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Abstract

RNA-seq reads containing part of the poly(A) tail of transcripts (denoted as poly(A) reads)

provide the most direct evidence for the position of poly(A) sites in the genome. However,

due to reduced coverage of poly(A) tails by reads, poly(A) reads are not routinely identified

during RNA-seq mapping. Nevertheless, recent studies for several herpesviruses success-

fully employed mapping of poly(A) reads to identify herpesvirus poly(A) sites using different

strategies and customized programs. To more easily allow such analyses without requiring

additional programs, we integrated poly(A) read mapping and prediction of poly(A) sites into

our RNA-seq mapping program ContextMap 2. The implemented approach essentially gen-

eralizes previously used poly(A) read mapping approaches and combines them with the

context-based approach of ContextMap 2 to take into account information provided by other

reads aligned to the same location. Poly(A) read mapping using ContextMap 2 was evalu-

ated on real-life data from the ENCODE project and compared against a competing

approach based on transcriptome assembly (KLEAT). This showed high positive predictive

value for our approach, evidenced also by the presence of poly(A) signals, and considerably

lower runtime than KLEAT. Although sensitivity is low for both methods, we show that this is

in part due to a high extent of spurious results in the gold standard set derived from RNA-

PET data. Sensitivity improves for poly(A) sites of known transcripts or determined with a

more specific poly(A) sequencing protocol and increases with read coverage on transcript

ends. Finally, we illustrate the usefulness of the approach in a high read coverage scenario

by a re-analysis of published data for herpes simplex virus 1. Thus, with current trends

towards increasing sequencing depth and read length, poly(A) read mapping will prove to

be increasingly useful and can now be performed automatically during RNA-seq mapping

with ContextMap 2.

Introduction

Gene expression is regulated at several levels, both transcriptionally and post-transcriptionally.

An important role for post-transcriptional regulation is played by the 3’ untranslated regions

(UTR) of transcripts, which often contain cis-regulatory elements controlling transcript stabil-

ity, localization and translation, such as AU-rich elements (AREs) and miRNA-binding sites
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[1]. Shortening of 3’ UTRs resulting from alternative cleavage and polyadenylation has been

shown to result in higher protein levels in proliferating cells [2] and over-expression of onco-

genes in cancer cells [3]. Alternative polyadenylation has also been found to be tissue-specific

in human [4] and Drosophila melanogaster [5] and correlated to mouse [6], zebrafish [7], and

D. melanogaster [8] development. Thus, identification and quantification of poly(A) site usage

is of high relevance in deciphering regulation of RNA transcription and processing.

Next-generation sequencing of RNA (RNA-seq) has become the standard technology for

transcriptome profiling and has been applied in many studies for identifying expressed

genome regions, both coding and non-coding [9–11], differential gene expression [12, 13],

alternative splicing [14, 15], and many more. While RNA-seq can be used to identify poly(A)

sites by mapping reads containing part of the poly(A) tail (denoted as poly(A) reads in the fol-

lowing) [9], coverage of poly(A) tails by reads has been found to be very poor in previous stud-

ies. For instance, RNA-seq analysis of 69 lymphoblastoid cells with a total of 1.2 billion reads

by Pickrell et al. recovered only *8,000 putative poly(A) sites with>1 poly(A) read [10].

Due to these limitations, a number of alternative experimental techniques for identifying

and quantifying poly(A) sites have been developed based on next-generation sequencing, such

as PAS-seq [16], PolyA-seq [17], 3’T-fill [18], and several others (reviewed in [19, 20]). These

technologies have been successfully used in many studies to map and identify (alternative)

poly(A) sites in yeast [18, 21], Caenorhabditis elegans [22], human and other mammals [16, 17,

21, 23] among others. Nevertheless, RNA-seq continues to be the most commonly applied

approach for transcriptome profiling and is only rarely combined with additional experiments

to identify 3’ or 5’ transcript ends. Accordingly, there is a wealth of RNA-seq data available

and continues to become available. Despite this abundance of data, poly(A) reads are not stan-

dardly identified in RNA-seq analysis pipelines and the information on the poly(A) sites con-

tained within the data is mostly—but not always—ignored.

In particular, mapping of poly(A) reads in RNA-seq data has already been successfully used

to identify poly(A) sites in several herpesviruses, including human cytomegalovirus (HCMV)

[24], Kaposi’s sarcoma-associated herpesvirus (KSHV) [25], and murine gammaherpesvirus 68
(MHV68) [26]. Most recently, we applied this approach to quantify alternative poly(A) site

usage during lytic human herpesvirus 1 (HSV-1) infection [27]. In this study, all but one anno-

tated poly(A) site were recovered as well as three additional ones. Our results argued against a

dominant role of alternative poly(A) site usage during HSV-1 lytic infection that had been pre-

viously reported and showed that in contrast to host transcription termination, HSV-1 tran-

scription termination was not disrupted during lytic infection.

The likely reason for the successful recovery of poly(A) sites in these herpesviruses is the rel-

ative small genome length and high transcription during lytic infection, resulting in high cov-

erage of transcripts by sequencing reads. Thus, even if read coverage of transcript 3’ ends and

particularly poly(A) tails is significantly lower than for other transcript regions, sufficiently

high numbers of poly(A) reads can still be recovered. This suggests that with the current trend

towards both increasing sequencing depth and read length, mapping of poly(A) reads as a

standard routine during RNA-seq mapping has potential merits for identifying poly(A) sites

even for species with larger genomes. As a consequence, we extended our context-based RNA-

seq mapping approach ContextMap 2 [28] to also map reads containing part of the poly(A)

tail and identify corresponding poly(A) sites. Our approach is essentially a generalization of

approaches previously used for identifying reads containing part of the poly(A) tail, with the

main exception that context information, i.e. information provided by other reads, is also

taken into account. This allows automatically and efficiently performing poly(A) read mapping

as part of the RNA-seq mapping process without requiring additional programs.

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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Performance of poly(A) read mapping and identification of poly(A) sites was evaluated on

RNA-seq data from the ENCODE project [29] for three cell lines. Predicted poly(A) sites were

evaluated against a gold standard set obtained from RNA-PET data, which allows identifica-

tion of transcript 5’ and 3’ ends [30]. Our mapping-based approach is furthermore compared

against an alternative approach based on transcriptome assembly presented recently (KLEAT

[31]). With default parameters, poly(A) read mapping has a significantly higher positive pre-

dictive value (PPV), i.e. a higher fraction of correct predictions, than the assembly-based

approach KLEAT, at the cost of lower sensitivity. With alternative parameters, approximately

the same sensitivity (and same PPV) can be obtained as for KLEAT. Here, the advantage of

our mapping-based approach is the *3-fold lower runtime compared to KLEAT.

While PPV was generally high, sensitivity on all “gold standard” poly(A) sites obtained

from RNA-PET was poor for both methods, but improved considerably for poly(A) sites near

annotated transcript 3’ ends and increased with transcript read coverage. Combined with the

observation that the frequency of known poly(A) signal sequences within 50 nt upstream of

RNA-PET poly(A) sites was both lower than previously reported [32] and observed for our

predictions, this suggests that a substantial fraction of the “gold standard” poly(A) sites are

actually incorrect and sensitivity of poly(A) read mapping is underestimated. Indeed, sensitiv-

ity more than tripled if identified poly(A) sites were evaluated on more specific poly(A)

sequencing data available for one of the evaluated cell lines [33].

In summary, these results show that poly(A) read mapping can successfully recover poly(A)

sites with high precision, in particular if read coverage on the corresponding transcripts is

high. While major isoforms of highly expressed genes will always be recovered more confi-

dently, more and more poly(A) sites of lowly expressed and minor isoforms will be detected

with increasing sequencing depth. This is further illustrated by a re-analysis of the HSV-1 data

where both high PPV and sensitivity are achieved, highlighting the value of poly(A) read map-

ping for host-pathogen transcriptomics. Thus, by integrating poly(A) read mapping into Con-

textMap 2, which already supports parallel mapping against both host and pathogen genomes,

we additionally extended its suitability for these applications. Moreover, since poly(A) read

mapping can now be performed conveniently as part of standard read mapping, without

requiring additional software, we expect it to be more commonly applied.

Materials and Methods

Integration of poly(A) read mapping into ContextMap 2

Recently, we introduced ContextMap 2, a context-based RNA-seq mapping approach [28],

which uses the information provided by other reads aligned to the same general genomic loca-

tion (the so-called context) to select the best alignment for each read. In the original version of

ContextMap 2, reads containing parts of a poly(A) tail were not mapped, thus, we imple-

mented a separate procedure for identifying poly(A) sites in HSV-1 [27]. Poly(A) read map-

ping and 3’ cleavage site prediction has now been integrated into ContextMap 2, making fully

use of the context-based approach (version 2.7.8 or higher, available at https://www.bio.ifi.

lmu.de/software/contextmap). This allows automatic and effortless poly(A) site prediction

during standard read mapping without the need to implement or install additional

procedures.

In brief, both the published and current version of ContextMap 2 consist of five steps. In

step 1, a set of initial alignments are determined, which are used to determine contexts in step

2. Essentially, contexts are regions of the genome that are covered by alignments and are sepa-

rated from other contexts by regions without alignments. Initial alignments are determined

with the help of an external short read program. While ContextMap 2 also supports the use of

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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Bowtie [34] and Bowtie 2 [35] (and other programs can be included using the plug-in structure

of ContextMap 2), best performance was observed in combination with BWA [36]. Thus, all

analyses presented in this article were obtained with BWA as short read alignment program

for ContextMap 2.

Alignments determined in step 1 include full (unspliced) alignments, single-split align-

ments (containing only one splice junction), candidate multi-split alignments (potentially con-

taining > 1 splice junction) as well as partial alignments. Partial alignments are reads where

only the beginning or end of the read can be aligned and candidate multi-split alignments con-

sist of several single-split alignments for fragments of the read. These initial alignments are

extended in step 3 to obtain multiple alternative alignments for each read. Here, alternative

split alignments are generated for full or partial alignments that overlap identified splice junc-

tions. Furthermore, for split alignments alternative positions of the splice site are included.

Finally, a unique alignment for each read is determined first for each context in step 4 and

then across all contexts in step 5 using a support score calculated from maximum read cover-

ages in predefined windows around the read alignment. Complete multi-split alignments are

determined in step 4.

