
E-Mail karger@karger.com

 Original Paper 

 Skin Pharmacol Physiol  2015;28:205–212
 DOI: 10.1159/000368806 

 LRAT Overexpression Diminishes Intracellular 
Levels of Biologically Active Retinoids and 
Reduces Retinoid Antitumor Efficacy in the 
Murine Melanoma B16F10 Cell Line 

 Philipp M. Amann    a     Katharina Czaja    a     Alexandr V. Bazhin    b     Ralph Rühl    d     
Stefan B. Eichmüller    c     Hans F. Merk    a     Jens M. Baron    a   

  a    Department of Dermatology and Allergology, RWTH Aachen University,  Aachen ,  b    Department of General, Visceral 
and Transplant Surgery, Ludwig-Maximilian University Munich,  Munich , and  c    Division of Translational Immunology, 
German Cancer Research Center,  Heidelberg , Germany;  d    Department of Biochemistry and Molecular Biology, 
University of Debrecen,  Debrecen , Hungary 

ing B16F10 cell line compared to the control B16F10 cell line. 
 Results:  We found that the murine retinoid-sensitive B16F10 
cell line does not express the enzyme LRAT. LRAT overex-
pression decreased the antiproliferative effects of retinoid 
treatment in these melanoma cells. The RAR-regulated en-
zyme Cyp26a1 showed a significantly lower expression in 
LRAT-overexpressing B16F10 cells. Cyp26a1 expression was 
restored after ATRA incubation. HPLC analysis revealed that 
the level of inactive retinyl ester increased after ATRol treat-
ment, and levels of the substrate ATRol and biologically ac-
tive ATRA significantly decreased in LRAT-overexpressing 
murine melanoma. Consistently with this, levels of 4-oxo-
retinoic acid, an ATRA metabolite and Cyp26a1 product, 
were also decreased in LRAT-overexpressing cells.  Conclu-

sion:  Our results revealed a direct link between LRAT expres-
sion and regulation of ATRA levels indicating that the ab-
sence of LRAT-catalyzed retinol esterification is important 
for mediating retinoid sensitivity in murine melanoma cells. 
Thus, our data suggest that LRAT   overexpression represents 
a novel mechanism by which tumor cells can escape high 
supplementary ATRA levels that mediate tumor-suppressive 
RAR signaling.  © 2015 S. Karger AG, Basel 
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 Abstract 

  Background/Aim:  Vitamin A (all- trans -retinol, ATRol) serves 
as a precursor for all- trans -retinoic acid (ATRA), a ligand for 
the retinoic acid receptor (RAR), representing a potent regu-
lator for many physiological processes. While murine mela-
noma cells are highly sensitive to retinoid treatment, human 
melanoma cells have developed still unidentified mecha-
nisms that mediate cellular retinoid resistance. One of the 
key retinoid metabolizing enzymes is lecithin retinol acyl-
transferase (LRAT), which catalyzes the transformation of 
ATRol into inactive retinyl esters. LRAT is highly expressed in 
human melanoma cells. The aim of this study was to identify 
the mechanisms in retinol metabolism that are responsible 
for cellular retinoid sensitivity in the murine melanoma cell 
line B16F10.  Methods:  mRNA expression analysis, cell viabil-
ity assessment and determination of intracellular retinoid 
levels using HPLC analysis of a generated LRAT-overexpress-
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 Introduction 

 Vitamin A derivatives (retinoids), like all- trans -retinoic 
acid (ATRA), are essential for many physiologically rele-
vant processes like cell growth and differentiation during 
embryogenesis and in the adult organism, and are also im-
portant for skin physiology  [1–4] . At the molecular level, 
ATRA binds and activates the retinoic acid receptors 
(RARs), which directly regulate the transcription of various 
target genes  [1] . Intracellular retinoid levels are regulated by 
mechanisms that are not completely understood  [5, 6] . For 
ATRA synthesis, vitamin A (all- trans -retinol, ATRol) can 
be oxidated via all- trans -retinal (ATRal) as a metabolic in-
termediate  [7, 8] . Due to the antiproliferative and prodif-
ferentiation effects of ATRA  [9] , it is successfully used to 
treat several types of cancers  [10, 11] . However, many hu-
man melanoma cell lines are highly resistant to ATRA treat-
ments  [12, 13] , and ATRA and its isomer 13- cis -retinoic 
acid are poor therapeutics for human melanoma  [14–17] .

