

# A new glimpse on Mesozoic zooplankton—150 million-year-old lobster larvae

Joachim T. Haug and Carolin Haug

Department of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany  
GeoBio-Center, Ludwig-Maximilians-Universität München, Germany

## ABSTRACT

Larvae of malacostracan crustaceans represent a large fraction of modern day zooplankton. Plankton is not only a major part of the modern marine ecosystem, but must have played an important role in the ecosystems of the past as well. Unfortunately, our knowledge about plankton composition of the past is still quite limited. As an important part of today's zooplankton, malacostracan larvae are still a rarity in the fossil record; many types of malacostracan larvae dominating the modern plankton have so far not been found as fossils. Here we report a new type of fossil malacostracan larva, found in the 150 million years old lithographic limestones of southern Germany (Solnhofen Lithographic Limestones). The three rather incomplete specimens mainly preserve the telson. A pronounced middle spine on the posterior edge of these specimens indicates that they are either larval forms of a clawed lobster or of an axiidean lobster, or of a closer relative to one of the two groups. The tergo-pleura are drawn out into distinct spines in one specimen, further supporting the interpretation as a larva of a clawed lobster or an early relative. The telson morphology also shows adaptations to a prolonged planktic life style, the latero-posterior edges are drawn out into distinct spines. Similar adaptations are known in larvae of the modern homarid lobster *Nephrops norvegicus*, not necessarily indicating a closer relationship, but convergent life styles. The new finds provide an important new insight into the composition of Mesozoic zooplankton and demonstrate the preservation potential of lithographic limestones.

Submitted 27 September 2016

Accepted 7 January 2017

Published 2 February 2017

Corresponding author

Joachim T. Haug,  
joachim.haug@palaeo-evo-devo.info

Academic editor

Kenneth De Baets

Additional Information and  
Declarations can be found on  
page 10

DOI 10.7717/peerj.2966

© Copyright  
2017 Haug and Haug

Distributed under  
Creative Commons CC-BY 4.0

OPEN ACCESS

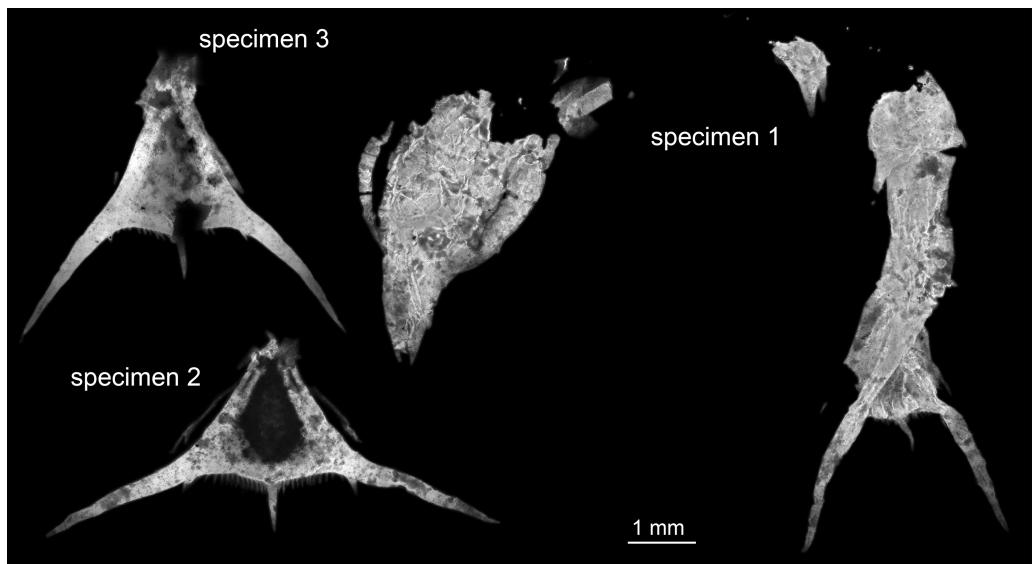
**Subjects** Developmental Biology, Ecology, Paleontology, Zoology

**Keywords** Nephropida, Upper jurassic, Homarida, Zoea, Solnhofen

## INTRODUCTION

Plankton describes the entirety of organisms floating in the water column without the ability to actively swim against the current. Plankton has been recognised as an important basis for marine ecosystems in modern seas. Our understanding of changes in plankton composition are therefore important in modern conservation biology and ecology, but are also of economic importance (e.g., *Duffy & Stachowicz, 2006*; *Torres et al., 2013*; *Sardet, 2015*).

For long-time comparisons of changes in plankton composition, data of fossil plankton is of major interest. Plankton must have been similarly important in the past as it is today. Unfortunately, our knowledge of plankton in the past is often limited to very specific groups of organisms, namely those with strongly sclerotised and/or mineralised morphological structures, or those composed of certain decay-resisting substances such as resting cysts


and the like (examples in, e.g. [Lipps, 1970](#); [Tappan & Loeblich, 1973](#); [Leckie, 2009](#)), while such groups dominating the modern plankton (often lacking easily preservable structures) have a very scarce or absent fossil record (e.g., [Signor & Vermeij, 1994](#); [Rigby & Milsom, 2000](#); [Perrier, Williams & Siveter, 2015](#)). It is nevertheless already possible to recognise that the plankton composition was quite different in the past (e.g., [Niützel & Fryda, 2003](#); [De Baets et al., 2012](#); [Ritterbush et al., 2014](#); [Servais et al., 2015](#)).

In modern seas, crustaceans are a major part of the zooplankton. Among these we especially need to mention copepod crustaceans and larval stages of malacostracan crustaceans. Copepods are mainly a part of the microplankton, while decapod larvae additionally include forms of meso- and macroplankton.

So what about the fossil record of these groups? Fossil copepods are extremely rare. They are limited to only few instances ([Palmer, 1960](#); [Cressey & Patterson, 1973](#); [Cressey & Boxshall, 1989](#); [Bennike, 1998](#); [Huys et al., 2016](#)), often only very incomplete ([Selden et al., 2010](#)) or indirect findings ([Radwańska & Radwański, 2005](#); [Radwańska & Poirot, 2010](#)). Malacostracan larvae are also rare in the fossil record, but new forms have been repetitively identified in recent years (e.g., [Haug, Haug & Ehrlich, 2008](#); [Haug et al., 2011a](#); [Haug, Ahyong & Haug, 2014](#); [Haug, Martin & Haug, 2015](#); [Haug, Wiethase & Haug, 2015](#); [Haug et al., 2015](#); [Hyžný, Haug & Haug, 2016](#)) and are currently limited to the Mesozoic. Despite their rarity, each of these finds marks another important data point for our understanding of plankton in the past.

