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tested sets of trait-model parameters and p value calcula-
tion, have been prohibitively high so far. With our new alge-
braic algorithm, such an analysis is now feasible within a rea-
sonable amount of time.  © 2015 S. Karger AG, Basel 

 Introduction 

 Since its first successful application by the physician 
and geneticist Jan Mohr in 1954  [1] , linkage analysis has 
been a powerful tool in human disease gene mapping for 
many decades. With this method, many Mendelian dis-
ease genes have been mapped to their genetic loci by the 
use of family data  [2] . Due to the development of geno-
typing techniques with dense SNP marker panels and the 
progressing availability of large case-control or popula-
tion-based cohorts, association analysis has recently be-
come the preferred method for statistical analysis in the 
field of genetic epidemiology. Unlike linkage analysis, an 
association analysis can make use of samples with unre-
lated individuals; it does not require families which are 
obviously much harder to recruit. However, with the ad-
vent of next-generation sequencing data and increasing 
interest in the analysis of rare variants, the analysis of 
family data using linkage analysis is undergoing a renais-
sance. The basis for this interest is that numerous rare 
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 Abstract 

  Objective:  As the mode of inheritance is often unknown for 
complex diseases, a MOD-score analysis, in which the para-
metric LOD score is maximized with respect to the trait-mod-
el parameters, can be a powerful approach in genetic linkage 
analysis. Because the calculation of the disease-locus like-
lihood is the most time-consuming step in a MOD-score 
analysis, we aimed to optimize this part of the calculation 
to speed up linkage analysis using the GENEHUNTER- 
MODSCORE software package.  Methods:  Our new algorithm 
is based on minimizing the effective number of inheritance 
vectors by collapsing them into classes. To this end, the dis-
ease-locus-likelihood contribution of each inheritance vec-
tor is represented and stored in its algebraic form as a sym-
bolic sum of products of penetrances and disease-allele fre-
quencies. Simulations were used to assess the speedup of 
our new algorithm.  Results:  We were able to achieve speed-
ups ranging from 1.94 to 11.52 compared to the original 
GENEHUNTER-MODSCORE version, with higher speedups 
for larger pedigrees. When calculating p values, the speedup 
ranged from 1.69 to 10.36.  Conclusion:  Computation times 
for MOD-score analysis, involving the evaluation of many 
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variants with moderate effects may explain an apprecia-
ble amount of the missing heritability  [3] . Although rare 
variants are individually rare, a single person can have 
thousands of such rare variants across the genome. It can 
thus be difficult to determine whether the observation of 
a rare variant is a sequencing artifact or in fact a true vari-
ant if it is carried by only a single individual of the sample. 
However, one expects that rare variants segregate and ac-
cumulate within families. Results from the Genetic Anal-
ysis Workshop 17 showed that analyses using whole-
exome sequencing data require much smaller sample siz-
es when working with families than with unrelated 
individuals, because the ability to detect rare causal vari-
ants is enhanced in family studies as the variants are car-
ried by several family members jointly  [4] .

  In parametric linkage analysis, which is also known as 
LOD-score or model-based analysis, a certain set of trait-
model parameters is explicitly assumed for the segrega-
tion of the disease. In the simplest case of a diallelic auto-
somal trait locus, which is assumed throughout this pa-
per, these parameters are the disease-allele frequency  p  
and the three penetrances  f  0 ,  f  1 , and  f  2 , with  f  i  denoting the 
probability that an individual with  i  copies of the disease 
allele is affected by the disease. The central part of para-
metric linkage analysis is the computation of the genetic 
likelihood, which is based on the following parameters: 
disease-allele frequency, penetrances, marker-allele fre-
quencies, and the recombination fractions – and, if ap-
plicable, linkage disequilibria between the loci. In addi-
tion, the relation between family members is required to 
be known. Eventually, a likelihood-ratio test is performed, 
in which the likelihood under the alternative hypothesis 
of linkage with some specific value of the recombination 
fraction ( θ  < 0.5; the numerator of the likelihood ratio) is 
compared to the null hypothesis of no linkage ( θ  = 0.5; the 
denominator of the likelihood ratio). The logarithm to 
the base 10 of this likelihood ratio is the LOD score  [5] . It 
is maximized by varying  θ  between marker and trait locus 
in the numerator (maximum LOD score). Trait-model 
parameters can either be prespecified according to results 
from previous segregation analyses or maximized along 
with the recombination fraction in a joint segregation and 
linkage analysis. The latter approach is also known as 
MOD-score analysis and has been first proposed by Risch 
 [6] . As the power of a LOD-score analysis crucially de-
pends on the true mode of inheritance, which is gener-
ally unknown, a MOD-score analysis can have greater 
power to detect linkage than a simple LOD-score analysis. 
Furthermore, in case of a trait-model-parameter mis-
specification, the recombination fraction will be overesti-

mated  [7] . In a multipoint analysis, the misspecification 
may even lead to an exclusion of linkage  [8] . Simulations 
have shown that, especially when analyzing a mixture of 
different types of pedigrees, the MOD-score approach 
outperforms other linkage methods in terms of power to 
identify genes with modest effect  [9] . Due to the maximi-
zation over trait-model parameters, MOD scores are in-
flated when compared to LOD scores. Since the asymp-
totic distribution of MOD scores is unknown in the gen-
eral case, p values for the linkage test must be obtained 
by simulating the distribution of the MOD score under 
the null hypothesis of no linkage. Our group has imple-
mented the MOD-score approach, including a routine 
to perform simulations under the null hypothesis, in the 
GENEHUNTER-MODSCORE (GHM) software  [10–
13] . Its application has led to the identification of a variety 
of genetic disease loci  [14–18] .

  Nonparametric linkage methods have been proposed 
in order to avoid trait-model misspecification that occurs 
when using simple LOD-score analyses. These methods 
test if affected pedigree members have more alleles in 
common than would be expected by chance under the 
null hypothesis of no linkage. Nonparametric methods 
are often considered to be ‘model-free’ because they do 
not rely on explicit assumptions as to the trait-model pa-
rameters. However, Knapp et al.  [19]  have shown that, for 
samples of affected sib pairs (ASPs) with the parents’ phe-
notypes unknown or set to unknown, the nonparametric 
mean test is equivalent to a LOD-score analysis under a 
recessive mode of inheritance, and the possible triangle 
test proposed by Holmans  [20]  is equivalent to a MOD-
score analysis. In the possible triangle test, the genetic 
likelihood is expressed in terms of the probabilities  z  0 ,  z  1 , 
and  z  2  that an ASP shares 0, 1, or 2 alleles identical-by-
descent (IBD) with restrictions to genetically possible 
models  [20] . These allele-sharing probabilities can be ex-
pressed as functions of the trait-model parameters  f  0 ,  f  1 , 
 f  2 ,  p , and  θ   [21] , and hence, the parametric and nonpara-
metric likelihood are identical. More generally, the allele-
sharing probabilities of any pedigree with affected rela-
tives could be used to construct a nonparametric allele-
sharing-based test statistic  [22] . However, for such a 
nonparametric test to be constructed for a certain pedi-
gree type other than ASPs or affected half-sib pairs 
 (AHSPs) would yet demand knowledge as to how many 
allele-sharing classes exist for that pedigree type and how 
the corresponding restrictions to genetically possible 
models can be formulated. Knapp  [23]  derived allele-
sharing probabilities for affected sib triplets (ASTs) with 
parental phenotypes set to unknown. However, the re-
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strictions to genetically possible models cannot be ex-
pressed in closed form. But again, the allele-sharing prob-
abilities, which represent the truly underlying parame-
ters, can be modeled as a function of  f  0 ,  f  1 ,  f  2 ,  p , and  θ . 
Hence, the parametric and nonparametric likelihood 
are identical even beyond the special cases of ASPs and 
AHSPs, and MOD-score analysis is equivalent to the like-
lihood-ratio test based on allele-sharing parameters. As 
outlined by Strauch  [22] , this holds for any type of pedi-
gree.

