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Consistent negative response of US crops to high
temperatures in observations and crop models
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High temperatures are detrimental to crop yields and could lead to global warming-driven

reductions in agricultural productivity. To assess future threats, the majority of studies used

process-based crop models, but their ability to represent effects of high temperature has

been questioned. Here we show that an ensemble of nine crop models reproduces the

observed average temperature responses of US maize, soybean and wheat yields. Each day

430 �C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines

observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the

hypothesis that water stress induced by high temperatures causes the decline. For wheat a

negative response to high temperature is neither observed nor simulated under historical

conditions, since critical temperatures are rarely exceeded during the growing season. In the

future, yields are modelled to decline for all three crops at temperatures 430 �C. Elevated

CO2 can only weakly reduce these yield losses, in contrast to irrigation.
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C
rops grow best within specific intermediate temperature
intervals. Excessive frost or heat are detrimental
to physiological processes and, eventually, yield levels.

Under climate change episodes of high temperature are expected
to increase in frequency and duration. This could threaten
regional productivity in already susceptible areas1–4. There are a
number of statistical approaches that allow for separating effects
of high temperatures on observed yields from other sources
of variability that are not correlated with them over time. Rainfed
maize, soybean and cotton yields in the US have been shown
in statistical studies to decline non-linearly with temperatures
above B30 �C (ref. 5). Wheat in the US responds negatively
to frost in fall or heat in spring; the reduction due to
high temperature is lowered by increased rainfall6. Maize yields
in Africa decline strongly with temperatures 430 �C, in
particular under lack of water7. Senescence of irrigated wheat
in India is accelerated by temperatures 434 �C (ref. 8). But these
statistical models are agnostic about the underlying mechanisms,
which are important to understand to help farmers better
adapt to high temperatures. Process-based crop models, in
contrast, provide an implementation of physiological
crop growth processes. They model complex responses of crop
yields to climate change, accounting for weather fluctuations on
(sub-)daily time scales. In particular, they allow for varying
responses in terms of the phenological state of the crop, for
interactions between the atmospheric CO2 concentration
(henceforth [CO2]), temperature, precipitation and other
weather variables, and delayed effects of precipitation due to
soil water storage.

High temperatures, which are defined as temperatures
430 �C within this study, affect crop yields by direct and
indirect effects. High temperatures can cause water stress through
depletion of soil water and increased atmospheric water
demand9–12, which leads to a closing of stomata to avoid
desiccation (thereby reducing the uptake of CO2) and also to an
enhanced root growth at the expense of above-ground biomass.
High temperatures can also directly damage enzymes and
tissues13–15, impair flowering10,16, trigger oxidative stress17, lead
to precocious maturity and senescence (resulting in less time for
accumulating biomass18,19) or lower net photosynthesis rates due
to lower carbon (C) assimilation and/or higher respiration
rates20–22. By using one site-based crop model for three
corn-growing locations in the US corn belt it has been shown
that the observed high-temperature effects on maize yield are
largely mediated by changes in water supply and demand rather
than by direct damage to the plant tissues9. The critical role of
water availability to cope with high-temperature stress is also
shown for African maize, where negative effects on yields 430 �C
double under drought conditions7.

Here we apply the statistical approach by Schlenker
and Roberts5 to simulated yields from process-based models to
test their representation of observed negative high-temperature
effects on a spatially aggregated level. We analyse maize, soybean
and wheat, which are US staple crops occupying 62% of the
2010 harvested area in the US23 and 33% globally24. To test the
sensitivity to water availability, we make separate comparisons
for predominantly rainfed or irrigated counties. In addition, we
derive the average response to high temperature under future
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Figure 1 | Comparison of statistically estimated effects of temperatures on observed and simulated US yields in rainfed counties. Columns are maize

(a,d,g), soybean (b,e,h) and wheat (c,f,i). a–c show regression coefficients and d–f show the histogram of times spent in individual temperature bins as

the sum of times derived for each grid point across the growing seasons. g–i show rainfed counties (black outlines) with their per cent land-use share

(colours) of the respective crop (for wheat only counties with predominantly winter wheat). Black lines in a–c: coefficients gh derived from log-transformed

observed yields (Methods; equation (1)). Green/blue lines: coefficients of the ensemble median rainfed/irrigated simulated yields. Estimates are derived by

a panel regression of US county data, where the considered crop is grown under predominantly (490%) rainfed conditions. Shaded areas represent

