The texts of the various papers in this volume were set individually by typists under the supervision of each of the authors concerned.

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by A.A. Balkema, Rotterdam, provided that the base fee of US$1.00 per copy, plus US$0.10 per page is paid directly to Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is: 90 5410 020 6/91 US$1.00 + US$0.10.

Published by
A.A. Balkema, P.O. Box 1675, 3000 BR Rotterdam, Netherlands
A.A. Balkema Publishers, Old Post Road, Brookfield, VT 05036, USA
ISBN 90 5410 020 6
© 1991 A.A. Balkema, Rotterdam
Printed in the Netherlands
Table of contents

Foreword .. XXI
Editorial comment .. XXIII
Local Organizing Committee XXIV
Society for Geology Applied to Mineral Deposits XXV

Invited lectures

Reaction kinetics in ore formation 3
David Rickard

Rare metal concentration in natural rare-metal acid magmas (melt inclusion data) 7
V.I. Kovalenko, G.M. Tsaryeva & R.L. Hervig

The Ni-Cu ores at Noril'sk and Sudbury 9
A.J. Naldrett, P.C. Lightfoot, V. Fedorenko, W. Doherty & N.S. Gorbachev

1. Fluid-rock interaction and ore deposition

Thermodynamic and fluid dynamic analysis of orthomagmatic and mixed-fluid magmatogene systems .. 13
Yu.A. Averkin

REE systematics as source of information on minerogenesis 17
Michael Bau & Peter Möller

Caractérisation des fluides minéralisateurs aurifères par les altérations hydrothermales de l'encaissant: L'exemple des minéralisations de type grès riche de Salsigne (Aude, France) 21
Michel Demange, Régis Serment & Ahmed Touil

Local wall rock alterations and ore mineralization, Tunaberg, Sweden 25
R.T.M. Dobbe

Experimental modelling of high temperature processes of copper mobilization 29
N.A. Durasova, V.L. Barsukov, L.N. Kochnova & I.D. Ryabchikov

Mineral deposition in the La Bismutina ore deposit, Argentine 33
R.R. Fernández
Isotopic fronts in hydrothermally mineralized carbonate rocks
H.E. Frimmel

Upper Proterozoic chert hosted Au-Ni-V-Cr-Ba mineralization
Z. Gabriel

Physical and chemical controls of tungsten deposition in the calc-silicate gneisses from the Montagne Noire, France
F. Gibert, B. Moine, J. Schott & J.L. Dandurand

Mobilization of metals in granitoids
U. Giese, P. Möller & S. Münzberg

Multiphase alteration including disseminated uranium mineralization in quartz-depleted granites (episyenites) of the Fichtelgebirge (Northeastern Bavaria, Germany)
L. Hecht, W. Spiegel & G. Morteani

Synorogenic ore deposition in the Variscan external belt of Europe: A tectonic brine model
U. F. Hein & H. J. Behr

Influences of volatiles on the crystallization of mafic magmas and its implications on the formation of economic spinel deposits
Dietrich D. Klemm

The formation of highly concentrated iron ore bodies within the BIF: The Sishen case
Dietrich D. Klemm

Hydrogeochemical modelling of the Needle’s Eye, natural analogue (Scotland)
E. Ledoux, Ph. Jamet, P.J. Hooker & P. Escalier des Orres

Geochemical modelling of two-mica granite alterations: Subsolidus changes related to dequartzification and clay alteration
J.L. Leroy, B. Fritz, M. Cathelineau & M. Lespinasse

Mass-transfer during fluid-rock interactions in massive sulfide deposits (rare earth, trace and major elements)
Cl. Mendousse

The 0-valence sulfur in the thermae of the Uzon caldera hydrothermal system (Kamchatka, USSR)
Art. A. Migdisov

PTX-determination, computer thermodynamic model of fluid-rock interaction and uranium deposition
M.V. Mironenko & A.N. Salazkin

Platinum mineralization in the Duluth Complex, Minnesota, and the role of fluids
A. Mogessie & E. F. Stumpfl

Spontaneous insertion of sulfate and uranyl in graphite between 100 and 300°C
A. Moissette, J. Dubessy, H. Fuzellier, D. Guerrard & A. Burneau

REE fractionation in hydrothermal fluorite and calcite
P. Möller
Experimental simulations of water-rock interaction
B.W.Mountain & A.E.Williams-Jones

Raman, UV-visible absorption spectral and potentiometric studies of complexation of uranyl (VI) ion in aqueous chloride solutions at 25°C, 0.1MPa
C.Nguyen-Trung, D.A.Palmer, G.M.Begun & R.E.Mesmer

The East Pontic Metallotect, NE Turkey
N.Özgür

Oxygen, hydrogen, strontium isotopes and metals in the present-day and past geothermal systems of Milos island (Aegean arc)
C.Pflumio, L.Briqueu, J.Boulègue & A.Liakopoulos

Hydrothermal alteration systems as analogues of nuclear waste repositories in granitic rocks: The mineralized vein at Fombillou (Lot), France
P.Piantone & J.F.Sureau

Maria Lázara gold deposit (Goiás State, Brazil): An example of intense fluid/rock interaction associated with a triple point structure
G.M.Pulz, G.Giuliani, H.Jost & D.Michel

Mobilization of metals by aqueous fluids and carbonatitic melts in mantle peridotites
I.D.Ryabchikov

Metasomatic stratabound Sn-W ores related to Mn-rich calc-silicate rocks in the Iberian Pyrite belt
R.Sáez & G.Ruiz de Almodóvar

An iron chloride hydroxide from the Duluth Complex, Minnesota with implications for metal mobility in hydrothermal systems
B.Saini-Eidukat & H.Kucha

Some geological and petrological aspects of scheelite skarn formation in the Serido region, Northeastern Brazil
J.Salim, J.Legrand, J.Verkaeren & J.Salemink

The role of metamorphic fluids in gold-bearing skarns (Pyrenees)
A.Soler, J.Delgado, E.Cardellach & C.Ayora

The nature and genesis of the Willemite deposits of Zambia
M.A.Sweeney, R.A.D.Pattrick, D.J.Vaughan & P.Turner

A chemical model for the genesis of episyenites and superimposed ores linked with phyllic alteration
F.Tornos, C.Casquet, J.M.Caballero & C.Galindo

Speciation of Be and solubility of bertrandite/phenakite minerals in hydrothermal solutions
Scott A.Wood

Infiltration metasomatism in gradient fields: Problems of the origin of greisen ore bodies
2. **PTXt determination in ore deposits**

Alteration-mineralization pattern of the epithermal system of Sayaca/NE-Turkey: Preliminary results

Nimet Agdemir, Bernd Lehmann, Jörg Tietze & I. Sönmez Sayılı

Conditions of formation of the Sb deposit of Boujaada (Morocco)

O. Belhaj, B. Moine, M. Munoz & J. P. Fortune

The Cu-Bi-Ag-Pb deposits from Karamazar, Middle Asia, USSR: Geochemical environment of the transport and deposition of metals

N. S. Bortnikov, V. J. Prokof'ev & V. B. Naumov

U-Mo-Zn and Ag-Au deposits in back arc volcanic formations and their relation to borosilicate-bearing hydrothermal alteration