A major change in the current version of ContextMap 2 is the support of clipped align-

ments, i.e. alignments where a prefix and/or a suffix of the read sequence is not aligned (for

details see below). Previously, such alignments were discarded, whereas now they are included

in the final mapping and are used to determine poly(A) sites. The prediction of poly(A) sites in

ContextMap 2 is performed as part of step 4 and is described below, following the description

of the clipping method. The coordinates of predicted poly(A) sites are provided as a BED file

in addition to the mapping provided in SAM format. Fig 1 illustrates which steps of poly(A)

site prediction are performed during which steps of ContextMap 2.

Clipping. Clipping is performed in the alignment extension step (step 3 of ContextMap

2), resulting in the inclusion of additional clipped alignments to the set of possible alignments

evaluated in subsequent steps 4 and 5. Clipped alignments are determined for:

• Partial read alignments that cannot be extended to valid single-split alignments.

• Full read alignments that have more than three mismatches. In this case, clipped alignments

are added to the list of possible alignments in addition to the full alignment, but only if clip-

ping improves the alignment score (defined below).

Essentially, the clipped alignment is a local alignment of the read to the part of the genome

the read is aligned to originally, allowing neither insertions or deletions. This local alignment

can be determined efficiently in time linear in the read length with a simplified version of the

Smith-Waterman algorithm that calculates only the diagonal of the dynamic programming

matrix. Per default, we use the same match and mismatch scores used by BWA (match

score = 1, mismatch penalty = 4). All clipped alignments with maximum score are added to

the set of possible alignments for a read.

Furthermore, if candidate multi-split alignments cannot be combined to an alignment of

the complete read in step 4, clipped multi-split read alignments are also determined. In this

case, an optimal local alignment beginning at the splice junction closest to the start of the read

(in case the multi-split alignment does not extend to the start of the read) or the end of the

read (in case the multi-split alignment does not extend to the end of the read) is determined as

described above. This allows the combination of clipping with an arbitrary number of splice

junctions in the read as well as insertions (modeled as negative-length introns) and deletions

(modeled as very small introns).

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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Identification of candidate poly(A) sites. As a first step in poly(A) site prediction, we

determine for each clipped read alignment whether it might represent a potential poly(A) site.

If it does, a stretch of A’s (or T’s depending on strandedness of sequencing) should begin at the

first clipped position in the read. This poly(A) or poly(T) stretch may not necessarily continue

Fig 1. Workflow of poly(A) site identification in ContextMap 2. On the left hand side, the sequence of the

five ContextMap 2 steps is indicated. The right hand side illustrates the changes in each step that allow the

identification of clipped alignments and poly(A) sites.

doi:10.1371/journal.pone.0170914.g001

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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until the end of the read as sequencing can continue into primer sequences at the end of frag-

ments and sequencing quality of stretches of the same nucleotide deteriorates rapidly. Further-

more, sequencing errors might disrupt the poly(A) or poly(T) stretch. Thus, we apply the

following window-based approach, which allows both a small number of errors and does not

require the poly(A) or poly(T) stretch to extend to the end of the read.

A sliding window of length wl (default wl = 6 nt) is shifted along the clipped region of the

alignment, starting at the first clipped position and ending either at the end of the read or a

maximum distance sl from the clipping start (default sl = 30 nt), whichever is reached earlier

(Fig 2A). For each window, the fraction of A’s or T’s in the read sequence is calculated

(depending on strandedness of sequencing). If this fraction is at least c1 (default c1 = 1.0) for at

least one window and not below c2 (default c2 = 0.7) for any window, the clipping start of the

alignment is used as a candidate poly(A) site. In case the clipped region of an alignment is

shorter than wl but at least 5 nt, we require that all clipped nucleotides are A’s or T’s, respec-

tively, to treat it as a candidate poly(A) site (Fig 2B).

This approach is similar to previously used approaches for detecting poly(A) sites, such as

the one we applied in our analysis of HSV-1 poly(A) sites [27]. While it is highly sensitive, it

also produces as lot of spurious results, thus further filtering of candidate poly(A) sites is neces-

sary to correctly identify actual poly(A) sites. Furthermore, clipping may not be performed

precisely at the poly(A) site for each poly(A) read, but vary by a few nucleotides to either side if

this improves the alignment score, or alternative clipping positions may yield the same align-

ment score, resulting in several clipped alignments for individual reads. As a consequence, we

extended our context-based approach to identify the best poly(A) site among a number of

closely located candidate sites based on the number of both clipped read alignments and full

read alignments supporting a poly(A) site. This will be described in the following section. We

also include a filtering step to exclude spurious hits supported by few reads beforehand.

For filtering, we first identify regions of pairwise overlapping clipped alignments that likely

represent the same actual poly(A) site. Two clipped alignments are overlapping if both are

clipped at the same end (and only this end) and the distance between the respective clipping

start positions is smaller than the maximum read length (see Fig 2C). Alignments clipped at

different ends are not considered overlapping as they can only originate from opposite strands.

Fig 2. Identification of candidate poly(A) sites. (A) For each alignment, a sliding window of length wl is shifted along the clipped part of

the read sequence and the fraction of A’s (or T’s depending on strandedness of sequencing) is calculated within each window. In this

example, the fraction is 5/6 = 0.83 for the first two windows and 6/6 = 1 for all subsequent windows. Thus, at least one window contains�

c1 = 1 A’s and none has < c2 = 0.7 A’s and this is used as a candidate poly(A) site. (B) In this example, the clipping length is shorter than wl.

Accordingly, the window approach cannot be used and all clipped nucleotides are required to be A’s or T’s to predict a candidate poly(A) site,

which is the case here. (C) Alignments a3 and a4 are considered pairwise overlapping as they are clipped at the same end (dashed lines)

and the distance d between the start of clipping is smaller than the read length.

doi:10.1371/journal.pone.0170914.g002

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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In this way, we identify sets of pairwise overlapping alignments that are connected by pairwise

overlaps and cover a region of the genome at most as long as the maximum read length. In

case a set covers a larger region of the genome, it is subdivided.

Only sets of pairwise overlapping clipped alignments (and corresponding candidate

poly(A) sites) are retained for further analysis if they contain at least rs (default rs = 3) align-

ments containing a candidate poly(A) site. Clipped alignments not supporting a poly(A) site

are not further considered for predicting poly(A) sites, but are included in the final mapping if

they yield a better score than alternative alignments of the same read.

Resolution of poly(A) sites. Given these sets of pairwise overlapping candidate poly(A)

sites, we then identify the best poly(A) site for each read within each set. This means one

poly(A) site is chosen for each read among a few closely located ones. For this purpose, Con-

textMap 2 uses the same evidence score as for the resolution of pairwise overlapping splice

sites (part of step 4 of ContextMap 2). The evidence score is calculated from the number of

both full and clipped reads supporting the candidate poly(A) site, i.e. the number of reads for

which an alignment ends at the poly(A) site (Fig 3). Let ni be the number of such supporting

alignments with i mismatches and m the maximum number of mismatches allowed. Then the

evidence score is defined as:

evidence ¼
Xm

i¼0

ðwi � niÞ ð1Þ

Here, w is a value < 1 (default w = 0.3) and is used to decrease the weight of alignments with a

larger number of mismatches.

For each read with a candidate poly(A) site within a set of overlapping sites, the clipped

alignment to the poly(A) site with highest evidence score is retained and all others are dis-

carded. After this step, there may still be several alternative alignments for a read within the

context, including both full alignments of the read and clipped alignments in a different set of

overlapping poly(A) sites. These alternative alignments will then be resolved as in the original

ContextMap 2 version using a support score that evaluates read alignment density at and

around the respective alignments [28]. Thus, at the end of step 4 of ContextMap 2 each read

has at most one alignment within each context (full, spliced or clipped). Alternative alignments

to different contexts are resolved in step 5 of ContextMap 2 by recalculating support scores

Fig 3. Resolution of poly(A) sites. (A) Example of two overlapping candidate poly(A) sites supported in part (but not only) by alternative

alignments of the same reads r1 and r2. (B) After calculation of evidence scores, both read r1 and r2 are assigned to the poly(A) site with

higher evidence (site B). Poly(A) site A is discarded as it is no longer supported by any reads. Site B is supported by� rs reads with distinct

alignments starts and, thus, is included in the final ContextMap 2 output.

doi:10.1371/journal.pone.0170914.g003

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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and choosing the context for each read with the highest support score for the corresponding

alignment. In summary, the main difference to existing poly(A) read mapping approaches is

that information provided by other reads is used to resolve alternative clipped alignments for

poly(A) reads and identify the correct position of the poly(A) site for each read.

As a last step, after final and unique alignments have been determined for each read, a filter-

ing step is applied again to remove poly(A) sites not sufficiently supported by reads. For this

purpose, we define sets of poly(A) sites for which the distance from the first to the last site is at

most the read length. If this set of poly(A) sites corresponds to at least rs identified poly(A)

read alignments starting at distinct positions, it is included in the output. Distinct starting

positions for alignments are required to eliminate poly(A) sites supported only by PCR dupli-

cates of the same fragment.

Competing methods

The approach used by ContextMap 2 for prediction of candidate poly(A) sites in individual

reads is essentially a generalization of previously used approaches for identifying reads con-

taining part of the poly(A) tail. For instance, Stern-Ginossar et al. classified poly(A) reads for

HCMV as reads containing 5 or more consecutive A’s at the 3’ end and at most 1 non-A nucle-

otide for every 5 A’s [24]. Essentially, this corresponds to the following parameter settings in

ContextMap 2: c1 and c2 = 5/6 for a window length wl = 6 and the maximum length of the

poly(A) stretch sl = the maximum read length. Thus, we will not perform a comparison of dif-

ferent strategies for classifying poly(A) reads depending on the existence and length of poly(A)

stretches in a read. Different parameter settings of ContextMap 2, which essentially represent

such different strategies, will, however, be evaluated on a small training set (see results).

To the best of our knowledge, the only approach for identifying poly(A) sites from RNA-

seq data that is not exclusively based on identifying reads containing poly(A) stretches is

KLEAT [31]. In contrast to other poly(A) read mapping approaches, it is based on de novo

transcriptome assembly as a first step, using established transcriptome assembly approaches,

such as Trans-ABySS [37]. In a second step, reads are re-aligned to the resulting contigs and

contigs are aligned to the genome. From these alignments, three types of evidence are collected

(tails, bridges, and links), which are then used to predict the actual poly(A) sites. Tails are con-

tig sequences ending in poly(A) stretches and are considered as high-confidence candidates.