  The calculation of the genetic likelihood is pivotal for 
both parametric and nonparametric linkage analysis. 
Given the complexity of real family data, it cannot be cal-
culated manually in most cases. Large pedigrees, many 
markers, and missing genotypes lead to a substantial 
number of possible genotype combinations that must be 
considered in the likelihood. Two major algorithms are 
known that allow for the calculation of the likelihood: 
the Elston-Stewart  [24]  and the Lander-Green algorithm 
 [25] . The former is genotype-oriented and is based on the 
peeling of nuclear families. It makes use of the indepen-
dence of genotypes of different nuclear families within a 
pedigree when conditioning on a certain genotype of the 
connecting person, the so-called pivot. The Elston-Stew-
art algorithm thereby summarizes identical terms that 
correspond to a particular genotype combination within 
the likelihood. The algorithm scales linearly with the 
number of individuals in a pedigree and exponentially 
with the number of analyzed loci. Hence, it is limited to 
the analysis of a relatively small number of genetic mark-
ers. The Elston-Stewart algorithm has been implemented 
and further optimized in several linkage software pack-
ages such as LINKAGE  [26–28] , FASTLINK  [29, 30] , 
 VITESSE  [31, 32] , and PSEUDOMARKER  [33, 34] . The 
Lander-Green algorithm is complementary to the Elston-
Stewart algorithm, such that it treats each marker locus 
one after another and distinguishes the marker loci from 
the disease locus. The Lander-Green algorithm is im-
plemented in several genetic analysis software packages 
such as GENEHUNTER  [35] , ALLEGRO  [36, 37] , and 
MERLIN  [38] . It scales linearly with the number of mark-
ers and exponentially with the number of individuals in a 
pedigree. Therefore, the Lander-Green algorithm is well 
suited for the analysis of large datasets of genetic markers, 
which are typically available for small to moderately large 
pedigrees when mapping complex-disease genes. In addi-
tion, it allows both parametric and nonparametric link-
age analysis. This is because, as a first step, inheritance 
information is extracted solely from marker data by ap-
plying the concept of inheritance vectors. Then, a para-

metric or nonparametric scoring function that incorpo-
rates information with regard to the disease phenotypes 
of the pedigree members is applied to evaluate a set of 
genetic positions of the putative trait locus in terms of 
linkage with the markers. In the parametric case, the scor-
ing function corresponds to the ratio of the disease-locus 
likelihoods under the assumption of linkage versus no 
linkage.

  In this paper, we describe a new algorithm for the cal-
culation of the parametric disease-locus likelihood in the 
context of the Lander-Green algorithm. This part of the 
calculation is the most time-consuming step in a MOD-
score analysis. How can it be accelerated? Our new ap-
proach to a faster implementation is structured according 
to the following three aspects:

  •  Inheritance Vectors and the Identity of the MOD Score 
with the Allele-Sharing-Based Test Statistic . Inspired 
by the identity of the allele-sharing-based nonpara-
metric likelihood and the parametric likelihood in the 
test for linkage, our new algorithm is based on mini-
mizing the effective number of inheritance vectors by 
collapsing them into classes, whose members are ob-
served with the same probability function of  f  0 ,  f  1 ,  f  2 , 
and  p , i.e. having the same allele-sharing proportions 
for a given type of pedigree structure. This approach 
has the potential to considerably reduce the number of 
floating number operations, because instead of calcu-
lating the disease-locus-likelihood contribution for a 
given set of trait-model parameters for each inheri-
tance vector, it needs to be calculated only once for all 
members of a certain class. 

 •  Algebraic Formulation of the Disease-Locus Likelihood . 
To collapse inheritance vectors into certain classes, i.e. 
to recognize which vectors belong to the same class, 
the disease-locus-likelihood contribution of each in-
heritance vector must be represented and stored in its 
algebraic form. This involves representing it as a sym-
bolic sum of products of penetrances and disease-allele 
frequencies for a given combination of disease-locus 
genotypes of all individuals in the pedigree. Inheri-
tance vectors with identical symbolic sums can thus 
readily be grouped into the same class. This step in-
volves no numerical calculation and needs to be done 
only once at the beginning of a MOD-score analysis 
for a given pedigree. 

 •  Exploiting Similarities in Family Structures by the Use 
of Inheritance Vector Classes . Two pedigrees with a 
certain pattern of disease status, each of which can be 
represented by a directed acyclic graph, are indistin-
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guishable in terms of the disease-locus-likelihood 
structure if they are comprised of the same set of in-
heritance vector classes and the same number of vector 
members per class. Hence, two such pedigrees yield 
the same disease-locus-likelihood contributions. The 
computational effort for LOD-score calculation for 
the second pedigree can be entirely avoided. When 
two pedigrees are distinct, i.e. yielding different sets of 
inheritance vector classes, identical symbolic products 
are still stored in a common database to avoid dispens-
able numerical calculations. The computational effort 
during the LOD-score calculation is hence further re-
duced by the degree of similarity of pedigrees based on 
their inheritance vector classes. 

 In conjunction with the already existing options and 
optimizations of GHM, which are addressed below, our 
new algorithm allows for a rapid evaluation of the likeli-
hood for a large number of disease models, as required 
during maximization over trait models in a MOD-score 
analysis. The reduction of computing time is a prerequisite 
for empirically determining p values by performing simu-
lations and MOD-score calculations of many replicates.

  It has to be noted that the first version of GHM  [13]  is 
based on GENEHUNTER version 2.1  [39] . Since the re-
lease of GENEHUNTER version 1.0 in 1996  [35] , many 
improvements have been implemented, which have led to 
a significant analysis speedup and which have added var-
ious additional functionalities to the software package 
 [39–41] . However, these previous improvements did not 
concern the calculation of the parametric disease-locus 
likelihood as does our new algebraic algorithm. All im-
provements as of GENEHUNTER version 2.1  [39]  have 
been carried forward to GHM and are complementary to 
the algebraic algorithm presented in this paper. For more 
information on the original GENEHUNTER software, we 
refer to the review by Nyholt  [42] .