Y. Fuchs & R. A. Maury

Mineralogy, geochemistry and thermobarometry of late hydrothermal veins within the Vilatuxe spodumene-bearing pegmatites, Pontevedra, NW Spain

J. Garcia Iglesias, J. Loredo Perez & A. Martin Izard

Minéraлизations polyphasées à barytine et sulfosels de Cu et Pb du Sud de la France, Corbières (Aude): Incidences métallogéniques et implications géodynamiques

A. Giannoni

Fluid inclusion studies on Mo-Cu-mineralizations in the Galway Granite (Ireland)

H. Högelsberger & M. Feely

Geochemistry and fluid inclusions of the Mo-bearing greisen complex Nebelstein, Bohemian Massif (Austria)

F. Koller, H. Högelsberger & Ch. Koeberl

Zinc and lead ore deposits in the Cracow-Silesian region, Poland: A fluid inclusion study

A. Kozłowski

Smythite, greigite, and mackinawite: New observations on natural low-temperature iron sulfides

Ralf E. Krupp

The role of thiosulphates in the accumulation of sulphur and metals in Kupferschiefer, Poland

H. Kucha & A. Piestrzyński

Compounds with mixed and intermediate sulfur valences as precursors of banded sulfides in carbonate-hosted Zn-Pb deposits

H. Kucha & W. Viaene

The massive stibnite lode-deposits of the French Paleozoic basement – Evaluation of physical-chemical factors for stibnite precipitation from thermodynamic modelling

M. Munoz, P. Courjault-Radé, F. Tollon, B. Moine, J. P. Fortune & O. Belhaj

Calculation of \(f(O_2) \) and \(f(S_2) \) of ore fluids, and depth and pressure of mineralization from fluid inclusion gas analyses for the Fresnillo, Colorada, and Sombrerete Pb-Zn-Ag deposits, Mexico

David I. Norman, Laurie D. Benton & Tawn F. Albinson
Metallogeny of sheared Zn-Pb vein deposits of Alcudia Valley, Ciudad Real, Spain
F.J. Palero, J. Mangas, R.A. Both & A. Arribas

Fluid inclusions of the F-Ba-Pb late paragenesis of borders of the Ouenza, Mesloula, Hameimat ed Dahra diapirs (N-E Algeria)
H. Paraire-Akrour

The substitution of indium and copper in natural sphalerite: A study using electron microscopy
R.A.D. Patrnick & M. Dorling

Quartz as an indicator of the structure of a mineral-forming medium containing ore elements
N.G. Stenina

PTX-signatures of Hercynian ore-producing granites, Erzgebirge, Germany
R. Thomas, H.-J. Förster & G. Tischendorf

Variscan and late-Variscan vein mineralization types of the Czech part of the Bohemian Massif: A genetic model
K. Žák, P. Dobeš & P. Sztacho

3. Source of metals

Lead isotope constraints on the origin of base- and precious-metal deposits from southeastern Spain
Antonio Arribas Jr, Richard M. Tosdal & Joseph L. Wooden

Crustal extension, metamorphic core complexes, and mineralisation: The Ag-Pb-Zn-Au veins of Kokanee Range, British Columbia, Canada
G. Beaudoin, D. F. Sangster, B. E. Taylor & C. I. Godwin

A genetic model of polymetallic ore deposits from Apuane Alps: Evidences from stable isotope data
M. Benvenuti, P. Costagliola, P. Lattanzi, G. Cortecchi & G. Tanelli

Pb isotope patterns in contemporaneous arc terrains, Sweden
K. Billström

Relationship between high heat-producing (HHP) granites and stratabound lead-zinc deposits
A. Bjørlykke, D. F. Sangster & U. Fehn

A stable isotope and geochemical study of an epithermal tungsten deposit, Boulder County, Colorado, USA
A. J. Boyce, A. E. Fallick, C. Rice & R. S. Harmon

Source of fluids and age constraints from Sr and S isotopes in the Ba-F low temperature veins of the Catalan Coastal Ranges (NE Spain)
A. Canals & E. Cardellach

The diapir related Bou Grine Pb-Zn deposit (Tunisia): Evidence for role of hot sedimentary basin brines
A. Charef & S. M. F. Sheppard
Correlation between sediment characteristics of three southeastern Sardinian beaches and geomineralogical characteristics of their alimentation basins
A. Cristini, F. Di Gregorio & C. Ferrara

Les dépôts métallifères Fe-(Zn-Pb) associés au magmatisme post-orogénique de Tunisie: Caractérisation isotopique (C, O) et reconstitution de la composition chimique des fluides hydrothermaux du complexe de l’Oued Bélib-Sidi Driss
M. Dermech, J. Boulègue & A. Charef

Sulfide ore genesis and related dolomitization of limestone in the Garpenberg district, south central Sweden: Geochemical and C-O isotopic evidence
M. Gebeyehu & W. Vivallo

Isotopic data on the metal-source regions for the Llanrwst Pb-Zn Orefield, North Wales
R. Haggerty, S. H. Bottrell & R. A. Cliff

The genesis of BIF in the Transvaal Supergroup, South Africa
I. W. Hülbich & W. Altermann

Origin and accumulation processes of base metals in the Kupferschiefer of the Lower Rhine Basin, N. W. Germany
H. Heppenheimer, W. Püttrmann & A. Bechtel

The genesis of the Campo de Dentro magnesite deposit: Stable isotopes and major, minor and trace elements
Teodoro Isnard Ribeiro de Almeida, Henrique Bergamim Filho & Marcelo Z. Moreira

Ore-forming fluid sources of tungsten deposits: Rare earth element, radiogenic isotope and fluid inclusion evidence
G. F. Ivanova, V. B. Naumov, G. M. Kolesov & I. V. Chernyshev

Tin distribution in metasedimentary rocks of the Baotan tin district, Guangxi, China
Mao Jingwen & Bernd Lehmann

New evidence for Viséan-Namurian shales as the source of the Pennine mineralisation of England
D. G. Jones, J. A. Plant, T. B. Colman & I. G. Swainbank

Stable isotopes of the Kabwe lead-zinc deposit
F. Kamona, G. Friedrich, M. A. Sweeney & A. E. Fallick

Preliminary data on the Pb-isotope composition of mineral deposits in southern Tuscany, Italy
P. Lattanzi, W. Hansmann & V. Koeppel

Uranium behaviour in volcanic environments: Source-rocks and concentration mechanisms
J. L. Leroy & B. George-Aniel

Formation of hydrothermal fluorite deposits of the Harz Mountains, Germany
Volker Lüders

The sources of ore material in mercury and antimony deposits
N. A. Ozerova
Lateritization and paleogeomorphology: Their roles in the genesis of unconformity-type uranium deposits in Saskatchewan, Canada
Maurice Paget

Source of gold in a volcanogenic massive sulphide deposit
David Rickard, Diane Nicolson, Graeme Rogers, Patricia Park & Ian Swainbank

Contrasting lead isotopic signature and style of formation of Phanerozoic metamorphogenic metal deposits on the Proterozoic Baltic Shield of Northern Europe
Rolf L. Romer

Sulfur isotope geochemistry of ores at the Almadén mercury deposit (Spain)
F. Saupé, B. Jacquier & M. Arnold