Due to preservation biases, large larval forms appear to be more commonly found as fossils, not necessarily representing the original composition of the fauna, or the true diversity. The most commonly found fossil malacostracan larvae are consequently the super-sized larvae of spiny lobsters and slipper lobsters (with up to 150 mm in the extant fauna). These are represented by at least a dozen different forms ([Polz, 1984](#); [Polz, 1995](#); [Polz, 1996](#); [Haug et al., 2013a](#); [Haug & Haug, 2016](#)), some known from thousands of individuals ([Polz, 1971](#); [Polz, 1972](#); [Polz, 1973](#)) and occurring in at least three Lagerstätten ([Polz, 1984](#); [Pasini & Garassino, 2009](#); [Tanaka et al., 2009](#); [Haug et al., 2011a](#)). Other more uncommon fossils are also giant larval forms like those of the raptorial mantis shrimps ([Haug, Haug & Ehrlich, 2008](#); [Haug et al., 2009](#); [Haug et al., 2010](#); [Haug, Ahyong & Haug, 2014](#); [Haug, Wiethase & Haug, 2015](#)) or the polychelidan lobsters (today only represented by a relic group, mostly restricted to the deep sea; [Haug et al., 2015](#); [Eiler, Haug & Haug, 2016](#)). Groups of larvae dominating the modern plankton, like larvae of true crabs, false crabs and their relatives (Meiura = Brachyura and Anomala, the latter also called Anomura), are very rare on the other hand ([Luque, 2015](#); [Haug, Martin & Haug, 2015](#); [Hyžný, Haug & Haug, 2016](#)), as their larvae are significantly smaller and more unlikely to be preserved.

Brachyuran and anomalan crustaceans are “still on their way” in the Mesozoic, only diversifying in the later Mesozoic (see discussion in [Haug, Martin & Haug, 2015](#)). It is therefore not to be expected that their larvae were as abundant as in modern oceans. Instead the lobster-like crustaceans, especially polychelidan and clawed lobsters (and their relatives) were dominating parts of the faunas as adults, especially in the mid-Mesozoic, hence the Jurassic. We should therefore expect that larval forms of these groups have represented important parts of the Jurassic plankton. Yet, so far no definite fossils of



**Figure 1** Entire material of larval specimens, composite-fluorescence micrographs. All three specimens shown in the same scale to allow relative size comparison. Matrix digitally removed for clarity.

such planktic larvae have been identified. Possible late larvae of Jurassic polychelidans are late transitory stages, not the truly planktic ones (Eiler & Haug, 2016). Some fragmentary specimens have been discussed as possible remains of small malacostracans (Haug et al., 2011a; Haug, Ahyong & Haug, 2014) and might well be parts of larvae of clawed lobsters, but due to the limitations of preservation this must remain speculative.

Here we report the first definite finds of zoea-type larvae of clawed lobsters, hence truly planktic larval forms of this group. We discuss the impact of this new finding on reconstructing the plankton composition in the past and how this finding influences our strategies for detecting further material of fossil malacostracan larvae.

## MATERIAL AND METHODS

### Material

Three specimens were available for this study (Fig. 1). All originate from the private collection of Roger Frattigiani, Laichingen, and are now deposited in the Staatliches Museum für Naturkunde Stuttgart (SMNS 70353/1, 70353/2, 70353/3). Specimens were originally found in the Birkhof quarry in the Blumenberg area near Eichstätt (Solnhofen Lithographic Limestones, Upper Jurassic, Tithonian, Hybonotum zone, Riedense subzone; Schweigert, 2007). For comparison an extant albuneid zoea from the collections of the Muséum national d'Histoire naturelle Paris was documented (MNHN IU-2014-5527). High-resolution images of the specimens are available at <https://www.morphdbase.de/> (C\_Haug\_20161213-M-5.1, C\_Haug\_20161213-M-6.1, C\_Haug\_20161213-M-7.1, C\_Haug\_20161213-M-9.1).

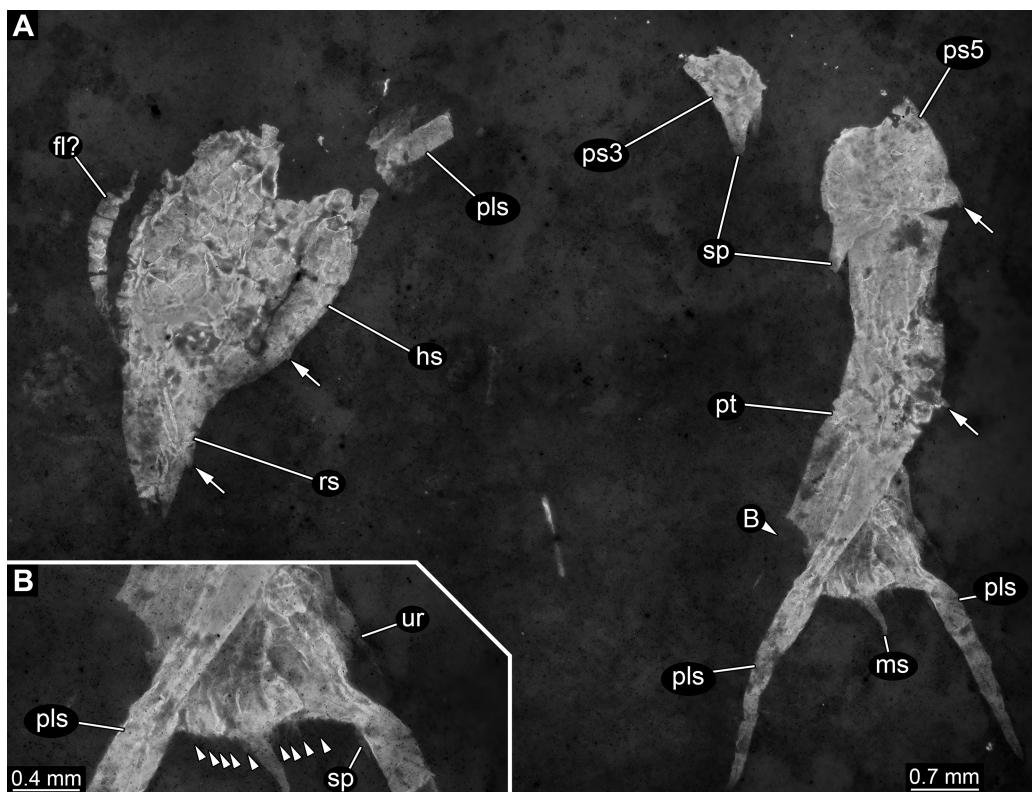
## Documentation method

All specimens were documented on a Keyence BZ-9000 inverse epifluorescence microscope, exploiting the autofluorescence of the fossils (Haug *et al.*, 2011b). Blue–green fluorescence (GFP) was used instead of the commonly used UV fluorescence (e.g., Tischlinger & Arratia, 2013). UV fluorescence is often unfortunate due to dust, which shows a very strong fluorescence and is in many cases not removable from the fossils. This is especially true for the comparably high magnifications as applied here (4× objective lens, resulting in 40× magnification). Due to the magnification, depth of field and field of view were limited. To overcome these limitations, several stacks of images for several adjacent image details were recorded (see details Haug, Haug & Ehrlich, 2008). Additionally, in some areas where the fluorescence capabilities differed strongly, two stacks were recorded, each with a different exposure time (Haug *et al.*, 2013b).

