l (𝑥𝑖𝑗) + 𝜂ls (𝑥𝑖, 𝑡𝑖𝑗) + 𝜀𝑖𝑗
𝜆 (𝑡 | 𝛼, 𝜂s (𝑥𝑖, 𝑡) , 𝜂ls (𝑥𝑖, 𝑡))

= 𝜆0 (𝑡) exp (𝜂s (𝑥𝑖, 𝑡) + 𝛼𝜂ls (𝑥𝑖, 𝑡)) ,
(9)

where 𝑦𝑖𝑗 is the 𝑗th observation of the 𝑖th individual with
𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛𝑖 and 𝜆(𝑡 | 𝛼, 𝜂s(𝑥𝑖, 𝑡), 𝜂ls(𝑥𝑖, 𝑡))
is the hazard function for individual 𝑖 at time point 𝑡. Both
outcomes, the longitudinal measurement 𝑦𝑖 and the time 𝑡𝑖,
recorded alongside with the censoring indicator 𝛿𝑖, are mod-
elled based on two subpredictors each: one that is supposed



Computational and Mathematical Methods in Medicine 7

to have an impact on only one of them (the longitudinal
subpredictor 𝜂l(𝑥𝑖𝑗) and the survival subpredictor 𝜂s(𝑥𝑖𝑗, 𝑡))
and the other being shared by both parts of the model (the
shared subpredictor 𝜂ls(𝑥𝑖𝑗, 𝑡)). All those subpredictors are
functions of different, possibly time-dependent variables 𝑥𝑖.
The type of model presented here does not include fixed time
varying covariates for the survival part of the model; please
note that those models do exist but are not implemented in
the boosting framework yet. It however includes time itself
and, just like most joint models, some type of random effects.
The function𝜆0(𝑡) is the baseline hazard.Most approaches for
joint models are based on likelihood or Bayesian inference
using the joint likelihood resulting as a product from the
corresponding likelihoods of the above processes [74, 75].
Those approaches are, however, unable to conduct variable
selection and cannot deal with high-dimensional data.

Waldmann et al. [13] suggested a boosting algorithm
tackling these challenges. The model used in that paper is
a reduced version of (9) in which no survival subpredictor
is considered and a fixed baseline hazard 𝜆0 is used. The
algorithm is a version of the classical boosting algorithm as
represented in Box 1, which is adapted to the special case of
having to estimate a set of different subpredictors (similar
to the GAMLSS framework [49]). The algorithm is therefore
composed of three steps which are performed circularly. In
the first step a regular boosting step to update the longitudinal
subpredictor 𝜂l(𝑥𝑖𝑗) is performed and the parameters of the
shared subpredictor are treated as fixed. In the second step,
the parameters of the longitudinal subpredictor are fixed
and a boosting step for the shared subpredictor 𝜂ls(𝑥𝑖𝑗) is
conducted.The third step is a simple optimization step: based
on the current values of the parameters in both subpredictors
the likelihoods are optimized with respect to 𝜆0, 𝜎2, and 𝛼 (cf.
[76]).The number of iterations now depends on two stopping
iterations which have to be optimized on a two-dimensional
grid via cross-validation.

Waldmann et al. [13] showed that the benefits of boosting
algorithm (automated variable selection and handling of 𝑝 >
𝑛 situations) can be transferred to joint modelling and hence
lay the groundwork to further extended joint modelling
approaches.

5.2. An Example of Boosting Joint Models. The example pre-
sented in the following is similar to the simulation study in
[13]. The simulated data consists of 𝑁 = 500 individuals
and a maximum of 𝑛𝑖 = 5 observations per individual.
Some observations are however truncated due to the risk
function induced by the survival part of themodel.The actual
number of observations hence was 2350. The longitudinal
subpredictor contains two informative variables and the
intercept (𝛽l(0,1,2) = (2, 1, −2)) as well as 1250 noninforma-
tive variables. The shared subpredictor has two fixed time
invariant variables (𝛽ls(1,2) = (1, −2)), a time effect (𝛽𝑡 = 1),
random intercept and slope, and also 1250 noninformative
variables. In total there are hence 2508 covariates for 2350
observations, a situation clearly infeasible for ordinary joint
modelling approaches.

