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It is shown that the diffraction of slow electrons from disordered crystal surfaces is cor- 
related with the problem of thermodynamical statistics. The correlation functions are com- 
pletely determined by the self-energies and interaction energies of neighboring complexes. 
These quantities solve the problem of a-priori probabilities and the cooperative phenomenon of 
correlation functions of these complexes. If the calculation of a certain set of multiple scatter- 
ing amplitudes is possible, the remaining problem of determining the diffuse LEED pattern 
becomes solvable. The calculation of angular beam profiles follows the same lines as already 
described for the kinematic theory of X-ray diffraction. 

1. Introduction 

The successful interpretation of LEED patterns of some crystal surfaces indi- 

cates that the approximations used for intensity calculations seem to be valid 
within the limits of experimental error in present intensity measurements [l-6], 
the accuracy of which is not extremely good for many reasons. The various theore- 

tical treatments generally lead to a system of linear equations, which may be solved 
directly in simple cases only [7-91. Quite a few approximate solutions and itera- 
tion procedures have been developed [lo-151, treating the multiple scattering 
within a given layer at the surface exactly, while the multiple scattering between 
them has to be developed into a perturbation series, which can be done in different 
ways. Although there are very promising attempts for practical applications, it has 
to be kept in mind, that a structure determination with variable structural para- 
meters of several atoms in a similar manner as applied for X-ray and neutron-dif- 
fraction - or even electron diffraction in the normal range of energy - is still 

impossible. Consequently, it seems to be hopeless to interpret the LEED patterns of 
disordered surfaces, which are more frequently realized than ordered ones. This 
may be concluded from the experimental fact that calculated LEED intensities of 

233 



234 H. Jagodzinski et al. /Diffuse LEED intensities of disordered surfaces. I 

ordered surfaces are about one order of magnitude larger than the observed ones, 
although they may agree on a relative scale. 

In spite of the difficulties mentioned, above we believe that at least a semiquan- 

titative or even a quantitative interpretation of diffuse scattering can be obtained if 
a specific model for the disorder phenomenon observed has been found. 

Recently a theoretical treatment of diffuse scattering, caused by a distribution 
of defects with pair correlations, has been given by Duke and Liebsch 1161. The 
restrictions of the applicability of this theory will be discussed in part II. 

Apparently all disorder phenomena on crystal surfaces may be described in 
terms of the two-dimensional Ising model, which has been solved exactly for the 
simple case of nearest neighbor interactions [17-191, But this theory is not very 
well suited to interpret diffraction phenomena, which generally are governed by 

complicated structural features and can only be described by an extended theory 
involving a very complicated evaluation. Therefore, computer simulated statistics, 

according to the so-called Monto Carlo-method, seem to be more promising. 
In the following four papers the disorder problem and its influence on LEED 

will be solved regardless of difficulties arising from computational limitations. For 
this purpose the contribution of one chain of atoms - extending from the surface 
into the interior of the crystal - to the diffracted beam is considered to be known 
(part I). It is shown that this contribution is strongly dependent on the structure of 
the chain in question and its surrour~ding, which has to be extended as far as 
multiple scattering contributes significantly to the scattered intensity (area of mul- 
tiple scattering). On the other hand, it follows from thermodynamics that the posi- 
tions of the atoms in a given chain with a certain topological structure are deter- 
mined by the structures of the surrounding chains. consequently, an area of 
thermodynamical interaction (ATI) may be defined in a similar way, regulating the 
free enthalpy of the disordered surface. The correlation between these two areas is 
discussed in part I, and it is shown that the correlation functions may be derived 
from the diffraction pattern. 