## Image processing

Stacks of images were fused to sharp images with CombineZP. Fused images were stitched to panoramas using the photomerge function of Adobe Photoshop CS3 or Elements 11. Images of different exposure times were combined into a single evenly illuminated image following the procedure described in Haug *et al.* (2013b).

## RESULTS

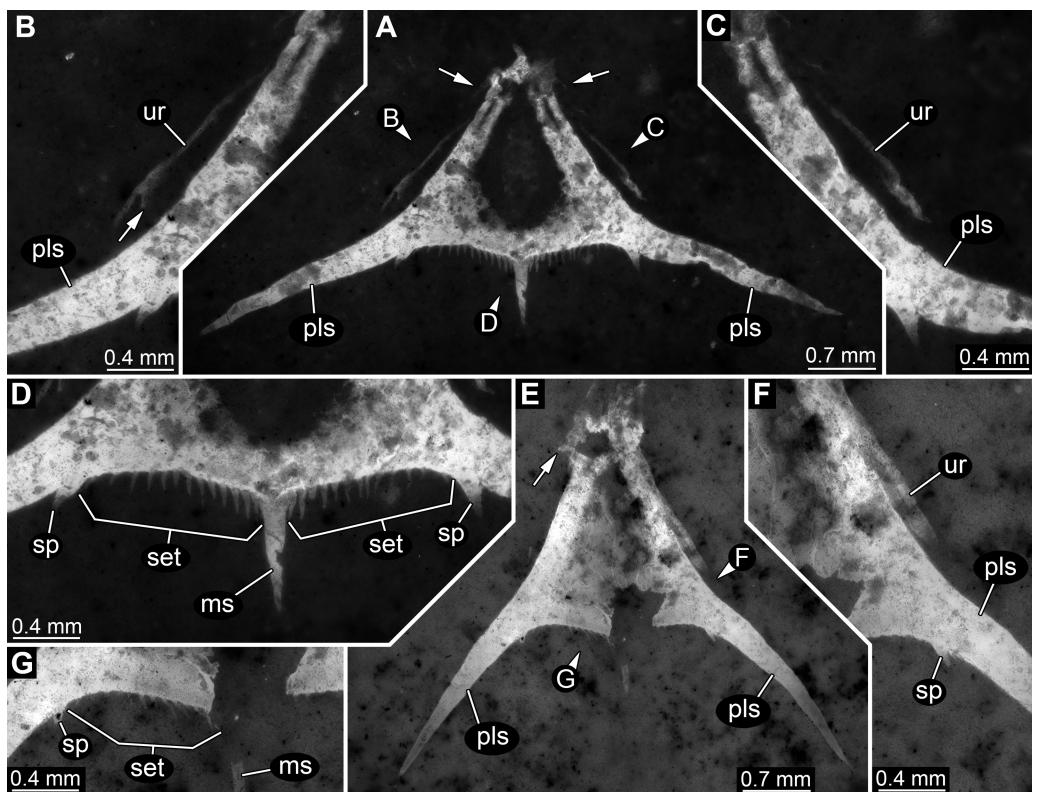

### Specimen 1 (SMNS 70353/1)

Specimen 1 is most complete, but still largely represents fragmentary remains (Fig. 2). The overall colour and texture of the surface already clearly indicate that these fragments are the remains of a crustacean (although these characters are hard to quantify, they are significantly different to those in co-occurring groups such as insects, echinoderms or fishes, or also in strongly calcified crustaceans such as isopods). This is also in concordance with the preserved structures.

Most anteriorly a shield structure is apparent. It appears to be embedded in a dorso-lateral orientation. The anterior rim is drawn out into a distinct but stout rostrum. Along the edge at least two spines are apparent (Fig. 2A). Close to the shield an elongate structure is preserved composed of five elements. Further distal elements are narrower than proximal ones. The structure most likely represents the flagellum of an antennula or antenna. Close to the posterior part of the shield, a piece of rectangular outline is apparent, most likely representing an isolated element of one of the trunk appendages (posterior thoracopods, “pereiopods”).

The posterior trunk (pleon) is incompletely preserved and an isolated piece is interpreted as the tergite of pleon segment 3. It is domed and the latero-posterior edges are drawn out into distinct spines. Medially along the posterior rim a posteriorly pointing spine is apparent.

The next posterior preserved piece resembles the tergite of pleon segment 3 in overall morphology and is interpreted as the tergite of pleon segment 5. It is slightly larger than the tergite of pleon segment 3, also the spines are more pronounced.




**Figure 2** Specimen 1 (SMNS 70353/1), composite-fluorescence micrographs. (A) Overview of entire specimen, although incomplete showing general organisation; arrows mark small spines. (B) Close-up on posterior rim of telson; arrowheads point to small hair-like structures or setae. Abbreviations: fl?, possible flagellum of antenna or antenna; hs, head shield; ms, median spine; pls, postero-lateral spine; ps3, 5, pleon segment 3, 5; pt, pleotelson; rs, rostrum; sp, spine; ur, uropod.

Articulated to pleon segment 5 is an elongated part posterioly extending into a more or less triangular structure. This is interpreted as a compound part of pleon segment 6 and the telson, hence a pleotelson. The posterior part of the pleon segment is partly twisted, and folded onto itself. Still the triangular outline (in dorsal view) of the telson is apparent. The posterior rim bears a prominent median spine (Fig. 2B). Left and right to it numerous hair-like structures are apparent. It remains unclear whether these are jointed (true setae) or not (trichomes). The latero-posterior corners are drawn out into elongate distally tapering spines. Close to the base of each large spine, on its median side, slightly laterally from the hair-like structures is a smaller spine, about the same length as the hair-like structures but more massive.

### Specimen 2 (SMNS 70353/2)

In comparison to specimen 1, specimen 2 is clearly identified as an isolated telson (Figs. 3A–3D). It strongly resembles the posterior part of the pleotelson of specimen 1, but is not twisted and therefore provides additional structural information. The overall size is similar to that of specimen 1. The outline is strongly triangular in dorsal view. The anterior edges,



**Figure 3** Specimens 2 (SMNS 70353/2) and 3 (SMNS 70353/3), each representing an isolated posterior part of a pleotelson (=telson) composite-fluorescence micrographs. (A)–(D) Specimen 2. (A) Overview; arrows mark small spines. (B) Close-up on left lateral rim of telson; arrow points to small spine. (C) Close-up on right lateral rim of telson. (D) Close-up on left posterior rim of telson. (E–G) Specimen 3. (E) Overview; arrow marks small spines. (F) Close-up on right lateral rim of telson. (G) Close-up on left posterior rim of telson. Abbreviations: ms, median spine; pls, postero-lateral spine; set, hair-like structures or setae; sp, spine; ur, uropod.

most likely marking the transition to pleon segment 6 are marked by a pair of laterally extending small spines (Fig. 3A).