  The lack of information about the mechanism of 
ATRA resistance in human melanoma cells greatly ham-
pers efforts to improve clinical protocols that use this 
drug. Recently, efforts have been made to identify these 
tumor-specific mechanisms of retinoid resistance and 
metabolic response in melanoma cells  [18, 19] . Aberrant 
vitamin A metabolism is an attribute of cancer cells pre-
senting such a potential retinoid resistance mechanism. 
It was shown that cancer-specific modulations in retinoid 
metabolism reduce ATRA levels in cancer cells and that 
both the synthesis and metabolism of the bioactive me-
tabolites of retinol are impaired in cancer cells relative to 
normal cells  [10, 11] . Recently, we identified alterations 
in retinoid metabolism in human melanoma cells  [6, 20] . 
ATRol can be oxidized to ATRA or alternatively be es-
terified into biologically inactive retinyl esters. This key 
metabolic step is catalyzed by the enzyme lecithin retinol 
acyltransferase (LRAT)  [21] . We showed that LRAT ex-
pression is highly upregulated in human melanoma cells 
as compared to benign melanocytes  [20] . We believe that 
LRAT may be important for the removal of ATRol which 
is the precursor for ATRal and ATRA production.

  Importantly, in contrast to human melanoma, many 
studies showed that murine melanoma cell lines, such as 
B16F10, are highly sensitive to retinoids both in vitro and 
in vivo, and that retinoids exhibit significant effects on 
cell differentiation, proliferation, invasion and metastasis 
formation  [22–31] . The purpose of this study was to iden-
tify the mechanisms in retinol metabolism that can be 
responsible for cellular retinoid sensitivity in the murine 
melanoma cell line B16F10.

  Materials and Methods 

 Cell Culture and Reagents 
 The murine melanoma B16F10 cell line was cultivated at 37   °   C 

in an atmosphere of 5% CO 2  in RPMI 1640 with 2 m M   L -glutamine 
(Gibco/Invitrogen, Darmstadt, Germany), supplemented with 
10% fetal calf serum (Biochrom, Berlin, Germany). ATRol, ATRal 
and ATRA were purchased from Sigma (Taufkirchen, Germany).

  LRAT Overexpression 
 Plasmid amplification was performed in  Escherichia coli  using 

mouse LRAT cDNA plasmid (MR225686, Origene, Rockville, 
Md., USA) or pEntry (PS100001, Origene) as the control according 
to the manufacturer’s protocol. 

  Plasmid DNA from bacterial lysates was purified using the HiS-
peed Plasmid Maxi Kit (Qiagen, Hilden, Germany).

  B16F10 melanoma cells were plated 8 h before transfection at 
70% confluency. DNA transfections were performed using the X-
tremeGENE 9 DNA Transfection Reagent (Roche, Penzberg, 
 Germany) according to the manufacturer’s recommendations. 
The chosen ratio of transfection reagent:DNA was 6:   2. After trans-
fection, selection was made by adding 2 μg/ml G418 (Roth, Karl-
sruhe, Germany) to the medium overnight. Subsequently, the cells 
were washed and treated with 1 μ M  ATRol, ATRal or ATRA for 
24 h, or left untreated.

  RNA Isolation 
 Total RNA was isolated using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions, including the on-
column digestion of DNA with RNase-free DNase I. The RNA was 
quantified by photometric measurement (NanoDrop Technolo-
gies, Wilmington, Del., USA), and its integrity was analyzed on a 
2100 bioanalyzer (Agilent Technologies, Palo Alto, Calif., USA).