95% confidence intervals. Simulated coefficients are marked by coloured dots if they are significantly different from the observed coefficients

(confidence intervals do not overlap).
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(2071–2099) climate conditions and higher levels of atmospheric
CO2 under Representative Concentration Pathway RCP8.5.
While the empirical approach in ref. 5 does not account for
the effects of higher [CO2] on future yields, it is explicitly
represented in process-based models. We find that the crop
models of our ensemble include the most relevant mechanisms of
high-temperature-induced yield loss under current climate,
in particular a water-dependent temperature response in
agreement with observations. Elevated CO2 cannot be
confirmed as a safeguard of yields under high temperatures, in
contrast to previous assumptions. A shift of temperatures
from beneficial to detrimental in a narrow temperature range
can already induce large crop losses—which can reliably be
assessed by current models.

Results
Models capture observed yield responses to high temperatures.
The considered ensemble of nine Global Gridded Crop Models
(GGCMs; eight for wheat) is able to closely reproduce the
observed average response of rainfed crop yields (gh, Methods,
equation (1)) to time spent in different temperatures from
0 to 42 �C (Fig. 1, green and black lines). The statistical model
estimates the changes in yield if the crop is exposed to
temperatures within individual intervals for one day. A value of
g¼ � 0.04 as, for example, derived from the observed maize
yields for the temperature interval from 33 to 36 �C means that
one additional day at these temperatures would reduce the yield
by 1� exp(� 0.04)E 4%. The results are robust against the form
of the statistical analysis (step function or piecewise linear,
Supplementary Figs 1–3; principal component regression,
Supplementary Fig. 4; Supplementary Note 1), fertilizer input
(Supplementary Figs 5–7) and growing season assumptions
(Supplementary Figs 8–11). In the main text, we therefore only

show results for crop model-specific default representations
of present-day management conditions25 and fixed growing
seasons following Schlenker and Roberts5 (Methods).

Only 7 out of 42 coefficients significantly diverge between
the regression models for observed and simulated yields
(95% confidence intervals do not overlap). The confidence
intervals become larger at higher temperatures, owing to less
time exposed to these temperature bins. Responses for the
individual models can be found in Supplementary Fig. 12; see
also Supplementary Note 2. The temperature threshold of roughly
30 �C (maize and soybean peak at the 24–27 �C interval, which
is one temperature bin lower than earlier estimates for maize5)
is in close agreement with values deduced from field
experiments7,9,26,27. In contrast to maize and soybean, wheat
shows no clear temperature response pattern or decline with high
temperature (Fig. 1c), neither for observed nor for simulated
yields. Not all models are able to simulate winter wheat, so
we excluded those which only simulate spring wheat (Methods).
Given the close agreement between observed and simulated
yield average responses, we use the process-based models to
identify the mechanism behind the decline in yields.

Models suggest water stress as major cause of yield declines.
The coefficients derived from the median of the simulated
ensemble under the assumption of full irrigation (blue lines
in Fig. 1) significantly diverge from the coefficients derived from
simulations assuming rainfed conditions (green lines) at 7, 8 and
4 out of 14 temperature bins each for maize, soybean and
wheat, respectively (cf. also the modified scaling and correlation
of coefficients in Supplementary Figs 13—15; Supplementary
Note 3). Full irrigation reduces the negative effect of temperatures
430 �C. Although a detrimental effect of very high temperatures
439 �C seems to occur even for irrigated maize, the
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Figure 2 | Comparison of statistically estimated effects of temperatures on observed and simulated US yields in irrigated counties. Unconstrained

irrigation is assumed on the irrigated areas specified by MIRCA2000 (ref. 24). Columns are maize (a,d), soybean (b,e) and wheat (c,f). a–c show

regression coefficients and d–f show irrigated counties (black outlines) with their per cent land-use share (colours) of the respective crop. Counties are

considered as irrigated if 475% of the crop-specific-harvested area is irrigated. Black and blue lines in a–c represent coefficients gh for observed and

simulated yields, respectively. Shaded areas are 95% confidence intervals. Results for individual models are shown in Supplementary Fig. 33.
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interpretation of this single coefficient may be misleading due
to the small number of data points. In irrigated counties
(Supplementary Fig. 16) neither the observations nor the
simulations show a strong decline in yield coefficients at
high-temperature intervals (Fig. 2; Supplementary Note 4).
The confidence intervals for irrigated counties are larger,
partly due to fewer observations (Methods), making the statistical
model estimates noisy. The crop model ensembles for maize
and soybean show a yield decline with temperatures 433 �C
and 30 �C, respectively, but less pronounced than in the rainfed
case. All confidence intervals in the high-temperature range
are close to 0 except for 39–42 �C.