  Methods 

 The Lander-Green Algorithm 
 Inheritance Vectors 
 As a first step, the Lander-Green algorithm enumerates all pos-

sible inheritance vectors in a pedigree. An inheritance vector de-
notes a possible family-specific pattern of segregation of founder 
alleles. Each bit of the inheritance vector corresponds to the out-
come of a certain meiosis, which codes the transmission of the 
grand-paternally or grand-maternally inherited allele to the child 
as a value of 0 or 1, respectively. With  n  non-founders, there are 2 n  
meioses and 2 2  n  possible inheritance vectors. However, even if the 
information is complete, there are 2 f  remaining inheritance vectors 

that all have the same probability. This is due to the fact that the 
parental origin of founder haplotypes is unknown. In other words, 
the bit corresponding to the first child of each founder can be fixed 
arbitrarily (e.g. to a value of 0). Hence, the 2 2  n  inheritance vectors 
can be grouped into 2 (2  n   –   f  )  equivalence classes, each comprising 
2 f  inheritance vectors.

  Probability of Observed Marker Genotypes Given a Particular 
Inheritance Vector 
 The algorithm iterates over inheritance vectors and markers 

and calculates the probability of the observed genotypes for each 
marker conditional on a particular inheritance vector  [25] . This 
step of the calculation is based on a graph-theoretical process. Fol-
lowing the notation in Kruglyak et al.  [35] , let  G ( v ) be a graph for 
a given inheritance vector  v  whose vertices are the founder alleles 
 X  = { x  1 ,  x  2 , …,  x  2  f } corresponding to the 2 f  founder alleles at the 
marker locus, which are assumed to be distinct by descent (‘place-
holder alleles’). An inheritance vector  v  specifies the placeholder 
alleles inherited by each individual in the pedigree. The lines con-
necting the two placeholder alleles that correspond to the genotype 
of each individual, as defined by the inheritance vector  v , represent 
the edges of the graph. The placeholder alleles are then assigned 
the actual founder alleles at the marker locus, and placeholder al-
lele assignments that are incompatible with the observed marker 
genotypes are eliminated from further consideration. Then, the 
probability of drawing the founder alleles from the population, i.e. 
the product of allele frequencies of all founders, is calculated, and 
the sum of this product is taken over all possible founder allele as-
signments that are compatible with both the inheritance vector 
and the observed marker genotypes.

  The Markov Chain 
 The Lander-Green algorithm uses a Markov process to de-

scribe the joint distribution of inheritance vectors along a chromo-
some  [25] . This is based on the observation that, under the as-
sumption of no genetic interference, inheritance vectors form a 
hidden Markov chain. The observed states are the typed marker 
genotypes, and the hidden states are the inheritance vectors. The 
matrices of transition probabilities between inheritance vectors at 
consecutive markers are a function of recombination fractions be-
tween markers. After the inheritance vector distribution ( P  complete ) 
has been calculated at a certain genetic position, the disease phe-
notypes of the family members are considered by using an appro-
priate scoring function.

  The Scoring Function 
 At this stage of the analysis, different scoring functions are de-

fined for parametric and nonparametric linkage analysis. In a para-
metric analysis, the scoring function is the ratio of the disease-locus 
likelihoods under linkage in the nominator versus under no linkage 
in the denominator. The disease-locus likelihood is calculated con-
ditional on each inheritance vector. As marker information is often 
incomplete, several inheritance vectors are possible, and the condi-
tional probabilities of these vectors given the marker information 
( P  complete ) have a nonzero value. Therefore, the sum of the scoring 
function is taken over all inheritance vectors weighted by their con-
ditional probability given the marker information ( P  complete ). Under 
no linkage between marker and disease locus, the probability of 
each inheritance vector no longer depends on the marker data. 
Hence, the inheritance vector distribution at a putative disease lo-
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cus position unlinked to the marker locus corresponds to a uniform 
distribution with probability 1/2 (2  n   –   f  )  for each inheritance vector. 
Maximizing the logarithm to the base 10 of this likelihood ratio 
over the recombination fraction  θ  yields the LOD score. When it is 
maximized over ( f  0 ,  f  1 ,  f  2 , and  p ) in addition to  θ , the MOD score is 
obtained. Nonparametric scoring functions count the number of 
alleles shared IBD by affected pedigree members given a certain 
inheritance vector. Popular nonparametric scoring functions are 
 S  pairs  and  S  all   [35, 43] . Our new algorithm only affects the calcula-
tion of the parametric scoring function, and we refer to McPeek 
 [44]  for more information about nonparametric scoring functions.

  The Algebraic Algorithm 
 Basic Concept 
 As described by Strauch  [22] , inheritance vectors can be col-

lapsed into inheritance vector classes if they cannot be distin-

guished from each other on the basis of the phenotypic structure 
of a given family tree. In other words, inheritance vectors being 
observed with the same allele-sharing probability  z  i  conditional on 
the disease phenotypes and the parameters  f  0 ,  f  1 ,  f  2 , and  p  are com-
prised in a certain inheritance vector class. The number of inheri-
tance vector classes, and hence allele-sharing probabilities, de-
pends on the number of persons in a pedigree and hence differs 
between different types of pedigrees in a sample. As stated before, 
it appears to be very difficult to construct a nonparametric allele-
sharing test, which uses the probabilities  z  i , along the lines of the 
possible triangle test for ASPs, for each of the various pedigree 
types contained in the particular sample under study. In addition, 
the restriction to genetically possible models is difficult to formu-
late. However, given the identity of the parametric likelihood with 
the nonparametric likelihood in an allele-sharing-based test and 
the consequential fact that the  z  i  s  are a function of ( f  0 ,  f  1 ,  f  2 , and  p ), 

. . . 

Pedigree 1 Pedigree 2 Pedigree 3 Pedigree m 

IVDLGCs 

Coefficients  

Algebraic calculation  

Final numeric  LOD-score calculation  

Inheritance  vector  
classes  

Scoring-function  array  of pedigree 1 

3 
2 

m 
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3 
2 

m 

LOD score of pedigree 1 

3 
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m 

. . . 
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vectors 

inheritance  
vectors 

inheritance  
vectors 
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inheritance  
vectors 

22f2 disease 
genotypes 

22f1 disease 
genotypes 

22f3 disease 
genotypes 

22fm disease 
genotypes 

Calculated 
only once 

Repeated for 
many different 

trait models  

  Fig. 1.  Depiction of the algebraic algorithm. 
Steps that have to be calculated only once 
are highlighted in black. The final LOD-
score calculation is shaded in light grey and 
the interface between the algebraic algo-
rithm and the numeric LOD-score calcula-
tion – the scoring-function arrays of the 
pedigrees – is shown in dark grey. Each in-
heritance vector of a given pedigree with  n  
nonfounders and  f  founders is analyzed in 
regard to its disease-locus-likelihood contri-
bution. For a given inheritance vector, all pos-
sible disease-locus-genotype combinations 
must be considered. Each disease-locus-
genotype combination yields a likelihood 
contribution that is a product of penetranc-
es and disease-allele frequencies. The sum 
over all disease-locus-genotype combinations 
is the total disease-locus-likelihood contri-
bution of the given inheritance vector. The 
likelihood contribution of each IVDLGC 
is stored in its algebraic form. IVDLGCs of 
a given inheritance vector that lead to the 
same algebraic representation are joined to-
gether by including a coefficient. Inheri-
tance vectors with the same set of IVDLGCs 
are assigned to a certain inheritance vector 
class. The analysis of inheritance vectors is 
performed for all pedigrees of the dataset, 
whereby all pedigrees of the sample have a 
joint IVDLGC storage. This way, a certain 
inheritance vector class can comprise inher-
itance vectors of several pedigrees. Finally, 
the trait-model-specific LOD score is calcu-
lated numerically as the scalar product of 
 P  complete  and the scoring-function array. This 
step is repeated many times during a MOD-
score analysis by numerically evaluating the 
scoring-function arrays assuming different 
sets of trait-model parameters. 
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it seems straightforward to use the parametric formulation of the 
disease-locus likelihood and to collapse those inheritance vectors 
into a certain class that, by an identical probability  z  i , lead to the 
same likelihood contribution. An algorithm that makes use of this 
structure has the potential to substantially reduce the computa-
tional effort involved in the disease-locus-likelihood calculation 
for a given pedigree, since the likelihood needs to be calculated 
only for one member of each class.