Postero-lateral edges are drawn out into massive spines, forming a shallow angle. The number of hair-like structures along the posterior rim is 13 per side (Fig. 3D). They are all roughly the same length and the distances between them appear evenly distributed.

Remains of the uropods appear to be preserved left and right to the telson (Figs. 3B and 3C). Most likely these remains represent the outer, stronger sclerotised edges of the exopods. One small spine appears to be preserved close to the distal end on the posterior surface of the exopod.

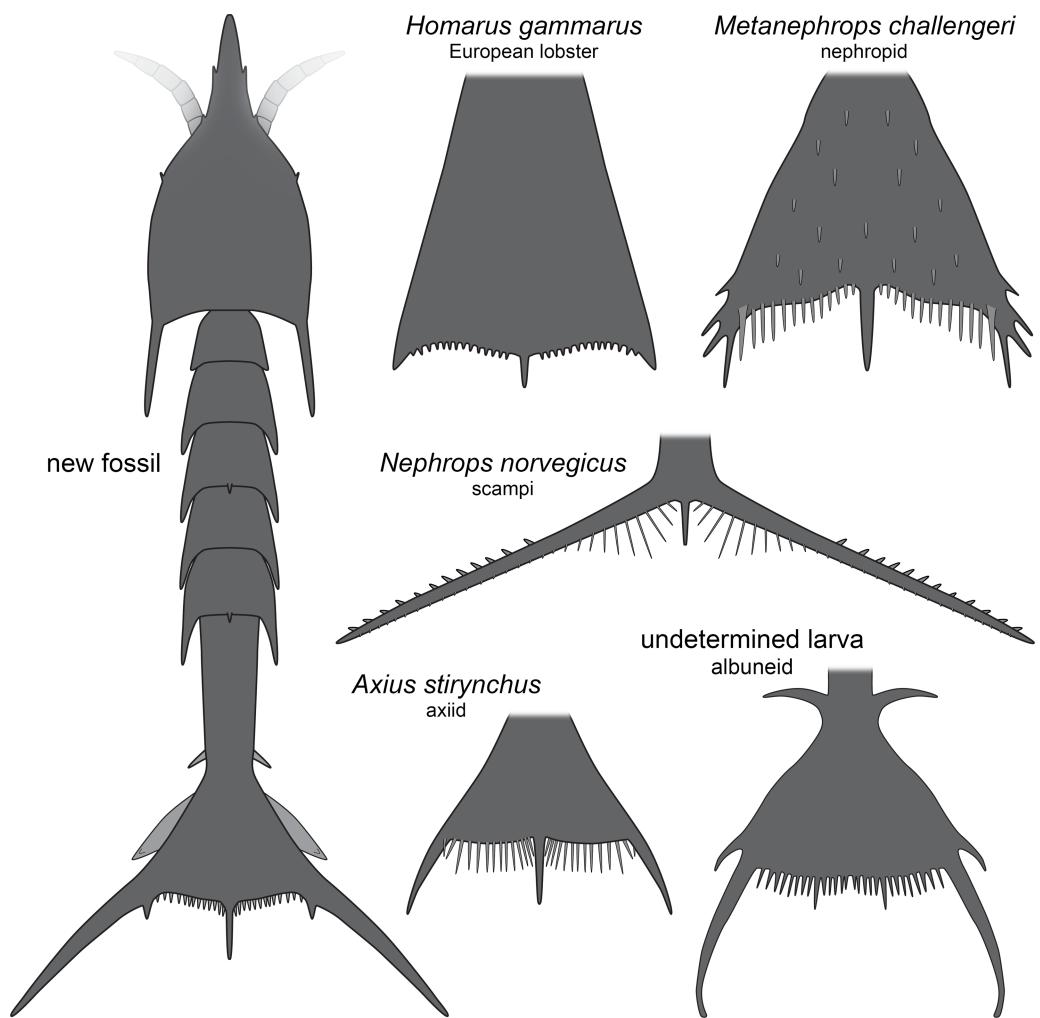
### Specimen 3 (SMNS 70353/3)

This specimen strongly resembles specimen 2 and is therefore also interpreted as an isolated telson (Figs. 3E–3G). Size, general morphology and number of structures are all similar to specimen 2. Yet, it is not as complete; for example, the posterior edge right to the median spine is broken. It differs from specimen 2 only in the angle of the posterior spines. These form a much narrower angle, as they point less far laterally, but more posteriorly.

## DISCUSSION

### Systematic interpretation

The specimens are considered conspecific, but differ in the angle between the postero-lateral spines. As all specimens have a similar overall size of the telson region (Fig. 1), it seems unlikely that this difference is a ontogenetic one indicating the presence of several instars. By comparison to modern forms it seems most likely that the spines originally had a certain flexibility and that the difference in angle reflects a preservational difference. We therefore see no possibility to diagnose different forms and see conspecificity as the most parsimonious explanation.