  Quantitative Reverse Transcription Polymerase Chain 
Reaction 
 Quantitative reverse transcription polymerase chain reaction 

was performed as previously described  [32] . Purified RNA was 
reverse transcribed with the SS VILO Mastermix (Life Technolo-
gies, Carlsbad, Calif., USA) according to the manufacturer’s in-
structions. TaqMan experiments were carried out on an ABI 
Prism 7300 sequence detection system (Applied Biosystems, 
Weiterstadt, Germany) using Assays-on-Demand gene expres-
sion products for murine LRAT (Mm00469972_m1) and murine 
Cyp26a1 (Mm00514486_m1) according to the manufacturer’s 
recommendations. An Assay-on-Demand product for murine 
GAPDH (Mm99999915_g1) was used as an internal reference to 
normalize the target transcripts. All measurements were per-
formed in triplicate in separate reaction wells. Experiments were 
repeated twice.

  Cell Viability 
 To analyze the influence of retinoids on cellular viability, 1 × 

10 5  B16F10 cells were plated in 6-well plates and were treated after 
24 h with 1 μ M  ATRol, ATRal or ATRA, or left untreated. Prolif-
eration and cytotoxicity were assayed using alamarBlue (AbD Se-
rotec, Düsseldorf, Germany) according to the manufacturer’s pro-
tocol. After 48 h, B16F10 cells were incubated with 10% (v/v) ala-
marBlue reagent for 2 h at 37   °   C, then the absorbance of samples 
was measured at 560 and 600 nm with a SpectraMax 250 reader 
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(Molecular Devices, Ismaning, Germany). Data analysis was per-
formed according to the manufacturer’s recommendations. Ex-
periments were repeated twice.

  Retinoid Analysis 
 High-performance liquid chromatography mass spectrome-

try-mass spectrometry (LC-MS) analyses were performed using a 
standard protocol of a previously published methodology under 
dark yellow/amber light  [33] . The concentrations of 4-oxo-retino-
ic acid (4-oxo-RA), ATRol, all- trans -retinyl palmitate (ATRP) and 
ATRA were determined in the collected cells originating from cell 
culture in triplicate. Quantification was performed as previously 
described  [33] . In a draft, sample preparation was performed using 
100 mg of the sample (if samples were under 100 mg, water was 
added up to the used standard weight: 100 mg), vortexed for 10 s, 
put in an ultrasonic bath for 5 min, shaken for 6 min and centri-
fuged at 13,000 rpm in a Heraeus Biofuge Fresco at 4   °   C. After cen-
trifugation, the supernatants were dried in an Eppendorf concen-
trator 5301 (Eppendorf, Germany) at 30   °   C. The dried extracts 
were resuspended with 60 μl of methanol, diluted with 40 μl of a 
60-m M  aqueous ammonium acetate solution, transferred to an au-
tosampler and subsequently analyzed.

  Statistical Analysis 
 Statistical analysis was performed with Sigmaplot version 

11 using Student’s t test. Data are given as arithmetical means ± 
standard error of the mean. Values of p  < 0.05, p  < 0.01 and 
p < 0.001 were considered significant and are indicated in the 
 figures.

  Results 

 Endogenous Expression, Overexpression and 
Regulation of LRAT in the Murine Melanoma Cell 
Line B16F10 
 In previous work, we had hypothesized that LRAT ex-

pression may be important for reduced ATRol levels in 

retinoid-resistant human melanoma cell lines  [20] . 
Therefore, we wanted to evaluate the role of LRAT in the 
retinoid metabolism of the murine retinoid-sensitive cell 
line B16F10. Interestingly, in contrast to human mela-
noma cell lines  [20] , we found that B16F10 cells do not 
express LRAT mRNA (C t  value 34.4;  fig.  1 a). Next, we 
generated an LRAT-overexpressing B16F10 cell line by 
transient mouse LRAT transfection (B16F10 + LRAT). 
LRAT expression was significantly increased (C t  value 
21.2; p < 0.001) in B16F10 + LRAT cells as compared to 
B16F10 transfected with the control vector (control cells; 
 fig. 1 a). Expression of LRAT did not change after treat-
ment with its substrate ATRol (1 μ M ), ATRal (1 μ M ) or 
ATRA (1 μ M ;  fig. 1 a).