  Analysis of Inheritance Vectors 
 Our new algorithm starts by analyzing each of the 2 (2  n   –   f  )  in-

heritance vectors of a certain pedigree with regard to its disease-
locus-likelihood contribution. The processing of the marker-locus 
likelihood by the GHM software using hidden Markov models to 
calculate  P  complete  remains untouched by our new approach. The 
consecutive steps of the algebraic algorithm can be followed by 
looking at  figure 1 , which depicts the analysis of all pedigrees in a 
dataset. For the present, we assume that there is only a single ped-
igree in the dataset. For a given inheritance vector, all possible dis-
ease-locus-genotype combinations must be considered. Each dis-
ease-locus-genotype combination yields a likelihood contribution 
that is a product of penetrances and disease-allele frequencies. The 
sum over all disease-locus-genotype combinations is the total dis-
ease-locus-likelihood contribution of the given inheritance vector. 
In order to avoid many floating point operations each time an in-
heritance-vector-disease-locus-genotype combination (IVDLGC) 
is considered, every IVDLGC is stored in its algebraic form. This 
way, each inheritance vector can be considered as a set of a certain 
number of IVDLGCs, whereby our algorithm builds up a database 
of IVDLGCs, such that only combinations leading to a new alge-
braic representation are additionally stored in memory. Essential-
ly, IVDLGCs are stored in a big table and connected to the inheri-
tance vector classes by the use of pointers. Pointers are a powerful 
feature for memory access specific to the C programming lan-
guage, in which GHM is written. IVDLGCs of a given inheritance 
vector that lead to the same algebraic representation, i.e. the prod-
uct of a certain combination of parameters ( f  0 ,  f  1 ,  f  2 , and  p ), are 
joined together by incrementing a coefficient (integer) and thus 
need not be saved separately, which avoids extra floating point op-
erations and memory.

  Identification of Inheritance Vector Classes 
 All inheritance vectors of a certain class consist of the same set 

of IVDLGCs. In particular, if an inheritance vector has the same set 
of IVDLGCs as an inheritance vector class already identified during 
the course of the calculation, the vector is added to that class. A 
previously unobserved set of IVDLGCs for a certain vector leads to 
the definition of a new inheritance vector class. An inheritance vec-
tor class corresponds to a certain allele-sharing class in the non-
parametric context.  Figure 2  gives a technical depiction of the alge-
braic algorithm for an AST. It illustrates how a specific inheritance 
vector is assigned to its corresponding class on the basis of the al-
gebraic calculation of its disease-locus-likelihood contribution.

  Calculation of the LOD Score 
 When all inheritance vectors of a given pedigree have been as-

signed to a certain inheritance vector class and the algebraic struc-
ture mentioned above has been determined, the LOD score can 
readily be calculated for a given set of trait-model parameters. To 
this end, the algebraic representations of IVDLGCs of all inheri-

tance vector classes are evaluated numerically by inserting the (nu-
meric) values of the parameters ( f  0 ,  f  1 ,  f  2 , and  p ) of a specified dis-
ease model. The result of each of these products is further multi-
plied by its associated coefficient, which is equal to the number of 
IVDLGCs with the same product in a given inheritance vector 
class, and the sum is taken over all products of that class. This way, 
the disease-locus-likelihood contributions of all inheritance vector 
classes are calculated in a single step and then copied into the scor-
ing-function array of the pedigree, according to the class to which 
a certain inheritance vector belongs. The step of finding the dis-
ease-locus-likelihood contribution of the inheritance vector class 
that corresponds to a given inheritance vector involves the use of 
pointers and dereference operations. Finally, the trait-model-spe-
cific LOD score is calculated as the scalar product of  P  complete  and 
the scoring-function array. It is of note that information from 
marker data only affects the calculation of  P  complete , which further-
more is independent of the trait-model parameters. Consequently, 
 P  complete  has to be computed once for every genetic position and 
every pedigree in the dataset, even if some or many pedigrees have 
the same structure. However,  P  complete  can be reused for the LOD-
score evaluations under many different trait-model parameters 
during the maximization.

  Number of Inheritance Vector Classes 
 The degree to which inheritance vectors can be collapsed into 

certain inheritance vector classes, and hence the computational 
speedup, depends on the pedigree size and the phenotypes of its 
members. For example, with nuclear families and parental pheno-
types unknown, the potential of reduction by collapsing inheri-
tance vectors into classes increases from ASPs over ASTs to larger 
sibships. ASPs with 4 possible inheritance vectors have 3 distinct 
allele-sharing classes, i.e. inheritance vector classes (0, 1, or 2 alleles 
shared IBD). If imprinting is modeled, e.g. using the four-pene-
trance formulation developed by Strauch et al.  [45]  as implement-
ed in GENEHUNTER-IMPRINTING and GHM, ASPs have 4 al-
lele-sharing classes (in this case, the class of 1 shared allele is fur-
ther distinguished by the parental origin). ASTs with 16 possible 
inheritance vectors have 4 and 5 allele-sharing classes for a nonim-
printing and an imprinting model, respectively (Appendix)  [23] . 
In the following, we will assume an imprinting model when deriv-
ing allele-sharing classes, because GHM internally always uses the 
four-penetrance formulation. The total number of inheritance 
vectors as well as the reduced number of vector classes are given in 
 table 1  as a function of sibship size of a nuclear family with paren-
tal phenotypes unknown (or set to unknown).

  Extension across Pedigrees 
 A further advantage of the algebraic algorithm is that the con-

cept of storing IVDLGCs can even be extended across pedigrees, 
such that all pedigrees of the sample have a joint IVDLGC storage. 
A pedigree can thus be considered as a set of certain inheritance 
vector classes each consisting of a certain set of IVDLGCs. This 
structure, which is the basis of the algebraic algorithm, is depicted 
in  figure 1 . Here, in contrast to the case of considering a single 
pedigree, a certain inheritance vector class can comprise inheri-
tance vectors of several pedigrees. Hence, the disease-locus-likeli-
hood contributions of all inheritance vector classes are calculated 
in a single step for the entire dataset, and then the result for a cer-
tain inheritance vector class is used for all pedigrees with inheri-
tance vectors that are members of that particular class.
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  SpeedUp 
 The initial effort of the algebraic algorithm to identify the in-

heritance vector classes of all pedigrees is high, but the ensuing 
calculation of LOD scores assuming a large number of disease 
models is sped up considerably, especially when a dataset is com-
prised of pedigrees of only a few types. For example, in a dataset of 
1,000 ASTs, the disease-locus-likelihood contributions of the 5 in-

heritance vector classes, given a certain disease model, have to be 
calculated only once for the whole dataset rather than 1,000 times.