In part II, one possibility of calculating effective scattering amplitudes of a chain 
embedded in certain surroundings is given. For the sake of rapid convergence, the 
multiple diffraction with the AMS is calculated accurately, while the influence of 
the further surroundings is averaged. Although the computational procedures are 
tedious, a solution is possible at least in simple cases. In spite of the difficulties in 
quantitatively calculating the scattered intensities, it is often possible to decide 
between relevant structural models by a statistical consideration of scattered beam 
intensities or line profiles as a function of energy or diffraction angles. This will be 

shown later (in some typical examples [26]). 
Experimental data of the reconstruction of the (110) surface of Au are dealt 

with in part III. It is shown that the line profiles are dependent on temperature in a 
reversible way. The line width of the beam profiles is evaluated with the aid of a 
simplified deconvolution method. 

Finally, an interpretation of the diffraction pictures observed as a function of 
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temperature is given in part IV, where four different surroundings of the same 
central chain are introduced with the aid of a stepped surface (micro-terraces on an 
atomic scale). The theoretical treatment of one-dimensional statistics enables two 
sequence probabilities to be determined experimentally in terms of the statistical 
model. So far no comparison has been made with the absolute intensities, but the 
good agreement between experimental and theoretical line profiles shows that at 
least the statistical solution is correct. 

2. Correlation functions for one-dimensional disorder 

Let us describe the geometry of the crystal surface by two translation vectors n, 
b parallel, and c vertical (or incIined) to the surface; they are determined by the 
periodic bulk crystal. We consider one chain of unit cells vertical (or inclined) to 
the surface. The structure of this chain is not necessarily assumed to be periodic, 

although the lower end is approximately so. Any defect structure may be realized 
in this chain, each of them corresponding to one configuration. The contribution of 
this chain to the free energy of the system may be calculated by introducing next, 
next but one, etc., nearest neighbor interactions, thus defining a complex of chains 
which dete~ines the structure of the central chain in a first approximation. It is 

tacitly assumed that a separation of the contribution to a volume and a surface 
energy is possible. Obviously, a large number of complexes has to be introduced if 
only a few configurations of the chains are realized and the interaction energies 

include high-order neighbors, but this is one of the typical features of a surface 
disorder which cannot be described by a simple statistical theory. 

In the case of a one-dimensional approximation for the disorder problem the 
interaction energies must be strongly anisotropic, such, that one direction shows 
nearly complete order, while the others do not. In terms of the two-dimensional 
Ising model [17-l 91 this approximation should be valid above the critical tempera- 
ture T, only with a temperature-dependent chain length L, but one should keep in 
mind that very often long-range order may not be realized because of relaxation 
effects below the critical temperature, favouring ordered domains of nearly equal 
sizes. Thus, a constant chain length parallel to the ordered direction (a) may often 
be a reasonable approach to the solution of the problem below T,. In this particular 
case the number of configurations is limited as long as the interaction energies may 
be restricted to second- or third-nearest neighbors. 

Let us start with the next-nearest neighbor model: Let the number of configura- 
tions of a given chain be limited to m c. As has been shown earlier for the kinematic 
theory, the diffraction problem may be solved if the correlation functions ~,&‘j) 
were known. The ~&‘j) are the probabilities that a chain at a distance j has the 
configuration n if, for the reference chain, the configuration m were realized. 
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According to this definition the following relations exist: 

Pmn(O) = Ll, > PmPmnci) = PnPnm(-i) 7 

p&j)=k&P,P’), P’-P=j, 

with e&P,P’) cell occupation operator and P = m,a + m2b, P’ = r&a + n&b. The 
a-priori probabiIities P,,, to find the con~guration m for any chain are completely 

determined by the system of the a-posteriori probabilities &&‘j). 
For short-range order we have 

and in case of long range order a similar relation exists, namely 

lim c Pmn(j) = pipn (relative probability) , 
J’+ m 

(3) 

where the summation has to be taken over one superstructure ceil (each of them 
occupied by one chain) containing p. subcells, as described by the long-range order. 
We have introduced eq. (3) only focally, ~though there is no long-range order 
(except T = 0 K) in the one-Dimensions case, which will be treated below. 

This discussion shall facilitate the treatment of the two-dimensional disorder 

problem on the surface, where long-range order may be realized below one ox more 
critical temperatures. 