  LRAT esterifies ATRol to all- trans -retinyl ester, main-
ly ATRP  [21] . LRAT overexpression was confirmed by 
quantification of ATRP by sensitive LC-MS measure-
ments. After ATRol incubation (1 μ M  for 24 h), higher 
ATRP mean levels were detected in B16F10 + LRAT cells 
when compared to control cells according to the higher 
LRAT expression and higher esterification reaction in the 
B16F10 + LRAT cells ( fig. 1 b).

  LRAT Overexpression Diminished Responsiveness to 
Retinoid Treatment 
 The antiproliferative effects of retinoids are well estab-

lished in the murine melanoma cell line B16F10  [23, 26, 
27, 30, 31] . To determine the effects of LRAT overexpres-
sion on retinoid sensitivity, we treated B16F10 control 
and +LRAT cells with 1 μ M  ATRol, ATRal or ATRA for 
48 h and assessed cellular viability by the alamarBlue as-
say. Importantly, LRAT overexpression significantly di-
minished responsiveness to retinoid treatment (p = 0.026 
for ATRal and p < 0.001 for ATRA;  fig. 2 ).
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  Fig. 1.  Endogenous expression, overex-
pression and regulation of LRAT and its in-
duced metabolic transformation of retinol 
to retinyl esters in the murine melanoma 
B16F10 cell line.  a  Taqman analysis of 
LRAT mRNA expression 24 h after treat-
ment with 1 μ M  ATRol, ATRal or ATRA in 
B16F10 cells transfected with LRAT 
(+LRAT) or control plasmid. Differences 
between control cells and LRAT+ cells 
were significant (p < 0.001).  b  ATRP levels 
in control and LRAT+ cells after 24 h incu-
bation with the substrate ATRol (1 μ M ) as 
determined by LC-MS analysis. All experi-
ments were performed in triplicate and 
were repeated twice. 
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  Role of LRAT in Retinol Metabolism of Murine 
Melanoma 
 Decreased levels of biologically active retinoids could 

be the reason for reduced retinoid responsiveness in 
B16F10 + LRAT cells. Therefore, we determined the 
ATRA-metabolizing enzyme Cyp26A1   in this study func-
tioning as a molecular marker to monitor the intracellular 
retinoid status  [34–37] . Cyp26a1 mRNA expression was 
significantly reduced in B16F10 + LRAT cells as com-
pared to control cells ( fig.  3 ). If the observed effect on 
Cyp26a1 expression is mediated by an LRAT-induced de-
ficiency of biologically active retinoids, the addition of 
ATRA should rescue the cells. Indeed, 24-hour incuba-
tion with ATRA partly re-elevated (‘rescued’) the expres-
sion of Cyp26a1 in B16F10 + LRAT cells ( fig. 3 ). The dif-
ference between B16F10 control cells and B16F10 + LRAT 
cells treated with ATRA was not significant. These results 
indicate that B16F10 + LRAT cells possess decreased lev-
els of biologically active retinoids.

  LRAT Overexpression Diminishes Intracellular Levels 
of Biologically Active Retinoids 
 To gain further insight into the role of LRAT in retinol 

metabolism, its substrate ATRol and its biologically ac-
tive metabolite ATRA were determined using LC-MS in 
B16F10 + LRAT and control cells. The Cyp26a1 product, 
4-oxo-RA, which represents a metabolite of ATRA, was 
also analyzed. Endogenous ATRol remained unchanged 

(p  = 0.636), while endogenous levels of ATRA and 
 4-oxo-RA were under the detection limit in both clones 
( fig. 4 a). Importantly, after ATRol incubation (1 μ M  for 
24 h), B16F10 + LRAT cells showed significantly reduced 
ATRol levels (p = 0.005), reduced ATRA levels (p = 0.032) 
and reduced 4-oxo-RA levels (p = 0.026) as compared to 
the control cells ( fig. 4 b).

  Discussion 

 There is an obvious association between vitamin A sta-
tus, retinoid signaling and cancer development that led to 
the examination of retinoids as preventive and therapeu-
tic agents for a variety of cancers  [10, 11, 38] . Accord-
ingly, the retinol-esterifying enzyme LRAT has been the 
subject of retinoid and tumor research for many years. 
Recently, we found that human melanoma possesses high 
LRAT expression and high esterification potential when 
compared to human melanocytes  [20] . By studying reti-
noid metabolism in retinoid-responsive murine B16F10 
cells, we hoped to discover novel successful strategies to 
overcome resistance of human melanoma to retinoid 
treatment.

