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ABSTRACT
Larvae of malacostracan crustaceans represent a large fraction of modern day zoo-
plankton. Plankton is not only a major part of the modern marine ecosystem, but must
have played an important role in the ecosystems of the past as well. Unfortunately, our
knowledge about plankton composition of the past is still quite limited. As an important
part of today’s zooplankton, malacostracan larvae are still a rarity in the fossil record;
many types of malacostracan larvae dominating the modern plankton have so far not
been found as fossils. Here we report a new type of fossil malacostracan larva, found
in the 150 million years old lithographic limestones of southern Germany (Solnhofen
Lithographic Limestones). The three rather incomplete specimens mainly preserve the
telson. A pronounced middle spine on the posterior edge of these specimens indicates
that they are either larval forms of a clawed lobster or of an axiidean lobster, or of a closer
relative to one of the two groups. The tergo-pleura are drawn out into distinct spines
in one specimen, further supporting the interpretation as a larva of a clawed lobster
or an early relative. The telson morphology also shows adaptations to a prolonged
planktic life style, the latero-posterior edges are drawn out into distinct spines. Similar
adaptations are known in larvae of the modern homarid lobster Nephrops norvegicus,
not necessarily indicating a closer relationship, but convergent life styles. The new finds
provide an important new insight into the composition of Mesozoic zooplankton and
demonstrate the preservation potential of lithographic limestones.
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INTRODUCTION
Plankton describes the entirety of organisms floating in thewater columnwithout the ability
to actively swim against the current. Plankton has been recognised as an important basis for
marine ecosystems inmodern seas. Our understanding of changes in plankton composition
are therefore important in modern conservation biology and ecology, but are also of
economic importance (e.g., Duffy & Stachowicz, 2006; Torres et al., 2013; Sardet, 2015).

For long-time comparisons of changes in plankton composition, data of fossil plankton
is of major interest. Plankton must have been similarly important in the past as it is today.
Unfortunately, our knowledge of plankton in the past is often limited to very specific groups
of organisms, namely those with strongly sclerotised and/or mineralised morphological
structures, or those composed of certain decay-resisting substances such as resting cysts

How to cite this article Haug and Haug (2017), A new glimpse on Mesozoic zooplankton—150 million-year-old lobster larvae. PeerJ
5:e2966; DOI 10.7717/peerj.2966

https://peerj.com
mailto:joachim.haug@palaeo-evo-devo.info
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.2966
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.2966


and the like (examples in, e.g. Lipps, 1970; Tappan & Loeblich, 1973; Leckie, 2009), while
such groups dominating the modern plankton (often lacking easily preservable structures)
have a very scarce or absent fossil record (e.g., Signor & Vermeij, 1994; Rigby & Milsom,
2000; Perrier, Williams & Siveter, 2015). It is nevertheless already possible to recognise that
the plankton composition was quite different in the past (e.g., Nützel & Frýda, 2003; De
Baets et al., 2012; Ritterbush et al., 2014; Servais et al., 2015).

In modern seas, crustaceans are a major part of the zooplankton. Among these we
especially need to mention copepod crustaceans and larval stages of malacostracan
crustaceans. Copepods are mainly a part of the microplankton, while decapod larvae
additionally include forms of meso- and macroplankton.

So what about the fossil record of these groups? Fossil copepods are extremely rare.
They are limited to only few instances (Palmer, 1960; Cressey & Patterson, 1973; Cressey
& Boxshall, 1989; Bennike, 1998; Huys et al., 2016), often only very incomplete (Selden et
al., 2010) or indirect findings (Radwańska & Radwański, 2005; Radwańska & Poirot, 2010).
Malacostracan larvae are also rare in the fossil record, but new forms have been repetitively
identified in recent years (e.g., Haug, Haug & Ehrlich, 2008; Haug et al., 2011a; Haug,
Ahyong & Haug, 2014; Haug, Martin & Haug, 2015; Haug, Wiethase & Haug, 2015; Haug
et al., 2015;Hyžný, Haug & Haug, 2016) and are currently limited to the Mesozoic. Despite
their rarity, each of these finds marks another important data point for our understanding
of plankton in the past.