Here, the genome alignment is used to filter false positive results occurring from poly(A)

stretches in the genome. Bridges are poly(A)-containing reads aligned to the end of a contig

and are included due to problems of assembly programs to assemble poly(A) tails of contigs.

Finally, links are read pairs for which the first read aligns to the contig close to its 3’ end and

the second read represents a poly(A) sequence.

Data sets

ENCODE data. Evaluation of poly(A) site prediction was performed using ENCODE

RNA-seq and RNA-PET data. RNA-PET allows identification of transcript 5’ and 3’ ends [30]

and was used to define a gold standard of presumably “true” poly(A) sites. We used ENCODE

data for three cell lines (MCF-7, H1-hESC, A549, see Table 1), which was previously also used

to evaluate KLEAT. For both RNA-seq and RNA-PET paired-end sequencing was performed

with read lengths of 76 and 36 nt, respectively. For our evaluation, replicate data was not

pooled before read mapping (in contrast to the published evaluation of KLEAT), allowing

both comparison of results between replicates as well as evaluation with realistic sequencing

depth.

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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RNA-seq data from the study of Pickrell et al. Pickrell et al. performed RNA-seq of 69

lymphoblastoid cell lines derived from unrelated Nigerian individuals [10]. For each sample,

prepared libraries were sequenced twice in two different sequencing centers with read lengths

of 35 and 46 nt, respectively. For some samples, multiple libraries were prepared, resulting in a

total of 161 sequencing data sets with a median sequencing depth of 8.4 million single-end

reads. We downloaded the raw sequencing data from the Short Read Archive (accession

SRP001540) and the high-confidence poly(A) site predictions by Pickrell et al. from the Sup-

plementary website for the article (http://eqtl.uchicago.edu/RNA_Seq_data/results/).

HSV-1 sequencing data. Poly(A) site prediction for HSV-1 was performed using RNA-

seq data of newly transcribed RNA from our recently published study on HSV-1 lytic infection

[27]. In this study, newly transcribed RNA was labeled in 1h intervals during the first 8h of

lytic HSV-1 infection (uninfected cells and 0-1h, 1-2h, 2-3h, 3-4h, 4-5h, 5-6h, 6-7h and 7-8h

post infection) and subjected to paired-end sequencing (100 nt reads). Two independent bio-

logical replicates were obtained of the full time-course, resulting in 34-61 million read pairs

per sample (Gene Expression Omnibus accession: GSE59717).

Performance measures

RNA-seq and RNA-PET paired-end sequencing reads were mapped against the hg19 human

reference genome with ContextMap 2. Gold standard sets of transcript 3’ ends were then

determined from each RNA-PET sample by taking the mapped genome position for the read

of the read pair that originates from the transcript 3’ end. Both gold standard poly(A) sites and

predicted sites from the RNA-seq samples were then clustered in the following way: starting

from the left-most poly(A) site on a chromosome, all other poly(A) sites within 25 nt were col-

lected in the same cluster and the process was repeated with the first poly(A) site not within

the 25 nt window. For RNA-PET poly(A) site clusters, a 25 nt window was then centered

around the poly(A) sites in this cluster. If this window overlapped with the previous cluster

window, its start was set one position to the right of the end of this previous window. Cluster-

ing of poly(A) sites was performed as there is some heterogeneity in the cleavage position

downstream of individual polyadenylation signals [38]. Finally, only RNA-PET clusters con-

taining at least 3 reads were used for evaluation to exclude spurious hits. Clustering of pre-

dicted and RNA-PET poly(A) sites was also performed in the KLEAT evaluation [31], however

a window length of 100 nt was used for the RNA-PET data. We chose a smaller window size to

avoid clustering truly alternative poly(A) sites.

An RNA-PET poly(A) site cluster is then considered a true positive (TP) if at least one

poly(A) site of a predicted poly(A) site cluster falls within its 25 nt window and a false negative

Table 1. ENCODE data used for evaluation.

RNA-PET RNA-seq (poly(A) mRNA)

Cell line Experiment ID Rep. # read pairs Experiment ID Rep. # read pairs

MCF-7 ENCSR000BDD 1 85,864,506 ENCSR000CPT 1 128,178,110

2 88,182,002 2 131,814,222

H1-hESC ENCSR000BCC 1 50,218,723 ENCSR000COU 1 125,395,196

2 107,101,340

A549 ENCSR000BCY 1 91,935,755 ENCSR000CON 1 95,054,259

2 89,726,158 2 118,364,635

Overview on ENCODE data used for evaluation of poly(A) site mapping. For H1-hESC, only one RNA-PET replicate was available. Read lengths were 76

and 36 nt for RNA-seq and RNA-PET, respectively.

doi:10.1371/journal.pone.0170914.t001
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(FN) otherwise. A predicted poly(A) site cluster is considered a false positive (FP) if none of

the predicted poly(A) sites in this cluster fall in an RNA-PET cluster window. Finally, positive

predictive value (PPV) and sensitivity are calculated as:

PPV ¼ TP=ðFP þ TPÞ ð2Þ

Sensitivity ¼ TP=ðTPþ FNÞ ð3Þ

Sensitivity and PPV in poly(A) site detection were also compared against read coverage on

the last exon of the corresponding transcript (for details see results). Read coverage of an exon

was defined as the number of read pairs (i.e. fragments) mapping to the exon divided by the

exon length. The number of read pairs mapping to the last exon were calculated using the fea-
tureCounts program [39] and exon annotation from Ensembl (version 75) [40] with the follow-

ing call:

featureCounts-f -s 2 -p -g transcript_id -O -M -a gtf-file-with-
annotation-o outfilemapping-file.bam

Results and Discussion

Parameter selection

In order to select default parameters for poly(A) read mapping in ContextMap 2, we created a

small training set from replicate 1 of the ENCODE MCF-7 RNA-seq and RNA-PET data. For

this purpose, both RNA-seq and RNA-PET sequencing data was mapped against the hg19

human reference genome using clipping but without poly(A) site prediction. Here, allowing

clipping of reads for the RNA-PET data set makes it possible to also map RNA-PET reads that

contain a part of the poly(A) tail. Reads mapped to chromosome 6 were then extracted and

used to run ContextMap 2 with different parameter settings for poly(A) site prediction to iden-

tify parameter settings with a good trade-off between sensitivity and PPV on the RNA-PET

data for chromosome 6. The following parameter settings were evaluated in all combinations:

• Length of the sliding window: wl 2 [4: 10]

• Maximum number of bases the sliding window is shifted towards the 3’ end of a read:

sl 2 {10, 15, 20, 25, 30, 1000}

• Minimum fraction of A’s or T’s for at least one window: c1 2 [0.7: 1.0] in increments of 0.1

• Minimum fraction of A’s or T’s for any window: c2 2 [0.3: 1.0] in increments of 0.1

• Minimum number of poly(A) reads supporting a set of pairwise overlapping poly(A) sites:

rs 2 [2: 5]

Fig 4A illustrates sensitivity and PPV for the evaluated parameters. Here, only results for

parameter combinations are shown for which no other parameter combination has a higher

PPV at the same or higher sensitivity or a higher sensitivity at the same or higher PPV. The

maximum sensitivity reached is relatively low at *0.07 and can only be obtained at the cost of

a relatively low PPV (0.55). Since we considered this PPV too low for practical applications, we

chose the default parameter combinations for ContextMap 2 as those parameter combinations

for which the PPV was closest to 0.8. This resulted in a choice of wl = 6, sl = 30, c1 = 1, c2 = 0.7

and rs = 3 (marked by the filled black circle in Fig 4A). Sensitivity for the default parameter

combination on the training set was *0.044.

As expected, the training results show a clear trade-off between sensitivity and PPV, i.e. the

higher sensitivity, the lower PPV and vice versa. When correlating values for each of the five

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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parameters against both sensitivity and PPV, we found that sensitivity was strongly negatively

correlated to both wl and rs (rank correlation -0.73 and -0.63, respectively), but showed little

overall correlation to the other three parameters (see Fig 4B). In contrast, PPV was strongly

positively correlated to rs only (rank correlation 0.79), but only weakly to wl (0.07). Among the

remaining parameters, sl showed the strongest correlation with PPV (0.29). Thus, sensitivity

can be increased by reducing the window length or the minimum number of poly(A) reads

required for predicting a poly(A) site. In contrast, PPV can be increased by increasing the min-

imum number of poly(A) reads as well as increasing the length of the read region evaluated for

the presence of poly(A) stretches.

These results are also reflected in the locally “optimal” parameter combinations in Fig 4A.

Parameter combinations with the same value of rs essentially cluster together with regard to

PPV and sensitivity, with PPV increasing and sensitivity decreasing with increasing values of

rs. Furthermore, among each set of parameter combinations with the same value of rs, sensitiv-

ity increased with decreasing window length wl but PPV increased. Despite the low overall cor-

relation of the remaining parameters to sensitivity and PPV, they showed a strong influence

on PPV and sensitivity if wl and rs were fixed. For our default choice of wl = 6 and rs = 3, both

c2 and sl showed a strong positive correlation to PPV (0.68 and 0.57, respectively) and all three

parameters showed some negative correlation to sensitivity (-0.53 for c2, -0.31 for c1, and -0.2

for sl). Thus, all parameters are relevant for performance in poly(A) site prediction but window

length wl and the minimum poly(A) read support rs appear to be most decisive.

Comparison to KLEAT on ENCODE data

Poly(A) site mapping using ContextMap 2 with default parameters was compared against

results obtained with KLEAT version 1.0 using Trans-ABySS for transcript assembly. Tran-

script assembly was performed with k-mer lengths of 32, 52 and 72 and KLEAT poly(A) site

Fig 4. Parameter training results. (A) Comparison of PPV and sensitivity for evaluated parameters. Results are only shown for

parameter combinations for which no other combination has a higher PPV at the same or higher sensitivity or a higher sensitivity

at the same or higher PPV (i.e. locally “optimal” parameter combinations). Results for the default parameter choice are indicated

by a filled black circle. Colors and symbols indicate the values for rs (minimum number of poly(A) reads required) and wl (window

length), respectively. (B) Heatmap illustrating the (spearman) rank correlation between PPV and sensitivity for each parameter

across all evaluated parameter combinations.

doi:10.1371/journal.pone.0170914.g004
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predictions with at least 3 tail and bridge reads were evaluated. We also aimed to evaluate ver-

sion 2.0 of KLEAT, but the program produced error messages for the selected samples.