Nitrogen isotope characteristics of tin granites from Eastern Erzgebirge
R. Seltmann, F. Junge & W. Schilka

Comprehensive model for the formation of the Tintic ore deposits, western Utah, eastern Basin and Range province, USA
Holly J. Stein & Judith L. Hannah

Svecofennian lead isotopic provinces in the Baltic Shield
K. Sundblad

The geochemistry of the basement complex of the Zambian Copperbelt – Implications for mineralisation
M. A. Sweeney, D. J. Vaughan & P. Binda

Indications for the source of gold in the Milparinka-Tibooburra vein-type gold deposits, NSW, Australia – Geochemical and isotopic evidences
O. A. R. Thalhammer

Geochemical characteristics of volcanogenic massive sulphide deposits in China
Xuexin Song

4. Dating of ore deposits

40Ar/39Ar laser-probe dating of the Colombian emerald deposits: Metallogenic implications
A. Cheilletz, G. Féraud, G. Giuliani & C. T. Rodriguez

Evaluation of dating non-radioactive sediment-hosted ore deposits
N. Clauer & S. Chaudhuri

K/Ar dating of clays associated with fluorite mineralizations along the Atlantic coast of South America – Relationships with South Atlantic Ocean opening
Rosa P. Dos Santos & Michel G. Bonhomme

Application of the U-Xe-Kr and U-Pb systems for dating U-minerals
J. Eikenberg

Are K-Ar age determinations of illites from hydrothermal ore deposits reliable? – Theoretical aspects and a case study from N. Greece
H. A. Gilg
Geochronological and Sm-Nd isotopic constraints on the genesis of the Olympic Dam Cu-U-Au-Ag deposit, South Australia
J.P.Johnson & K.C.Cross

The Xe$_s$-Xe$_n$ spectrum technique applied to French uranium deposits and showings
M.H.Lévêque & A.P.Meshick

U-Pb dating of uranium ores in collapse-breccia pipes, Grand Canyon region
K.R.Ludwig & K.R.Simmons

A thermo-geochronological study of the Itataia phospho-uraniferous deposit (Ceará, Brazil) by apatite fission track analysis: Genetic implications
Ana Maria Netto, Arnaud Meyer, Michel Cuney & Gérard Poupeau

Methodology and genetic implications of paleomagnetic dating of Mississippi Valley-type lead-zinc deposits in the midcontinental region of the USA
D.F.Sangster & D.T.A.Symons

5. Structural environment

Distribution des gîtes à Pb-Zn et fer sidérifique dans le N-E algérien
M.Aoudjehane

Tectonic setting of vein deposits in the Santa Catarina fluorite district (S Brazil)
A.C.Bastos, J.C.Touray, J.Charvet & M.Dardenne

Dynamics of the Châtelet gold mineralization (Creuse)
V.Bouchot & Y.Gros

Structural environment and tectonic controls of the Salsigne gold deposit (Southern Massif Central, France)
D.Cassard & J.L.Lescuyer

Incremental emplacement of mineralization under mechanical controls at various scales of space and time
C.Castaing

Ductile/brittle shear zones and gold concentration in the Fazenda Maria Preta deposit, northwestern Rio Itapicuru greenstone belt, Brazil
A.Chauvet, C.E.S.Coelho, F.C.Alves da Silva, M.Faure & J.C.Touray

Plis couchés et cisaillements précoces: Contrôle des minéralisations de type 2x et 3a2x dans le gisement aurifère de Salsigne, Aude, France
Michel Demange & Christophe Thillier

Evolution of wolframite-bearing quartz veins, Portugal
K.A.Foxford, R.Nicholson & D.A.Polya

Tectonics of the Flossberg fault in the Ilmenau vein district (Thuringian Forest, Germany)
H.J.Franzke

Fluid inclusion studies, Joma mine, Norway
A.D.Giles & B.Marshall
Structural environment of gold ore deposits in the Bondo-Asembo and Seine areas of western Kenya

P.L. Legge & N. Opiyo-Akech

Time/space reconstruction of fluid percolation in fault systems: The use of Fluid Inclusion Planes (F.I.P.)

M. Lespinasse, M. Cathelineau & B. Poty

Microstructures of base metal ores from the north-eastern area of the Supragetic units (South Carpathians) and their genetic significance

Marian Lupulescu

Structural control of some of the residual gem deposits of Sri Lanka

D.P.J. Mendis, M.S. Rupasinghe & C.B. Dissanayake

Structural evolution of gold-bearing quartz veins in the Precambrian exposures of the 'Tagagra d' Akka' (western Anti-Atlas, Morocco)

P. Potherat, J. Macaudière, Ch. Marignac, M. Aït Kassi & P. Nicot

Constraints for sulphide mineralization in the Lower Rhine Basin, Germany

Peter Reddeck & Günther Friedrich

Textural and structural aspects of iron ores from Iron Quadrangle, Brazil

C.A. Rosière & F. Chemale Jr

Modelling of structure-induced hydrothermal circulations in a Mississippi Valley Type deposit

J.-M. Schmitt, S. Makhoukhi & P. Goblet

Structural environment of tin granites in the Erzgebirge

R. Seitzmann, P. Bankwitz & G. Hösel

Métallogénies superposées: Contraintes pour l'âge et la source des concentrations de la bordure cévenole, France

J. Thibiéroz

6. Metals and organic matter, bioaccumulation, biodegradation

Biométallogenèse en domaine margino-littoral

R. Ainardi

Sulphide mineralisation and hydrocarbon migration in North Sea oilfields

S.J. Baines, S.D. Burley & A. P. Gize

Metal reduction by sedimentary organic materials: Influence of medium parameters on the reaction rate

P. Baranger, J.R. Disnar, J. P. Gatellier & G. Ouzounian

Amino acid composition of Proterozoic and Ordovician sulphide-coated grains from Western Canada

Pier L. Binda, Serenella Nardi, Lucia Scudeler Baccelle & Giuseppe Concheri

Sea water as a source of metals in black shales

V.M. Gavshin
Apparition de pyrite framboidale dans les sédiments riches en matière organique du gisement pétrolier de Prinos (Nord de la Mer Egée-Grèce)
A. Georgakopoulos, M. Vavelidis, S. Sklavounos & C. M. Papaconstantinou

A critical evaluation of organic processes in Mississippi Valley-Type genesis
A. P. Gize, H. L. Barnes & J. S. Bell

Extreme concentration of Mo, Ni, PGE and Au in anoxic marine basins, China and Canada
Richard I. Grauch, James B. Murowchick, Raymond M. Covney Jr & Chen Nansheng

Carbonaceous formations as a source of sulphur and carbon in metallogeny of the Bohemian Massif
J. Hladíková, B. Kříbek & B. Fojt

Organic matter of syngenetic and epigenetic uranium deposits in the Bohemian Massif
B. Kříbek

Anoxic microenvironment – Main factor in the formation of manganese aggregates
Zdeněk Kukal

Analysis of bitumens associated with uranium ores
P. Landais

Organic matter and gold deposition in disseminated gold deposits in Nevada
Sten Lindblom

Mercury concentrations in Proterozoic black schists in Finland – Environmental and explorational aspects
K. Loukola-Ruskeeniemi