The total potential energy of the infinite one-dimensional crystal surface is given 

by 

where (Pm is the self-energy of the m-th configuration, and @&,, #mn are the inter- 
action energies into the positive and negative direction respectively, and N is the 

total number of cells. 
Since c$& = && (both represent the same configuration), eq. (4) becomes, on 

account of eq. (11, 

u= N2.J PmrPm + ,c, PmPmn(+l) Gl?il - 
m 

(5) 

It may be shown that the extension of eq. (5) to higher order interactions can be 
realized simply by introducing complexes of chains as follows: 

If the interactions of s neighbors shall be included, complexes of s chains are 
formed (see fig. 1). We construct the partition function of our one-dimensional 
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+--complex 14 

+-- complex 2 + 

Fig. 1. Self-energies (full line) and interaction energies (broken line) of two adjacent complexes 

containing 5 chains vertical to the surface. Interactions of s = 5 neighbors are counted twice in 

the energy calculation. In a sequence of complexes each chain appears five times on subsequent 

complexes, but just once as a central cell. View on the crystal surface. 

Fig. 2. Definition of the area of direct thermodynamic interaction (ATI); interactions in and 

between the inner chain and the indicated area are taken into account. View parallel to the 

crystal surface (cf. fig. 1). 

model with the aid of two overlapping complexes. 
The energies -if described by central forces ~ are counted from the two 

opposite end chains of the complex; thus all interaction energies are registered 
twice including the self-energy within the chains, because of the fact that each 
chain appears twice as “reference” chain in the positive and negative direction 
respectively. Introducing a new self-energy of binding forces (within the complex) 
and interaction energies of bonds between the complexes, we can set up a new 
system of probabilities, which is formally similar to that described by eqs. (1) and 
(2). From fig. 1, however, it becomes quite clear that the definition of self-energies 
and interaction energies is arbitrary. There are many possibilities to get another 
description of the same structural model by interchanging bonds of internal and 
external interactions (they all should result in the same solution). With this change 
of the meaning ofp,, &, pmn and Grnn, eqs. (4) and (5) remain valid. 

The major differences of the two solutions are: 
(1) The number of possible “configurations” within a given unit cell is strongly 
increased. 
(2) The system of probabilities pm and pmn has completely been changed, such, 
that neighboring cells may not realize all configurations independently: the occupa- 
tion of the overlapping unit cells must be the same, which means that a great many 
probabilities pm,&) vanish for small values ofj. 

Now it is easy to generalize this system of probabilities, which is completely 
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equivalent to the construction of the partition function. Obviously, the calculation 
of the surface energy has to include all structural changes of the atoms near the 
surface. Therefore, we should not just introduce the upper chain of chains vertical 
to the surface as indicated in fig. 1, but also take into account the interaction 
energies caused by structural changes of the substrate layers formed by the above 
mentioned vertical chains, as shown in fig. 2. Generally speaking, the substrate layer 

is in equilibrium with the surface layer, which, from a chemical and structural point 
of view, is different from the bulk crystal. Thus, the chemistry and the atomic posi- 
tion should also be different, causing a change in energy even in the deeper part. 
These changes are due to the interactions between the complex at the surface and 
the interior. Applying the above mentioned kind of counting to bonds, we get a 
new set of self-energies and interaction energies, now describing the contribution of 

one atom, and the structural dependent set of atoms below this atom, to the energy 
of the surface. The total area of interaction is (s t l)d where d is the interaction 
depth between surface and inner atoms. Let us define this area as the “area of 
direct thermodynamical interaction” (ATI). Extending this model to the two- 
dimensional surface, the interaction length L, vertical to this direction, has to be 
considered separately. The volume of interaction is then (s t 1)&C. It is tacitly 
assumed that equal complexes of the surface layer cause the same structures, or at 
least very similar ones, of the adjacent substrate layers which are apparently very 
similar to the periodic arrangement of the bulk crystal, but naturally different from 
the surface layer which generates the distortions of the deeper layers formed by the 
lower end of the chains parallel to c. If there are small fluctuations in this structure, 
the potential energy within the ATI has to be replaced by a free energy F = @ - TS, 

