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ABSTRACT
Dissecting the complex network of epigenetic modifications requires tools that combine precise
recognition of DNA sequences with the capability to modify epigenetic marks. The CRISPR/Cas
system has been proven to be a valuable addition to existing methodologies that fulfill these tasks.
So far, sequence-specific editing of epigenetic modifications such as DNA methylation and histone
posttranslational modifications relied on direct fusions of enzymatically inactivated Cas9 (dCas9)
with epigenetic effectors. Here, we report a novel, modular system that facilitates the recruitment of
any GFP-tagged protein to desired genomic loci. By fusing dCas9 to a GFP-binding nanobody (GBP)
we demonstrate that prevalent epigenetic modifications at mouse major satellite repeats can be
erased or set de novo by recruiting GFP-coupled catalytic domains of TET1 and DNMT3A,
respectively. Furthermore, we construct an inducible expression system that enables a temporally
controlled expression of both GBP-dCas9 and the effector protein. Thus, our approach further
expands the CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a
modular and easy-to-use system.
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Introduction

Eukaryotic gene expression is controlled by a complex
network of epigenetic mechanisms that include the
posttranslational modification of histones as well as
covalent DNA modifications.1 Dissection of this net-
work using knockout or overexpression studies have
greatly advanced our understanding of how epigenetic
modifications contribute to transcriptional regulation.
However, using traditional techniques, the complex
relationships and feedback circuits that interconnect
epigenetic pathways make it difficult to differentiate
direct consequences of epigenetic modifications on
transcription from secondary effects. Site-specific
manipulation of epigenetic marks therefore represents
a highly desirable tool to study and understand their
direct functional relevance on gene expression and
genome organization.

Previously, tools that direct the enzymatic activity
of epigenetic effectors to specific loci were based on
zinc finger proteins (ZFPs)2-6 or transcription activa-
tor-like effectors (TALEs).6-8 However, custom design
and engineering of ZFPs and TALEs is based on the

rearrangement of their modular DNA-binding
domains, requiring elaborate cloning techniques and
rigorous testing.9-12 In contrast, the RNA-guided
endonuclease Cas9 of the type II CRISPR/Cas (clus-
tered regularly interspaced short palindromic repeats/
CRISPR-associated) system recognizes specific loci via
Watson-Crick base pairing between a readily
exchangeable 20 bp sequence of the single guide RNA
(sgRNA) and the target DNA in the direct vicinity of a
PAM (protospacer adjacent motif).13-15 Due to this
ease of use, Cas9-based approaches have been rapidly
adopted for genome engineering strategies in a wide
variety of cell types and organisms.16-20

Importantly, engineering of a catalytically inactive var-
iant of Cas9 (dCas9) facilitates RNA-guided genome tar-
geting in a sequence specific manner, without cleaving
the underlying DNA.13,21 We and others have previously
demonstrated that this programmable DNA-binding
platform can be harnessed for in vivo visualization of spe-
cific genomic regions22-24 as well as for determination of
local chromatin composition.25-26 In addition, fusion of
dCas9 with the methyltransferase DNMT3A enables
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targeted transcriptional repression by catalyzing de novo
methylation at gene regulatory regions.27-28 Vice versa,
dCas9 mediated targeting of ten-eleven translocation
methylcytosine dioxygenase 1 (TET1) to regulatory ele-
ments results in upregulation of silenced genes via active
DNA demethylation.29-31 Similarly, transcriptional mod-
ulation has also been reported by targeting histone acety-
lase32 and histone demethylase activities33 via dCas9,
highlighting the versatility of this approach.

Here, we introduce a modular CRISPR/Cas9 sys-
tem, which combines the sequence specificity of
dCas9 with stringent recruitment of GFP-coupled epi-
genetic effectors via a GFP-binding nanobody
(GBP).34 We show that this versatile setup can be
exploited to control the levels of DNA modifications
at target loci using GFP fusions of DNA methyltrans-
ferases and methylcytosine dioxygenases. Further-
more, using a bidirectional doxycycline-inducible
promoter we develop a single vector system that
allows the timed expression and targeted recruitment
of GBP-Cas9 and GFP-fusion proteins.