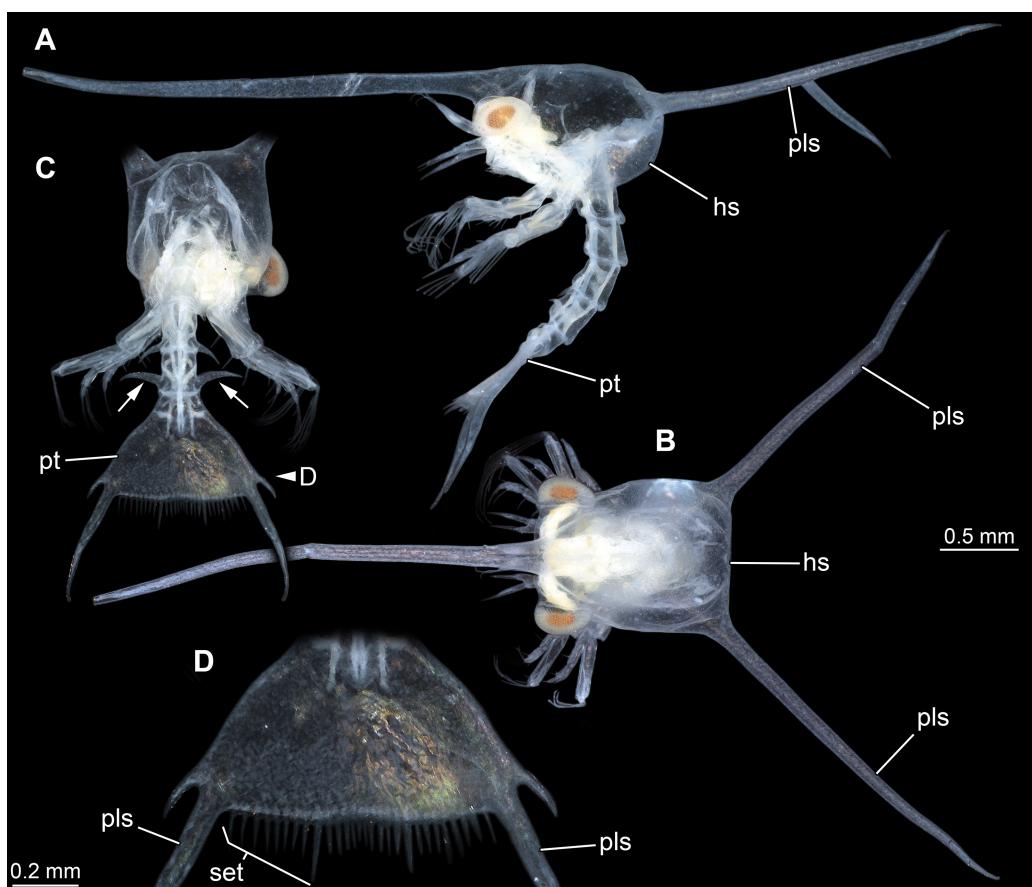

The overall morphology of the specimens indicates that they represent larval malacostracans. An important character in this aspect is the pronounced middle spine of the posterior edge of the telson. In adult malacostracans the telson is often elongate triangular in dorsal view, but with the tip pointing posteriorly, or rectangular to square-shaped in dorsal view. In many larval forms, for example, in decapods, the telson appears forked with a pronounced median indent or, similar to the adults, rectangular, with an evenly armed posterior edge (Martin, Olesen & Høeg, 2014). Forward pointing triangular to tapezoid/trapezium telson shapes with a pronounced median spine occur in modern forms only in larvae of nephropid or axiidean lobsters (Fig. 4). The latter seem to lack tergo-pleura drawn out into posteriorly pointing spines on the pleon (Dos Santos & González-Gordillo, 2004; Pohle & Santana, 2014). As such spines are present in one of the fossils and in modern nephropid lobsters (Jorgensen, 1925; Wear, 1976; Smith, 1987; Goy, 2014), the fossil larvae most likely represent larvae of clawed lobsters, i.e., nephropids or now extinct relatives of them.

### The difficulties with ‘clawed lobsters’

Modern clawed lobsters comprise the true lobsters and the reef lobsters, yet quite a number of fossil forms also resembles clawed lobsters, such as erymid or glypheid lobsters, in general habitus (e.g., Garassino & Schweigert, 2006; Charbonnier et al., 2013; Charbonnier et al., 2015; Bracken-Grissom et al., 2014; Hyžný et al., 2015; Schweitzer et al., 2016). The exact relationship of these groups remains still partly unclear (see recent discussions in Charbonnier et al., 2015; Hyžný et al., 2015). As also axiidean lobster larvae possess a pronounced median spine on the posterior edge of the telson it is possible that this feature characterises a larger group including erymid and glypheid lobsters. Therefore, we can currently not be more precise with the systematic interpretation of the larvae described herein. They may represent larval forms of nephropid, erymid or glypheid lobsters or a form closely related to them.

### Functional comparison

The telson of the new fossil larvae clearly shows adaptations to a prolonged life in the pelagic realm. Such a life style requires morphological specialisations for staying in the water column without loosing much energy, which means that the buoyancy needs to be enhanced (e.g., Perrier, Williams & Siveter, 2015). This is especially important if the larvae




**Figure 4** Comparison of the new fossil larva with extant forms. New fossil larva as restoration in dorsal aspect; each of the others as an isolated telson in dorsal view. *Homarus gammarus* (European lobster); zoea III simplified from [Rötzer & Haug \(2015\)](#). *Nephrops norvegicus* (scampi, Kaisergranat); zoea III combined from [Smith \(1987\)](#) and [Jorgensen \(1925\)](#). *Metanephrops challenger*; late zoea simplified from [Wear \(1976\)](#). *Axius styrinchus*; late zoea simplified from [Dos Santos & González-Gordillo \(2004, Fig. 2F\)](#). Undetermined albuneid larva; late zoea simplified from [Fig. 5](#).

reach relatively large body sizes such as the specimens investigated here (although they are not as large as those of polychelidan or achelatan lobsters).

The investigated specimens bear pronounced latero-posterior spines on the telson, with this distantly resembling the telson of larvae of *Nephrops norvegicus* (scampi). Here also the latero-posterior corners of the telson are strongly drawn out into spines, even more than in the fossils (Fig. 4). As other nephropids, *N. norvegicus* larvae also possess a median spine on the posterior edge. The telson of *N. norvegicus* larvae is also triangular in dorsal view, yet not as pronounced as in other nephropids ([Jorgensen, 1925](#); [Smith, 1987](#)).

The overall morphology of the telson of the fossils additionally shows an overall similarity to the larvae of certain false sand crabs (Albuneidae; e.g., [Knight, 1970](#); [Stuck & Truesdale,](#)



**Figure 5** Extant larva of an albuneid meiuran for functional comparison; cross-polarised macro images. Note the long postero-lateral spines on shield and telson and the triangular telson. (A) Lateral view on left side. (B) Dorsal view on head shield. (C) Posterior view on anterior region; dorsal view on postero-lateral spines on shield and telson; arrows mark spines. (D) Detail of the telson. Abbreviations: hs, head shield; pls, postero-lateral spine; pt, pleotelson; set, hair-like structures or setae.

1986; *Harvey et al., 2014*), besides the fact that these lack the median spine (Figs. 4 and 5). Still the overall shape is triangular, the corners are drawn out into spines and the posterior edge is armed. We can assume that the specialised telson of the fossil larvae provided additional buoyancy for the rather large larvae, similar to albuneid larvae.

## Significance

The fossil record of arthropod zooplankton appears to be very incomplete (*Perrier, Williams & Siveter, 2015*). In general, the overall reconstruction of fossil zooplankton seems based largely on estimations, as especially the microplankton is in focus of different studies, while the mesoplankton is usually less studied. Larvae are in such approaches rarely treated in detail (*Rigby & Milsom, 2000*), and, although the fossil record of malacostracan larvae is growing, it appears to be generally regarded as virtually absent (see recent review of *Perrier, Williams & Siveter, 2015*).

Yet, arthropods do play an important role in the modern plankton, especially the larval stages of malacostracans. As pointed out above, clawed lobsters and their relatives, i.e.,

nephropid, erymid and glypheid lobsters represent an important part of the marine benthic fauna in the Mesozoic. We should therefore expect that their larvae are a major share of the plankton of that time. Finding such larvae is thus important for corroborating this assumption.