including the entropy of this area. But we have to keep in mind that the entropy 
term TS is also correlated with the vibrational term of energy. Thus, TS describes 
the change in internal heat and potential energy due to a configurational entropy 

within the ATI. This is clearly a very crude approximation, but at the moment it is 
useless to try a more accurate approach, because it seems to be impossible to calcu- 
late the surface modes and the change of internal vibrational modes of a partly 
ordered surface accurately. This approximation means that the surface modes and 
the change of the internal modes are calculated with the aid of the accurate binding 
forces within the AT1 and averaged binding forces originating from the atoms of the 
area outside the ATI. Now the calculation of the prnn@ is correlated with the 
construction of the partition function 2 of the system. We introduce the free 

energy 

F ,,,,, = F + AF,,Ci> > 

which determines the Bolzmann factor b,, = exp(-F,,/k7) in the partition func- 

tion. Now we can define the “partial” partition function P,,J$ of I’ + 1 chains 
starting with the configuration m and ending with n; we get the following recursion 

formula 

zmnO’+ l)= c , Zm10 hm . (6) 
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Eq. (6) means that the construction of the partition function can be done without 
any difficulty. The partial partition functions are considered to be vector com- 
ponents, such, that the increase of the number of chains by one can be done by 
matrix multiplication, with the matrix B containing the Boltzmann factors. 

The partition function 2 of a surface containing NO chains is then given by the 

sum of all elements of the matrix BNe: 

Introducing 

and Fm, = F + AF,,,, , 

with 

c AF,,,,=O, ino = number of complexes , bm, = exp(-AF,,,,,/kT) , 
m,n 

we get 

Bi = exp(-jF/kT) ABi . (7) 

Eq. (7) may be solved with the aid of the eigenvectors and eigenvalues of the matrix 

AB. 
As mentioned above each element of the matrix Bi describes the relative 

probabilities of a partial partition function, starting with the element m and ending 
with an element n. The sum over all elements of B gives the partition function of a 
system containing j elements. For the diffraction problem the absolute probabilities 
are needed, which can easily by determined by replacing the Boltzmann factors 

b,, by absolute probabilities. 

arnn = brnnlz bmn (8) 

The calculation of the a matrix is necessary, where a,, is the probability p,,(+‘) as 
defined in eq. (1). Let U be the matrix which diagonalizes a, we get: 

ai = U-‘(UalJ-‘)(UalJ-‘) ... (UaU-‘) U 

= U-laiU 

=u-I(; Fi ) u. 
m 

(9) 

Eq. (9) means that the elements of the matrix ai may be expressed by the eigen- 
values hi of theamatrix. 

The general solution of the probabilities has now been solved: 

m0 

(10) 
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where the Cm,,i are given by the boundary conditions and may be calculated in 
various ways [20]. Before starting the discussion on the applicability of eq. (10) for 
the two-dimensional Ising-model on real crystal surfaces, we shall first dis’cuss the 
multiple diffraction problem. 

3. The diffraction problem 

Let us now define the area of multiple scattering, AMS, which seems to be 
important in cases, where the cross sections for elastic and inelastic scattering are 
sufficiently large. Fig. 3 shows the main principles: Both, the incident and the 
scattered electron, are described by plane waves with the wave vectors k, k’. The 
surface of the crystal is subdivided into unit cells as described by the lattice vectors 
a, b at the surface. Within the unit cell there shall be one chain of atoms only, 
vertical (or nearly vertical) to the surface. We consider the contribution of this 
chain to the scattered electron as last process of the multiple scattering. This con- 
tribution to the plane wave of the scattered electron depends: 

(a) on the structure of the chain; 
(b) on the position of the chain relative to the idealized surface; 
(c) on the arrangement of an area of finite size surrounding this chain, let US call 
this “area of multiple scattering” (AMS). 