Due to preservation biases, large larval forms appear to be more commonly found as
fossils, not necessarily representing the original composition of the fauna, or the true
diversity. The most commonly found fossil malacostracan larvae are consequently the
super-sized larvae of spiny lobsters and slipper lobsters (with up to 150 mm in the extant
fauna). These are represented by at least a dozen different forms (Polz, 1984;Polz, 1995;Polz,
1996; Haug et al., 2013a; Haug & Haug, 2016), some known from thousands of individuals
(Polz, 1971; Polz, 1972; Polz, 1973) and occurring in at least three Lagerstätten (Polz, 1984;
Pasini & Garassino, 2009; Tanaka et al., 2009; Haug et al., 2011a). Other more uncommon
fossils are also giant larval froms like those of the raptorial mantis shrimps (Haug, Haug
& Ehrlich, 2008; Haug et al., 2009; Haug et al., 2010; Haug, Ahyong & Haug, 2014; Haug,
Wiethase & Haug, 2015) or the polychelidan lobsters (today only represented by a relic
group, mostly restricted to the deep sea; Haug et al., 2015; Eiler, Haug & Haug, 2016).
Groups of larvae dominating the modern plankton, like larvae of true crabs, false crabs
and their relatives (Meiura = Brachyura and Anomala, the latter also called Anomura),
are very rare on the other hand (Luque, 2015; Haug, Martin & Haug, 2015; Hyžný, Haug &
Haug, 2016), as their larvae are significantly smaller and more unlikely to be preserved.

Brachyuran and anomalan crustaceans are ‘‘still on their way’’ in the Mesozoic, only
diversifying in the later Mesozoic (see discussion in Haug, Martin & Haug, 2015). It is
therefore not to be expected that their larvae were as abundant as in modern oceans.
Instead the lobster-like crustaceans, especially polychelidan and clawed lobsters (and their
relatives) were dominating parts of the faunas as adults, especially in the mid-Mesozoic,
hence the Jurassic. We should therefore expect that larval forms of these groups have
represented important parts of the Jurassic plankton. Yet, so far no definite fossils of
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Figure 1 Entire material of larval specimens, composite-fluorescence micrographs. All three specimens
shown in the same scale to allow relative size comparison. Matrix digitally removed for clarity.

such planktic larvae have been identified. Possible late larvae of Jurassic polychelidans are
late transitory stages, not the truly planktic ones (Eiler & Haug, 2016). Some fragmentary
specimens have been discussed as possible remains of small malacostracans (Haug et al.,
2011a; Haug, Ahyong & Haug, 2014) and might well be parts of larvae of clawed lobsters,
but due to the limitations of preservation this must remain speculative.

Here we report the first definite finds of zoea-type larvae of clawed lobsters, hence
truly planktic larval forms of this group. We discuss the impact of this new finding on
reconstructing the plankton composition in the past and how this finding influences our
strategies for detecting further material of fossil malacostracan larvae.

MATERIAL AND METHODS
Material
Three specimens were available for this study (Fig. 1). All originate from the private
collection of Roger Frattigiani, Laichingen, and are now deposited in the Staatliches
Museum für Naturkunde Stuttgart (SMNS 70353/1, 70353/2, 70353/3). Specimens were
originally found in the Birkhof quarry in the Blumenberg area near Eichstätt (Solnhofen
Lithographic Limestones, Upper Jurassic, Tithonian, Hybonotum zone, Riedense subzone;
Schweigert, 2007). For comparison an extant albuneid zoea from the collections of the
Muséum national d’Histoire naturelle Paris was documented (MNHN IU-2014-5527).
High-resolution images of the specimens are available at https://www.morphdbase.de/
(C_Haug_20161213-M-5.1, C_Haug_20161213-M-6.1, C_Haug_20161213-M-7.1,
C_Haug_20161213-M-9.1).
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Documentation method
All specimens were documented on aKeyence BZ-9000 inverse epifluorescencemicroscope,
exploiting the autofluorescence of the fossils (Haug et al., 2011b). Blue–green fluorescence
(GFP) was used instead of the commonly used UV fluorescence (e.g., Tischlinger & Arratia,
2013). UV fluorescence is often unfortunate due to dust, which shows a very strong
fluorescence and is in many cases not removable from the fossils. This is especially true for
the comparably high magnifications as applied here (4× objective lens, resulting in 40×
magnification). Due to the magnification, depth of field and field of view were limited. To
overcome these limitations, several stacks of images for several adjacent image details were
recorded (see details Haug, Haug & Ehrlich, 2008). Additionally, in some areas where the
fluorescence capabilites differed strongly, two stacks were recorded, each with a different
exposure time (Haug et al., 2013b).