We ran the above presented algorithm on this simulated
example. By tenfold cross-validation we found the optimal

stopping iterations to be 𝑚stop,l = 125 and 𝑚stop,ls = 130.
The algorithm was able to detect the informative variables
and the resulting coefficients were close to the original
values 𝛽l(0,1,2) = (2.042, 0.993, −1.999), 𝛽ls(1,2,𝑡) = (0.971,
−1.980, 0.876). The longitudinal subpredictor furthermore
selected three and the shared subpredictor two noninfor-
mative variables; hence only 0.2% of the noninformative
variables were selected, all of which had absolute values
below 0.023.Those results are typical findings for simulations
done with the package based on the code for the approach
presented here. It is available in the R add-on package JMboost
[77], currently on GitHub.

5.3. OtherNewApproaches onBoosting SurvivalData. Reulen
andKneib [78] extended the framework of statistical boosting
towards multistate models for patients exposed to competing
risks (e.g., adverse events, recovery, death, or relapse). The
approach is implemented in the gamboostMSM package
[79], relying on the infrastructure of mboost. Möst and
Hothorn [80] focused on boosting the patient-specific sur-
vivor function based on conditional transformation models
[81] incorporating inverse probability of censoring weights
[82].

When statistical boosting algorithms are used to estimate
survival models, the motivation most often is the presence of
high-dimensional data. De Bin et al. [83] investigated several
approaches (including gradient boosting and likelihood-
based boosting) to incorporate both clinical and high-
dimensional omics data in prediction models.

Guo et al. [84] proposed a new adaptive likelihood-based
boosting algorithm to fit Cox models, incorporating a direct
lasso-type 𝐿1 penalization in the fitting process in order to
avoid the inclusion of variables with small effect. The general
motivation is similar to the step length modification factor
proposed by Sariyar et al. [57]. In another approach, Sariyar
et al. [85] combined a likelihood-based boosting approach
for the Cox model with random forests in order to screen
for interaction effects in high-dimensional data. Hieke et al.
[86] combined likelihood-based boosting with resampling to
identify prognostic SNPs in potentially small clinical cohorts.

6. New Frontiers and Applications

Also other new topics have been incorporated into the
framework of statistical boosting, but not all of them can be
presented in detail here. However, we want to give a short
overview of the most relevant developments, many of which
were actually motivated by biomedical applications.

Weinhold et al. [87] proposed to analyse DNA methy-
lation data (signal intensities 𝑀 and 𝑈), via a “ratio of
correlated gammas” model. Based on a bivariate gamma
distribution for 𝑀 and 𝑈 values, the authors derived the
density for the ratio𝑀/(𝑀+𝑈) and optimized it via gradient
boosting.

A boosting algorithm for differential item functioning in
Rasch models was developed by Schauberger and Tutz [88]
for the broader area of psychometrics, while Casalicchio et
al. focused on boosting subject-specific Bradley-Terry-Luce
models [89].
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Napolitano et al. [90] developed a sampled boosting
algorithm for the analysis of brain perfusion images: Gradient
boosting is carried out multiple times on different training
sets. Each base-learner refers to a voxel and after every
sampling iteration a fixed fraction of selected voxels is
randomly left out from the following boosting fit, to force
the algorithm to select new voxels. The final model is then
computed as the global sum of all solutions. Feilke et al. [91]
proposed a voxelwise boosting approach for the analysis of
contrast-enhanced magnetic resonance imaging data (DCE-
MRI), which was additionally enhanced by a spatial penalty
to account for the regional structure of the voxels.