The AMS as defined under (c) may be equal, larger or smaller than the ATI. 
Generally it is less anisotropic than the ATI considered here, because of multiple 
scattering, which covers all directions of the crystal. Let us first discuss the mathe- 
matical treatment of cases, where the AMS is equal to the ATI. For disordered sur- 

Fig. 3. Definition of the area of multiple scattering CAMS). AU multiple scattering processes 
within the given area are calculated exactly, while the remaining ones outside that area are aver- 

aged. For the solution of the diffraction problem the contribution of the central chain only is 

needed. 
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faces it is convenient to introduce threedimensional reciprocal vectors a*, 6*, c* 

with 

h = ha* t kb* + EC* 

whhere c* is vertical to the crystal surface. However, there are some difficulties for 
a* and b*, if the chains have not been chosen vertically. 

This effect may be taken into account by an appropiate calculation of the 
scattering amplitude of the AMS; so we may assume c* to be vertical, and a* and b* 
parallel to the surface. Introducing F,(k, k’) as scattering amplitude of a chain in 
the m-th configuration in the AMS, and r,w) describing the position of the chain 
in the m-th configuration in the cell at point P of the lattice: 

P=mla tm,b, rm (p) = P + Arm tp) . 

Now the scattering amplitude of an electron leaving the surface is 

(11) 

A(k, k’) = pz Fmcp)(k, k’) exp(2zih . rmcp)). 
7 

(12) 

In case of an ordered lattice, where the scattering of all unit cells is equal (only one 
-F;, and one displacement vector r,), we get: 

sin IRV~ h sin nNz k 
A (k, k’) = c F,(k, k’) exp(2rGz * b,,J sin 

m sin rk 

= c F&k, k’) exp(2rrih - Ar,) c 6(h - g) , 
m g 

where 

(13) 

h=ha*tkb”tlc*=k-X’, g=hOa*+kob’, 

and ho and kO are integers. 
The calculation of the scattering amplitude F,(k, k’) follows the same lines as 

described in the literature, where the AMS is extended to infinity. In the case of a 
disordered lattice it is useful to replace Fmcp> in eq. (I 2) by 

F m(P) = F + AF~(PJ 9 (I41 

with 

*0 

Inserting (14) into eq. (I 2) and summing up partially, we get 

A(k,k’)=F%(h-g) 
g 

tt3 
p,m 

AF,, exp(2niZ ArmCp$ exp(2nih 1 P) 

= G(k, k’) f D(k, k’) . (I51 
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In principle we get the same result as known in the kinematic diffraction theory; 

the only difference is that we have to average over multiple scattering amp~tudes, 
the calculation of which causes some difficulties. It has also been assumed that the 
displacement vector b,(p) is determined by the configuration only and is 
independent from the surrounding, but there may be a displacement into the 
c-direction, depending on the statistical solution of the problem: therefore the 

sequence of two configurations may be correlated with a displacement parallel c. 
We shall show in a later paper that a general con~guration-dependent displacement 
vector parallel to the surface may be treated according to the so called theory of 

“satellites” [24,25], the inclusion of which results in the existence of satellite 
reflections, accompanying the main reflections. Consequently our theory is limited 
to diffraction patterns where satellites are missing. 

According to eq. (15) the scattered intensity is given by 

AA*=iA12=G2f2ReGD+~D~2. (16) 

The two first terms in eq. (16) contribute to sharp reflections only, while lOI may 
generate sharp and/or diffuse reflections, depending on the state of order on the 
surface. 

For calculating the diffuse intensity it is more convenient to form IA I2 with the 
aid of eq. (12): 

IAl2= cc F 
P P’ 

m(~) Of& expC2MArm(P) - rm(p$l 

X exp 2nih. (P - P’) , (17) 

Setting P’ = P +j with j = jra + j26 and P - P’ = -j, we can replace the products 

Fm(p) w@nil Arm(p)) F&p+i) expPrilr,(p+i)) , 

by average values, which may be obtained with the aid of Pm and pm&). The com- 
plex factors exp(Z?ni&~(p_p$ etc. have to be determined by introducing com- 
plex sequence and a-posteriori probabilities. This can be done by adding to the 
sequence probabilities the phase factors in such a way that ~,&j) does not only 
give the a-posteriori probability of the n-th configuration in the cell (reference cell) 
- being jra t jzb apart from the original cell - but also its complex factor to be 
added to the probability calculated. Consequently, new complex functions &,(‘j) 
are introduced, which may be calculated in a similar manner as described above for 
the real probabilities. This procedure will be explained with the aid of a special 
example in Part IV of this series of papers. 