Evaluation was performed separately for each replicate of the RNA-seq data against both

replicates of the RNA-PET gold standard data (Table 2). As described in the methods section,

both gold standard and predicted poly(A) sites within 25 nt were clustered before evaluation.

These results showed that ContextMap 2 always outperformed KLEAT with regard to PPV.

This was particularly pronounced for the H1-hESC data set, where ContextMap 2 obtained a

PPV of *0.76, whereas PPV of KLEAT was < 0.46. Consistent with the results observed on

the training data, this increased PPV came at the cost of a lower sensitivity. Generally, the

higher the gains were in PPV, the higher the loss was in sensitivity. Here, the largest gains in

sensitivity for KLEAT compared to ContextMap 2 were obtained on replicate 1 of the A549

data set and on the H1-hESC data sets (increases of up to 60%). However, for the same sam-

ples, PPV of ContextMap 2 was between 26 and 96% higher than for KLEAT.

It should be noted that even though we used ContextMap 2 to map the RNA-PET data

before determining the gold standard set, evaluation of poly(A) site prediction was not biased

in favor of ContextMap 2 poly(A) site prediction. When we alternatively used the original

mapping of the RNA-PET data provided by ENCODE to determine the gold standard set, the

same general trend could be observed, i.e. ContextMap 2 had higher PPV whereas KLEAT had

higher sensitivity (see S1 Table). For both the MCF-7 and A549 cell line, PPV increased if we

used the ContextMap 2 RNA-PET mapping instead of the ENCODE mapping by 3.6 to 7 per-

centage points but sensitivity decreased by at most 0.4 percentage points. Interestingly, for the

H1-hESC cell line the opposite was observed but again gains, in this case in sensitivity, were

higher (4.6–7.6 percentage points) than losses, in this case in PPV (at most 3.4 percentage

points). Moreover, gains in PPV (for MCF-7 and A549) or sensitivity (for H1-hESC) were

higher for KLEAT than for ContextMap2 if we used the gold standard derived from the

Table 2. Evaluation results on ENCODE data.

RNA-PET rep. 1 RNA-PET rep. 2

Data set Method Rep. # Preds. PPV Sens. PPV Sens.

MCF-7

ContextMap 2 1 11,114 0.764 0.043 0.802 0.044

ContextMap 2 2 11,690 0.78 0.047 0.818 0.047

KLEAT 1 15,671 0.684 0.055 0.711 0.055

KLEAT 2 17,353 0.654 0.058 0.68 0.058

A549

ContextMap 2 1 5,355 0.943 0.032 0.936 0.03

ContextMap 2 2 12,903 0.896 0.073 0.887 0.069

KLEAT 1 11,018 0.745 0.052 0.74 0.049

KLEAT 2 15,478 0.815 0.08 0.806 0.076

H1-hESC

ContextMap 2 1 6,734 0.754 0.082 NA NA

ContextMap 2 2 5,370 0.774 0.068 NA NA

KLEAT 1 15,425 0.453 0.114 NA NA

KLEAT 2 14,668 0.395 0.094 NA NA

PPV and sensitivity for poly(A) site predictions by ContextMap 2 and KLEAT. Both methods were applied to both RNA-seq replicates for each cell line and

corresponding results were evaluated using gold standard sets obtained from both RNA-PET replicates for the corresponding cell line (with the exception of

H1-hESC, where only one RNA-PET replicate was available).

doi:10.1371/journal.pone.0170914.t002
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ContextMap 2 RNA-PET mapping instead of the original ENCODE mapping. Thus, if any-

thing, using ContextMap 2 for mapping the RNA-PET data improved the results in favor of

KLEAT, not ContextMap 2. Accordingly, we chose to use the gold standard based on the Con-

textMap 2 RNA-PET mapping for any further analysis.

Analysis of the reproducibility of evaluation results between replicates showed that the use

of different RNA-PET replicates to derive the gold standard had little influence on the results.

Furthermore, performance for different replicates of the RNA-seq data also tended to be simi-

lar, with the notable exception of the A549 cell line. Here, both ContextMap 2 and KLEAT

showed significantly lower sensitivity but higher PPV in the first compared to the second repli-

cate. For replicate 1, ContextMap 2 identified only 5,355 poly(A) sites compared to 12,903 in

the second replicate. For KLEAT the relative difference was less pronounced but still substan-

tial, with 11,018 poly(A) sites identified in the first replicate compared to 15,478 in the second.

As noted above, this increased number of predictions on replicate 1 for KLEAT resulted in a

dramatically reduced PPV compared to the ContextMap 2 predictions (0.74 vs. 0.94). This sug-

gests that a large fraction of the poly(A) sites additionally identified by KLEAT are actually

false positives. Similar conclusions can be drawn for the H1-hESC data, where KLEAT identi-

fies more than twice as many poly(A) sites as ContextMap 2, but has a much lower PPV than

the ContextMap 2 predictions.

Interestingly, results for both replicates of the MCF-7 data were highly similar to the train-

ing results even though only a small subset of replicate 1 had been used for training and repli-

cate 2 had not been used at all. We thus examined for which parameter combinations we

obtained a similar sensitivity on the training data as KLEAT obtained on MCF-7 replicate 1.

This was the case for wl = 6, sl = 1000, rs = 2, c1 = 1.0 and c2 = 0.7 and resulted in a PPV of 0.72

on the training data. Running ContextMap 2 with these parameters on the full MCF-7 repli-

cate 1 set resulted in a PPV of 0.7 and a sensitivity of 0.056, i.e. almost identical results to

KLEAT. Thus, depending on parameter choice, similar sensitivity can be achieved as with

KLEAT at the cost of a similarly reduced PPV, or more precise predictions can be obtained at

the cost of a reduced sensitivity.

While PPV of KLEAT can likely also be improved by requiring more supporting reads for

a prediction, the main disadvantage of this approach remains the substantial runtime, as it

includes both an assembly phase and a subsequent alignment phase (Table 3). Here, total

CPU time for poly(A) site prediction using ContextMap 2 was significantly lower than both

the time required by Trans-ABySS, which is used to calculate the input contigs for KLEAT,

and KLEAT applied to the Trans-ABySS output. Thus, total CPU time for poly(A) site pre-

diction using ContextMap 2 was less than a third of what was required by the full KLEAT

workflow.

Evaluation on known transcript 3’ ends

The previous analysis suggested that sensitivity of poly(A) site prediction based on poly(A)

read mapping is very low. One possible explanation for this observation is that many of the

“gold standard” poly(A) sites identified using RNA-PET do not actually represent “true”

poly(A) sites but rather spurious results. To investigate this possibility, we first restricted the

gold standard set to more confident RNA-PET clusters supported by more reads. Indeed, sen-

sitivity was increased by 2-fold or more if we required at least 10 reads for a gold standard

RNA-PET cluster. Not surprisingly, PPV consequently decreased since a number of correct

poly(A) site were now classified as incorrect. However, the effect was not as dramatic as for

sensitivity, suggesting that a significant number of RNA-PET clusters with low read numbers

do not represent correct poly(A) sites.

Prediction of Poly(A) Sites by Poly(A) Read Mapping
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As a second analysis, we investigated how PPV and sensitivity changed if we only evaluated

RNA-PET clusters within 25 nt of an annotated transcript 3’ end (transcript annotation taken

from Ensembl version 75). Since results using either RNA-PET replicate for evaluation were

very similar, this analysis was only performed using RNA-PET replicate 1 for each cell line as

reference. For this analysis, a transcript was considered a TP if both an RNA-PET and a pre-

dicted poly(A) site were within 25 nt of its annotated 3’ end, a FP if there was a predicted

poly(A) site within 25 nt of its end but no RNA-PET poly(A) site, and a FN if there was an

RNA-PET poly(A) site but no poly(A) site within 25 nt of its 3’ end. Here, only poly(A) site

predictions by ContextMap 2 using default parameters were evaluated and poly(A) sites were

not clustered. If a transcript had more than one RNA-PET or predicted poly(A) site within 25

nt of its 3’ end, it was only counted once as TP, FP or FN, respectively.

Strikingly, the number of transcripts with a predicted poly(A) site within 25 nt of their 3’

end was similar to or only slightly lower than the number of poly(A) site clusters shown in

Table 2, whereas the number of transcripts supported by RNA-PET poly(A) sites were only

about 15-26% of the total number of RNA-PET clusters. As a consequence, sensitivity

increased considerably to 0.19-0.38 (Table 4), but surprisingly PPV increased as well to 0.83-

0.96. Thus, these results provide further evidence that a substantial number of RNA-PET clus-

ters are likely measurement errors, in particular if they are not close to a known transcript 3’

end. An example showing that RNA-PET may overestimate the actual number of transcript 3’

ends and accordingly poly(A) sites is given in Fig 5 for the SQSTM1 gene. While for each sam-

ple, two poly(A) site clusters are identified that correspond to annotated transcript ends

(marked in lighter red) and also have the highest number of reads, a large number of addi-

tional poly(A) sites are suggested by the RNA-PET data. Although they do have lower read

Table 3. Runtime of ContextMap 2 and KLEAT.

Data set Rep. Method CPU time (h)

A549 1 Trans-ABySS 116.63

KLEAT 196.28

ContextMap 87.55

A549 2 Trans-ABySS 128.87

KLEAT 193.73

ContextMap 111.23

MCF-7 1 Trans-ABySS 164.77

KLEAT 297.22

ContextMap 133.75

MCF-7 2 Trans-ABySS 162.47

KLEAT 259.57

ContextMap 133.63

H1-hESC 1 Trans-ABySS 167.87

KLEAT 438.57

ContextMap 92.93

H1-hESC 2 Trans-ABySS 140.82

KLEAT 182.87

ContextMap 99.82

Runtime of Trans-ABySS using k-mer lengths of 32, 52 and 72, KLEAT applied to the Trans-ABySS output,

and ContextMap 2 using default parameters was obtained using 8 cores on the same machines and

measured using the Unix “time” command. CPU time was calculated as the sum of “usr” and “sys” time.

doi:10.1371/journal.pone.0170914.t003
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counts than the known transcript 3’ ends, they are well above our cutoff of 3 reads (or even 20

reads) and thus were included in the gold standard set for the evaluation on all RNA-PET clus-

ters. Many of those are likely artifacts or represent very rare transcripts. It should be noted

here that increasing the cluster size to 100 nt instead of 25 nt would have only little effect on

the results in this case, as most of the additional RNA-PET poly(A) site clusters are further

away than 100 nt from the two major poly(A) site clusters.