As discussed above, the newly described specimens show adaptations for prolonged life in the plankton and therefore will represent the upper threshold of size for such larvae. Other larvae of clawed lobsters will be significantly smaller. The larvae furthermore most likely represent only a single specialised form of a wider range of different types of larvae. It has been demonstrated that zoea-type larvae of achelatan lobsters were morphologically more diverse than the larvae of modern forms ([Haug et al., 2013a](#)). We can expect that clawed lobster larvae also were morphologically more diverse, possibly similarly diverse to larvae of modern meiuran forms.

The fossils demonstrate that it is possible to find such important components of the plankton and also give an important hint what to look for. [Haug et al. \(2011a\)](#) suggested that some incomplete remains represent isolated shields of larvae, as these might have had a higher preservation potential. The fossils described herein show that quite the other end of such a larva, the telson, might also have high preservation potential. Focused search for such remains should provide additional insights into the plankton composition of the past.

## ACKNOWLEDGEMENTS

We would like to thank Roger Frattigani, Laichingen for providing the specimens. Gideon T. Haug, Neuried photographed the specimens, for which we are very grateful. Laure Corbari, MNHN Paris, kindly provided access to the extant crustacean collections. Kenneth De Baets, Erlangen, is thanked for helpful comments and for editorially handling the manuscript. Vincent Perrier, Lyon, Carrie Schweitzer, Kent, and Matúš Hyžný, Bratislava, are heartily thanked for their comments. J. Matthias Starck, München is thanked for support and discussions. We thank all people providing free and low-cost software.

## ADDITIONAL INFORMATION AND DECLARATIONS

### Funding

Joachim Haug and Carolin Haug were supported by the German Research Foundation (DFG HA 6300/3-1, DFG HA 7066/3-1). JTH received support via the LMUexcellent investment fund. The research visits at MNHN Paris of CH and JTH have been made possible by grants from the European Commission's (FP 6) Integrated Infrastructure Initiative programme SYNTHESYS (FR-TAF-5175, FR-TAF-5181). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

### Grant Disclosures

The following grant information was disclosed by the authors:

German Research Foundation: DFG HA 6300/3-1, DFG HA 7066/3-1).

LMU excellent investment fund.

Integrated Infrastructure Initiative programme SYNTHESYS: FR-TAF-5175, FR-TAF-5181.

## Competing Interests

The authors declare there are no competing interests.

## Author Contributions

- Joachim T. Haug conceived and designed the experiments, performed the experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
- Carolin Haug performed the experiments, analyzed the data, wrote the paper, reviewed drafts of the paper.

## Data Availability

The following information was supplied regarding data availability:

MorphDBase:

[C\\_Haug\\_20161213-M-5.1](http://www.morphdbase.de/?C_Haug_20161213-M-5.1); [C\\_Haug\\_20161213-M-6.1](http://www.morphdbase.de/?C_Haug_20161213-M-6.1); [C\\_Haug\\_20161213-M-7.1](http://www.morphdbase.de/?C_Haug_20161213-M-7.1); [C\\_Haug\\_20161213-M-9.1](http://www.morphdbase.de/?C_Haug_20161213-M-9.1).

[www.morphdbase.de/?C\\_Haug\\_20161213-M-5.1](http://www.morphdbase.de/?C_Haug_20161213-M-5.1);

[www.morphdbase.de/?C\\_Haug\\_20161213-M-6.1](http://www.morphdbase.de/?C_Haug_20161213-M-6.1);

[www.morphdbase.de/?C\\_Haug\\_20161213-M-7.1](http://www.morphdbase.de/?C_Haug_20161213-M-7.1);

[www.morphdbase.de/?C\\_Haug\\_20161213-M-9.1](http://www.morphdbase.de/?C_Haug_20161213-M-9.1).

## REFERENCES

**Bennike O. 1998.** Fossil egg sacs of *Diaptomus* (Crustaceae: Copepoda) in Late Quaternary lake sediments. *Journal of Paleolimnology* **19**(1):77–79 [DOI 10.1023/A:1007948318856](https://doi.org/10.1023/A:1007948318856).

**Bracken-Grissom HD, Ahyong ST, Wilkinson RD, Feldmann RM, Schweitzer CE, Breinholt JW, Bendall M, Palero F, Chan T-Y, Felder DL, Robles R, Chu K-H, Tsang L-M, Kim S, Martin JW, Crandall KA. 2014.** The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). *Systematic Biology* **63**:457–479 [DOI 10.1093/sysbio/syu008](https://doi.org/10.1093/sysbio/syu008).

**Charbonnier S, Audo D, Barriel V, Garassino A, Schweigert G, Simpson M. 2015.** Phylogeny of fossil and extant glypheid and litogastrid lobsters (Crustacea, Decapoda) as revealed by morphological characters. *Cladistics* **31**:231–249 [DOI 10.1111/cla.12088](https://doi.org/10.1111/cla.12088).

**Charbonnier S, Garassino A, Schweigert G, Simpson M. 2013.** A worldwide review of fossil and extant glypheid and litogastrid lobsters (Crustacea, Decapoda, Glypheoidea). *Mémoires du Muséum National d'Histoire Naturelle* **205**:1–304.

**Cressey R, Boxshall G. 1989.** *Kabatarina pattersoni*, a fossil parasitic copepod (Dichelesthiidae) from a Lower Cretaceous fish. *Micropaleontology* **35**:150–167 [DOI 10.2307/1485466](https://doi.org/10.2307/1485466).

**Cressey R, Patterson C. 1973.** Fossil parasitic copepods from a Lower Cretaceous fish. *Science* **180**(4092):1283–1285 DOI [10.1126/science.180.4092.1283](https://doi.org/10.1126/science.180.4092.1283).

**De Baets K, Klug C, Korn D, Landman NH. 2012.** Early evolutionary trends in ammonoid embryonic development. *Evolution* **66**(6):1788–1806 DOI [10.1111/j.1558-5646.2011.01567.x](https://doi.org/10.1111/j.1558-5646.2011.01567.x).

**Dos Santos A, González-Gordillo JI. 2004.** Illustrated keys for the identification of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe. *Journal of the Marine Biological Association of the UK* **84**(01):205–227 DOI [10.1017/S0025315404009075h](https://doi.org/10.1017/S0025315404009075h).

**Duffy JE, Stachowicz JJ. 2006.** Why biodiversity is important to oceanography: potential roles of genetic, species, and trophic diversity in pelagic ecosystem processes. *Marine Ecology Progress Series* **311**:179–189 DOI [10.3354/meps311179](https://doi.org/10.3354/meps311179).

**Eiler SM, Haug JT. 2016.** Larval development of fossil polychelidan crustaceans, exemplified by the 150 million years old species *Palaeopentacheles roettenbacheri*. *Neues Jahrbuch für Geologie und Paläontologie—Abhandlungen* **279**(3):295–310 DOI [10.1127/njgpa/2016/0557](https://doi.org/10.1127/njgpa/2016/0557).