Thus, the average products given in (18) may be calculated: 

CFpFj+j exp(2niZ Ar,,,cp-PC))) = P,,, F~p~~F~ (19) 
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Introducing this result in eq. (17), we get [23] 

IA I2 = is* Fn C&l - Ii1 I)@5 - Ii2 I)PmPi& 

X F,F,* exp(-2ni.j. h)] . (20) 

Introducing 

PLz(j) = Pn + 4Wnli) > 

one part of the summation can be done, and we get 

IA I2 = NINz c p,p,*F,F,* c S(h - g) + rest 
m,n g 

=N,Nz ICpmFm12 C6(h-g)+rest. (21) 
m g 

Eq. (21) describes the behaviour of sharp reflection, the intensity of which is given 
by an averaged generalized structure factor of similar structure as known for the 

kinematic diffraction theory. 
In order to study the behaviour of diffuse scattering, we return to eq. (20). 

Neglecting jr and jZ which are small compared to N1 and A’,, we get 

lAIZ=ivrNZ c c pmpb,o’, ,A) F&i exp(-Mi= h) - (22) 
m,n il .iz 

Setting 

&&/) = W,,(L) 6(x’ - j) , x’ = xu + yb , 

where wmn are the “smoothest” continuous curves passing through all points of the 

corresponding phn, we can replace the summation in eq. (22) by the integral and 

get 

IA I2 = NIN; mc, Pm rJ%nn (x’) C (x’ - j) exp(-2nih . x’) dx’] F,Fi . 
i 

The expression in square brackets represents the Fourier transforms of a sum of 
product functions, which, after evaluation of the integral, become a sum of con- 
volution with the Fourier transforms of the w and 6 functions: 

/ 
IA I2 = N,Nz c 6(h - g) c p,Wmn(h) FmF; , 

g m,n 
(23) 

where W,,,(h) are the Fourier transforms of the continuous probability functions 
wm&‘). The arc represents the convolution operation. The sum of the 6 functions 
in reciprocal space results in the two-dimensional reciprocal lattice parallel to the 
surface . These functions are smeared out by the variety of Fourier tr~sfo~s of 
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the ordering functions multiplied by the complex structure factors, which may be 
calculated approximately according to the method described in part II. Although 
eq. (23) has the same structure as has been derived in the kinematic theory of dif- 
fraction, the calculation of F,(k, k’) . IS much more difficult and needs a specific 
computer program (see part II). As the number of F, increases with the com- 
plexity of the problem in question, the possibility of calculating complicated 
problems is limited by the size of the present day computers. 

If the ATI is larger than the AMS, an equal contribution to the scattering ampli- 
tudes of complexes with the same SMS causes no difficulty. But we should add 
some few remarks for examples with a larger AMS. In principle it should be possible 
to calculate the a-priori and a-posteriori probabilities by formally extending the 
ATI to the size wanted. According to eqs. (9) and (10) the rank of the matrix a and 

the number of characteristic values Xi should increase considerably. However, it 
may easily be shown that these additional h are identical with those already given 
for the ATI, and consequently, the problem becomes degenerate. How this diffi- 
culty can be solved can best be shown for special examples. The probabilities of the 
new complexes are obtained by expanding the simple old probabilities into the new 
ones with the aid of the sequence probabilities of immediate neighbours used in the 

original solution. 
Eqs. (22) and (23) may also be applied to the one-dimensional case of disorder, 

with small changes of the symbols used. As the summation over the ordered direc- 
tion b can be carried out, the F,, F, now represent the scattering of a finite array 

of chains. 
Eq. (23) reads then 

IAl2 = sin2 nk 
sin2 “NzkC 6(h - h,) c pm W,,(h) F,F, , 

h 

0 m,n 

where ho = hoa*. 