Interestingly, while performance of KLEAT was also generally higher for poly(A) sites close

to transcript 3’ ends, the effect on PPV was much more pronounced than for ContextMap 2

(Table 4). As a consequence, although PPV of KLEAT was significantly lower for all predicted

poly(A) sites than for ContextMap 2, it was not much lower on the poly(A) sites near transcript

ends and in one case even slightly higher. On the other hand, however, relative differences in

sensitivity also were reduced, with ContextMap 2 actually outperforming KLEAT in sensitivity

Table 4. Evaluation results on known transcripts.

Data set Rep. PPV (CM) PPV (KLEAT) Sens. (CM) Sens. (KLEAT)

MCF-7

1 0.851 0.836 0.284 0.289

2 0.894 0.872 0.306 0.298

A549

1 0.96 0.932 0.188 0.229

2 0.919 0.925 0.381 0.353

H1-hESC

1 0.826 0.757 0.364 0.386

2 0.858 0.761 0.31 0.329

PPV and sensitivity were calculated based only on transcripts with either an RNA-PET cluster or predicted poly(A) site within 25 nt of its 3’ end. For each cell

line, both RNA-seq samples were analyzed but only replicate 1 of the RNA-PET data was used to derive the gold standard. Results are shown both for the

predictions by ContextMap 2 (CM) and KLEAT.

doi:10.1371/journal.pone.0170914.t004

Fig 5. Transcript 3’ ends identified by RNA-PET for an example gene. Poly(A) site clusters identified in the RNA-PET data with at least

20 reads are shown for the SQSTM1 gene. Only transcripts and clusters on the positive strand are shown. Transcripts annotated in Ensembl

are indicated in the top row, with protein-coding exons and untranslated regions indicated by large and small boxes, respectively, introns by

lines and strand by arrow heads. Poly(A) site clusters identified in all five RNA-PET samples are shown as boxes in rows 2-6, with the height

of the boxes indicating the number of reads for each cluster (in log scale, the range of the y-axis is given in brackets on the left). Light red

boxes indicate RNA-PET clusters corresponding to the annotated transcript ends.

doi:10.1371/journal.pone.0170914.g005
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in two cases. This observation also suggests that differences in PPV between ContextMap 2

and KLEAT are mostly due to low PPV of KLEAT for poly(A) sites not close to known tran-

script 3’ ends, i.e. for novel sites.

Correlation to read coverage

While poly(A) read mapping performs better for poly(A) sites of known transcripts, sensitivity

still remains below 40%. We hypothesized that this low sensitivity is mostly due to low sensitiv-

ity for transcripts with low expression and thus low read coverage on their 3’ ends. To investi-

gate this possibility, we thus determined read coverage for the last exon of each transcript

(read coverage = number of read pairs mapped to the exon divided by exon length, see meth-

ods) and correlated this to sensitivity and PPV in identifying the corresponding poly(A) site.

For this analysis, we did not normalize to sequencing depth since the actual number of reads is

relevant for detecting poly(A) sites not transcript expression as such. At higher sequencing

depth, transcripts with lower expression may be detected than at lower sequencing depth due

to increased read coverage. Furthermore, expression was calculated for the complete final

exon instead of just the region immediately upstream of the poly(A) site as sequencing cover-

age is generally reduced at transcript ends and expression estimation for small windows tends

to be unreliable due to large position-specific variation in sequencing data.

Fig 6 visualizes both PPV and sensitivity relative to read coverage on the last exon of a tran-

script for all samples and replicates. This shows that for all RNA-seq samples PPV increased

considerably with higher read coverage on transcript ends. Here, highest increases were

observed for the MCF-7 and H1-hESC cell lines, for which overall PPV was lower than for the

A549 cell line. For the A549 cell line, PPV was already relatively high even for transcripts cov-

ered by few reads and did not increase much further. Interestingly, for transcripts with high

read coverage on transcript ends, PPV was almost as high in the MCF-7 and H1-hESC cell

lines as for the A549 cell line. Furthermore, little differences were observed between replicates.

In contrast, sensitivity increased dramatically for all cell lines and showed substantial differ-

ences between the two A549 replicates. While for the second replicate, sensitivity reached >

0.6 for transcripts with a read coverage of 2-3 read pairs per nucleotide on the last exon,

Fig 6. Correlation between read coverage on transcript ends and prediction performance. Transcripts were binned according

to the read coverage on the last exon (bin size 0.5) and PPV and sensitivity were calculated separately for each bin. The value on the

x-axis indicates the minimum read coverage on the last exon for all transcripts in the corresponding bin and the last bin contains all

transcripts with read coverage at least 5.

doi:10.1371/journal.pone.0170914.g006
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sensitivity for the first replicate remained below 0.4. Thus, the difference in sensitivity between

the replicates cannot be simply explained by the lower sequencing depth of replicate 1 as it is

also observed at similar read coverages.

Surprisingly, for the A549 and MCF-7 cell lines, sensitivity did not increase or saturate with

even higher read coverage, but rather decreased for read coverages > 4.5 and> 2.5, respec-

tively. We hypothesized that this might be due to increased recovery of minor isoforms of

highly expressed genes in the RNA-PET data. If these minor isoforms overlap in the last exon

with more highly expressed transcripts of the same gene, read coverage at the 3’ end of these

minor isoforms would be overestimated.

This is exemplified in Fig 7 for gene SQSTM1, for which transcripts using two alternative

poly(A) sites are annotated, with the downstream poly(A) site used less frequently (see also Fig

5 for RNA-PET clusters for the same gene). Since the last exon of the minor and major iso-

forms overlap, read coverage on the last exon for the minor isoform appears to be relatively

high (* 4−17 depending on the replicate). If we calculate read coverage only for the unique

Fig 7. Identified poly(A) sites for example genes. Number of mapped reads for each nucleotide as well as identified poly(A) site clusters

are shown for two example genes, i.e. SQSTM1 and C5orf45. Transcripts annotated for both genes in Ensembl are shown in the top row,

with protein-coding exons and untranslated regions indicated by large and small boxes, respectively, introns by lines and strand by arrow

heads. Transcripts corresponding to the major and minor poly(A) sites (according to the RNA-seq data) are indicated in blue and red (dark:

SQSTM1, light: C5orf45), respectively. For each sample, numbers of mapped reads are shown separately for the two strands (green) and

ranges of read numbers are indicated in brackets. Poly(A) site clusters are indicated by red boxes and cluster names indicate the strand:

fwd = positive strand, rev = negative strand.

doi:10.1371/journal.pone.0170914.g007
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part of the last exon of the minor isoform, read coverage is reduced to only 0.26–2.35, with

highest coverage observed in the A549 samples. While in this case, this problem could be

addressed by evaluating expression in a smaller window upstream of the predicted poly(A)

site, this is not a general solution as the minor isoform may also end upstream of the major iso-

form and thus within an exon of the major isoform. Not surprisingly, the poly(A) site of the

minor isoform is only identified in these samples as well as replicate 1 of the MCF-7 cell line,

while the more frequently observed poly(A) site is observed in all samples. In contrast, the

C5orf45 gene on the opposite strand shows an example in which transcripts using alternative

poly(A) sites do not overlap. Thus, the low read coverage on the last exon for the minor iso-

form is correctly identified. In this case read coverage is also relatively low on the major iso-

form (0.44–1.48), explaining why it is not recovered in all samples.

For a more systematic analysis, we collected all genes with at least one FN transcript (i.e. a

transcript with an RNA-PET poly(A) site within 25 nt of its 3’ end but no predicted poly(A)

site) and compared the number of RNA-PET reads for FN and TP transcripts of the same

gene. For this purpose, we first evaluated for which fraction of genes with at least one FN tran-

script, at least one FP transcript was also observed (Fig 8A) and correlated this to the read cov-

erage on the last exon of the FN transcript. If more than one FN transcript was observed for

the same gene, the one with the highest read coverage on the last exon was chosen. The higher

the read coverage was on the last exon for the FN transcript, the higher was the likelihood that

a TP transcript was observed for the same gene. In particular, *60% of genes with at least one

FN transcript with read coverage�2 on the last exon also had a TP transcript. For these genes,

we then calculated the fold-change in the number of RNA-PET reads between the TP and FN

transcript with the highest number of RNA-PET reads among all TP and FN transcripts for

this gene, respectively (Fig 8B).

Fig 8. Lower RNA-PET read support for FN transcripts. (A) Fraction of genes with at least one FN transcript 3’ end for which also a TP

transcript 3’ end was detected plotted against the read coverage on the last exon of the FN transcript. For this purpose, we identified genes

for which at least one FN transcript was observed with read coverage on the last exon at least a value t. We then calculated the fraction of

these genes with at least a TP transcript and plotted these against increasing values of t. (B) Boxplot of the fold-change between the number

of reads in the RNA-PET data for the best supported FN and TP transcript for each gene. Here, all genes with at least one FN transcript with

read coverage on the last exon� 2 were included. The red horizontal line indicates a fold-change of 1, showing that > 77% of genes had a

TP transcript with higher read numbers in the RNA-PET data than the best FN transcript for the same gene.

doi:10.1371/journal.pone.0170914.g008
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This showed that for the TP transcripts, the number of RNA-PET reads on the 3’ end were

on on average 12-29 fold higher than for the FN transcript of the same gene. In particular, for

> 77% of genes, the TP transcript had higher read numbers in the RNA-PET data than the

best supported corresponding FN transcript, showing that the FN transcripts and correspond-

ing poly(A) sites indeed represent minor isoforms. Thus, despite seemingly high read coverage

on the transcript ends, likely due to an overlap with more highly expressed isoforms, their

expression is actually low, resulting in few poly(A) reads and accordingly low sensitivity of the

poly(A) mapping approach. Alternatively, the relatively low number of reads in the RNA-PET

data for these FN poly(A) sites might also be indicative of measurement errors, the frequency

of which might also be increased for more highly expressed genes.