  The Peeling Algorithm 
 In the original version of GHM, the calculation of the parametric 

disease-locus likelihood is done separately for each inheritance vec-
tor by applying the Elston-Stewart algorithm, i.e. peeling nuclear 

Example – inheritance vector 0000:
Algebraic calculation of disease-locus-likelihood contribution;
summation over all disease-locus-genotype combinations in
founders (mating types)

Mating type
(paternal × mater-
nal genotype)

Coefficient to
sum identical
algebraic terms

Algebraic form of
disease-locus-likeli-
hood contribution

D D × D D 1 p4 f 3
2

D D
D d

×
×

D d
D D 2 p3qf 3

2

D D × d D 1 p3qf 3
1, pat

d D × D D 1 p3qf 3
1, mat

D D
D d

×
×

d d
d D 2 p2q2 f 3

1, pat

D d × D d 1 p2q2 f 3
2

d D × d D 1 p2q2 f 3
0

d d
d D

×
×

D D
D d 2 p2q2 f 3

1, mat

D d × d d 1 p q3 f 3
1, pat

d D
d d

×
×

d d
d D 2 p q3 f 3

0

d d × D d 1 p q3 f 3
1, mat

d d × d d 1 q4 f 3
0

Bits for meioses
of rst child (3)

Bits for meioses of add-
itional children (4 and 5)

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 1 1 0
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 0 0 1
0 0 1 0 1 0
0 0 1 0 1 1
0 0 1 1 0 0
0 0 1 1 0 1
0 0 1 1 1 0
0 0 1 1 1 1

Bits of the set of distinguishable inheritance vectors
for an AST. Since the (grand-)parental origin of the
parents’ alleles is unknown, the bits corresponding to
the two meioses of the st child can be ed arbi-
trarily without loss of generality. Here, both are set
to zero and not further mentioned in the right half of
this gure.

1 2

3 4 5

AST
??

Assignment to inheritance vector class

Classes Inheritance vectors

0 0110, 0111, 1001, 1011, 1101, 1110
1 0011, 1100, 1111
2pat 0001, 0100, 0101
2mat 0010, 1000, 1010
3 0000

 Table 1.  Allele-sharing classes for affected sibships

ASP AST ASQ ASQui ASS

Number of inheritance vectors (2(2n–f)) 4 16 64 256 1,024
Inheritance vector classes with imprinting taken into account 4 5 11 14 24
Reduction factor (2(2n–f)/number of inheritance vector classes) 1 3.2 5.82 18.29 42.67

ASP = Affected sib pair; AST = affected sib triplet; ASQ = affected sib quadruplet; ASQui = affected sib quin-
tet; ASS = affected sib sextet.

  Fig. 2.  Technical depiction of the algebraic algorithm for an AST. If several inheritance vectors have the same 
disease-locus-likelihood contribution, they are joined together in an inheritance vector class. 

http://dx.doi.org/10.1159%2F000369065


 Brugger and Strauch  Hum Hered 2014;78:179–194 
DOI: 10.1159/000369065

186

families of the pedigree, to the disease locus. For the final remaining 
nuclear family of the pedigree or if the pedigree consists of only a 
single nuclear family, e.g. an ASP, a brute force calculation is em-
ployed. This calculation is done numerically and separately for each 
inheritance vector and for each assumed set of trait-model param-
eters. The LOD score of the currently analyzed family is stored, and 
the calculation continues with the next pedigree in the dataset. With 
the GHM software, many disease models are evaluated in a single 
program run during MOD-score analysis by repeating this step of 
the likelihood calculation. Our new algebraic procedure for calculat-
ing the disease-locus likelihood completely replaces the peeling al-
gorithm, and it is applicable without additional modifications in 
case of inbreeding and marriage loops. It therefore significantly de-
creases the run time of a linkage analysis for any type of pedigree.

  Maximization Options of GHM 
 The maximization routine of GHM first evaluates a set of pre-

defined models. The user can choose between predefined grids 
with different densities. Moreover, the maximization can either be 
performed separately for each tested locus (‘modcalc single’ op-
tion) or jointly for the entire genetic region (‘modcalc global’ op-
tion). With modcalc single, calculation time can be saved by stor-
ing the trait-model-specific arrays of the disease-locus likelihood, 
which are needed for every considered genetic position. This op-
tion (‘saved models’) is especially useful when simulations are per-
formed to obtain p values, which is already available with the pre-
vious version of GHM (‘calculate p value’ option  [10] ).

  Simulations 
 To demonstrate the performance of our new method, we sim-

ulated datasets and compared the analysis run times of the alge-
braic algorithm to those of the peeling algorithm, which is em-
ployed by the original version that performs numeric calculation. 
Datasets either consisted of a single pedigree type, i.e. affected 
sibships with 2–6 siblings or three-generation pedigrees includ-
ing unaffected pedigree members (discordant pedigrees), or mix-
tures of affected sibships. The speedup of the algebraic algorithm 
might be reduced by an increasing degree of discordance of the 
pedigrees, because this mostly leads to a larger number of inheri-
tance vector classes as compared to their concordant counter-
parts ( table  2 ). Therefore, we additionally considered an equal 
mixture of 4 discordant pedigree types: (a) discordant sib pairs, 
(b) discordant sib quadruplets, (c) discordant marriage loops 
(DML), and (d) discordant three-generation pedigrees (D3G). 
An overview of the simulated scenarios is given in  table 3 .  Figure 
3  depicts the pedigrees used for the discordant scenario including 
the one used in the D3G scenario ( fig. 3 d). Storing of arrays of the 
disease-locus likelihood, as already possible with the original 
GHM version (saved models option as mentioned above), was 
performed with the original algorithm (classic calculation mode). 
This was done to ensure a fair comparison to the classic calcula-
tion mode that makes use of run time-saving optimizations al-
ready implemented in the original GHM version. The saved mod-
els option was set to zero (no models saved) when using the alge-
braic algorithm (algebraic calculation mode), because it does not 
necessarily benefit from this option. It is of note that both our new 

 Table 3.  Overview of scenarios for run-time assessment

Dataset No. 1 2 3 4 5 6 7 8

Pedigree type ASPs ASTs ASQs ASQuis ASSs equal mixture
of 1 – 5

D3Gs discordant 
mixture

 For each dataset, 100 pedigrees were simulated using SLINK [51 – 53] for the genotype data at the disease locus 
and the SLINK utility program SUP [51, 54] for the marker genotypes.

Disease model {f0, f1, f2} = {0.01, 0.1, 0.2}; p = 0.05.
Disease locus halfway between marker No. 50 and 51.
We used the following analysis options: ‘imprinting on’, ‘algebraic calculation on/off’, ‘dimensions 5’, ‘saved 

models 0/5,000’, ‘number of replicates 1,000’, ‘maximization dense’, ‘penetrance restriction off’, ‘allfreq restric-
tion off’, ‘analysis LOD’, ‘modcalc single’, and ‘calculate p value’.