Results and discussion

We first set out to assess, whether GFP can be recruited
to a defined genomic locus via dCas9. To this end, we
constructed a GBP-dCas9-mRFP construct, which
enabled us to simultaneously visualize dCas9 and GFP
localization (Fig. 1A). Since heterochromatic chromo-
centers (CCs) are distinct subnuclear regions, which
can be readily distinguished and are characterized by
well-defined epigenetic marks,35-36 we decided to tether
GBP-dCas9-mRFP to these loci via a major satellite
specific sgRNA (MaSgRNA).

Transient co-transfection of mouse embryonic stem
cells (ESCs wt J1) with GBP-dCas9-mRFP and
MaSgRNA resulted in a specific enrichment of GBP-
dCas9-mRFP at CCs. Importantly, when we addition-
ally transfected a GFP-encoding plasmid, we observed
co-localization of GFP with GBP-dCas9-mRFP at CCs
(Fig. 1B and C). This experiment confirms the func-
tionality of the GBP-dCas9-mRFP construct in facili-
tating the recruitment of GFP to target loci.

Next, we aimed to target GFP-tagged epigenetic
effector proteins to chromocenters via GBP-dCas9-
mRFP. To test the feasibility of such an approach we
used the catalytic domains of the methylcytosine diox-
ygenase TET1 and the de novo methyltransferase
DNMT3A coupled to GFP (GFP-TET1CD and GFP-

DNMT3ACD, respectively). DNMT3A catalyzes the
methylation of cytosine generating 5-methylcytosine
(5mC), a repressive epigenetic mark enriched at
CCs.36 In contrast, TET1 oxidizes 5mC to 5-hydroxy-
methylcytosine (5hmC), a DNA modification gener-
ally found in euchromatin and depleted at the
heterochromatic CCs.37

Similar to GFP alone, GFP-TET1CD was success-
fully recruited to CCs in cells, which co-expressed
GBP-dCas9-mRFP and MaSgRNA. Notably, TET1CD
recruitment to the highly methylated CCs in wt ESCs,
resulted in an ectopic enrichment of 5hmC at these
sites (Fig. 2A). To test the feasibility of GFP-
DNMT3ACD recruitment to CCs we used DNMT tri-
ple knockout (TKO) cells,38 which are virtually devoid
of genomic DNA methylation. In TKO cells, which
co-expressed GBP-dCas9-mRFP and MaSgRNA GFP-
DNMT3ACD was successfully recruited to CCs, lead-
ing to a dramatic increase of 5mC at CCs (Fig. 2B).
Taken together, these data show that GBP-dCas9-
mRFP is capable of directing the enzymatic activity of
epigenetic factors to targeted genomic regions.

Besides targeted recruitment, control over the tim-
ing of site-specific epigenetic editing is crucial for the
dissection of direct functional consequences resulting
from local epigenetic perturbations. To this end, we
constructed an inducible system for GBP-dCas9-
mRFP and GFP/GFP-effector expression. We used an
Epstein-Barr virus (EBV) derived episomal expression
plasmid (pRTS), which harbors a doxycycline-induc-
ible bi-directional promoter and additionally encodes
a tet-transcriptional (tTR) repressor as well as a tet-
transcriptional activator (rtTA).39-40 Conditional tran-
scriptional activation is achieved in the presence of
doxycycline (Dox) by the rtTA, whereas tTR mediates
active repression in Dox-free conditions. This single
vector system allows tight control over the timing and
expression level of GBP-dCas9-mRFP as well as a
GFP-fusion protein (pRTS-GBP-dCas9-mRFP;
Fig. 2C). Moreover, using a bidirectional promoter
ensures that both proteins are expressed at compara-
ble levels reducing the amount of freely diffusing
GFP-fusion protein, thereby minimizing off-target
effects. We first tested the inducible system in mouse
myoblast (C2C12) using a pRTS-GBP-dCas9-mRFP,
additionally harboring either GFP alone or GFP-
TET1CD. Both GFP and GFP-TET1CD were
expressed and specifically recruited to CCs in a strictly
sgRNA- and Dox-dependent manner (Fig. 3A and B;

280 T. ANTON AND S. BULTMANN



Figure S1A; Figure S2A and B). Similar to co-transfec-
tions performed in wt ESCs, GFP-TET1CD recruit-
ment resulted in a drastic increase of hmC at myoblast
CCs (Fig. 3B). Comparably, transfection of pRTS-
GBP-dCas9-mRFP harboring GFP-DNMT3ACD into
TKO cells led to a specific, Dox-dependent enrich-
ment of 5mC at CCs (Fig. 3C; Figure S1B; Figure S2C).