  Studies in LRAT knockout mice revealed that LRAT is 
the predominant retinol acyltransferase regulating reti-
nol levels  [37, 39–41] . To our knowledge, this is the first 
study presenting evidence that LRAT expression is near-
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  Fig. 2.  LRAT overexpression reduces retinoid antitumor efficacy in 
the murine melanoma B16F10 cell line. Influence of retinoids on cell 
viability. B16F10 control cells and B16F10 + LRAT cells were treat-
ed with 1 μ M  ATRol, ATRal, ATRA or were left untreated for 48 h. 
Measurements were performed by the alamarBlue assay, and the 
results were related to the untreated control.  *  p < 0.05,  *  *  *  p < 0.001. 

  Fig. 3.  Overexpression of LRAT reduces expression of Cyp26a1, a 
retinoid-regulated marker gene used to monitor retinoid signal-
ing. Taqman analysis was performed to measure Cyp26a1 mRNA 
expression in B16F10 control and B16F10 + LRAT cells and after 
24 h of treatment with 1 μ M  ATRA.  *  p < 0.05.       
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ly absent in the retinoid-sensitive murine melanoma cell 
line B16F10. Additionally, retinoids did not influence 
LRAT expression in these murine cells as was previously 
described in human melanoma cell lines  [20] .

  The growth-inhibitory and prodifferentiating effects 
of various endogenous and synthetic retinoids are well 
characterized in murine melanoma cell lines like B16F10 
 [23, 26, 27, 30, 31] . For this reason, this cell line was cho-
sen for our experiments. A hallmark of cancer cells is the 
alteration of metabolic pathways  [42] . However, the mo-
lecular changes responsible for the biological activity of 
retinoids in murine melanoma are not well understood. 
It was shown in B16 melanoma cells that ATRA treat-
ments induce an increase in protein kinase C RNA and 
protein levels, thus resulting in altered gene transcription 
via phosphorylation of the transcription factor complex 
activator protein-1  [30] , the activity of which is itself also 
increased by ATRA in B16 cells  [43] , and activator pro-

tein-1 was assumed to contribute to the final phenotype 
of growth arrest and differentiation by ATRA  [26] . Estler 
et al.  [44]  performed microarray analysis and showed that 
ATRA ‘normalized’ the expression of genes involved in 
energy metabolism, DNA replication, DNA repair and 
differentiation in B16 melanoma cells. Pathway analysis 
suggested that CDC2, CHEK1, CDC45L and MCM6 are 
key players in mediating the biological activity of ATRA 
in B16 melanoma cells  [44] . Importantly, we showed that 
LRAT overexpression decreased these retinoid-induced 
antiproliferative effects in B16F10 cells in vitro, thus in-
dicating that retinol metabolism is important for the me-
diation of tumor resistance towards retinoid treatment.

  Regulation of retinoid metabolism is complex  [1, 5, 6] , 
and aberrant vitamin A metabolism in cancer cells could 
represent a potential retinoid resistance mechanism in 
tumor cells. Accordingly, both the synthesis and metabo-
lism of the bioactive metabolites of ATRol are sometimes 
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  Fig. 4.  LRAT overexpression reduces levels of biologically active 
retinoids in the murine melanoma B16F10 cell line.  a  Endogenous 
levels of ATRol, ATRA and 4-oxo-RA in B16F10 melanoma cells 
were determined by LC-MS analysis. Levels of ATRA and  4-oxo-RA 