Effect of auriferous sulfide minerals structure and composition on their bacterial weathering
P. Marion, C. Mustin, M. Monroy & J. Berthelin

Diagenesis and mechanisms of uranium accumulation by detrital organic matter
Jean Dominique Meunier

Genetic significance of variscite oncoids in Palaeozoic aluminophosphatites of Zamora (western Spain)
M. C. Moro, L. Perez del Villar & M. L. Cembranos

Timing of hydrocarbon-metal interactions during basin evolution
John Parnell

Metal-rich black shales from the Barrandian Proterozoic (Bohemian Massif, Czechoslovakia)
J. Pašava

Carbonates as acceptors of metals in Kupferschiefer, Poland
A. Piestrzyński

Ore mineralization and organic matter in Permian sandstones of the Western Carpathians
I. Rojkovič & J. Francú

The relationship between copper mineralization and organic matter in the Polish Kupferschiefer
Zbigniew Sawłowicz
Geochemical and metallogenetical aspects of organic carbon-rich pelitic sediments in Germany

B. Stribrny & H. Puchelt

A nuclear magnetic resonance study of aluminium (III) interaction with organic acids

F. Thomas, A. Masion & J. Y. Bottero

7. Oceanic crust metallogeny

Mineralogy and geochemistry of chromite ores in some localities in Egypt

A. K. M. Atia, M. E. Hilmy, S. N. Boulis & S. I. Ismael

Ion probe 34S study of small scale variations in a hydrothermal chimney, East Pacific Rise at 21°N

Marc Chaussidon, Francis Albarède & Simon M. F. Sheppard

Metallogenesis and associated gold mineralization in the Lau back-arc basin

Y. Fouquet & P. M. Herzig

PGE remobilization, Coolac Serpentinite, Australia

Ian T. Graham, Brian Marshall & Brenda J. Franklin

Present-day Kuroko-type ore formation – Results from the central Okinawa Trough

P. E. Halbach, A. Märten & G. Schwanold

The metallogeny of early Ordovician ophiolites in the Norwegian Caledonides

8. Transport and deposition of gold

Gold transport conditions in shear zones from the Central Pyrenees, Spain

D. Arcos, C. Ayora & A. Soler

The Răsroci Ag-Pb-Zn vein mineralization, Romania

I. Berbeleac

Source terrane for Tarkwa paleplacer deposit, Ghana

Isaac O. Boadi, David I. Norman & Henry Appiah

Transport and deposition of Au during formation of the Murray Brook Au-Ag-Hg gossan, Bathurst Camp, New Brunswick

D. R. Boyle

Fluid density changes and gold deposition in Au quartz veins: The role of pressure fluctuations linked to multistage deformation

M. Cathelineau, M. C. Boiron, S. Essarraj, M. Lespinasse, B. Poty & E. Sellier

The mobility of Witwatersrand gold during post-depositional alteration

H. E. Frimmel & W. E. L. Minter

The Archaean lode-gold deposit at Racetrack, near Kalgoorlie, Western Australia: A transitional mesothermal-epithermal hydrothermal system

Contrasting Archean-Proterozoic-hosted gold deposit types and associated gold-bearing fluids

An unusual gold-bearing environment in the Superior Province of the Canadian Shield:
A possible deep level expression of an Archean gold mineralizing system
Bernard Lapointe

Fluid inclusions in quartz veins in the Birimian gold deposits of Ghana
J. Manu

Gold bearing pyrites: A combined ion microprobe and Mössbauer spectrometry approach
P. Marion, M. Monroy, P. Holliger, M.C. Boiron, M. Cathelineau, F.E. Wagner & J. Friedl

Conditions of Au-U mineralization in Witwatersrand reefs

P-T conditions and relative timing of gold mineralization at Lac Lilois, Ashuanipi Complex, eastern Superior Province, Canada
R. P. Moritz & S.R. Chevé

The pattern of gold mineralization in the Northeastern Desert, Egypt
Abd El-Moneim Osman

Physical-chemical model of transport and deposition of gold together with sulphides
G.A. Pal' Yanova & G.R. Kolonin

Host rocks as a gold source in deposits of the quartz-vein type
V.G. Petrov

Gold distribution in the southern Kreuzeck and Goldeck Mountains, Austria: Metallogenic implications
M. Quednau, J. Heinhorst, B. Lehmann & H.-J. Schneider

Epithermal gold mineralization at Rodalquilar, SE-Spain: Some physico-chemical conditions during ore formation and accompanying wallrock alteration
P. Sänger-von Oepen & G. Friedrich

Gold adsorption onto colloidal sulphide substrates
T.M. Seward & C.M. Cardile

Evolution of placer gold occurrences in the vicinity of Lwówek Slaski, SW Poland
S. Speczik & J. Wierchowiec

Numerical modeling of Au-mineralization: Transport and precipitation
M.B. Woitsekhovskaya

The concentration of gold in calcrete and its significance for Lower Proterozoic gold-uranium mineralization
Peter J. Ypma

Gold deposition in the gold-bearing quartz veins of the Tagragra d’Akka (Western Anti-Atlas, Morocco): P-T-X conditions and place in the evolution of metamorphic fluids
M. Zouhair, Ch. Marignac, J. Macaudière & M.C. Boiron
9. Rare metal concentration in granites

Chemistry of the micas from the Yashan rare metal granite (SE China): A comparison with Variscan examples
Mohammed Belkasmi, Michel Cuney, Louis Raimbault & Peter J. Pollard

Chemical properties of Helvite group minerals in different types of occurrences
Essaid Bilal & Michel Fonteilles

Processes controlling evolution of rare-element granitic pegmatites
P. Cerný

The Argemela granite-porphyry (Central Portugal): The subvolcanic expression of a high-fluorine, rare-element pegmatite magma
B. Charoy & F. Noronha

Trace element variations and lanthanide tetrad effect studied in a Variscan lithium albite granite: Case of the Cinovec granite (Czechoslovakia)
Alain Cocherie, Vera Johan, Philippe Rossi & Miroslav Stemprok

Structural, geochemical and ore distribution evidence for the genetic relationship between 'ultimate' granitic intrusions and Sn-W mineralization
Cl. Gagny & M. Cuney

Airborne geophysics and mineralization in Hercynian granites of Central Europe
H. L. Heinz

PTX and mechanisms of formation of apatite and rare-metal deposits related with alkaline rocks
L. N. Kogarko

The magmatic evolution of the central Andean tin belt
Bernd Lehmann

Magmatic cassiterite mineralization at Nong Sua, Thailand
Robert L. Linnen & Anthony E. Williams-Jones

What is the meaning of granite specialization for Sn, W deposit genesis?
Christian Marignac & Michel Cuney

Re-rich and Re-poor molybdenite in the Maronia rhyolitic intrusion, Northeastern Greece
V. Melfos, M. Vavelidis, A. Filippidis, G. Christofides & E. Evagelou

Genesis of lithium pegmatites, SE Ireland
P. J. O'Connor, V. Gallagher & P. S. Kennan

Geology, geochemistry and genesis of the Sn-W deposits associated with the Mole Granite, Australia
I. R. Plimer & J. D. Kleeman