**Eiler SM, Haug C, Haug TC. 2016.** Detailed description of a giant polychelidan eryoneicus-type larva with modern imaging techniques (Eucrustacea, Decapoda, Polychelida). *Spixiana* **39**(1):39–60.

**Garassino A, Schweigert G. 2006.** The upper Jurassic Solnhofen decapod crustacean fauna: review of the types from old descriptions. (infraorders Astacidea, Thalassinidea, and Palinura). *Memorie Della Società Italiana Di Scienze Naturali E Del Museo Civico Di Storia Naturale in Milano* **34**(1):1–64.

**Goy J. 2014.** Astacidea. In: Martin JW, Olesen J, Høeg JT, eds. *Atlas of crustacean larvae*. Baltimore: The Johns Hopkins University Press, 256–262.

**Harvey A, Boyko CB, McLaughlin P, Martin JW. 2014.** Anomura. In: Martin JW, Olesen J, Høeg JT, eds. *Atlas of crustacean larvae*. Baltimore: The Johns Hopkins University Press, 283–294.

**Haug C, Haug JT, Waloszek D, Maas A, Frattigiani R, Liebau S. 2009.** New methods to document fossils from lithographic limestones of southern Germany and Lebanon. *Palaeontologia Electronica* **12**(3): 6T; 12p.

**Haug C, Shannon KR, Nyborg T, Vega FJ. 2013b.** Isolated mantis shrimp dactyli from the Pliocene of North Carolina and their bearing on the history of Stomatopoda. *Bolétin de la Sociedad Geológica Mexicana* **65**(2):273–284.

**Haug C, Wiethase JH, Haug JT. 2015.** New records of Mesozoic mantis shrimp larvae and their implications on modern larval traits in stomatopods. *Palaeodiversity* **8**:121–133.

**Haug JT, Ahyong S, Haug C. 2014.** Fossil malacostracan larvae. In: Martin JW, Olesen J, Høeg TJ, eds. *Atlas of Crustacean larvae*. Baltimore: The Johns Hopkins University Press, 176–179.

**Haug JT, Audo D, Charbonnier S, Haug C. 2013a.** Diversity of developmental patterns in achelate lobsters—today and in the Mesozoic. *Development Genes and Evolution* **223**:363–373 DOI [10.1007/s00427-013-0452-x](https://doi.org/10.1007/s00427-013-0452-x).

**Haug JT, Audo D, Haug C, Abi Saad P, Petit G, Charbonnier S.** 2015. Unique occurrence of polychelidan lobster larvae in the fossil record and its evolutionary implications. *Gondwana Research* **28**:869–874 DOI [10.1016/j.gr.2014.05.004](https://doi.org/10.1016/j.gr.2014.05.004).

**Haug JT, Haug C.** 2016. Intermetamorphic developmental stages in 150 million-year-old achelatan lobsters—The case of the species *tenera* Oppel, 1862. *Arthropod Structure & Development* **45**:108–121 DOI [10.1016/j.asd.2015.10.001](https://doi.org/10.1016/j.asd.2015.10.001).

**Haug JT, Haug C, Ehrlich M.** 2008. First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). *Palaeodiversity* **1**:103–109.

**Haug JT, Haug C, Kutschera V, Mayer G, Maas A, Liebau S, Castellani C, Wolfram U, Clarkson ENK, Waloszek D.** 2011b. Autofluorescence imaging, an excellent tool for comparative morphology. *Journal of Microscopy* **244**:259–272 DOI [10.1111/j.1365-2818.2011.03534.x](https://doi.org/10.1111/j.1365-2818.2011.03534.x).

**Haug JT, Haug C, Maas A, Kutschera V, Waloszek D.** 2010. Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils. *BMC Evolutionary Biology* **10**: Article 290.

**Haug JT, Haug C, Waloszek D, Schweigert G.** 2011a. The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. *Swiss Journal of Geosciences* **104**(Suppl 1):S85–S98.

**Haug JT, Martin JW, Haug C.** 2015. A 150-million-year-old crab larva and its implications for the early rise of brachyuran crabs. *Nature Communications* **6**: Article 6417.

**Huys R, Suárez-Morales E, Serrano-Sánchez ML, Centeno-García E, Vega JF.** 2016. Early Miocene amber inclusions from Mexico reveal antiquity of mangrove-associated copepods. *Scientific Reports* **6**: Article 34872 DOI [10.1038/srep34872](https://doi.org/10.1038/srep34872).

**Hyžný M, Haug C, Haug JT.** 2016. *Mesoprosopon triasinum* from the Triassic of Austria revisited: the oldest eumalacostracan larva known to date and its significance for interpreting fossil cycloids. *Gondwana Research* **37**:86–97 DOI [10.1016/j.gr.2016.05.010](https://doi.org/10.1016/j.gr.2016.05.010).

**Hyžný M, Schlögl J, Charbonnier S, Schweigert G, Rulleau L, Gouttenoire M.** 2015. Intraspecific variation and taphonomy of a new erymid lobster (Crustacea: Decapoda) from the Middle Jurassic of Belmont (Beaujolais, France). *Geobios* **48**:371–384 DOI [10.1016/j.geobios.2015.07.006](https://doi.org/10.1016/j.geobios.2015.07.006).

**Jorgensen OM.** 1925. The early stages of *Nephrops norvegicus*, from the Northumberland Plankton, together with a note on the post-larval development of *Homarus vulgaris*. *Journal of the Marine Biological Association of the United Kingdom (New Series)* **13**(04):870–879 DOI [10.1017/S0025315400009309](https://doi.org/10.1017/S0025315400009309).

**Knight MD.** 1970. The larval development of *Lepidopa myops* Stimpson (Decapoda, Albuneidae) reared in the laboratory, and the zoeal stages of another species of another species of the genus from California and the Pacific coast of Baja California, Mexico. *Crustaceana* **19**:125–156 DOI [10.1163/156854070X00464](https://doi.org/10.1163/156854070X00464).

**Leckie RM.** 2009. Seeking a better life in the plankton. *Proceedings of the National Academy of Sciences of the United States of America* **106**(34):14183–14184 DOI [10.1073/pnas.0907091106](https://doi.org/10.1073/pnas.0907091106).

**Lipps JH.** 1970. Plankton evolution. *Evolution* **24**:1–22 DOI [10.2307/2406711](https://doi.org/10.2307/2406711).

**Luque J.** 2015. A puzzling frog crab (Crustacea: Decapoda: Brachyura) from the Early Cretaceous Santana Group of Brazil: frog first or crab first? *Journal of Systematic Palaeontology* **13**:153–166 DOI [10.1080/14772019.2013.871586](https://doi.org/10.1080/14772019.2013.871586).