According to eqs. (23) and (24), the W,,(h) are the Fourier transforms of wmn(x’), 

which are defined in the x’ space as the smoothest curves passing through the points 
of p’,,(j). This function is defined for integers jr, j2 only. In order to guarantee a 
rapid convergence and a “simple” behavior, it is sometimes advisable to subdivide 
pk,,(j) into a sum of functions, fulfilling this condition in a better way. This is 
generally the case if there is more than one position in the unit cell, not being 
symmetrically equivalent. In this case it is advisable to replace p,&) by 

(25) 

where v and 12 are site indices in the original and reference cell. 
It is also convenient to introduce a general phase factor for the position para- 

meters x, y and z of the v-th site in the cell. As we use one position parameter only, 
this formal difficulty need not be considered here. 
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We shall now give the evaluation of eq. (22) for the one-dimensionally 

disordered surface by calculating &,<i). According to eq. (lo), these probabilities 
are given by 

~~~~~~j) = C Cmnli hf . 
i 

Inserting this expression into eq. (22) and considering (24) we get: 

IA(k, k’)? = N* si;iEf c 22 P,P%~) FJ%(k, k’) exp(-2nijk) 
i m,n 

=N, sides C [ C Cm&i 
i m,n 

c hi exp(-2nijk)f F,FA(k, k’) 

=N, si;iE; c Ki(k, k’) ;A{ exp(-2nijk). 
i i 

RepIacing Ki and Xi by 

Ki(k, k’) = Bi(k, k’) + iDi(k, k’) (Bi, Di real quantities) , 

Ai = pi eXp(27Ti$$) , 

the geometrical series of eq. (26) may be figured out as 

1 -pi 

I - 2pi COS 2n(k - pim 

sin 2n(k - cpJ 

- 2Dipi 
-_ . 1 - 2pi COS 2n(k - qi)t 1 (27) 

The denominator of both terms in eq. (27) has minima if 

cos ?n(k - cpi) = 1 

The real part Bi generates a symmetric and the imaginary part Di an antisymmetric 

contribution to the reflection profile. Each hi produces a different peak as long as 

all hi are different. /Xi/ = 1 generates a sharp and Ihi1 = 0 a completely diffuse 
reflection. 

The functions Bi and Di are strongly dependent on multiple diffraction and may 
vary considerably with k and k’, but as long as the reflections are well defined 
(sufficiently ordered) changes in intensity may be taken into account by calibration 
of the peak intensity and the asymmetric contribution (see parts II and Iv>. From 
this consideration we may conclude that the eigenvalues of the a-matrix exhibit a 
very important property: each of them defines one diffuse reflection in the diffrac- 
tion pattern, the line width of which is determined by pi, while the position is given 

by Pi* 
This behaviour of the intensity enables the application of eq. (27) in another 
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way, pi and pi are determined experimentally, and a model of disorder is suggested 
which yields the correct values for them. 

As has been pointed out above, the chains introduced are not described by their 
potential energies alone, they have to include at least some dynamic disorder, 
caused by the change of vibration spectra of the chains. The sequence probabilities, 
which should be temperature-dependent because of the one-dimensional treatment, 
are defined by 

%&‘J = exp [-UT) AF,,&Tl Cc ew [-UT) AF,,/kTl 1 -I , 
m,n 

of9 

where L(T) = N2 (eq. (26)) is the average number of unit cells belonging to one 
chain. The average chain length L(7) is heavily influenced by the back-coupling of 
the probabilities CY,,, such that a stronger correlation results in an increase of L(T). 
This back-coupling effect is necessary for the existence of a critical temperature T,, 

where L(T,) becomes infinite. L(T,) is practically limited for various reasons (finite 
crystal relaxation effects, anti-phase domains, etc.) In this particular case L(T) 
becomes large but independent from T below the critical temperature T,, which 
loses its real critical character. It is this range of temperature where eq. (28) may be 

applied successfully without major restrictions, but it should be pointed out that 
this approximation is of limited validity. An application will be given in part IV. 

4. Two-dimensional disorder 

In a more exact treatment L(T) has to replaced by a solution in two dimensions, 
which is completely different from the one-dimensional one, though the construc- 
tion of the partition function may be done in a very similar way. Two major 