Presence of poly(A) signal sequences

Although the mechanisms leading to the formation of the poly(A) tail and in particular alter-

native polyadenylation are not yet fully understood, poly(A) signal sequences have been rela-

tively well characterized [32, 41, 42]. The consensus for mammalian poly(A) signals has been

described to contain (i) an AAUAAA (or closely related) sequence 15-30 nt upstream of the

poly(A) site, (2) a U-rich sequence 0-20 nt upstream of the AAUAAA sequence, and (i) a G/U-

or U-rich sequence 0-20 nt downstream of the poly(A) site [42]. While the definition of the U-

rich and G/U-rich regions is relatively vague, the presence of the AAUAAA signal or related

sequences can be easily verified. To do so, we searched for AAUAAA or related sequences

within 50 nt upstream both of the poly(A) sites predicted by ContextMap 2 and KLEAT as

well as the “gold standard” poly(A) sites obtained using RNA-PET (see Fig 9 for results on the

clustered poly(A) sites and S1 Fig for all poly(A) sites).

These results show that for all predictions and the gold standard, the order with regard to

the frequency of poly(A) signal sequences was as previously described by Beaudoing et al. [32],

with AAUAAA being most frequent followed by AUUAAA. However, the ContextMap 2 pre-

dictions more closely reflected the previously reported frequencies, with average frequency of

AAUAAA at 60% (Beaudoing et al.: 58.2%) and of AUUAAA at 15.5% (Beaudoing et al.:

14.9%). In contrast, the same values for the KLEAT predictions were 41.7% and 11.2%, respec-

tively, while the fraction of predictions with no signal at all was at 31.1%, compared to only

9.1% for ContextMap 2. Strikingly, frequencies were even worse for the RNA-PET gold stan-

dard, with AAUAAA at 22.8%, AUUAAA at 7.9% and no signal at 46.7%. Although these

Fig 9. Presence of poly(A) signal sequences. Frequency of poly(A) signal sequences were determined within a 50 nt window upstream of

identified poly(A) site clusters. From left to right: predictions of ContextMap 2 (all samples and replicates), predictions of KLEAT (all samples

and replicates) and “gold standard” poly(A) site clusters identified from RNA-PET data (all samples, replicate 1) with at least 3 and 10 reads,

respectively. Poly(A) signal sequences were determined in the order of overall frequency determined by Beaudoing et al. [32], i.e. first the

most frequent AAUAAA signal was searched, then the second-most frequent signal AUUAAA, and so on.

doi:10.1371/journal.pone.0170914.g009
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results improved when including only poly(A) sites with at least 10 reads, i.e. more confident

ones, this provides further evidence for high rates of incorrect poly(A) sites in the RNA-PET

data. Interestingly, results improved if we analyzed individual RNA-PET poly(A) sites instead

of clustered sites, whereas they hardly changed for the predictions (see S1 Fig). This is likely

due to the fact that sites with higher support in the RNA-PET data, and therefore higher likeli-

hood to be correct, were selected if we applied the minimum read cutoff to individual sites

instead of clusters. In contrast, no such cutoff was applied to the predictions, thus it did not

matter much whether we evaluated individual sites or clusters.

In summary, these results confirm our previous observations that poly(A) site predictions

of ContextMap 2 with default parameters are more likely correct compared to KLEAT predic-

tions. This may come at the cost of missing poly(A) sites, in particular those that are less fre-

quently used, for instance because they use non-canonical poly(A) signal sequences. It should

be noted that neither ContextMap 2 nor KLEAT use the presence of signal sequences for pre-

diction, but it could be used as a post-processing step to further increase PPV. Finally, this

analysis provides additional evidence that a significant fraction of RNA-PET poly(A) site clus-

ters do not represent true poly(A) sites and that sensitivity of poly(A) site prediction is likely

massively underestimated.

Evaluation on an alternative gold standard set

As our previous analyses suggested a poor quality of the RNA-PET gold standard, we also per-

formed an evaluation of PPV and sensitivity using data determined with a sequencing protocol

specifically developed for poly(A) site analysis. In this case, we used sequencing data for the

MCF-7 cell line obtained by the SAPAS (sequencing alternative polyadenylation sites) method

by Fu et al. (11, 998, 589 single-end 76 nt reads) [33]. Mapping of this data set with Context-

Map 2 and clustering of the obtained poly(A) sites was performed as described for the RNA-

PET data. Unfortunately, however, confidence of mapping by ContextMap 2 for the SAPAS

data set was very low, i.e. for *88% of reads at least two alternative contexts were identified

and differences in the scores between the two best contexts was very low (median relative dif-

ference = 3%). This means that for the large majority of reads the decision for one of the alter-

native contexts was made based on very low score differences, likely resulting in a high

number of wrong assignments. For comparison purposes, in the RNA-PET data multiple con-

texts were only identified for 5.9 to 39% of reads and score differences were substantially

higher (8.6 to 26.3%), thus allowing more confident mapping. Interestingly, the likely reason

why ContextMap 2 mapping confidence is so low on the SAPAS data is actually the higher

specificity of this data with regard to poly(A) sites. As illustrated in S2 Fig, RNA-PET reads

can be found on all exons of a gene in addition to the transcript 5’ and 3’ ends, while SAPAS

reads are limited to the actual poly(A) site. As a consequence, in the SAPAS data, other reads

in the same context essentially map to the same locations within the same contexts and thus

provide little information for distinguishing alternative mappings for a read in different

contexts.

The likely consequence of this low confidence was that PPV on the gold standard calculated

from this mapping was very poor (16% for KLEAT and 26% for ContextMap 2, see S2 Table).

We thus investigated whether results improved if the SAPAS data were mapped with a differ-

ent approach. We chose to use BWA as detection of splice junctions was not necessary for this

application and BWA also determines clipped read alignments. Thus, the poly(A) site can be

determined by a local alignment of the read end even if the read contains an exon-exon junc-

tion. Furthermore, most reads should not contain splice junctions anyway as the average

length of 3’ UTRs in humans is around 800 nucleotides [43] and reads were only 76 nt long.
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Based on the resulting BWA mapping, a gold standard was then determined again by cluster-

ing the observed poly(A) sites. With the BWA mapping, PPV was again in a similar range as

for the RNA-PET data (Table 5).

Consistent with the results on the RNA-PET data, this evaluation showed that ContextMap

2 outperformed KLEAT vastly in PPV, but had lower sensitivity. Notably, however, the differ-

ence in PPV was even larger as PPV of ContextMap 2 increased to *0.81 (from *0.77),

whereas PPV of KLEAT decreased to *0.6 (from *0.69). Sensitivity approximately tripled

for both methods, but relative increases were higher for ContextMap 2 (from *0.045 to

*0.15) than for KLEAT (from *0.056 to *0.16). Thus, relative differences in sensitivity

were lower on the SAPAS data than on the RNA-PET data. Accordingly, apart from confirm-

ing the general conclusions on the performance differences between ContextMap 2 and

KLEAT, this analysis also shows that indeed RNA-PET vastly underestimates sensitivity of

poly(A) site prediction from RNA-seq data.

Finally, as mapping with BWA improved results so considerably here, we also repeated

mapping for the RNA-PET using BWA (see S3 Table). However, in this case using BWA

brought no general improvement. Although for the A549 cell line sensitivity increased, PPV

considerably decreased for all cell lines, even more than if we used the original ENCODE map-

ping. Furthermore, the general conclusions stayed the same, i.e. ContextMap 2 with default

parameters outperformed KLEAT with regard to PPV but had lower sensitivity. There are two

likely reasons why BWA does not seem to be appropriate for mapping the RNA-PET data.

First, read length was quite short at 36 nt and BWA has been shown to perform worse on short

reads than on longer ones, in particular also worse than e.g. Bowtie, which was used for the

original ENCODE mapping [44]. Second, as illustrated above, the RNA-PET data appears to

be more similar to RNA-seq data than to more specific data on poly(A) sites as obtained e.g.

by SAPAS and BWA is not a spliced alignment program for use on RNA-seq data. Neither is

Bowtie, which may also explain why using a dedicated RNA-seq mapping program such as

ContextMap 2 for mapping the RNA-PET data improved results compared to the original

ENCODE mapping with Bowtie.

Re-analysis of the data by Pickrell et al.

The above results showed that high PPV can be achieved when predicting poly(A) sites by

mapping poly(A) reads, but that the number of recovered poly(A) sites still remains relatively

low. However, compared to the study by Pickrell et al. [10], which found only *8,000 poly(A)

sites supported by� 2 reads in 161 RNA-seq data sets with 1.2 billion reads in total, results on

the ENCODE data still represent a significant improvement (5,000 to 12,000 identified poly(A)

sites supported by� 3 reads per sample with <130 million read pairs per sample). One crucial

factor explaining these improvements is likely the increased read length (76 nt paired-end

Table 5. Evaluation results on SAPAS MCF-7 data.

Method Rep. # Preds. PPV Sens.

ContextMap 2 1 11,114 0.802 0.143

ContextMap 2 2 11,690 0.812 0.153

KLEAT 1 15,671 0.625 0.158

KLEAT 2 17,353 0.576 0.161

PPV and sensitivity for poly(A) site predictions by ContextMap 2 and KLEAT for the MCF-7 RNA-seq data using a gold standard set obtained from the

SAPAS data on MCF-7 from the study of Fu et al. [33]. Both methods were applied to both RNA-seq replicates for each cell line and corresponding results

were evaluated. Mapping of the SAPAS data was performed with BWA.

doi:10.1371/journal.pone.0170914.t005
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reads for the ENCODE RNA-seq data compared to 35-46 nt reads for the study by Pickrell

et al.), which increases both the number of reads per transcript position and the confidence in

the poly(A) read alignments as they contain both more of the transcript sequence encoded in

the genome and more of the poly(A) tail.

To investigate whether the original results by Pickrell et al. could be improved by our

poly(A) mapping approach, we remapped all 161 data sets from the Pickrell et al. study sepa-

rately using ContextMap 2. Not surprisingly, default parameters requiring at least 3 reads for

each set of overlapping poly(A) sites in each data set resulted only in a small number of poly(A)

site predictions (3,852 individual poly(A) sites and 1,425 clusters). Of note, the median num-

ber of poly(A) sites identified per sample was as low as 30 and the maximum number observed

for any sample only 899. This shows that sequencing depth and read length have a substantial

effect on the number of identified poly(A) sites.