 Table 2.  Allele-sharing classes for discordant scenarios

DSP DSQ DML D3G

Number of inheritance vectors (2(2n–f)) 4 64 64 128
Inheritance vector classes with imprinting taken into account 4 28 64 80
Reduction factor (2(2n–f)/number of inheritance vector classes) 1 2.29 1 1.6

DSP = Discordant sib pair; DSQ = discordant sib quadruplet; DML = discordant marriage loop; D3G = dis-
cordant three-generation pedigree.
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method and the saved models option need additional main mem-
ory. In case of the new method, this memory amount crucially 
depends on the size and phenotypic structure of the pedigrees, i.e. 
the number of inheritance vector classes across the whole dataset, 
whereas for the saved models option it depends on the number 
and size of the pedigrees. The peeling algorithm without the saved 
models option needs less memory albeit performing more float-
ing point operations; it can still be used in case of insufficient 
main memory. Here we used a dense grid of disease models (op-
tion ‘maximization dense’), because our new method should be 
especially useful when many disease models are evaluated, i.e. 
with a thorough maximization, which is likely to increase the 
power to map the disease gene under a complex mode of inheri-
tance. In addition to the above-mentioned MOD-score analysis, 
p values were calculated (with the calculate p value option of 
GHM) by simulating 1,000 replicates generated under the null 
hypothesis of no linkage.

  Run-Time Assessment 
 Run time was measured with the performance analysis tool 

 gprof   [46] .  gprof  measures the total amount of time spent executing 
each function of the program. Time due to system calls and wait-
ing for CPU or I/O is not considered. Therefore, we additionally 
assessed the wall-clock time (WCT), which is the elapsed real time, 
i.e. the actual time taken from the start of the program run until 
the end. Because the WCT is obtained without any profiling steps, 
the program was run without any debugging options turned on. 
The speedup of our new method is obtained as follows:

run time with classic calculation modeSpeedup = .
run time with algebraic calculation mode

 

  All analyses were run on a single processor of the High Perfor-
mance Computing – High Availability – Cluster (HPC-HA-Clus-
ter) of the Helmholtz Zentrum München, equipped with IBM Intel 
Xeon X5690 6C, 3.46 GHz, 12 MB cache, 1,333 MHz 130 W pro-
cessors in the compute nodes. 

 Results 

 The results of speedup due to the algebraic algorithm 
under the simulated scenarios for the analysis without 
calculating p values are shown in  table 4 , and those for the 
analysis with calculating p values are shown in  table 5 . 
Speedup is given based on run-time assessments mea-
sured by the performance analysis tool  gprof  as well as by 
measuring the WCT. Before looking at the speedups in 
detail, some technical aspects need to be considered prior 
to the interpretation of the results. In general, the  gprof  
results reflect the speedup achieved by less time spent in 
the source code, which equals the number of instructions 
executed, but they do not include the time spent waiting 
for CPU and memory. Concerning GHM, the percentage 
of run time due to time waiting for CPU and memory in-
creases with a larger number of scoring-function arrays 
saved in memory (saved models option) in case of the 
classic calculation mode, or with a larger number of in-
heritance vectors that must be considered when identify-

1

3a 4

?

1
1 2 3 4 1’

5 6 7 8 9

543

c 6 7 8d

?

?

2
?

1

3 4 5 6
b

?

2

?

2

?

  Fig. 3.  Discordant pedigrees used in the sim-
ulations for run-time assessment.  a  Discor-
dant sib pair;  b  discordant sib quadruplet;
 c  discordant marriage loop;  d  discordant 
three-generation pedigree. 
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ing inheritance vector classes in case of the algebraic cal-
culation mode. For the latter, this is due to an increasing 
number of CPU memory cache misses caused by many 
crisscross copying processes of disease-locus-likelihood 
contributions of inheritance vectors of a given class into 
the corresponding memory cells of the scoring-function 
array. This copying process to complete the scoring-func-
tion has to be done for each inheritance vector, because 
 P  complete , which will be multiplied with the scoring func-
tion, can be different for inheritance vectors of the same 
class. Hence, a larger number of inheritance vectors leads 

to more such copying processes, irrespective of the reduc-
tion factors as calculated in  tables 1  and  2 . When p values 
are calculated, this effect becomes more pronounced, as 
scoring-function arrays must be filled in this manner for 
every simulated replicate. In addition, it is of note that the 
results for the analyses without calculating p values are 
subject to a larger variance than those with calculating p 
values, because the analyses without calculating p values 
took only seconds to a few minutes to complete. With re-
gard to the results in  table 4  for the analyses without cal-
culating p values, time waiting for CPU and memory was 

 Table 5.  Results of the run-time with calculating p values, averaged over 3 program runs

Run time, h Speedup

WCT  gprof WCT gprof
classic algebraic c lassic algebraic

Pedigree type
ASPs 9.28 5.49 5.18 2.22 1.69 2.33
ASTs 18.74 6.92 9.71 3.22 2.71 3.02
ASQs 62.85 11.68 17.96 4.95 5.38 3.63
ASQuis 243.48 31.85 26.98 9.01 7.64 2.99
ASSs 1,055.51 101.92 34.49 14.87 10.36 2.32
Affected mixture 278.97 33.98 28.81 9.56 8.21 3.01
D3Gs 177.80 20.39 36.84 8.29 8.72 4.44
Discordant mixture 294.83 29.36 29.20 10.69 10.04 2.73

 See legend of table 4 for explanations.

 Table 4.  Results of the run-time assessment without calculating p values, averaged over 3 program runs

Run time, s Speedup

WCT gprof WCT gprof
classic algebraic classic algebraic

Pedigree type
ASPs 34.65 17.90 28.84 8.73 1.94 3.30
ASTs 95.75 23.76 73.97 15.13 4.03 4.89
ASQs 309.10 43.67 281.38 31.61 7.08 8.90
ASQuis 884.86 99.33 871.10 91.02 8.91 9.57
ASSs 4,523.33 392.67 3,372.38 378.24 11.52 8.92
Affected mixture 1,010.96 123.47 911.68 106.01 8.19 8.60
D3Gs 400.30 83.00 277.92 71.66 4.83 3.88
Discordant mixture 780.99 105.24 758.98 94.09 7.42 8.07