The crop model simulations assuming full irrigation on
rainfed areas show a significantly higher evapotranspiration
(ET; Supplementary Fig. 17) and a significantly higher biomass
accumulation (Supplementary Fig. 18; Supplementary Table 3)
than the rainfed runs. All models simulate shorter growing
seasons with higher average temperatures for maize and soybean.
For wheat the effect can be confounded by vernalization, which is
delayed under higher temperatures, such that only a majority
of the models shows a decrease. The average decline in length for
each additional degree of average growing season temperature
over the period 1980–2010 is B7.4 days for rainfed maize,
5.6 days for soybean and 1.3 days for wheat, respectively. This
decline is equal or higher under irrigated conditions in the same
counties (equal for maize, but 9% and 46% higher for soybean
and wheat, respectively).

Models suggest that CO2 only limitedly attenuates yield loss.
The interaction of temperature, water and [CO2] plays
an important role for future yields under global warming17.
To assess this we apply the panel regression to simulated future
yields in rainfed counties under climate change (RCP 8.5).
We use an ensemble of six GGCMs (five for wheat), whose
models overlap with the historical ensemble above (Methods).
Four settings are analysed: rainfed conditions and fixed present-
day [CO2] levels, rainfed conditions and elevated [CO2]
(803 p.p.m. as 2071–2099 mean), full irrigation and fixed [CO2],
and full irrigation and elevated [CO2]. Rainfed yields continue
to exhibit a pronounced decline at high temperatures, even
under elevated [CO2] (Fig. 3, solid and dashed green lines).

Under climate change and the associated shift of growing
season temperatures into the critical range 430 �C wheat
also shows a decline in yields under rainfed conditions
(Fig. 3c). The signal can strongly be reduced with irrigation
(blue lines) for all crops. The bottom part of each panel in Fig. 3
shows the shifts of temperature distributions over the fixed
growing season into warmer ranges for the future (red solid line)
when compared to the historical period (1980–2010, grey dashed
line). We do not consider irrigated counties for this analysis
since the historical response shows large uncertainties.

The median rainfed yields of the future model ensemble show
a generally reduced temperature sensitivity caused by elevated
[CO2], also at higher temperatures for maize and wheat,
evidenced by the smaller absolute coefficient values over
the whole temperature range. This holds for the individual
models, too (Supplementary Figs 19–21). But these reductions are
not significant for any of the crops over the whole temperature
range (confidence intervals overlap everywhere). In contrast,
the coefficients for irrigated yields are nearly equal for fixed
and elevated [CO2] at all temperatures, for all three crops.
They diverge significantly from the rainfed coefficients at 9 out
of 42 coefficients, in particular in the temperature range 430 �C.

Elevated [CO2] significantly reduces actual ET and increases
biomass and yield under rainfed and irrigated conditions for
all three crops (Supplementary Figs 22–25; Supplementary
Table 4). For maize, however, the biomass increase with elevated
[CO2] is only marginal under irrigated conditions (4.6%)
in comparison with soybean (35.2%) and wheat (19.4%).
For soybean the reduction in ET at elevated [CO2] is only
marginal (1.4%) under rainfed conditions.

Discussion
We applied a statistical model to detect the temperature response
of observed and simulated county yields in the US. We
showed that the considered ensemble of nine process-based
crop models is capable of reproducing the observed detrimental
effects of high temperatures on rainfed maize and soybean crops.
For wheat neither observations nor simulations show a decline
in the historical period. The close agreement between rainfed
simulations and observations and a strongly reduced yield
decline with ample water supply in the models allows us to
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Figure 3 | Simulated yield responses to temperature under future climate change in rainfed counties. Columns are maize (a,d), soybean (b,e) and

wheat (c,f). a–c show regression coefficients and d–f display temperature histograms for the historic (dashed grey) and future (solid red) periods; future

climate is evaluated over 2071–2099 based on RCP8.5. Green tone lines in a–c are ensemble yield responses to temperature under rainfed conditions. Blue

tone lines are ensemble yield responses under irrigation. Solid lines are derived with fixed present-day [CO2], while dotted lines include elevated [CO2]

according to RCP8.5. Shaded areas are 95% confidence intervals. Rainfed counties are defined in Fig. 1.
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conclude that irrigation lowers the temperature sensitivity of all
three crops. In the future, the models suggest a negative response
of maize, soybean and wheat to high temperatures even under
elevated [CO2]. A future shift of temperatures from beneficial to
detrimental may reduce crop yields substantially even without
considering the effect of extremely high temperatures.