Image processing
Stacks of images were fused to sharp images with CombineZP. Fused images were stitched
to panoramas using the photomerge function of Adobe Photoshop CS3 or Elements 11.
Images of different exposure times were combined into a single evenly illuminated image
following the procedure described in Haug et al. (2013b).

RESULTS
Specimen 1 (SMNS 70353/1)
Specimen 1 is most complete, but still largely represents fragmentary remains (Fig. 2).
The overall colour and texture of the surface already clearly indicate that these fragments
are the remains of a crustacean (although these characters are hard to quantify, they are
significantly different to those in co-occurring groups such as insects, echinoderms or
fishes, or also in strongly calcified crustaceans such as isopods). This is also in concordance
with the preserved structures.

Most anteriorly a shield structure is apparent. It appears to be embedded in a dorso-
lateral orientation. The anterior rim is drawn out into a distinct but stout rostrum. Along
the edge at least two spines are apparent (Fig. 2A). Close to the shield an elongate structure
is preserved composed of five elements. Further distal elements are narrower than proximal
ones. The structure most likely represents the flagellum of an antennula or antenna. Close
to the posterior part of the shield, a piece of rectangular outline is apparent, most likely
representing an isolated element of one of the trunk appendages (posterior thoracopods,
‘‘pereiopods’’).

The posterior trunk (pleon) is incompletely preserved and an isolated piece is interpreted
as the tergite of pleon segment 3. It is domed and the latero-posterior edges are drawn
out into distinct spines. Medially along the posterior rim a posteriorly pointing spine is
apparent.

The next posterior preserved piece resembles the tergite of pleon segment 3 in overall
morphology and is interpreted as the tergite of pleon segment 5. It is slightly larger than
the tergite of pleon segment 3, also the spines are more pronounced.

Haug and Haug (2017), PeerJ, DOI 10.7717/peerj.2966 4/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.2966


Figure 2 Specimen 1 (SMNS 70353/1), composite-fluorescence micrographs. (A) Overview of entire
specimen, although incomplete showing general organisation; arrows mark small spines. (B) Close-up on
posterior rim of telson; arrowheads point to small hair-like structures or setae. Abbreviations: fl?, possi-
ble flagellum of antennula or antenna; hs, head shield; ms, median spine; pls, postero-lateral spine; ps3, 5,
pleon segment 3, 5; pt, pleotelson; rs, rostrum; sp, spine; ur, uropod.

Articulated to pleon segment 5 is an elongated part posterioly extending into a more or
less triangular structure. This is interpreted as a compound part of pleon segment 6 and
the telson, hence a pleotelson. The posterior part of the pleon segment is partly twisted,
and folded onto itself. Still the triangular outline (in dorsal view) of the telson is apparent.
The posterior rim bears a prominent median spine (Fig. 2B). Left and right to it numerous
hair-like structures are apparent. It remains unclear whether these are jointed (true setae) or
not (trichomes). The latero-posterior corners are drawn out into elongate distally tapering
spines. Close to the base of each large spine, on its median side, slightly laterally from the
hair-like structures is a smaller spine, about the same length as the hair-like structures but
more massive.

Specimen 2 (SMNS 70353/2)
In comparison to specimen 1, specimen 2 is clearly identified as an isolated telson (Figs.3A–
3D). It strongly resembles the posterior part of the pleotelson of specimen 1, but is not
twisted and therefore provides additional structural information. The overall size is similar
to that of specimen 1. The outline is strongly triangular in dorsal view. The anterior edges,
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Figure 3 Specimens 2 (SMNS 70353/2) and 3 (SMNS 70353/3), each representing an isolated posterior
part of a pleotelson (=telson) composite-fluorescence micrographs. (A)–(D) Specimen 2. (A)
Overview; arrows mark small spines. (B) Close-up on left lateral rim of telson; arrow points to small
spine. (C) Close-up on right lateral rim of telson. (D) Close-up on left posterior rim of telson. (E–G)
Specimen 3. (E) Overview; arrow marks small spines. (F) Close-up on right lateral rim of telson. (G)
Close-up on left posterior rim of telson. Abbreviations: ms, median spine; pls, postero-lateral spine; set,
hair-like structures or setae; sp, spine; ur, uropod.

most likely marking the transition to pleon segment 6 are marked by a pair of laterally
extending small spines (Fig. 3A).