differences shall be described briefly. 
(1) The decrease of correlations as a function of the distance vector i was propor- 
tional to lXil’i’. This property changes in two-dimensional cases for two reasons: 
(a) The correlation function should be anisotropic because of the shape effect of 
ordered areas, which is meaningless in the one-dimensional case, 
(b) the damping law of correlation functions changes because of the back-coupling, 
a better description may be (Xii”“, where I is dependent on the dimension (I = 1 

for the one-dimensional case). 
(2) The number of configurations increases considerably if the restriction to nearest 
neighbor interactions is released. This increase causes a great variety of characteris- 

tic values hi = pi exp(2nicpi), describing the periodicities of the structure. This fact is 
responsible for many anomalies in the diffraction picture. 

All equations given in the preceding sections which are not yet extended to the 
general two-dimensional case of disorder may be generalized. Although the so-called 
two-dimensional Ising model should be applicable to any surface disorder, the 
limitation to interactions of next nearest neighbors is so imposing that a real 
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quantitative application seems to be impossible. There are apparently two possibili- 

ties to overcome these difficulties: 
(1) to analyze the Fourier-transforms W,, directly; 
(2) to construct the probabilities prnn directly by a computer simulation of the 

partial partition functions. 
It is clear that the first method can be applied only if the number of functions 

W mn is small enough, in order to isolate them for a general interpretation. The 
observed averaged function which can be derived directly from the diffuse reflec- 
tion cannot easily be separated because of the existence of phase differences 
between the Wmn, they are due to the structure factors of complexes, which con- 
tain phase shifts due to the various atomic positions or to displacement vectors 

involved statistically. If there are various positions in the cell, participating in the dis- 
order, it is practical to introduce the site~ependent correlation function ~~~~~~~~ 
which refer to the v-th site in the original and the @-th site in the reference cell, 
cf. eq. (25). These functions may show a less complex behavior as far as their 
damped periodicities are concerned. 

The second possibility has been treated for the three-dimensional [21] and the 
two-dimensional case as well [221. It is applicable if there is a clear idea of the 
disorder model realized. Therefore, it is first necessary to give a qualitative picture 
of the disorder model by interpretating the Fourier transforms of the correlation 

functions. Subsequently, a quantitative approach to the diffuse scattering can be 
done. 

5. Conclusions 

The calcuIation of diffuse intensities scattered by disordered surfaces is very 
difficult in cases where the area of multiple scattering is suf~ciently large. A great 
many con~gurations have to be considered, and computer time spent on the evalua- 
tion of multiple scattering processes on each one of the matrices is not warranted, 
nor technically possible. With increasing order the number of possible configura- 
tions decreases very rapidly on account of the fact that a great number of configu- 
ration have low a-priori probabilities. Near the critical temperature a consistent set 
of configurations is sufficient for a quantitative description of the diffraction 
picture. 

One of the most important omissions of this theory (and all others) is the crude 
approximation of the absorption introduced. It may be shown that a variable 
absorption field introduced into the scattering amplitude of multiple scattering 
does not change the principles of this approximation, but the difficulties in calcu- 
lating the F&k, k’) increase considerably. 

The LEED problem of disordered surfaces is essentially the same as already 
described for the kinematic theory of diffraction. It is the quantitative interpreta- 
tion only that causes a great many difficulties. However, we may expect that the 
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experience available from X-ray diffraction may contribute at least qualitatively to 
the interpretation of LEED patterns of disordered surfaces. 
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