Negative effects of high temperature on wheat would be
expected at temperatures 430 �C (ref. 26). Under historical
conditions wheat was usually harvested before high-temperature
stress occurred, or the stress occurred during non-sensitive
phenological stages. The occurrence of temperatures 430 �C per
growing season is, on average, higher for maize (10.8 days) and
soybean (13.1 days) compared with wheat (6.0 days). Field trial
data in Kansas6 has shown sensitivity of wheat to temperatures
above 34 �C in spring, which we do not observe for the larger
geographic coverage and given the rare occurrence of such spring
heat events in the past.

The close agreement of high-temperature responses of
observed and simulated yields allows for an investigation of the
underlying mechanism of the yield decline. In particular, the
threshold response 430 �C, which is not natively implemented in
the models, is a prerequisite for this investigation. The
dampening effect of irrigation on the temperature response of
yield supports the hypothesis that temperature-induced water
stress is the main driver of the observed yield decline at
temperatures 430 �C, in line with the study by Lobell et al.9

Atmospheric water demand increases with temperature as an
immediate effect. In addition, water supply from soil to plant
gradually decreases due to depletion of soil water stocks from
sustained high ET. Both factors can lead to water stress for crops,
where the stomata gradually close to prevent water loss and
therefore preclude the diffusion of CO2 into the cells. This leads
to a reduced gross photosynthesis rate. All GGCMs considered
here represent both the immediate (stomatal closure) and
progressive (soil water depletion) effects of temperature (model
characteristics in Supplementary Table 1). In addition, crops
respond to water stress by enhanced root growth at the expense of
above-ground biomass and yield; this effect is included in eight of
the nine models (Supplementary Table 1). The critical role of
water supply at high temperature is further supported by the yield
response curves for observed yields from predominantly irrigated
counties, where no clear temperature response is visible. Yet this
yield response in irrigated counties is rather noisy due to few
observations (Methods). But our conclusions mainly rely on the
(counterfactual) irrigated yield response in rainfed counties,
where a larger panel allows for robust assessments. Troy et al.28

have recently shown that irrigation attenuates the yield impacts of
several climate-extreme indices, which is in accordance with our
findings. Thus reduced gross photosynthesis rate, triggered by
reduced CO2 inflow under water stress, constitutes a major
pathway for yield decline under high-temperature conditions
without sufficient water supply (first point from the effects listed
in the introduction).

Yet the existence of temperature-induced water stress does not
necessarily preclude other negative effects of high temperatures
(other points from the list above). The first three of the alternative
explanations (direct damage to enzymes and tissue, impaired
flowering and oxidative stress) are not represented in the
considered crop model ensemble (except impaired flowering in
one model, PEGASUS). That the ensemble is nevertheless able to
reproduce the observed decline in yields at temperature levels of
30–36 �C suggests that these three effects are not the main causes
of the observed decline in yields in this temperature range at this
spatial coverage. Direct damage to enzymes, tissues or reproduc-
tive organs is only expected at higher-temperature levels
(35–37 �C for maize and 35–39 �C for soybean; refs 26,27) than

the thresholds identified here. The actual leaf temperature could
deviate from the surrounding air temperature, since water
scarcity precludes a transpirational cooling of the leaves. Yet,
none of the considered models explicitly accounts for leaf
temperature differences to ambient air. Furthermore, there is
evidence that irrigation does not only reduce the perceived
temperature for the plant, but also the actual temperature over
large regions29–31. This effect is not considered in the crop
models. But given the agreement between observations and
simulations, a direct damage seems to be of minor relevance for
the general shape of the temperature response at the range
considered here. Increasing oxidative stress can arise from higher
levels of photorespiration or higher uptake rates of ozone (O3),
whose concentrations tend to increase with temperature32. A
potential increase in photorespiration is expected to be less
pronounced in C4 plants like maize13,17,22, which is not
supported by the observational data showing a particularly
pronounced decline in maize yields. For O3, irrigation could even
increase its damaging effects, since more available water allows
the stomata to open wider, which would let more O3 in ref. 33.
Thus, the first three alternative pathways do likely not explain the
observed yield reduction under rainfed conditions and its
alleviation under irrigation.