Petrogenetic and metallogenetetic implications of the occurrence of topaz Li-mica granite at the Yichun Ta-Nb-Li mine, Jiangxi Province, south China
P. J. Pollard & R. P. Taylor

Comparative geochemistry of Ta-bearing granites
Louis Raimbault, Bernard Charoy, Michel Cuney & Peter J. Pollard
W-Mo mineralization in the Namaqualand Metamorphic Complex: Relation to magmatism and metamorphic evolution
J.G. Raith

The pegmatites of the Fregeneda area, Salamanca, Spain
E. Roda Robles, A. Pesquera Pérez & F. Velasco Roldán

Sequential mobility of Ta, Nb, Sn, W and Mo during magmatic differentiation and hydrothermal alteration processes: Constraints on ore formation in the Vosges Massif, France
J. Salemink & J. Verkaeren

Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids
Michael O. Schwartz

Tungsten-bearing granites
R. N. Sobolev

The distribution of REE, U, Th, Hf and Sc in accessory zircons of different Variscan granitoid rocks
W. Spiegel, P. Götzelmann, L. Hecht, W. Hampel & G. Morteani

The nature of granitic melt and its ore potential
N. G. Stenina & A. N. Distanova

Hercynian specialized granites and related deposits in the Erzgebirge
G. Tischendorf, H.-J. Förster & B. Gottesmann

Modelling the geochemical evolution of an Archean fertile granite-pegmatite system
R. B. Trumbull

Multiphase metalliferous mineralization associated with the Mesozoic Jianfengling granite complex, Hunan Province, People’s Republic of China
C. S. Wang, R. P. Foster, I. W. Croudace, W. H. Xia & J. T. Zhang

Author index
Placé sous le haut patronage de
MONSIEUR HUBERT CURIEN
Ministre de la Recherche et de la Technologie

AVEC LE CONCOURS DE / SPONSORED BY

La Commission des Communautés Européennes
Le Ministère de la Recherche et de la Technologie
Le Ministère de l’Education Nationale, de la Jeunesse et des Sports
Le Ministère des Affaires Étrangères
La Région de Lorraine
Le District de l’Agglomération Nancéienne
Le Centre National de la Recherche Scientifique
Le CREGU

Le Bureau de Recherches Géologiques et Minières
Le Commissariat à l’Energie Atomique
La Société Nationale Elf Aquitaine
La Compagnie Générale des Matières Nucléaires
La Compagnie Française du Cristal Daum
La Société DILOR
La Société Autoclave Engineers Europe
Springer Verlag
The Society of Economic Geologists
The IGCP 254

EXCURSIONS EN COLLABORATION AVEC / FIELD TRIPS IN COOPERATION WITH

Cogema
Mines et Produits Chimiques de Salsigne
Société des Feldspaths du Morvan

Société des Kaolins de Beauvoir
Société des Mines du Bourneix
Société Minière de Chessy
The genesis of BIF in the Transvaal Supergroup, South Africa

I.W. Hälbich & W. Altermann
Department of Geology, University of Stellenbosch, South Africa

ABSTRACT: Early Proterozoic banded iron-formations were deposited in an intra-cratonic, gradually shallowing basin with mixed sea water - fresh water conditions. Evidence is: a) Erosion and non-deposition near the southern rim of the basin during pre-BIF carbonate deposition. b) Facies and chemical evidence during the carbonate-BIF transition of a shallowing basin with a fluctuating fresh water - sea water realm. c) Endoclastic upper BIF and autochthonous lower BIF have virtually the same composition but endoclastic BIF bear evidence of very shallow water deposition. Therefore the origin of autochthonous BIF below a deeper marine chemocline seems unlikely. d) Contemporary ensialic, possibly rift related volcanism occurred. e) Lateral thickness changes in BIF previously interpreted as of sedimentological origin, are tectonic in nature, allowing for a new environmental model. f) BIF cover strata consist of upward coarsening, fine grained deltaic sequences. A topographically very subdued hinterland was maintained throughout the lifetime of the basin.

1. INTRODUCTION

1.1 The iron ore deposits

The Sishen iron ore deposit in the Northern Cape Province, South Africa is one of the few very large high grade occurrences of its kind in the world. It represents a local enrichment of precursors BIF by hydrothermal or supergene processes or both.

1.2 A shelf slope origin for BIF

The Kuruman and Griquatown BIF of the Early Proterozoic Ghaap Group in Griqualand West underly an area of 500 x 50km². They were recently modelled chemically (Beukes and Klein, 1990; Beukes et al., 1990) as shelf slope deposits below a chemocline in a stratified, marine water column deepening southwards. Fe is thought to have been supplied by hydrothermal exhalative submarine sources and periodic upwelling. This explanation is apparently confirmed by stratigraphic evidence that the two BIF-sequences overlying carbonates, thicken in a southerly direction toward an open sea and away from a stable platform to the north (Figs. 1 and 2). The underlying carbonates on the other hand thin southwards and develop deeper water facies there, e.g. turbidites.

It is important to note that all paleo-environmental research undertaken on these BIF is severely limited by the fact that their E-W maximum outcrop width is only 50km because of thrusting and erosion.

2. AN ALTERNATIVE MODEL

For the upper Ghaap Group an intra-cratonic and shallowing, sheltered basin with mixed sea-water fresh-water conditions is favoured by the following evidence:

1. The Campbellrand Subgroup displays mainly tidally influenced and intertidal facies where exposed south of the Griquatown Fault (Figs. 1 and 2). (Altermann and Herbig in press). The single, graded interbeds that are occasionally found are tempestites, not turbidites. An increased thickness of the carbonates towards the north is attributed to faster accumulation because of a higher rate of submergence matched by carbonate production on a subtidal stromatolitic platform. This means that, while a typical carbonate platform was established in the north, at times non deposition and even erosion reigned closer to the basin margin in the south.

2. Along 500km of N-S exposure the carbonate - BIF transition zone displays rapid internal facies variations in a vertical and lateral sense. This includes shales, black shales, ferruginous mudstones, clean and ferruginous (sideritic-ankeritic) cherts, carbonates and oxidic BIF. The drastic chemical and mechanical changes thus recorded can best be explained by mixing of fresh water and sea water in a shallowing basin becoming
more sheltered and stabilizing with time (Hälbich et al., submitted). Gradually southward increasing volumes of fine clastic load in this zone point to a closer shoreline in that direction with more clastic river input. If it is argued that fine clastic shales are shelf slope deposits, it is neglected that this material would then have to be transported from the north across a carbonate platform. In addition, it must then be assumed that contemporaneous coarse clastics, of which there is no evidence, were deposited in the north. Stable isotope characteristics of S, C and O are also in favour of increasing fresh water input and therefore probably better sheltering of an original marine incursion onto the craton. The ferruginous chert - mudstone sequence intercalated with oxidic BIF in the transition zone north of the Griquatown Fault has a major element chemistry very closely comparable to that of the BIF (Table 1).

It is likely that these mudstones represent a redeposited carbonate regolith supplied by slightly elevated and deeply weathered and eroded parts of the originally very wide carbonate platform. This, and the steady and abundant supply of Fe and Si in solution by sluggishly flowing rivers from a very low-lying hinterland (Reimer, 1987) with extremely mature topography (a condition that could also have applied during the deposition of 1500m thick carbonates previously) abundant acid rain (HCO₃⁻) and elevated temperatures were instrumental in supplying enough solute (Lepp, 1987) for the deposition of thick BIF with a very constant composition in a steadily submerging intra-cratic basin.