Postero-lateral edges are drawn out into massive spines, forming a shallow angle. The
number of hair-like structures along the posterior rim is 13 per side (Fig. 3D). They are all
roughly the same length and the distances between them appear evenly distributed.

Remains of the uropods appear to be preserved left and right to the telson (Figs. 3B
and 3C). Most likely these remains represent the outer, stronger sclerotised edges of the
exopods. One small spine appears to be preserved close to the distal end on the posterior
surface of the exopod.

Specimen 3 (SMNS 70353/3)
This specimen strongly resembles specimen 2 and is therefore also interpreted as an isolated
telson (Figs. 3E–3G). Size, general morphology and number of structures are all similar to
specimen 2. Yet, it is not as complete; for example, the posterior edge right to the median
spine is broken. It differs from specimen 2 only in the angle of the posterior spines. These
form a much narrower angle, as they point less far laterally, but more posteriorly.
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DISCUSSION
Systematic interpretation
The specimens are considered conspecific, but differ in the angle between the postero-lateral
spines. As all specimens have a similar overall size of the telson region (Fig. 1), it seems
unlikely that this difference is a ontogenetic one indicating the presence of several instars.
By comparison to modern forms it seems most likely that the spines originally had a certain
flexibility and that the difference in angle reflects a preservational difference. We therefore
see no possibility to diagnose different forms and see conspecifity as the most parsimonious
explanation.

The overall morphology of the specimens indicates that they represent larval
malacostracans. An important character in this aspect is the pronounced middle spine
of the posterior edge of the telson. In adult malacostracans the telson is often elongate
triangular in dorsal view, but with the tip pointing posteriorly, or rectangular to square-
shaped in dorsal view. In many larval forms, for example, in decapods, the telson appears
forked with a pronounced median indent or, similar to the adults, rectangular, with an
evenly armed posterior edge (Martin, Olesen & Høeg, 2014). Forward pointing triangular to
tapezoid/trapezium telson shapes with a pronounced median spine occur in modern forms
only in larvae of nephropid or axiidean lobsters (Fig. 4). The latter seem to lack tergo-pleura
drawn out into posteriorly pointing spines on the pleon (Dos Santos & González-Gordillo,
2004; Pohle & Santana, 2014). As such spines are present in one of the fossils and inmodern
nephropid lobsters (Jorgensen, 1925; Wear, 1976; Smith, 1987; Goy, 2014), the fossil larvae
most likely represent larvae of clawed lobsters, i.e., nephropids or now extinct relatives
of them.

The difficulties with ‘clawed lobsters’
Modern clawed lobsters comprise the true lobsters and the reef lobsters, yet quite a number
of fossil forms also resembles clawed lobsters, such as erymid or glypheid lobsters, in
general habitus (e.g., Garassino & Schweigert, 2006; Charbonnier et al., 2013; Charbonnier
et al., 2015; Bracken-Grissom et al., 2014; Hyžný et al., 2015; Schweitzer et al., 2016). The
exact relationship of these groups remains still partly unclear (see recent discussions
in Charbonnier et al., 2015; Hyžný et al., 2015). As also axiidean lobster larvae possess a
pronounced median spine on the posterior edge of the telson it is possible that this feature
characterises a larger group including erymid and glypheid lobsters. Therefore, we can
currently not be more precise with the systematic interpretation of the larvae described
herein. They may represent larval forms of nephropid, erymid or glypheid lobsters or a
form closely related to them.