**Martin JW, Olesen J, Høeg JT.** 2014. *Atlas of crustacean larvae*. Baltimore: The Johns Hopkins University Press.

**Nützel A, Frýda J.** 2003. Paleozoic plankton revolution: evidence from early gastropod ontogeny. *Geology* **31**(9):829–831 DOI [10.1130/G19616.1](https://doi.org/10.1130/G19616.1).

**Palmer AR.** 1960. Miocene copepods from the Mojave desert, California. *Journal of Paleontology* **34**:447–452.

**Pasini G, Garassino A.** 2009. A new phyllosoma form (Decapoda, Palinuridae) from the Late Cretaceous (Cenomanian) of Lebanon. *Atti Della Società Italiana Di Scienze Naturali E Del Museo Civico Di Storia Naturale Di Milano* **150**(1):21–28.

**Perrier V, Williams M, Siveter JD.** 2015. The fossil record and palaeoenvironmental significance of marine arthropod zooplankton. *Earth-Science Reviews* **146**:146–162 DOI [10.1016/j.earscirev.2015.02.003](https://doi.org/10.1016/j.earscirev.2015.02.003).

**Pohle G, Santana W.** 2014. Gebiidea and Axiidea (=Thalassinidea). In: Martin JW, Olesen J, Høeg JT, eds. *Atlas of Crustacean Larvae*. Baltimore: The Johns Hopkins University Press, 263–271.

**Polz H.** 1971. Eine weitere Phyllosoma-Larve aus den Solnhofener Plattenkalken. *Neues Jahrbuch für Geologie und Paläontologie, Monatshefte* **8**:474–488.

**Polz H.** 1972. Entwicklungsstadien bei fossilen Phyllosomen (Form A) aus den Solnhofener Plattenkalken. *Neues Jahrbuch für Geologie und Paläontologie, Monatshefte* **11**:678–689.

**Polz H.** 1973. Entwicklungsstadien bei fossilen Phyllosomen (Form B) aus den Solnhofener Plattenkalken. *Neues Jahrbuch für Geologie und Paläontologie, Monatshefte* **5**:284–296.

**Polz H.** 1984. Krebslarven aus den Solnhofener Plattenkalken. *Archaeopteryx* **2**:30–40.

**Polz H.** 1995. Ein außergewöhnliches Jugendstadium eines palinuriden Krebses aus den Solnhofener Plattenkalken. *Archaeopteryx* **13**:67–74.

**Polz H.** 1996. Eine Form-C-Krebslarve mit erhaltenem Kopfschild (Crustacea, Decapoda, Palinuroidea) aus den Solnhofener Plattenkalken. *Archaeopteryx* **14**:43–50.

**Radwańska U, Poirot E.** 2010. Copepod-infested Bathonian (Middle Jurassic) echinoids from northern France. *Acta Geologica Polonica* **60**(4):549–555.

**Radwańska U, Radwański A.** 2005. Myzostomid and copepod infestation of Jurassic echinoderms: a general approach, some new occurrences, and/or re-interpretation of previous reports. *Acta Geologica Polonica* **55**:109–130.

**Rigby S, Milsom CV.** 2000. Origins, evolution, and diversification of zooplankton. *Annual Review of Ecology and Systematics* **31**:293–313 DOI [10.1146/annurev.ecolsys.31.1.293](https://doi.org/10.1146/annurev.ecolsys.31.1.293).

**Ritterbush KA, Hoffmann R, Lukeneder A, De Baets K.** 2014. Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. *Journal of Zoology* **292**(4):229–241 DOI [10.1111/jzo.12118](https://doi.org/10.1111/jzo.12118).

**Rötzer MA, Haug JT.** 2015. Larval development of the European lobster and how small heterochronic shifts lead to a more pronounced metamorphosis. *International Journal of Zoology* 2015: Article 345172.

**Sardet C.** 2015. *Plankton: wonders of the drifting world*. Chicago: University of Chicago Press.

**Schweigert G.** 2007. Ammonite biostratigraphy as a tool for dating Upper Jurassic lithographic limestones from South Germany—first results and open questions. *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen* 245:117–125 DOI 10.1127/0077-7749/2007/0245-0117.

**Schweitzer CE, Feldmann RM, Karasawa H, Wells NA, Hu S, Zhang Q, Huang J, Wen W, Zhou C, Xie T.** 2016. Morphology, systematics, and paleoecology of *Tridactylastacus* (Crustacea, Decapoda, Glypheidea, Litogastridae). *Journal of Paleontology* 90:1112–1117 DOI 10.1017/jpa.2016.116.

**Selden PA, Huys R, Stephenson MH, Heward AP, Taylor NP.** 2010. Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. *Nature Communications* 1: Article 50 DOI 10.1038/ncommes1049.

**Servais T, Perrier V, Danelian T, Klug C, Martin R, Munnecke A, Nowak H, Nützel A, Vendenbroucke TRA, Williams M, Rasmussen MC.** 2015. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. *Palaeogeography, Palaeoclimatology, Palaeoecology* 458:12–28 DOI 10.1016/j.palaeo.2015.11.003.

**Signor PW, Vermeij GJ.** 1994. The plankton and the benthos: origins and early history of an evolving relationship. *Paleobiology* 20(03):297–319 DOI 10.1017/S0094837300012793.

**Smith RSM.** 1987. The biology of larval and juvenile *Nephrops norvegicus* (L.) in the Firth of Clyde, Doctoral dissertation, University of Glasgow.

**Stuck KC, Truesdale FM.** 1986. Larval and early postlarval development of *Lepidopabenedicti* Schmitt, 1935 (Anomura: Albuneidae) reared in the laboratory. *Journal of Crustacean Biology* 6(1):89–110.

**Tanaka G, Smith RJ, Siveter DJ, Parker RA.** 2009. Three-dimensionally preserved decapod larval compound eyes from the Cretaceous Santana Formation of Brazil. *Zoological Science* 26(12):846–850 DOI 10.2108/zsj.26.846.

**Tappan H, Loeblich AR.** 1973. Evolution of the oceanic plankton. *Earth-Science Reviews* 9(3):207–240 DOI 10.1016/0012-8252(73)90092-5.

**Tischlinger H, Arratia G.** 2013. Ultraviolet light as a tool for investigating Mesozoic fishes, with a focus on the ichthyofauna of the Solnhofen archipelago. *Mesozoic Fishes* 5:549–560.

**Torres AP, Dos Santos A, Alemany F, Massutí E.** 2013. Larval stages of crustacean species of interest for conservation and fishing exploitation in the Western Mediterranean. *Scientia Marina* 77(1):149–160 DOI 10.3989/scimar.03749.26D.

**Wear RG.** 1976. Studies on the larval development of *Metanephrops challenger* (Balss, 1914) (Decapoda, Nephropidae). *Crustaceana* 30(2):113–122.