Pybus et al. [92] proposed a hierarchical boosting algo-
rithm for classification in an approach to detect positive
selection in genomic regions (cf. [93]). Truntzer et al. [94]
compared the classification performance of gradient boosting
with other methods combining clinical variables and high-
dimensional mass spectrometry data and concluded that the
variable selection properties of boosting also led to a very
good performance regarding prediction accuracy.

Regarding boosting location and scalemodels (modelling
both expected value and variance in the spirit of GAMLSS
[48]), Messner et al. [95] proposed a boosting algorithm
for predictor selection in ensemble postprocessing to better
calibrate ensemble weather forecasts. The idea of ensemble
forecasting is to account for model errors and to quantify
forecast uncertainty. Mayr et al. [96] used boosted location
and scale models in combination with permutation tests to
assess simultaneously systematic bias and random measure-
ment errors of medical devices. The use of a permutation test
tackles one of the remaining problems of statistical boosting
approaches in practical biomedical research: The lack of
standard errors for effect estimates makes it necessary to
incorporate resampling procedures to construct confidence
intervals or to assess significance of effects.

The methodological development in [96] was motivated
by the analysis of biomedical data. Statistical boosting
algorithms, however, have been applied over the last few
years in various biomedical applications without the need
for methodological extensions. Most applications focus on
prediction modelling or variable selection.

To give an idea of the variety of topics, we briefly
mention a selection of the most recent ones from the last
two years. These applications comprise the development
of birth weight prediction formulas for particularly small
babies [97], prediction of smoking cessation and its relapse
in HIV-infected patients [98], Escherichia coli Fed-Batch
Fermentation Modelling [99], prediction of cardiovascular
death for older patients in the emergency department [100],
and identification of factors influencing therapeutic decisions
regarding rheumatoid arthritis [101].

7. Discussion

In this article, we have highlighted several new research
areas in the field of statistical boosting leaving the traditional
GAM modelling approach. A particularly active research
area during the last few years addresses the development
of boosting algorithms for new model classes extending

the GAM framework. These include, among others, the
simultaneous modelling of location, scale, and shape param-
eters within the GAMLSS framework [49], the modelling of
functional data [65], and, recently, the class of jointmodels for
longitudinal and survival data [13]. It goes without saying that
these developments will make boosting algorithms available
for practical use in much more sophisticated clinical and
epidemiological applications.

Another line of research aims at exploring the con-
nections between statistical boosting methods and machine
learning techniques that were originally developed inde-
pendently of boosting. An important example is stability
selection, a generic methodology that, at the time of its
development,mainly focused on penalized regressionmodels
such as the lasso. Only recently has stability selection been
adapted to become a tool for variable selection within the
boosting framework (e.g., [47]). Other work in this context
is the analysis of the connections between boosting and
penalized regression [10] and the work by Sariyar et al.
[85] exploring a combination of boosting and random forest
methods.

Finally, as already noted by Hothorn [24], boosting may
be regarded not only as a framework for regularized model
fitting but also as a generic optimization tool in its own
right. In particular, boosting constitutes a robust algorithm
for the optimization of objective functions that, due to their
structure or complexity, may pose problems for Newson-
Raphson-type and relatedmethods.Thismotivated the use of
boosting in the articles by Hothorn et al. [81] and Weinhold
et al. [87].

Regarding future research, a huge challenge for the use of
boosting algorithms in biomedical applications arises from
the era of big data. Unlike other machine learning methods
like random forests, the sequential nature of boosting meth-
ods hampers the use of parallelization techniques within the
algorithm, which may result in issues with the fitting and
tuning of complex models with multidimensional predictors
and/or sophisticated base-learners like splines or higher-
sized trees. To overcome these problems in classification and
univariate regression, Chen andGuestrin [102] developed the
extremely fast and sophisticated xgboost environment.

For the more recent extensions discussed in this paper,
however, big data solutions for statistical boosting have yet to
be developed.

Appendix

Developments regarding the mboost Package

This appendix describes important changes during the last
years that were implemented in the R package mboost after
the tutorial paper [28] on its use was published.