For a fairer comparison to the approach applied by Pickrell et al., we also applied Context-

Map 2 with parameters better reflecting this approach. Here, the Pickrell et al. method con-

sisted of trimming stretches of at least 4 A’s or T’s from the end of unmapped reads and then

mapping the trimmed reads. Subsequently, they discarded matches if the downstream geno-

mic region contained at least 3 A’s or T’s, since one sequencing error at the non-A or T posi-

tion might then result in an erroneous poly(A) site prediction. Finally, they filtered out

potential poly(A) sites supported by< 2 reads (resulting in 7,926 putative sites) and without

an AAUAAA motif (the most frequent poly(A) signal sequence, see above) within 50 nt

upstream of the poly(A) site (resulting in a final list of 3,481 high-confidence sites).

Accordingly, ContextMap 2 parameters were changed to rs = 1, wl = 4, c1 = 1 and c2 = 1 (sl
remained at 30), i.e. at least one poly(A) read was required for a set of overlapping sites, at least

four A’s or T’s were required and no mismatches were allowed in the stretch of A’s or T’s. Sub-

sequently, the filtering steps used by Pickrell et al. were also applied, resulting in 18,471 puta-

tive poly(A) sites and 4,805 high-confidence sites (i.e. supported by at least 2 reads across all

data sets and with an AAUAAA motif within 50 nt upstream of the poly(A) site). After cluster-

ing, we obtained 3,007 poly(A) site clusters with ContextMap 2 compared to 2,331 clusters for

the original high-confidence poly(A) sites identified by Pickrell et al., i.e. an increase of 29%.

When comparing the two sets of poly(A) site clusters, we found that ContextMap 2 recovered

81.3% of the poly(A) site clusters identified by Pickrell et al., while only 64.4% of the Context-

Map 2 poly(A) site predictions were also identified by Pickrell et al.

To estimate the PPV for the poly(A) predictions unique to either method or common to

both, we evaluated which percentage of the identified poly(A) site clusters were within 25 nt of

transcript 3’ ends annotated in Ensembl. For poly(A) site clusters identified by both methods,

this number was 87%. In contrast, 78% of poly(A) site clusters unique to the ContextMap 2

predictions where within 25 nt of annotated transcript 3’ ends, compared to 74% of poly(A)

site clusters unique to the Pickrell et al. predictions. The lower percentage for the unique pre-

dictions compared to common ones may be explained by the observation that in both cases

poly(A) sites not recovered by the respective other method had significantly lower read counts

than poly(A) sites identified by both methods (Wilcoxon rank sum test, p-value < 10−15). In

summary, these results show ContextMap 2 recovers almost all of the poly(A) sites identified

by Pickrell et al. and identifies a larger number of additional sites, for which PPV appears to

similar or even better than for poly(A) site predictions identified only by Pickrell et al.

Replicate reproducibility and influence of sequencing depth

As the analysis of PPV and sensitivity for poly(A) site predictions for different replicates of the

same cell line indicated considerable variation between replicates, in particular for the A549
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cell line, we also performed an analysis of reproducibility between replicates of poly(A) sites

predicted by ContextMap 2. When calculating the fraction of either poly(A) sites or poly(A)

site clusters (for a cluster size of 25 nt) also identified in the respective other replicate (denoted

as replicate sensitivity), we observed striking differences between the cell lines (Fig 10). For

MCF-7, replicate sensitivity was quite similar between replicates both for individual sites

(*0.56) and clusters (*0.79). In contrast, larger differences were observed for the other two

cell lines, in particular for the A549 cell line. Here, replicate sensitivity was 0.77 and 0.93 for

individual sites and clusters, respectively, for replicate 1, but only 0.29 and 0.38 for replicate 2.

This means that although only a small number of poly(A) site clusters were determined for

A549 in replicate 1, almost all of them were also determined in the second replicate. In all

cases, replicate sensitivity was between 17% and 24% higher when looking at poly(A) site clus-

ters instead of individual predicted sites. Finally, when comparing read counts for individual

poly(A) sites identified in both replicates, we found that these were highly correlated for the

MCF-7 and A549 cell line with correlation coefficients between 0.8 (for H1-hESC) and

*0.935 (for A549 and MCF-7). However, while the actual read counts were similar between

replicates for MCF-7 and H1-hESC (average fold-change 1.07), for A549 read counts in repli-

cate 1 were smaller than in replicate 2 by a factor of *2.4.

As a second analysis, we investigated how increasing sequencing depth can improve perfor-

mance of poly(A) site prediction. For this purpose, we pooled both replicates for each cell line,

mapped the pooled data with ContextMap 2 to identify poly(A) sites and evaluated PPV and

sensitivity for the resulting poly(A) site clusters (Fig 11A–11C). The results showed that

increasing sequencing depth substantially increased the number of identified poly(A) sites.

However, although sequencing depth approximately doubled for all cell lines, the number of

identified poly(A) site clusters increased only by around 70%. Due to the extreme variation

between replicates for the A549 cell line, both lowest (for replicate 2) and highest (for replicate

1) relative increases were observed for this cell line. Sensitivity also increased by around 61%

when pooling the sequencing data (Fig 11B), which is slightly less than the increase in the

number of predictions. This discrepancy appears to be due to a slight reduction in PPV by

around 6% (Fig 11C) and is consistent with an increasing number of low expression and

Fig 10. Replicate sensitivity for poly(A) site prediction. For each replicate, the fraction of individual

poly(A) site predictions and clusters, respectively, are shown that were also recovered in the other replicate

for the same cell line.

doi:10.1371/journal.pone.0170914.g010
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consequently low confidence poly(A) sites being picked up in the pooled data. Of note, around

16% more poly(A) sites are identified in the pooled data than if we simply combine the predic-

tions for both replicates, i.e. these sites were below the detection limit for each individual

replicate.

Finally, to estimate to what extent a further increase might increase the number of identi-

fied poly(A) sites, we performed a saturation analysis by sampling poly(A) read counts for the

poly(A) sites identified on the pooled data sets in the following way. For each read supporting

a site, we sampled a uniformly distributed random number between 0 and 1 and retained the

read if the number was smaller than the sampling rate. Here, sampling rates between 0.1 and

0.9 (in increments of 0.1) were evaluated and sampling was performed 100 times for each

value of the sampling rate. After sampling the individual reads for each individual poly(A) site,

we repeated the final filtering step of ContextMap 2 using the sampled read counts for each

poly(A) site. This means that we again identified sets of poly(A) sites for which the distance

from the first to the last site was at most the read length and retained all sites for which the cor-

responding set was supported by at least rs = 3 poly(A) reads. Finally, the average fraction of

original poly(A) sites and poly(A) site clusters that were recovered was calculated for each sam-

pling rate (Fig 11D). Interestingly, saturation curves were very similar for all data sets as well

as both individual sites and clusters. Furthermore, they showed that although the rate of

increase was no longer linear, saturation was not reached yet. Thus, by increasing sequencing

depth, the number of recovered poly(A) sites will likely be further increased, but with dimin-

ishing returns.

Mapping HSV-1 poly(A) sites

Our previous results showed that the PPV of the poly(A) site mapping approach is generally

very high, whereas sensitivity mostly depends on read coverage of the corresponding tran-

scripts ends. As mentioned in the introduction, one application in which high coverage is

often observed is sequencing of the RNA of an infected host cell. As infection commonly

results in massive transcription of a relatively small pathogen genome, coverage of pathogen

transcripts is generally high, allowing successful identification of poly(A) sites using poly(A)

reads. Recently, we applied a simple poly(A) read mapping strategy to identify poly(A) sites

and quantify transcription termination in HSV-1 using sequencing data of newly transcribed

RNA [27]. The main distinction to the approach included in ContextMap 2 was that we first

identified any read containing a poly(A) stretch and then further reduced the number of

matches (many of which were false positives) by filtering based on reproducibility between dif-

ferent samples and replicates.

To investigate how well the poly(A) mapping strategy implemented in ContextMap 2 per-

forms in this scenario, we applied it to all samples of newly transcribed RNA obtained during

HSV-1 infection from this study (see methods). Sensitivity and PPV were evaluated by com-

paring predicted poly(A) sites against annotated poly(A) signal sequences in the HSV-1

genome. A predicted site was considered correct if it was within 50 nt downstream of an anno-

tated signal sequence. For all known genes in the HSV-1 genome, a poly(A) signal sequence

was annotated. As HSV-1 contains many overlapping genes on the same strand with distinct 5’

ends but the same 3’ ends, several poly(A) signals are used by more than one gene. In the fol-

lowing, we will refer to poly(A) signals by the corresponding gene name (or names divided by

a slash in case several genes use the same poly(A) signal).

As can be see in Fig 12A, read coverage of the HSV-1 genome is extremely high, exceeding

10 read pairs per nucleotide already at 2-3h after infection in both replicates. Consequently,

sensitivity was already much higher at this point than observed for any ENCODE data set
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(*0.73) and even reached up to 0.91 for later time points (Fig 12B). In total, only two poly(A)

sites were not identified in any sample, corresponding to genes RL1 and UL52/UL53. In our

previously published analysis, the RL1 poly(A) site could also not be identified and the UL52/
UL53with only few reads (at most 4). These reads were now missed, but might be recovered

with less stringent parameter settings for ContextMap 2. For RL1, it is not surprising that no

poly(A) reads could be identified as it was the least highly expressed HSV-1 genes across all

time-points, with read coverage in the 1000 nt upstream of the poly(A) signal <2.7 in all sam-

ples. Other genes with low expression at the beginning of the time course, i.e. RS1 and LAT,

reach higher coverage late in lytic infection, thus allowing detection of the corresponding

poly(A) sites. For UL52/UL53 it was surprising that no poly(A) reads could be detected in this

study (and only few in our previous analysis) as read coverage was >16 in the 1000 nt window

upstream of the poly(A) signal in more than 50% of samples. This is substantially higher than

Fig 11. Influence of sequencing depth. (A) Number of identified poly(A) site clusters for individual

replicates and the pooled sequencing data sets. Sensitivity (B) and PPV (C) for corresponding poly(A) site

clusters compared to the RNA-PET gold standard. (D) Saturation in poly(A) site discovery was investigated by

sampling poly(A) reads from poly(A) sites identified on the pooled data sets. The x-axis indicates which

fraction of reads were sampled (sampling rate) and the y-axis shows the average fraction of the original

poly(A) sites and poly(A) site clusters that were recovered across 100 repeats of sampling with the same

sampling rate, respectively.

doi:10.1371/journal.pone.0170914.g011
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for RS1 (median read coverage 1.74 in the 1000 nt window before the poly(A) signal), whose

poly(A) site was identified in both replicates as early as 1-2h after infection. It is tempting to

speculate that these observation hint at differences in polyadenylation for UL52/UL53, but this

would have to be validated experimentally.