Table 1. Comparative chemistry of BIF and mudstone.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂ (%)</th>
<th>TiO₂ (%)</th>
<th>Al₂O₃ (%)</th>
<th>Fe₂O₃ (%)</th>
<th>MnO (%)</th>
<th>MgO (%)</th>
<th>CoO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIF</td>
<td>50.20</td>
<td>0.04</td>
<td>0.93</td>
<td>38.08</td>
<td>0.15</td>
<td>1.63</td>
<td>1.98</td>
</tr>
<tr>
<td>Mudstone</td>
<td>46.00</td>
<td>0.17</td>
<td>3.56</td>
<td>38.12</td>
<td>1.03</td>
<td>0.87</td>
<td>0.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Na₂O (%)</th>
<th>K₂O (%)</th>
<th>P₂O₅ (%)</th>
<th>L.O.I (%)</th>
<th>H₂O (%)</th>
<th>TOT. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIF</td>
<td>0.11</td>
<td>0.05</td>
<td>0.07</td>
<td>5.85</td>
<td>1.34</td>
<td>100.37</td>
</tr>
<tr>
<td>Mudstone</td>
<td>0.10</td>
<td>0.94</td>
<td>0.27</td>
<td>5.76</td>
<td>2.12</td>
<td>100.40</td>
</tr>
</tbody>
</table>
3. The mesoband major- and trace-element chemistry of the lower autochthonous Kuruman BIF and the upper, largely endoclastic Griquatown BIF is virtually the same over the entire thickness and outcrop area (Horstmann and Hälbich, submitted), (Table 2).

Table 2. Comparative mesoband chemistry of Griquatown and Kuruman BIF.

<table>
<thead>
<tr>
<th>Lith.</th>
<th>Magnetite Chert</th>
<th>Magnetite–carbonate Chert</th>
<th>Riebeckite–carbonate Chert</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2*</td>
<td>48.73</td>
<td>45.49</td>
<td>43.70</td>
</tr>
<tr>
<td>TiO2*</td>
<td>0.06</td>
<td>0.04</td>
<td>nd</td>
</tr>
<tr>
<td>AI2O3*</td>
<td>0.02</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>Fe2O3*</td>
<td>19.58</td>
<td>22.13</td>
<td>29.98</td>
</tr>
<tr>
<td>FeO*</td>
<td>22.90</td>
<td>26.61</td>
<td>13.65</td>
</tr>
<tr>
<td>MnO*</td>
<td>0.58</td>
<td>0.21</td>
<td>0.58</td>
</tr>
<tr>
<td>MgO</td>
<td>3.48</td>
<td>3.03</td>
<td>3.97</td>
</tr>
<tr>
<td>CO2*</td>
<td>2.69</td>
<td>2.68</td>
<td>3.35</td>
</tr>
<tr>
<td>Na2O*</td>
<td>0.87</td>
<td>0.63</td>
<td>0.77</td>
</tr>
<tr>
<td>K2O*</td>
<td>0.99</td>
<td>0.56</td>
<td>0.22</td>
</tr>
<tr>
<td>P2O5*</td>
<td>0.04</td>
<td>0.28</td>
<td>0.12</td>
</tr>
</tbody>
</table>

*Weight % on volatile free basis.

If the endoclastic Griquatown BIF was redeposited in shallow water (as can be demonstrated from the occasional preservation of mud-cracks and other desiccation features and gypsum rosettes (Hälbich et al., submitted) without changing chemically, then there is little reason why autochthonous Kuruman BIF should have originated in relatively deep water below a chemocline with other chemical stability characteristics. The only environmental difference was greater tranquility in the water body (and possibly the atmosphere) during Kuruman BIF-times. This may mean better sheltering and lesser wind-agitation. Water depth in the almost closed or temporarily closed basin was kept very constant right through the year by evenly distributed water influx and evaporation. Proof of very shallow water (mud cracks and fenestral structures) was found near the base of the Kuruman I.F. in the far south.

4. Interlayered tuffs (2500 Ma old) in the upper carbonates, the transition zone and the BIF sequence provide stable trace element evidence for proximal basaltic volcanism during carbonate deposition. This was followed by distal andesitic volcanism (Hälbich and Lamprecht, in preparation) in the transition zone, whereas Horstmann & Hälbich (submitted) find variations from basaltic to dacitic in tuffs from BIF. Any affinity to MORB is totally lacking. The most proximal basaltic tuffs appear farthest south (Altermann, 1991). This is once more an indication of a basin shallowing southwards.

5. Tectonics, ranging from very early soft sediment slumping, to at least two phases of severe north to eastward directed overthrusting have affected these BIF and the overlying Koegas Subgroup (Fig. 2) south of the Griquatown Fault. Regional greenschist grade and locally (in thrust zones) amphibolite grade metamorphism develops in the south. Bedding parallel thrusts have developed as far north as Kuruman (Fig. 1) (Altermann and Hälbich, 1990). The D2 thrust episode is dated at ~2000 Ma. Internal southward thickening of the BIF sequence by thin-skin, ramp-flat tectonics was found. The poorly exposed and therefore inferred Griquatown Fault is here interpreted as a major, northernmost thrust ramp. (Altermann and Hälbich, in press). South of this ramp bedding parallel shear zones in BIF are commonly enriched in riebeckite. Sodium enrichment along southward dipping movement planes is more evidence for an earlier southward shallowing of the waterbody where more sabkha-like conditions may have prevailed over a wide coastal strip for a time span of 10^6 years. Probable evaporite crystal vugs detected in cherts below the Kuruman I.F. near Prieska (Hälbich and Altermann, 1991) substantiate this conclusion. These evaporite contributions were instrumental in preferential triggering of thrusts in the BIF. Evidence of wide spread alkaline playa lake occurrences on the Kaapvaal Craton dates back to Ventersdorp (Seekoebaart times - Figure 2) (Karpeta, 1989).

6. The conformably overlying Koegas Subgroup (Fig. 1) has only developed south of the Griquatown Fault, and displays fine grained, upward coarsening deltaic cycles. Transport directions and sedimentological details have not yet been established. It is also thrust in the far south and marks the closing episode of the shallow water sequence of the Ghaap Group. Finally, this Group was uplifted and eroded on a regional scale before being covered up by the continental Makganyene diamictite. After further erosion the Ongeluk basaltic to andesitic lavas (Schütt and Cornell, 1990) poured out under shallow marine conditions 2230 Ma ago.

3. CONCLUSION

Except for the Campbell carbonates and possibly some of the elastics and thin carbonates of the basal Schmidtsdrift Subgroup, marine conditions need not be invoked to explain the genesis of the Ghaap Group and its iron ore precursors.

REFERENCES

Altermann, W. 1991. Sedimentary and geochemical characteristics of tuff layers in the Lower...