In contrast, the crop models do simulate shorter growing
seasons with increasing temperature(Supplementary Table 5).
The phenological development of crops is mainly controlled by
temperature, such that (non-adapted) crop plants would have less
time for gaining biomass and yield if the growing season shortens.
This could explain yield declines with high temperature. But in
the model ensemble the growing season lengths shorten equally
or even more for irrigated yields than rainfed yields. So a shorter
maturity time does not explain why there is no reduction in yields
for irrigated conditions. In addition, observations show that
maturity may even be delayed, instead of advanced, by high
temperatures9,34.

Seven of nine models include a direct effect of temperature on
maintenance respiration (Supplementary Table 1), and the other
two have a lower radiation use efficiency under high-temperature
stress. Net biomass gain is the difference between gross
photosynthesis and plant respiration, such that an increased
respiration can lead to lower biomass and yield. Respiration data
are not available from the model ensemble considered, but the
relative share of respiration to assimilation is expected to increase
with high temperature22 and water stress15. An evaluation of the
2003 European heat wave, however, found a decreasing
respiration under heat and drought conditions21. Respiration
equations in the models are influenced by temperature only, not
by water supply. Therefore increased respiration under high-
temperature stress does not explain why there is no yield decline
under irrigation, in particular since models have no cooling effect
of transpiration on perceived temperature. Together with the
ambiguous response of respiration to high temperature or
drought stress, we suggest that increased respiration is not a
primary reason for the yield decline under high temperatures
within the range analysed here.

The statistical approach is sensitive to yield losses induced by
extremely high temperatures, despite their low relative abundance
in the data set (Supplementary Fig. 26; Supplementary Note 5). At
the same time, the direct damage to enzymes, tissues or
reproductive organs expected in these temperature ranges is not
represented in the crop models (see above). Thus, the agreement
between observations and simulations indicates that damage
directly induced by extremely high temperatures is of minor
relevance in the historical sample on the large spatial scale of our
study. Damages in the observed yields could be limited if
temperatures occurred in noncritical periods of the growing
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season. But in the considered sample extreme temperatures
mainly occurred in the middle and last phase of the growing
season, in which anthesis and grain filling mostly
occur (Supplementary Fig. 27). Both these processes are known
to be critically sensitive to high temperatures8,10,20,22,35–37.
In addition, a sensitivity test regarding the timing of
the exposure and the definition of the growing season has
not revealed a significant difference in the associated responses to
extreme temperatures5. Evaporative cooling may have reduced
leaf temperatures to lower values than air temperatures, which
are used as predictor in the regression model. The latter aspect is
not represented in the crop models and requires further work
to quantify the role of evaporative cooling, as a protection
mechanism38,39. In addition, harvests may have been adjusted
to avoid exposure to extremely high temperatures, an effect
not represented in the exposure times used in our analysis.
Yet, given the abundant total number of such extremely high
temperatures in our data set (41,580 days 436 �C for maize,
70,934 for soybean and 34,200 for wheat), we argue that the latter
explanation is less relevant. The agreement between the observed
and simulated temperature sensitivities found for the historical
sample does not imply that models capture all processes relevant
under future climate change, where direct temperature-induced
damages may become more relevant. However, based on
the regression coefficients derived from the historical
observations and temperature shifts projected for the end of the
century by HadGEM2-ES under RCP8.5, increasing exposure
to temperatures in the range from 30 �C to 36 �C alone implies
yield losses of 49% for maize, 40% for soybean and 22% for wheat
(Table 1). Our analysis suggests that crop models reliably
simulate temperature effects in this range. A further test of
the reliability of future projections of yield losses could be
achieved by assessing regions that are already warmer today, or of
field experiments where temperatures are artificially
increased40,41.

Assuming that the crop models are able to capture the
relevant mechanisms that lower yields at high temperatures, as
discussed above, we continue to investigate the simulated
future interactions between high temperature, water supply
and CO2 concentrations. We only consider rainfed counties
(maps in Fig. 1), since the estimates of the statistical model
in irrigated counties (Fig. 2) are too noisy to base any
extrapolation on them. An elevated concentration of CO2 is
reported as a yield-increasing factor for most plants12,32. It tends
to increase crop water-use efficiency (gain of carbon per unit
of water lost) and maintain higher levels of soil moisture.
Observations have confirmed that CO2 fertilization is usually
more efficient under drought conditions, even for C4 plants
such as maize17,42. But the only insignificant differences in
high-temperature response of yields with elevated [CO2] suggest