Starting from mboost 2.2, the default for the degrees of
freedom was changed; they are now defined as

df (𝜆) = trace (2𝑆 − 𝑆⊤𝑆) , (A.1)

with smoother matrix 𝑆 = 𝑋(𝑋⊤𝑋 + 𝜆𝐾)−1𝑋. Anal-
yses have shown that this leads to a reduced selec-
tion bias; see [4]. Earlier versions used the trace of



Computational and Mathematical Methods in Medicine 9

the smoother matrix as degrees of freedom; that is,
df(𝜆) = trace(𝑆). One can change to the old defi-
nition by setting options(mboost dftraceS = TRUE).
For parallel computations of cross-validated stopping val-
ues, mboost now uses the package parallel, which is
included in the standard R installation. The behavior of
bols(x, intercept = FALSE) was changed when x is a
factor: the intercept is simply dropped from the designmatrix
and the coding can be specified as usual for factors. Addition-
ally, a new contrast was introduced: "contr.dummy" (see
the manual of bols for details). Finally, the computation
of B-spline basis at the boundaries was changed such that
equidistant boundary knots are used per default.

With mboost 2.3, constrained effects [103, 104] are
fitted per default using quadratic programming methods
(option type = "quad.prog") improving the speed of
computation drastically. In addition to monotonic, con-
vex, and concave effects, new constraints were introduced
to fit "positive" or "negative" effects or effects with
boundary constraints (see bmono for details). Addition-
ally, a new function to assign 𝑚stop values to a model
object was added (mstop(mod) <- i) as well as two
new distribution families Hurdle [105] and Multinomial
[76]. Finally, a new option was implemented to allow
for stopping based on out-of-bag data during fitting (via
boost control(. . ., stopintern = TRUE)).

With mboost 2.4, bootstrap confidence intervals were
implemented in the novel confint function [104]. The sta-
bility selection procedure was moved to a dedicated package
stabs [43], while a specific function for gradient boosting was
implemented in packagemboost.

From mboost 2.5 onward, cross-validation does not stop
on errors in single folds anymore and was sped up by
setting mc.preschedule = FALSE if parallel computations
via mclapply are used. A documentation for the function
plot.mboost was added, which allows visualizing model
results. Values outside the boundary knots are now forbidden
during fitting, while linear extrapolation is used for predic-
tion.

Withmboost 2.6 a lot of bug fixes and small improvements
were provided. Most notably, the development of the package
is now hosted entirely on github in the collaborative project
boost-R/mboost and the package maintainer changed.

The mboost 2.7 version provides a new family Cindex
[45], variable importance measures (varimp), and improved
plotting facilities.

The current CRAN version mboost 2.8 includes major
changes to the Binomial family which now additionally pro-
vides an alternative implementation of Binomial regression
models along the lines of the classic glm implementation,
which can be used via Binomial(type = "glm"). This
family also works with a two-column matrix containing the
number of successes and number of failures. Furthermore,
models with zero steps (i.e., models containing only the
offset) are supported and cross-validation can now select
models without base-learners. Finally, a new base-learner
bkernel for pathway-based kernel boosting in genome-wide
association studies (GWAS) was added [106].

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors thank Corinna Buchstaller for her help with
the literature search. The first and the last author’s work on
this article was supported by the Deutsche Forschungsge-
meinschaft (DFG) (http://www.dfg.de), Grant no. SCHM
2966/1-2. Support of the Interdisciplinary Center for Clini-
cal Research (IZKF) of the Friedrich-Alexander-Universität
Erlangen-Nürnberg via the Projects J49 (grant to Andreas
Mayr) and J61 (grant to Elisabeth Waldmann) is also grate-
fully acknowledged.

References

[1] A. Mayr, H. Binder, O. Gefeller, andM. Schmid, “The evolution
of boosting algorithms: from machine learning to statistical
modelling,” Methods of Information in Medicine, vol. 53, no. 6,
pp. 419–427, 2014.
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