Functional comparison
The telson of the new fossil larvae clearly shows adaptations to a prolonged life in the
pelagic realm. Such a life style requires morphological specialisations for staying in the
water column without loosing much energy, which means that the buoyancy needs to be
enhanced (e.g., Perrier, Williams & Siveter, 2015). This is especially important if the larvae
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Figure 4 Comparison of the new fossil larva with extant forms.New fossil larva as restoration in dorsal
aspect; each of the others as an isolated telson in dorsal view. Homarus gammarus (European lobster); zoea
III simplified from Rötzer & Haug (2015). Nephrops norvegicus (scampi, Kaisergranat); zoea III combined
from Smith (1987) and Jorgensen (1925).Metanephrops challengeri; late zoea simplified fromWear (1976).
Axius stirynchus; late zoea simplified from Dos Santos & González-Gordillo (2004, Fig. 2F). Undetermined
albuneid larva; late zoea simplified from Fig. 5.

reach relatively large body sizes such as the specimens investigated here (although they are
not as large as those of polychelidan or achelatan lobsters).

The investigated specimens bear pronounced latero-posterior spines on the telson, with
this distantly resembling the telson of larvae of Nephrops norvegicus (scampi). Here also
the latero-posterior corners of the telson are strongly drawn out into spines, even more
than in the fossils (Fig. 4). As other nephropids, N . norvegicus larvae also possess a median
spine on the posterior edge. The telson of N . norvegicus larvae is also triangular in dorsal
view, yet not as pronounced as in other nephropids (Jorgensen, 1925; Smith, 1987).

The overallmorphology of the telson of the fossils additionally shows an overall similarity
to the larvae of certain false sand crabs (Albuneidae; e.g., Knight, 1970; Stuck & Truesdale,
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Figure 5 Extant larva of an albuneid meiuran for functional comparison; cross-polarised macro im-
ages. Note the long postero-lateral spines on shield and telson and the triangular telson. (A) Lateral view
on left side. (B) Dorsal view on head shield. (C) Posterior view on anterior region; dorsal view on poste-
rior pleon and pleotelson; arrows mark spines. (D) Detail of the telson. Abbreviations: hs, head shield; pls,
postero-lateral spine; pt, pleotelson; set, hair-like structures or setae.

1986; Harvey et al., 2014), besides the fact that these lack the median spine (Figs. 4 and 5).
Still the overall shape is triangular, the corners are drawn out into spines and the posterior
edge is armed. We can assume that the specialised telson of the fossil larvae provided
additional buoyancy for the rather large larvae, similar to albuneid larvae.

Significance
The fossil record of arthropod zooplankton appears to be very incomplete (Perrier, Williams
& Siveter, 2015). In general, the overall reconstruction of fossil zooplankton seems based
largely on estimations, as especially the microplankton is in focus of different studies, while
the mesoplankton is usually less studied. Larvae are in such approaches rarely treated in
detail (Rigby & Milsom, 2000), and, although the fossil record of malacostracan larvae is
growing, it appears to be generally regarded as virtually absent (see recent review of Perrier,
Williams & Siveter, 2015)

Yet, arthropods do play an important role in the modern plankton, especially the larval
stages of malacostracans. As pointed out above, clawed lobsters and their relatives, i.e.,
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nephropid, erymid and glypheid lobsters represent an important part of the marine benthic
fauna in the Mesozoic. We should therefore expect that their larvae are a major share of
the plankton of that time. Finding such larvae is thus important for corroborating this
assumption.

As discussed above, the newly described specimens show adaptations for prolonged life
in the plankton and therefore will represent the upper threshold of size for such larvae.
Other larvae of clawed lobsters will be significantly smaller. The larvae furthermore most
likely represent only a single specialised form of a wider range of different types of larvae.
It has been demonstrated that zoea-type larvae of achelatan lobsters were morphologically
more diverse than the larvae of modern forms (Haug et al., 2013a). We can expect that
clawed lobster larvae also were morphologically more diverse, possibly similarly diverse to
larvae of modern meiuran forms.

The fossils demonstrate that it is possible to find such important components of the
plankton and also give an important hint what to look for. Haug et al. (2011a) suggested
that some incomplete remains represent isolated shields of larvae, as these might have had
a higher preservation potential. The fossils described herein show that quite the other end
of such a larva, the telson, might also have high preservation potential. Focused search for
such remains should provide additional insights into the plankton composition of the past.
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