were below the detection limit.  b  Levels of ATRol, ATRA and 
4-oxo-RA 24 h after incubation with 1 μ M  ATRol. Experiments 
were performed in triplicate and were repeated twice.  *  p < 0.05, 
 *  *  p < 0.01: considered as significant.    
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impaired in cancer cells  [10, 11] . The major catabolic en-
zyme known to regulate ATRA levels is Cyp26a1  [34, 45] . 
It can decrease intracellular levels of ATRA by metabo-
lism to its oxo- and hydroxy-derivatives  [46] . For exam-
ple, in squamous cell carcinoma, Cyp26a1 expression, ac-
tivity, turnover rate and catabolism of ATRA are in-
creased when compared to normal keratinocytes  [47] . 
Cyp26a1 was also previously described as an autoregu-
lated retinoid target gene  [34–37] . Its expression corre-
lates with the tissue retinol level  [36] , and its expression 
levels were used to monitor intracellular retinoid levels 
and retinoid signaling  [37] . Previous reports described 
Cyp26a1 regulation in LRAT knockout mice  [37, 48] . 
 Cyp26a1 expression in different tissues increased in 
LRAT knockout animals when compared to wild-type 
animals  [48]  and correlated with the tissue retinol level in 

the LRAT knockdown mice  [37] . Consistently with low 
ATRol and ATRA levels in transfected B16F10 + LRAT 
cells, Cyp26a1 expression was reduced when compared to 
B16F10 control cells lacking LRAT ( fig. 3 ). If the observed 
effect on Cyp26a1 expression is mediated by an LRAT-
induced deficiency of biological active retinoids, the ad-
dition of ATRA should diminish this effect. Indeed, in 
this rescue experiment, we showed that ATRA treatment 
leads to the upregulation of Cyp26a1 expression in 
B16F10 + LRAT cells. These results provide evidence that 
the effects of LRAT overexpression on Cyp26a1 expres-
sion can be decreased after ATRA treatment. The regula-
tion of Cyp26a1 expression in the LRAT-overexpressing 
B16F10 cells suggests that LRAT also functions as an im-
portant regulator of intracellular retinoid concentrations 
and signaling. 

  Fig. 5.  Direct link between LRAT expression and regulation of bi-
ologically active ATRA levels in B16F10 cells ( a ) and LRAT-over-
expressing B16F10 cells ( b ). Various enzymes, binding proteins 

and further retinoid derivatives are not illustrated in this schemat-
ic. Dotted arrows (+) represent gene upregulation pathways in-
duced by retinoids.           
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  Another enzyme, the acyl-CoA:diacylglycerol acyl-
transferase 1, functions as an acyl-CoA:retinol acyltrans-
ferase in murine skin  [49] . Acyl-CoA:diacylglycerol acyl-
transferase 1 deficiency resulted in elevated levels of 
ATRA in the skin and caused enhanced sensitivity to top-
ically administered retinol  [49] . This is consistent with 
our results indicating retinol esterification as an impor-
tant regulatory mechanism influencing the synthesis of 
ATRA from its precursor ATRol.

  To verify the retinoid signaling effects induced by 
LRAT overexpression, endogenous retinoids were deter-
mined using LC-MS measurements. Endogenous levels 
of retinoids were comparable in the B16F10 + LRAT cell 
and its control. However, inactive retinyl ester levels in-
creased, and levels of the substrate ATRol and biologi-
cally active ATRA significantly decreased in LRAT-over-
expressing B16F10 cells incubated with ATRol. 

  These results revealed a direct link between LRAT ex-
pression and the regulation of ATRA levels ( fig. 5 ). We 
assume that in the presence of LRAT, ATRol can be effi-
ciently converted to retinyl esters in B16F10 + LRAT cells. 
Therefore, less ATRol is available for ATRA synthesis and 
retinoid signaling monitored by the expression of the 
ATRA-induced Cyp26a1 protein is reduced. Interesting-

ly, the ATRA metabolite and product of Cyp26a1, 4-oxo-
RA, which is normally quickly further metabolized to wa-
ter-soluble 4-oxo-retinoids, was also shown to possess 
biological activity in the skin  [50] . We found that its levels 
are also decreased in LRAT-overexpressing melanoma 
cells.

  In conclusion, our results indicate that the absence of 
retinol esterification led to higher ATRol levels remaining 
for further metabolism to active ATRA. Therefore, LRAT 
deficiency is important for mediating retinoid respon-
siveness in the murine melanoma cells. Our data suggest 
that LRAT   overexpression represents a novel mechanism 
by which tumor cells can escape ATRA-induced tumor-
suppressive RAR signaling.
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