Author index

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akgdemir, N.</td>
<td>157</td>
</tr>
<tr>
<td>Ainardi, R.</td>
<td>503</td>
</tr>
<tr>
<td>Ait Kassi, M.</td>
<td>477</td>
</tr>
<tr>
<td>Albarde, E.</td>
<td>609</td>
</tr>
<tr>
<td>Albison, T.F.</td>
<td>209</td>
</tr>
<tr>
<td>Altermann, W.</td>
<td>287</td>
</tr>
<tr>
<td>Alves da Silva, F.C.</td>
<td>439</td>
</tr>
<tr>
<td>Aoudjehane, M.</td>
<td>419</td>
</tr>
<tr>
<td>Appiah, H.</td>
<td>641</td>
</tr>
<tr>
<td>Arcos, D.</td>
<td>633</td>
</tr>
<tr>
<td>Arnold, M.</td>
<td>341</td>
</tr>
<tr>
<td>Arribas, A.</td>
<td>213</td>
</tr>
<tr>
<td>Arribas Jr, A.</td>
<td>241</td>
</tr>
<tr>
<td>Atia, A. K.M.</td>
<td>605</td>
</tr>
<tr>
<td>Averkin, Yu. A.</td>
<td>13</td>
</tr>
<tr>
<td>Ayora, C.</td>
<td>135, 633</td>
</tr>
<tr>
<td>Baines, S.J.</td>
<td>507</td>
</tr>
<tr>
<td>Bankwitz, P.</td>
<td>493</td>
</tr>
<tr>
<td>Baranger, P.</td>
<td>511</td>
</tr>
<tr>
<td>Barnes, H.L.</td>
<td>527</td>
</tr>
<tr>
<td>Bastos, A.C.</td>
<td>423</td>
</tr>
<tr>
<td>Bastrakov, E.N.</td>
<td>151</td>
</tr>
<tr>
<td>Bau, M.</td>
<td>17</td>
</tr>
<tr>
<td>Beaudoin, G.</td>
<td>245</td>
</tr>
<tr>
<td>Bechtel, A.</td>
<td>291</td>
</tr>
<tr>
<td>Begun, G.M.</td>
<td>99</td>
</tr>
<tr>
<td>Behr, H.J.</td>
<td>57</td>
</tr>
<tr>
<td>Belhaj, O.</td>
<td>161, 205</td>
</tr>
<tr>
<td>Belkasi, M.</td>
<td>729</td>
</tr>
<tr>
<td>Bell, J.S.</td>
<td>527</td>
</tr>
<tr>
<td>Benton, L. D.</td>
<td>209</td>
</tr>
<tr>
<td>Benvenuti, M.</td>
<td>249</td>
</tr>
<tr>
<td>Berbelec, I.</td>
<td>637</td>
</tr>
<tr>
<td>Bergamim Filho, H.</td>
<td>297</td>
</tr>
<tr>
<td>Berthein, J.</td>
<td>561</td>
</tr>
<tr>
<td>Bilal, E.</td>
<td>733</td>
</tr>
<tr>
<td>Billström, K.</td>
<td>253</td>
</tr>
<tr>
<td>Binda, P.L.</td>
<td>359, 515</td>
</tr>
<tr>
<td>Bjorlykke, A.</td>
<td>257</td>
</tr>
<tr>
<td>Boadi, I.O.</td>
<td>641</td>
</tr>
<tr>
<td>Boiron, M.C.</td>
<td>653, 677, 723</td>
</tr>
<tr>
<td>Bonhomme, M.G.</td>
<td>381</td>
</tr>
<tr>
<td>Bortnikov, N.S.</td>
<td>165</td>
</tr>
<tr>
<td>Both, R.A.</td>
<td>213</td>
</tr>
<tr>
<td>Bottero, J.Y.</td>
<td>599</td>
</tr>
<tr>
<td>Bottrell, S.H.</td>
<td>285</td>
</tr>
<tr>
<td>Bouchot, V.</td>
<td>427</td>
</tr>
<tr>
<td>Bouglé, J.</td>
<td>107, 277</td>
</tr>
<tr>
<td>Boulin, S.N.</td>
<td>605</td>
</tr>
<tr>
<td>Boyce, A.J.</td>
<td>261</td>
</tr>
<tr>
<td>Boyd, R.</td>
<td>627</td>
</tr>
<tr>
<td>Boyle, D.R.</td>
<td>647</td>
</tr>
<tr>
<td>Briqueu, L.</td>
<td>107</td>
</tr>
<tr>
<td>Burley, S.D.</td>
<td>507</td>
</tr>
<tr>
<td>Burmeau, A.</td>
<td>87</td>
</tr>
<tr>
<td>Caballero, J.M.</td>
<td>143</td>
</tr>
<tr>
<td>Canals, A.</td>
<td>265</td>
</tr>
<tr>
<td>Cardellach, E.</td>
<td>135, 265</td>
</tr>
<tr>
<td>Cardile, C.M.</td>
<td>707</td>
</tr>
<tr>
<td>Casquet, C.</td>
<td>143</td>
</tr>
<tr>
<td>Cassard, D.</td>
<td>431</td>
</tr>
<tr>
<td>Castaing, C.</td>
<td>435</td>
</tr>
<tr>
<td>Cathelineau, M.</td>
<td>69, 465, 653, 677, 681</td>
</tr>
<tr>
<td>Cembranos, M.L.</td>
<td>569</td>
</tr>
<tr>
<td>Cerény, P.</td>
<td>737</td>
</tr>
<tr>
<td>Charef, A.</td>
<td>269, 277</td>
</tr>
<tr>
<td>Charoy, B.</td>
<td>741, 793</td>
</tr>
<tr>
<td>Charvet, J.</td>
<td>423</td>
</tr>
<tr>
<td>Chaudhuri, S.</td>
<td>377</td>
</tr>
<tr>
<td>Chaussidon, M.</td>
<td>609</td>
</tr>
<tr>
<td>Chauvet, A.</td>
<td>439</td>
</tr>
<tr>
<td>Cheilletz, A.</td>
<td>373</td>
</tr>
<tr>
<td>Chemale Jr, F.</td>
<td>485</td>
</tr>
<tr>
<td>Chernyshev, I.V.</td>
<td>301</td>
</tr>
<tr>
<td>Chevé, S.R.</td>
<td>685</td>
</tr>
<tr>
<td>Christofides, G.</td>
<td>775</td>
</tr>
<tr>
<td>Clauer, N.</td>
<td>377</td>
</tr>
<tr>
<td>Cliff, R.A.</td>
<td>285</td>
</tr>
<tr>
<td>Cocherie, A.</td>
<td>745</td>
</tr>
<tr>
<td>Coelho, C.E.S.</td>
<td>439</td>
</tr>
<tr>
<td>Colman, T.B.</td>
<td>309</td>
</tr>
<tr>
<td>Concheri, G.</td>
<td>515</td>
</tr>
<tr>
<td>Cortecchi, G.</td>
<td>249</td>
</tr>
<tr>
<td>Costagliola, P.</td>
<td>249</td>
</tr>
<tr>
<td>Courjault-Radé, P.</td>
<td>205</td>
</tr>
<tr>
<td>Covenev Jr, R.M.</td>
<td>531</td>
</tr>
<tr>
<td>Cristini, A.</td>
<td>273</td>
</tr>
<tr>
<td>Cross, K.C.</td>