 Classic = MOD-score analysis using the original GHM version; algebraic = MOD-score analysis using our 
new algebraic algorithm; gprof = execution time as measured by the profiling software gprof; ASQs = affected sib 
quadruplets; ASQuis = affected sib quintets; Affected mixture = mixture of 20 ASPs, ASTs, ASQs, ASQuis, and 
ASSs each; D3Gs = sample depicted in figure 3d; Discordant mixture = mixture of discordant pedigrees, 25 of 
each sort depicted in figure 3.
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almost negligible. This is due to the fact that, in addition 
to time spent for the initial preparation of the dataset, 
time was predominantly spent for the initial identifica-
tion of inheritance vector classes in case of the algebraic 
calculation mode or the initial numeric calculation of 
scoring-function arrays used for model saving in case of 
the classic calculation mode with the saved models op-
tion. Hence, the  gprof  speedups of the scenarios without 
calculating p values in  table 4  were similar to their corre-
sponding speedups calculated from the WCT. On the 
contrary, the  gprof  speedups of the scenarios with calcu-
lating p values in  table 5  were quite constant over varying 
pedigree types due to a larger percentage of function calls 
invoked by the calculate p value option, which remained 
unchanged in the new GHM version. In addition, most of 
the computing time as measured by the WCT was spent 
waiting for CPU and memory (see explanation above). As 
the WCT is more relevant for users, since it is the actual 
time they have to wait for results, we concentrate our dis-
cussion of speedup on the WCT. As can be seen in  table 4 , 
the speedup for the analysis without calculating p values 
ranged from 1.94 for ASPs to 11.52 for affected sib sextets 
(ASSs). These speedups turned out to be roughly propor-
tional to the reduction factors as calculated in  table 1 . The 
speedup for the mixture of nuclear families (8.19) was ap-
proximately the average of the individual speedups for 
each pedigree type. The speedups of the D3G and the dis-
cordant scenarios were 4.83 and 7.42, respectively, which 
are higher than would have been expected from the re-
duction factors in  table 2 . The fact that the increased com-
putational effort of the peeling algorithm to calculate the 
disease-locus likelihoods of the D3G and DML pedigrees 
is avoided with our new algorithmic approach might be 
responsible for that. When p values were calculated, the 
speedups for the scenarios of nuclear families ranged 
from 1.69 for ASPs to 10.36 for ASSs ( table 5 ), as was ex-
pected from the reduction factors calculated in  table 1 . 
Even though the classic calculation mode took advantage 
of model saving, whose effect should be more pronounced 
when simulating replicates to calculate p values, the 
speedups from  table 5  for nuclear families were similar to 
those from  table 4 . The speedup for the mixture of nucle-
ar families was 8.21, which was again roughly the average 
of the individual speedups for each pedigree type. The 
speedups of the D3G and the discordant scenarios were 
8.72 and 10.04, respectively. Here, the speedups were 
higher compared to the results without calculating p val-
ues given in  table 4 . This is due to the fact that the percent-
age of time needed for peeling of the D3G and DML ped-
igrees with the classic calculation mode is even more pro-

nounced when p values are calculated, because time due 
to initial calculations, i.e. the identification of inheritance 
vector classes for the algebraic calculation mode and the 
initial calculation of scoring-function arrays for the clas-
sic calculation mode, was negligible.

  Discussion 

 The calculation of the disease-locus likelihood in link-
age analysis is a complex task, because data on the ob-
served genetic markers are often incomplete. This leads 
to a large number of possible disease-locus genotypes that 
must be considered in the likelihood. MOD-score analy-
sis is a promising route to the genetic dissection of com-
plex traits in the context of family studies. Although time-
consuming, the evaluation of many disease models dur-
ing a MOD-score analysis is essential, because it is thus 
likely to increase the power to map genes that act under a 
complex mode of inheritance, compared to a simple para-
metric (LOD-score) or nonparametric (NPL-score) anal-
ysis.

  Our algebraic algorithm is inspired by the identity of 
the allele-sharing-based nonparametric likelihood and 
the parametric likelihood in the test for linkage. It is based 
on the concept of inheritance vectors. These are collapsed 
into inheritance vector classes, which turn out to be the 
distinct allele-sharing classes in the nonparametric con-
text. In the Appendix section, we theoretically derive the 
allele-sharing classes for the example of an AST when an 
imprinting model is considered. This tedious way of iden-
tifying allele-sharing classes could principally be done for 
any type of pedigree considering affected as well as unaf-
fected pedigree members in order to construct an allele-
sharing-based test for linkage (see also Strauch  [22] ). Due 
to the above-mentioned identity, however, it is straight-
forward to express the allele-sharing probabilities as 
functions of the trait-model parameters  f  0 ,  f  1 ,  f  2 , and  p , 
and to perform a MOD-score analysis, i.e. the parametric 
equivalent of the nonparametric test. The algebraic algo-
rithm can thus be considered as a unified approach of 
parametric and nonparametric linkage methods. Previ-
ous work has shown that the MOD-score approach can 
outperform other linkage methods in terms of power  [9] . 
One of the reasons for this finding is the fact that the per-
formance of LOD scores crucially depends on the speci-
fication of the correct trait model, which is generally un-
known when analyzing complex traits. This problem is 
circumvented by the MOD score which, in contrast to the 
simple LOD score, is maximized not only over the recom-
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bination fraction but also over trait-model parameters. 
However, the calculation of the disease-locus likelihood 
has to be done anew for every tested set of trait-model 
parameters, and it is the most time-consuming step in a 
MOD-score analysis. As a further complication, MOD 
scores are inflated when compared to LOD scores, and 
simulations to calculate p values have to be performed. 
Both aspects, extensive model testing and simulations to 
calculate p values, pose a challenge in regard to computa-
tion time and memory demands.

  In this paper, we have presented a new algebraic algo-
rithm that considerably reduces the run time of a MOD-
score analysis. By storing unique IVDLGCs in a database 
common to all pedigrees in a dataset, the number of float-
ing point operations and the memory demand of our new 
method are kept minimal, and similarities of family trees 
in terms of disease-locus-likelihood contributions can be 
exploited across the whole dataset. This is possible be-
cause the disease locus is treated separately from the 
marker loci when using a linkage analysis program such 
as GHM  [10–13]  that is based on the Lander-Green algo-
rithm  [25] . The speedup of a linkage analysis with GHM 
due to the algebraic algorithm depends on the number of 
different pedigree types, the complexity of the pedigrees, 
which is expressed by the number of inheritance vectors 
and classes, the number of replicates used to calculate p 
values, and the number of models saved in memory 
(saved models option) when running GHM in the classic 
calculation mode. For datasets consisting of only a single 
type of nuclear families, the speedup increased with the 
number of affected siblings and reached a factor >10 for 
ASSs in our analyses ( tables 4 ,  5 ). Even in the case of ASPs, 
we achieved speedups by a factor of more than 1.5 ( tables 
4 ,  5 ). When using an equal mixture of nuclear families 
with different numbers of affected offspring, the speed-
ups turned out to be the approximate average of the 
speedups of the individual nuclear family scenarios ( ta-
bles 4 ,  5 ). In the D3G and the discordant scenarios, i.e. 
those scenarios with a larger degree of complexity of the 
pedigrees and a higher computational burden due to 
peeling and loop breaking for the classic calculation mode 
of GHM, the speedups increased from the analysis with-
out calculating p values to those with calculating p values 
from 4.83 to a factor >8 for the D3G scenario, and from 
7.42 to a factor >10 for the discordant scenario. The re-
sults thus clearly show that our new algorithm can sub-
stantially reduce the run time of a MOD-score analysis 
with GHM.