that elevated [CO2] has a limited potential to buffer against
detrimental effects of temperature-induced water stress on
crop yields. These findings do not contradict beneficial effects
of CO2 on yield, in particular when integrating over the growing
season (Supplementary Fig. 25). But they suggest that episodic
temperature-induced water stress cannot be attenuated effectively
with higher [CO2] alone. In particular for soybean elevated
[CO2] leads to more biomass (larger leaf area), which in turn
increases transpiration needs (Supplementary Fig. 23). Thus,
the amount of water required by soybean under elevated [CO2] is
similar to that under fixed [CO2], despite higher water-use
efficiency. As a consequence the plant responds in a similar
way to the water stress triggered by elevated temperature. Thus, a
strong biomass increase under elevated [CO2] prevents
an ameliorating effect of [CO2] under episodic temperature-
induced water stress (similar conclusions are derived in
refs 9,17,43,44). For wheat (C3) and maize (C4) the biomass
increase under elevated [CO2] is smaller (Supplementary Figs 22
and 24). Therefore, the temperature-induced water stress
can better be attenuated with higher [CO2] in these two
crops when compared with soybean, but still not significantly.
These hypotheses are based on model results in rainfed counties
only, where a robust response to temperature is visible
for simulated rainfed and irrigated yields (Fig. 1), and could
guide further experiments on the role of CO2 under
high-temperature stress.

Estimated yield responses under high levels of global warming
should not be interpreted as predictions, since the
GGCM simulations do not commonly account for potential
adaptation options. The implementation of management
and thus adaptation options differs between models. For
example, fertilizer application rates were held constant
(PEGASUS, pDSSAT and pAPSIM) or adjusted flexibly according
to nitrogen stress (EPIC-IIASA, EPIC-BOKU and GEPIC).
The choice of cultivars was only allowed to change trough time
in PEGASUS, LPJ-GUESS and limitedly in GEPIC. Thus, the
ensemble response to temperature exposure represents the
average response across a range of different management
assumptions. Individual farmer’s options to adapt to
more frequent temperature stress could dampen negative yield
responses—though the extent may be limited5,45.

The effects of CO2 on yield formation are taken from
the individual models’ best estimate, which have partly
been calibrated against experiments to capture yield responses
to CO2 (ref. 46). There is a discussion that crop models
may overestimate yield response to elevated levels of CO2

(refs 42,47). Furthermore, an adequate sensitivity of the models
to temperature or water supply does not imply any conclusions
on the adequacy of the CO2 effect in models. Caution needs to be
exercised also when extrapolating historical temperature

Table 1 | Contribution to yield changes by different temperature ranges.

Crop Time Yield change factors Future yield loss below 36 �C

Below 30 �C 30–36 �C Above 36 �C Total

Maize Historical 1.80 0.73 0.96 1.27 49%
Future 1.62 0.41 0.47 0.31

Soybean Historical 2.84 0.88 0.95 2.37 40%
Future 2.12 0.71 0.59 0.89

Wheat Historical 0.93 0.91 0.99 0.84 22%
Future 0.85 0.78 0.94 0.62

Numbers are yield change factors for different temperature ranges that modify the base yield resulting from intercept, precipitation, county-fixed effects and time trends. The total column indicates the
product of all temperature exposures 40 �C on yield. The last column indicates yield loss expected from a shift of temperature exposures only within the 0–36 �C range (calculated with equation 2).
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responses into the future, as temperature effects that
are of minor relevance in the past may become more important
in the future, in particular in temperature ranges not observed
in the historical data set. Direct crop damages from extremely
high temperatures (for example, 40 �C) are usually not
represented in current crop models and would have to be
improved before assessing crop responses to these extremes in the
future48. But already the shift towards higher temperatures from
beneficial to detrimental (histograms in Fig. 3), without
considering extreme temperatures, poses a strong challenge
for rainfed crop production (Table 1). An increase of irrigated
areas or irrigation efficiency to overcome (parts of) the negative
consequences would be effective. Yet potential constraints
of water availability have to be accounted for refs 49–51.