In summary, we demonstrated that our modular
system can be used to edit prevalent epigenetic

marks such as DNA methylation at heterochromatic
chromocenters in a timely controlled manner.
While we used repetitive target sequences, which
allow a fast and simple readout of efficient effector
recruitment by microscopy, it is in principle possi-
ble to apply our system for the epigenetic modifica-
tion of single target loci. Using multiple gene/target
specific sgRNAs in parallel will also enable the
modification of multiple loci at once or the

Figure 1. Targeted recruitment of GFP to major satellites. (A) Schematic outline of dCas9-mediated effector recruitment. GBP-dCas9-
mRFP is guided to a desired locus by a sgRNA and interacts with a GFP-coupled epigenetic effector via GBP. Subsequently, the effector
modifies the underlying DNA. (B-C) Representative confocal images of ESCs, co-transfected with GBP-dCas9-mRFP and major satellite
specific sgRNA. GBP-dCas9-mRFP specifically localizes at CCs and recruits GFP, when it is additionally co-transfected (C). Line plots repre-
sent the signal intensity of the different channels along the indicated chromocenter (solid white line). White dashed lines indicate the
nuclear border. Scale bar: 10 mm.
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epigenetic editing of a single copy locus.22 The bidi-
rectional, inducible system offers the added advan-
tage to titrate of the amount of epigenetic modifier
and Cas9 protein simultaneously, greatly reducing
the possibility of off-target effects. Furthermore, our
GBP-based approach for dCas9-assisted targeted

recruitment can be combined with virtually any
GFP-tagged protein. Considering the widespread
use of GFP-fusions in cell lines and animal models,
this system will help to facilitate the systematic dis-
section of biologic processes in basic and biomedi-
cal research.45

Figure 2. Targeted recruitment of GFP-tagged effector proteins. (A) GBP-dCas9-mRFP recruits GFP-TET1CD to chromocenters.
Recruited GFP-TET1CD oxidizes 5mC to 5hmC at CCs in transfected ESCs. In untransfected cells, no 5hmC signal was detected. (B)
When targeted to CCs, GFP-DNMT3ACD mediates de novo DNA methylation in TKO cells, which was not observed in untransfected
control cells. Line plots represent the signal intensity of the different channels along the indicated chromocenter (solid white
line). White dashed lines indicate the nuclear border. Scale bar: 10 mm. (C) Schematic representation of the inducible vector sys-
tem. A bi-directional promoter drives the expression of GBP-dCas9-mRFP as well as GFP. The vector additionally encodes a tran-
scriptional repressor (tTR) and a transcriptional activator (rtTA). In the absence of doxycycline (Dox), tTR binds to a tetracycline
response element (TRE) within the promoter sequence and represses transcription. Upon addition of Dox to the culture medium,
rtTA replaces tTR and induces gene transcription.
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Material and methods

Cell culture and transient transfections

J1 ESCs and TKO cells were cultivated at 37�C and 5%
CO2 on gelatin-coated dishes in Dulbecco�s modified
Eagle�s medium (DMEM, Sigma), supplemented with
16% fetal bovine serum (FBS, Biochrom), 0.1 mM

b-mercaptoethanol (Invitrogen), 2 mM L-glutamine,
1x MEM non-essential amino acids, 100 U/ml penicil-
lin, 100 mg/ml streptomycin (PAA Laboratories
GmbH), 1000 U/ml recombinant mouse LIF (Milli-
pore), 1 mM PD032501 and 3 mM CHIR99021 (Axon
Medchem). C2C12 cells were cultured at 37�C and 5%
CO2 in DMEM, supplemented with 20% FBS, 2 mM