Consistent with the results on the ENCODE data, PPV was high at all time points, exceed-

ing 0.84 in all but one sample. In particular, in uninfected cells no poly(A) sites at all were pre-

dicted for HSV-1, despite the fact that mapping was also performed against both the human

and HSV-1 genome. In total, 15 poly(A) sites were identified in the infected RNA samples that

did not correspond to an annotated signal sequence. These included 2 of the 3 unannotated

sites identified in our previous study, however both were only identified in only sample. Thus,

they are either false positive results or only very weakly used sites. In total, only 6 poly(A) sites

without annotation were identified in at least 2 samples and 2 in at least 10 samples. The latter

two poly(A) sites were followed by poly(A) sequences in the genome and were located within

early and relatively highly expressed genes (UL27/UL28 and RL2), the combination of which

likely lead to consistent false positive results across samples. We previously investigated using

the presence of poly(A) sequences in the genome as a general filtering step to exclude false pos-

itive results, however found that it improved PPV only little while considerably reducing sensi-

tivity, thus it was not further pursued. Interestingly, the predicted site within RL2without

preceding poly(A) signal, which was both the most frequently observed false positive (14 of 16

infected samples) and the most highly expressed one (median read count 39.5 compared to 8

for the UL27/UL28prediction), was only slightly upstream of the known and correctly identi-

fied poly(A) site of RL2. Manual inspection of corresponding poly(A) reads showed that many

contain poly(A) stretches longer than the poly(A) stretch in the genome, suggesting that they

do actually contain part of the poly(A) read but the position of the poly(A) site was incorrectly

predicted for these reads.

Finally, it should be noted that the low sensitivity at the beginning of the time course is not

simply due to low coverage of the genome, but rather reflects the sequence of HSV-1 gene

Fig 12. Performance of poly(A) site prediction in HSV-1. (A) Read coverage (= number of read pairs mapped divided by genome length)

on the HSV-1 genome for the newly transcribed RNA samples. (B) PPV and sensitivity for poly(A) sites in HSV-1. A poly(A) site was

considered a true positive if it was within 50 nt downstream of an annotated poly(A) signal and a false positive otherwise. A poly(A) signal

without a predicted poly(A) site within 50 nt downstream was considered a false negative.

doi:10.1371/journal.pone.0170914.g012
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expression (see [45, 46]). During lytic infection, immediate-early genes are transcribed first,

including RL2 (also known as ICP0), RS1 (ICP4),US1 (ICP22),UL54 (ICP27),US12 (ICP47).

This is followed by expression of early genes, including e.g. UL23 (encoding for the thymidine

kinase) and UL30 (encoding the DNA polymerase), and late genes, e.g. genes encoding for

structural components of the virion. Indeed, poly(A) sites of RL2, RS1 and US12 (poly(A) site

shared with US10) were detected first, at 0-1h in one replicate and at 1-2h in both replicates

(see Fig 13A, read coverage upstream of the poly(A) sites is shown in Fig 13B). At this time,

UL54 and US1 poly(A) sites were also detected, in addition to several other poly(A) sites

including those for UL23 and UL30. At 2-3h, already 37 of 46 (80%) of poly(A) sites were

detected in at least one replicate. The poly(A) site observed last belongs to the LAT gene

(latency associated transcript), which is expressed during latent infection and represses lytic

gene expression [47]. Both poly(A) read counts and read coverage upstream of the poly(A) site

show first a low expression and then upregulation during the first 8h of lytic infection, suggest-

ing an impending switch from lytic to latent infection.

Conclusion

In this article, we presented an approach for mapping reads containing part of the poly(A) tail

to identify poly(A) sites. Our approach essentially generalizes procedures previously applied to

identify poly(A) sites for a number of herpesviruses and has been seamlessly integrated in our

RNA-seq mapping software ContextMap 2.0. Thus, it allows mapping of poly(A) sites without

further ado during the RNA-seq mapping process itself. We evaluated the performance of

poly(A) read mapping on real-life data from the ENCODE project and compared it to a com-

peting approach based on transcriptome assembly. This showed that depending on parameter

Fig 13. HSV-1 poly(A) site expression. (A) Heatmap of read counts (log2 scale) for predicted poly(A) sites corresponding to annotated

poly(A) signals in the HSV-1 genome. Poly(A) sites are denoted by the corresponding gene name. In case a poly(A) site corresponds to

more than one gene, only one gene name is given. Time points are shown on the x-axis and numbers in round brackets indicate the

replicate. (B) Heatmap of read coverages (log2 scale) within 1000 nt upstream of an annotated poly(A) signal. Again, only one gene name is

shown if more than one gene use the same poly(A) signal. Genes are ordered according to the clustering obtained on the read counts for

HSV-1 poly(A) sites.

doi:10.1371/journal.pone.0170914.g013
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choice, poly(A) read mapping in ContextMap 2.0 achieves considerably higher PPV and lower

sensitivity compared to the competing approach or similar results, but both at significantly

lower runtime.

Further analysis of predicted poly(A) sites and gold standard sites derived from RNA-PET

data illustrated that sensitivity of poly(A) read mapping is likely dramatically underestimated

using RNA-PET. This is evidenced by the fact that only a relatively small fraction of transcript

3’ ends identified from RNA-PET corresponds to annotated transcript 3’ ends or is down-

stream of canonical poly(A) signals. In contrast, poly(A) sites predicted by ContextMap 2 tend

to be close to annotated transcript 3’ ends, resulting in increased sensitivity and PPV when

evaluating on RNA-PET poly(A) sites that correspond to annotated transcript 3’ ends. Fur-

thermore, frequencies of poly(A) signals upstream of predicted sites are similar to those previ-

ously reported in the literature and sensitivity improves if an alternative gold standard based

on more specific sequencing of poly(A) sites is used.

Although sensitivity is likely underestimated, it remains the main bottleneck for using poly

(A) read mapping to identify poly(A) sites. While our analysis suggests that sensitivity will

increase with increasing sequencing depth and read length, the reduced coverage of RNA-seq

on transcript ends will always provide a problem for identifying weakly expressed poly(A) sites

from poly(A) reads. Even though the threshold of detection relative to gene or isoform expres-

sion will likely decrease substantially within the next years due to increased sequencing depth,

this low sensitivity needs to be taken into account for any analysis of poly(A) sites based on

poly(A) read mapping. Thus, while identified poly(A) sites can be considered highly reliable

due to the high PPV, absence of identified poly(A) sites needs to be taken with a grain of salt,

in particular if a missing poly(A) site is potentially weakly expressed.

The advantage of using poly(A) read mapping for the analysis of (alternative) polyadenyla-

tion from RNA-seq data despite this low sensitivity is that it provides direct evidence for

polyadenylation in the form of poly(A) reads. This is in contrast to methods that use tran-

script reconstruction to determine transcript 3’ ends, such as Cufflinks [15], or methods for

identifying alternative polyadenylation based on expression differences upstream of the

actual poly(A) site, such as DaPars [48]. Furthermore, poly(A) site mapping can be applied to

individual samples and not only to compare samples as is the case for methods based on

expression differences. Moreover, since it can now be performed as part of standard read

mapping, researchers may be more ready to include it in their analysis pipeline just to see

what might be found. Finally, poly(A) read mapping could also be combined with Cufflinks

or DaPars to provide additional evidence for transcript 3’ ends identified by these approaches

or to use these alternative approaches to identify transcript 3’ ends for which no poly(A)

reads can be found.

We exemplified the usefulness of poly(A) read mapping by re-analyzing a time-course of

newly transcribed RNA during the first 8 hours of HSV-1 lytic expression. In this high

coverage scenario, poly(A) sites were identified for almost all annotated poly(A) signals

and corresponding transcript ends, resulting in a sensitivity of up to 90% at late stages of

infection. Here, the time-point at which individual poly(A) sites were first detected corre-

lated to the well-known cascade of HSV-1 gene expression. Thus, the seemingly low sensi-

tivity at the beginning of the time-course was due to the fact that corresponding genes were

not yet expressed. This example illustrates that poly(A) read mapping is already useful

now for analysis of pathogen expression and transcription termination. Thus, by integrat-

ing it into our ContextMap 2 software, which already supports parallel mapping against

both the host and pathogen genomes, we further extended its value for pathogen-host

transcriptomics.
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Supporting Information

S1 Fig. Presence of poly(A) signal sequences upstream of individual poly(A) sites. Fre-

quency of poly(A) signal sequences were determined within a 50 nt window upstream of all

identified poly(A) sites. In this case, predicted and “gold standard” poly(A) were not clustered.

Results for clustered poly(A) sites are shown in Fig 9. From left to right: predictions of Con-

textMap 2 (all samples and replicates), predictions of KLEAT (all samples and replicates) and

“gold standard” poly(A) sites identified from RNA-PET data (all samples, replicate 1) with at

least 3 and 10 reads, respectively. Poly(A) signal sequences were determined as described in

Fig 9.

(TIFF)

S2 Fig. Illustration of mapped reads for the RNA-PET and SAPAS data for an example

gene. Mapped read counts (in log scale) using ContextMap 2 are shown both for the replicate

1 of the RNA-PET and SAPAS data for MCF-7 for the GAPDH gene. Ranges of read counts

are indicated in square brackets.
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S1 Table. Comparison of PPV and sensitivity using the orginal ENCODE mapping for the

RNA-PET data.
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S2 Table. Evaluation results on SAPAS MCF-7 data using ContextMap 2 for mapping the

gold standard.
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S3 Table. Comparison of PPV and sensitivity using the BWA mapping for the RNA-PET

data.
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