Some of the models in our historical and future ensembles
belong to model families with a shared history of development.
Specifically, the three EPIC-based models (EPIC-Boku,
EPIC-IIASA and GEPIC) share an identical model core, but
have distinct assumptions on input and crop-specific parameters,
and the two LPJ-type models (LPJ-GUESS and LPJmL) share the
same photosynthesis approach, but diverge, for example, in
allocation or crop-specific assumptions. Yet a shared model
history does not prescribe a similar response to environmental
conditions. This is exemplified by the different responses of
models even of the same families (Supplementary Figs 8–10),
which is comparable to differences between models of distinct
families. As a consequence we assume the confidence intervals
and model ensembles to be unbiased with respect to model
families.

Our study provides insight into high-temperature-induced
mechanisms of yield losses at an aggregate scale and
thus constitutes a complement to field-based or experimental
studies. The latter allow for a direct control of temperature and
confounding variables, but are necessarily restricted to
few locations and have until now only sparse coverage of the
whole US40,41,52. Therefore experimental bottom-up and
top-down regression approaches are both necessary to elucidate
crop responses under climate change. The applied statistical
approach allows extracting average yield responses to exposure
to different temperature bins across a large spatial area with
varying small-scale management conditions. As such it is
particularly suitable for the evaluation of GGCMs rather
designed to reproduce yields responses on large scale than
to resolve fine-scale variations in management. It adds to
well-established knowledge of yield responses to temperature
that is derived from field and chamber experiments.
The application of GGCMs may help us to explore adaptation
options on large scales.

The crop models used here do not represent all potentially
detrimental effects of high temperature. Short-term changes
in management, such as fertilizer input, or diseases and pests also
influence observed yield fluctuations53, but are often not well
documented and also not always represented in the models.
But the simulations show a water-dependent temperature
response that is in agreement with the observations. Therefore,
we infer that the crop models include the most relevant
mechanisms under current climate. Though extreme
temperatures will become more important under climate
change, and crop models will have to capture the associated
effects48 , already the shift in the exposure times to temperatures
in the range from 30 to 36 �C can induce large crop losses—which
can reliably be assessed by current models. Despite the clear
ensemble response, there are several cases where the combined
temperature water effects are either under- or overestimated,
and this behaviour should be investigated further in the process-
based models. The accurate simulation of yield response to

temperature does not necessarily imply an accurate reproduction
of observed yield time series, since other factors like management
could mask them. We suggest further field experiments to
assess our model-based hypothesis of a limited effect of elevated
[CO2] under water stress induced by high temperatures.
In addition, models with an explicit representation of leaf
temperature could help to deepen our understanding of
the processes involved in yield decline under high temperatures
and further improve crop projections under climate change.

Methods
Climate data. Historical: we employed daily temperature (maximum and
minimum) and precipitation data for the statistical model, and further weather
variables for the yield simulations by the GGCMs, from the AgMERRA climate
data set54, covering the years 1980–2010. The weather data were spatially
aggregated to 0.5� for the crop simulations25. We used the identical data set for
the statistical analysis. Its spatial resolution is one order of magnitude coarser
than in the original empirical study5, which could result in less temperature
extremes due to aggregation effects. But the slight deviation between the
temperature distributions of the two data sets (Supplementary Fig. 29,30;
Supplementary Note 6) only has a minor effect on the estimated coefficients
(Supplementary Fig. 31). In addition, predicted yields from the regression model
based on the AgMERRA data are in close agreement with the observed yields in
terms of mean growing season temperatures (Supplementary Fig. 32). Future: all
future model results (statistical and process-based) are forced by bias-corrected55

climate projections from the HadGEM2 climate model under the RCP8.5 scenario
at 0.5� spatial resolution. We applied only one climate model, instead of an
ensemble, since we study relative temperature responses rather than absolute
yield levels.

Yield data. Historical observed US county yields from 1980 to 2010 (to 2008 for
wheat) were downloaded from the USDA Quick Stats tool23. Historical yield
simulations were calculated under the default and harmnoN harmonization
scenarios (differing in fertilizer input, growing season definition and irrigation
choices, cf. ref. 25) by nine different crop models: EPIC-Boku, EPIC-IIASA
(both, ref. 56), GEPIC57, LPJ-GUESS58, LPJmL59, ORCHIDEE-crop60, pAPSIM61,
pDSSAT62 and PEGASUS63. All GGCMs are forced by the same climate input54,
which is also used to calculate the time of the growing season that is spent within
the different temperature bins. Historical model yields were generated within the
GGCM Intercomparison project25 of the Agricultural Modelling Intercomparison
and Improvement Project (AgMIP64). Future yield simulations (years 2071–2099)
were taken from the Inter-Sectoral Impacts Model Intercomparison Project
(ISI-MIP65) Fast-Track data archive, once with CO2 fixed at present-day levels
(364–380 p.p.m. for all except pDSSAT which uses 330 p.p.m.) and once with
elevated CO2 (803 p.p.m. as 2071–2099 average). Yields from six models were
available: EPIC-Boku, GEPIC, LPJ-GUESS, LPJmL, pDSSAT and PEGASUS.
Note that model results for historical and future simulations were submitted at
different times (future: 2011, historical: 2014 onwards); therefore, a direct
comparison between the two responses is possibly biased due to differences in
model versions. PEGASUS is excluded from both wheat ensembles, since it only
simulates spring wheat. The crop models have not been calibrated against the
observed temperature response used for validation here.