<td>395</td>
</tr>
<tr>
<td>Croudace, I.W.</td>
<td>833</td>
</tr>
<tr>
<td>Cuney, M.</td>
<td>409, 729, 751, 771, 793</td>
</tr>
<tr>
<td>Danurand, J.L.</td>
<td>45</td>
</tr>
<tr>
<td>Dardenne, M.A.</td>
<td>423, 665</td>
</tr>
<tr>
<td>Delgado, J.</td>
<td>135</td>
</tr>
<tr>
<td>Demange, M.</td>
<td>21, 443</td>
</tr>
<tr>
<td>Dermch, M.</td>
<td>277</td>
</tr>
<tr>
<td>Di Gregorio, F.</td>
<td>273</td>
</tr>
<tr>
<td>Disnar, J.R.</td>
<td>511</td>
</tr>
<tr>
<td>Dissanayake, C.B.</td>
<td>473</td>
</tr>
<tr>
<td>Distanova, A.N.</td>
<td>821</td>
</tr>
<tr>
<td>Dobbe, R.T.M.</td>
<td>25</td>
</tr>
<tr>
<td>Dodge, P.</td>
<td>235</td>
</tr>
<tr>
<td>Doherty, W.</td>
<td>9</td>
</tr>
<tr>
<td>Dorling, M.</td>
<td>223</td>
</tr>
<tr>
<td>Dos Santos, R.P.</td>
<td>381</td>
</tr>
<tr>
<td>Drennan, G.R.</td>
<td>681</td>
</tr>
<tr>
<td>Dubessy, J.</td>
<td>87, 681</td>
</tr>
<tr>
<td>Durasova, N.A.</td>
<td>29</td>
</tr>
<tr>
<td>Eikenberg, J.</td>
<td>385</td>
</tr>
<tr>
<td>Escalier des Orres, P.</td>
<td>65</td>
</tr>
<tr>
<td>Essarraj, S.</td>
<td>653</td>
</tr>
<tr>
<td>Evagelou, E.</td>
<td>775</td>
</tr>
<tr>
<td>Fallick, A.E.</td>
<td>261, 313</td>
</tr>
<tr>
<td>Faure, M.</td>
<td>439</td>
</tr>
<tr>
<td>Fedorenko, V.</td>
<td>9</td>
</tr>
<tr>
<td>Feely, M.</td>
<td>181</td>
</tr>
<tr>
<td>Fehn, U.</td>
<td>257</td>
</tr>
<tr>
<td>Féraud, G.</td>
<td>373</td>
</tr>
<tr>
<td>Fernández, R.R.</td>
<td>33</td>
</tr>
<tr>
<td>Ferrara, C.</td>
<td>273</td>
</tr>
<tr>
<td>Filippidis, A.</td>
<td>775</td>
</tr>
<tr>
<td>Fojt, B.</td>
<td>535</td>
</tr>
<tr>
<td>Fonteilles, M.</td>
<td>733</td>
</tr>
<tr>
<td>Förster, H.-J.</td>
<td>231, 825</td>
</tr>
<tr>
<td>Fortes, P.T.F.O.</td>
<td>665</td>
</tr>
<tr>
<td>Fortune, J.P.</td>
<td>161</td>
</tr>
<tr>
<td>Foster, R.P.</td>
<td>833</td>
</tr>
<tr>
<td>Fouquet, Y.</td>
<td>615</td>
</tr>
<tr>
<td>Foxford, K.A.</td>
<td>447</td>
</tr>
<tr>
<td>Franci, J.</td>
<td>585</td>
</tr>
<tr>
<td>Franklin, B.J.</td>
<td>619</td>
</tr>
<tr>
<td>Franzke, H.J.</td>
<td>451</td>
</tr>
</tbody>
</table>
Pflumio, C. 107
Piantone, P. 113
Piestrzyński, A. 197, 581
Plant, J.A. 309
Plimer, R.J. 785
Pollard, P.J. 729, 789, 793
Polya, D.A. 447
Pothier, P. 477
Poty, B. 465, 653
Poupeau, G. 409
Prokof'ev, V.Ju. 165
Puclhet, H. 593
Pulz, G.M. 117
Püttrmann, W. 291
Quednau, M. 699
Raimbault, L. 729, 793
Raith, J.G. 797
Redecke, P. 481
Ribeiro de Almeida, T.I. 297
Rice, C. 261
Rickard, D. 3, 333
Robb, L.J. 681
Roda Robles, E. 801
Rodriguez, C.T. 373
Rogers, G. 333
Rojković, I. 585
Romer, R.L. 337
Ronchi, L.H. 665
Rossière, C.A. 485
Rossi, P. 745
Ruiz de Almodóvar, G. 123
Rundhøvde, E. 627
Rupasinghe, M.S. 473
Rybachikov, I.D. 29, 119
Sáez, R. 123
Saini-Eidukat, B. 127
Salazkin, A.N. 79
Salemink, J. 131, 807
Salim, J. 131
Sänger-von Oepen, P. 703
Sangster, D.F. 245, 257, 413
Santos, M.M. 665
Saupé, F. 341
Sawłowicz, Z. 589
Schilka, W. 345
Schmitt, J.-M. 489
Schneider, H.-J. 699
Schott, J. 45
Schwanold, G. 623
Schwartz, M.O. 811
Scudeler Baccelle, L. 515
Seller, E. 653
Seltsmann, R. 345, 493
Serment, R. 21
Seward, T.M. 707
Sheppard, S.M.F. 269, 609
Simmons, K.R. 405
Sklavenos, S. 523
Sobolev, R.N. 815
Soler, A. 135, 633
Song, X. 367
Sönnmez Sayili, I. 157
Speczik, S. 709
Spiegel, W. 53, 817
Stein, H.J. 349
Stemprok, M. 745
Stenina, N.G. 227, 821
Stribny, B. 593
Stumpf, E.F. 83
Sundblad, K. 355
Sureau, J.F. 113
Swainbank, I.G. 309, 333
Sweeney, M.A. 139, 313, 359
Symons, D.T.A. 413
Sztacho, P. 235
Tanelli, G. 249
Taylor, B.E. 245
Taylor, R. P. 789
Thalhammer, O.A.R. 363
Thibiéroz, J. 497
Thillier, C. 443
Thomas, F. 599
Thomas, R. 231
Tietze, J. 157
Tischendorf, G. 231, 825
Tollon, F. 205
Tornos, F. 143
Tosdal, R.M. 241
Toul, A. 21
Touray, J.C. 423, 439
Trumbull, R.B. 829
Tsaryeva, G.M. 7
Turner, P. 139
Vaughan, D.J. 139, 359
Vavelidis, M. 523, 775
Vearncombe, J.R. 661
Velasco Roldán, F. 801
Verkaeren, J. 131, 807
Viane, W. 201
Vivallo, W. 281
Vokes, F.M. 627
Wagner, F.E. 677
Wang, C.S. 833
Wierchowiec, J. 709
Williams-Jones, A.E. 95, 767
Woitsekhovskaya, M.B. 715
Wood, S.A. 147
Wooden, J.L. 241
Xia, W.H. 833
Ypma, P.J. 719
Žák, K. 235
Zhang, J.T. 833
Zharikov, V.A. 151
Zouhair, M. 723