Figure 3. Doxycycline-dependent, coordinated expression of GBP-dCas9-mRFP and GFP-tagged effectors. Cells were co-transfected
with MaSgRNA and pRTS-GBP-dCas9-mRFP, additionally encoding GFP (A), GFP-TET1CD (B) or GFP-DNMT3ACD (C). Upon induction with
doxycycline both GBP-dCas9-mRFP and the corresponding GFP-tagged effector are expressed, resulting in the oxidation of 5mC (5 hmC;
B) or de novo methylation of CCs (5 mC; C). White dashed lines indicate the nuclear border. Scale bar: 10 mm.
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L-glutamine, 100 U/ml penicillin and 100 mg/ml
streptomycin. For conditional transcription activation,
the culture medium was additionally supplemented
with 1.5 mg/ml doxycycline for 24 hours. Transient
transfections were performed using Lipofectamine�

3000 (Thermo Fisher Scientific) according to the man-
ufacturer�s instructions and cells were analyzed 24 –
48 hrs post-transfection.

Plasmid generation

For generating the GBP-dCas9-mRFP expression plas-
mid, the GBP and mRFP coding sequences were ampli-
fied from pGFPbinderImR41 and cloned into pCAG-
dCas923 via XbaI and AsiSI/NotI, respectively. The
expression constructs for GFP-TET1CD and
MaSgRNA were described previously.23,42 GFP-
DNMT3ACD was constructed by amplifying the cata-
lytic domain of DNMT3A from pCAG-GMT3a.43 Sub-
sequently TET1CD was exchanged by DNMT3ACD
using AsiSI and NotI restriction enzymes. The doxycy-
cline-inducible expression system is based on the pRTS
plasmid described previously.39 The GBP-dCas9-mRFP
coding sequence was cloned into pRTS via SfiI, whereas
TET1CD and DNMT3ACD, respectively, were inserted
upstream of GFP via SmiI.

Constructs generated for this study are available via
Addgene.

Immunofluorescence staining and microscopy

Immunofluorescence staining was performed as
described previously.44 Briefly, cells were grown on
coverslips (thickness 1.5H, 170 mm § 5 mm; Marien-
feld Superior) and transfected with the respective
expression plasmids. 24 – 48 hours after transfection,
cells were washed with phosphate buffered saline
(PBS), fixed with 3.7% formaldehyde for 10 min and
permeabilized with 0.5% Triton X-100 in PBS. For
5 mC and 5 hmC detection, DNA was first denatured
with 1 N HCl for 15 min and then neutralized with
150 mM TRIS-HCl (pH 8.5). Subsequently, cells were
transferred into blocking buffer (0.02% Tween and 2%
bovine serum albumin in PBS) for 1 hour. Both pri-
mary and secondary antibodies were diluted in block-
ing buffer and cells were incubated in a dark,
humidified chamber for 1 hour at room temperature.
Nuclei were counterstained with 0.2 mg/ml DAPI in
PBS or SiR-DNA (Spirochrome). Coverslips were
mounted with antifade medium (Vectashield, Vector

Laboratories) and sealed with colorless nail polish.
Primary antibodies used in this study were: GFP- and
RFP-booster conjugated to Atto 488 and Atto 593,
respectively (1:200; Chromotek), anti-5hmC (1:250;
Active Motif) and anti-5 mC (1:500, Diagenode). The
secondary antibodies were: anti-rabbit IgG conjugated
to Alexa 647, anti-mouse IgG conjugated to Alexa 647
(1:400; Thermo Fisher Scientific) and anti-mouse IgG
conjugated to Alexa 405 (1:400; Invitrogen).

Confocal images were acquired with a Leica TCS
SP5 microscope equipped with a Plan Apo 63x/1.4
NA oil immersion objective. Image processing and
assembly of figures was performed with FIJI and Pho-
toshop CS5.1 (Adobe), respectively.

Abbreviations
CC Chromocenter
DNMT3A DNA methyltransferase 3A
GBP GFP-binding protein.
TET1 ten-eleven translocation methylcytosine

dioxygenase 1
5hmC 5-hydroxymethylcytosine
5mC 5-methylcytosine
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