Derivation of times spent in different temperature bins. In analogy to ref. 5, we
calculated the days spent in each 1� temperature bin during a fixed growing season
(from March 01 to August 31 for both maize and soybean, and October 15 to July
15 for wheat) for each grid cell, using a sinus interpolation between daily minimum
and maximum temperature. We then aggregated this data to county level with the
MIRCA2000 land-use pattern24, weighting by irrigated and rainfed shares, and
considered only aggregated 3-K temperature bins as in ref. 5. In addition to the
fixed growing season, the calculation was repeated for the model-specific growing
seasons. For the future period from 2071 to 2099 the times spent in individual
temperature bins were derived analogously, based on the bias-corrected climate
projections.

Regression model. We pool the US county yields for each crop and irrigation
setting to achieve a higher frequency of the rare high-temperature events in our
data set (also pursued in ref. 28). A panel regression, implemented in R and
following the procedure in ref. 5, was fitted separately to observed and simulated
crop yields for all US counties, individually for rainfed and irrigated counties.
A county was classified as rainfed or irrigated if its crop-specific area share was at
least 90% rainfed or 75% irrigated, respectively. Mixed counties (rainfed share
between 25 and 90%) were excluded. The following equation was applied for fitting:

log Yit ¼ a0 þ
X39

h¼0;3;6; ...

gh yit hþ 3ð Þ� yit hð Þ½ � þ zitdþ ci þ eit ð1Þ
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where Y is yield, log the natural logarithm, i the county and t the year. yit hð Þ is
the cumulative distribution function of days during the growing season spent at
temperature h, and the gh represent the estimated scaling coefficients shown in
Figs 1–3. In addition, the model adjusts for a common intercept to all counties
a0 and county-specific fixed effects ci. Variations in precipitation (linear and
quadratic) and state-specific time trends (linear and quadratic) to capture
technological change are subsumed in zit with the fitted scaling factors d. The
residual error is described by eit; these error terms are allowed to correlate spatially
as in ref. 5, estimated with the non-parametric method proposed by ref. 66, and
applying a cutoff of 3� spatial distance. All temperatures 439 �C were subsumed
into the same bin for 39–42 �C (mean value before pooling is 40 �C for all three
crops), while the effect of temperatures o0 �C is captured by the fitted intercept.
The total number of rows in the panels for historical observed rainfed maize,
soybean and wheat are 42,648, 41,920 and 38,845, respectively, and 2,277, 719,
and 149 county-year entries for irrigated counties. The total number of
parameters to be fitted is B80 for rainfed counties and B25 for irrigated counties
(depending on the number of states in the panel).

Contribution of temperature shifts to yield losses. We split the temperature
distribution into three parts: o30 �C (no stress), 30–36 �C (medium high
temperature) and 436 �C (extreme high temperature; consistent with previous
thresholds8,35–37,67,68). We calculate the relative contribution to yield for each of
these parts by multiplying the coefficients estimated from observed yields with the
historical or future exposure time for each 3 �C bin. This results in change factors
that modify the base yield resulting from intercept, precipitation, county-fixed
effects and time trends. Yield loss by exposure shifts up to 36 �C is then calculated
with the ratio of these factors (equation 2).

loss ¼ 1� e
P33

h¼0;3;6; ...
gh yfut

avg hþ 3ð Þ� yfut
avg hð Þ½ �

e
P33

h¼0;3;6; ...
gh yhist

avg hþ 3ð Þ� yhist
avg hð Þ½ � ð2Þ

Code availability. All codes (R scripts) necessary to reproduce our results are
available from the corresponding author on request.

Data availability. All data supporting the findings of this study are either public
data sets, are available within the article and its Supplementary information files or
are available from the corresponding author upon request.
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