  In the past, linkage analysis proved to be a valuable tool 
for identifying regions of the genome that harbor variants 

responsible for both Mendelian and complex diseases  [2] . 
However, sequencing a rather large genetic region repre-
sented by the linkage signal to determine the causal vari-
ant was not feasible at that time. Nowadays, employing 
next-generation sequencing techniques allows for the 
identification of rare causal variants of putative complex-
disease genes by combining an initial step of linkage anal-
ysis followed by fine mapping with association analysis. 
A major advantage of linkage methods as compared to 
methods in association analysis is that information across 
families can be combined, such that evidence for a causal 
role of a locus can accumulate even if different variants 
segregate at that locus in different families, which is 
known as allelic heterogeneity  [47] . However, locus het-
erogeneity and/or penetrance heterogeneity, i.e. several 
allelic variants exist at the same locus each with different 
penetrances, can reduce the power of linkage analysis to 
map the disease gene. This problem can be diminished 
using large pedigrees, which can each be more homoge-
neous with respect to genetic variation than unrelated in-
dividuals or a sample of many small pedigrees  [48, 49] . 
Admittedly, the GENEHUNTER software was originally 
designed for the analysis of small to moderately sized ped-
igrees (2 n  –  f   ≤  20 with  n  non-founders and  f  founders in 
a pedigree). Such pedigrees are easier to collect for dis-
eases characterized by late onset, low penetrance, and di-
agnostic uncertainty. They are also more likely to reflect 
the genetic etiology of the disease in the general popula-
tion  [35] . The loss of power due to the uncertainty in pen-
etrance values at the disease locus can be reduced by a 
maximization of the disease-locus likelihood over the 
trait-model parameters  f  0 ,  f  1 ,  f  2 , and  p  as it is done in a 
MOD-score analysis. Further robustness can be obtained 
by performing an affecteds-only analysis through recod-
ing unaffected individuals as having an unknown pheno-
type. If the penetrance is low, little information is lost by 
ignoring the phenotype of unaffected pedigree members. 
The power of an affecteds-only MOD-score analysis can 
hence be higher, because the MOD-score distribution has 
fewer degrees of freedom as compared to the MOD score 
in an analysis that uses the phenotype of unaffected ped-
igree members. Even if pedigrees show locus and/or pen-
etrance heterogeneity, it is likely that modest evidence for 
linkage can indeed narrow down the genetic region har-
boring the disease gene and can hence be used as a filter 
to focus on a more detailed association analysis of the 
variants in the region. In addition, using large samples of 
small pedigrees allows for the identification of hitherto 
unidentified genetic variants as risk factors for complex 
diseases (see de Visser et al.  [50]  for an example with 
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ASPs). Therefore, while linkage analysis of rare variants 
segregating in large pedigrees has proven to be a powerful 
approach, the analysis of smaller pedigrees can also be a 
promising route to discover genetic loci responsible for 
complex traits by the use of whole-exome or whole-ge-
nome sequence data. Irrespective of the assumed under-
lying genetic architecture of a given collection of small 
pedigrees, e.g. a large number of small-effect common 
variants, a large number of large-effect rare variants, or a 
mixture of both, GHM is well suited for the analysis of 
such data.

  Extensive model testing, simulations to calculate p val-
ues, and the consideration of many genetic markers in a 
MOD-score analysis are indispensable to successfully 
map complex-disease genes in the context of family stud-
ies. Our new algebraic algorithm paves the way to an ex-
ceedingly efficient MOD-score analysis, because the eval-
uation of many sets of trait-model parameters and simu-
lations to calculate p values are now feasible within a 
reasonable amount of time. Assuming, for example, an 
average speedup of 6.84 calculated from  table 5 , a geneti-
cist doing a linkage study with MOD scores including 
simulations to determine p values can obtain results with-
in a day instead of waiting a whole week for the analysis 
to finish. This further pushes ahead the maximum size of 
pedigrees that can still be analyzed.

  GENEHUNTER-MODSCORE is thus a promising 
tool to identify rare causal variants segregating within 
families using next-generation-sequencing data. The al-
gebraic algorithm is implemented in a new version of 
GHM that can be obtained for free from the following 
website: www.helmholtz-muenchen.de/ige/service/soft-
ware-download/index.html.
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  Appendix 

 Calculation of Allele-Sharing Classes for an AST Taking 
Imprinting into Account (see also Knapp  [23]  for the 
Formulation without Imprinting) 
 We are interested in the IBD sharing probability distribution 

of an AST at a diallelic disease locus with susceptibility allele  D , 
normal allele  d , and allele frequencies  p  =  P ( D ),  q  =  P ( d ) = 1 – p. 

Taking the parental origin of the alleles into account, 5 IBD con-
figurations can be distinguished. These IBD configurations are 
identical to the inheritance vector classes. Table 1A presents the 
Mendelian probability for each IBD configuration and a represen-
tative sharing among the 3 sibs. Let wD

i ( i  = 0, 1, 2 pat , 2 mat , and 3) 
denote the probability of the  i -th configuration at the disease lo-
cus. Further, let  D  p  and  D  m  denote the paternal and maternal gen-
otype at the disease locus. Let  AST  be the event that all 3 sibs are 
affected, and let  IBD  i  be the event that the sibs have IBD configu-
ration  i  at the disease locus. For  k ,  l ,  m ,  n ,  ∈  { D ,  d }, let c i

(k, l, m, n) 
denote the probability of the joint occurrence of  AST  and IBDD

i, 
given that the paternal and maternal genotypes are ( k ,  l ) and ( m , 
 n ). We hence get

  c i(k, l, m, n) =  P  ( AST   ∩  IBDD
i |    D  pat  = ( k ,  l ),  D  mat  = ( m ,  n ))

   =  P ( AST    |   IBDD
i,  D  pat  = ( k ,  l ),  D  mat  = ( m ,  n ))

         ·       P(IBDD
i |    D  pat  = ( k ,  l ),  D  mat  = ( m ,  n )), 

   
  where P(IBDD

i |    D  pat  = ( k ,  l ),  D  mat  = ( m ,  n )) reduces to the Mendelian 
probability of the  i -th IBD configuration, i.e. P(IBDD

i). 

 With  first-bits   ∈   G ,  G   =  {00, 01, 10, 11} denoting the first two 
bits of the inheritance vector, which correspond to the outcome of 
the two meioses leading to the first offspring, we obtain

   P ( AST    |   IBDD
i,  D  pat  = ( k ,  l ),  D  mat  = ( m ,  n ))

   = ∑ first-bits   ∈   G   P ( AST ,  first-bits    |   IBDD
i,  D  pat  = ( k ,  l ),  D  mat  

 = ( m ,  n ))
    = ∑ first-bits   ∈   G   P ( AST    |    first-bits , IBDD

i,  D  pat  = ( k ,  l ),  D  mat  
 = ( m ,  n ))

         ·        P  ( first-bits    |   IBDD
i,  D  pat  = ( k ,  l ),  D  mat  = ( m ,  n )),

  where  P  ( first-bits    |   IBDD
i,  D  pat  = ( k ,  l ),  D  mat  = ( m ,  n )) = 1/4 for all 

 first-bits   ∈  {00, 01, 10, 11}. 

 Thus, we can write for c i(k, l, m, n) 

  c i(k, l, m, n) = 1/4  P (IBDD
i) ∑ first-bits   ∈   G    P ( AST    |    first-bits , 

IBDD
i,  D  pat  = ( k ,  l ),  D  mat  = ( m ,  n )).

  Then with  J  = { D ,  d } 4 , it follows 
 

  and further 

, , , ,

|

.
k , l m n
i pat matk , l ,m, n

D
i i

c P D k, l D m n

w P IBD AST

P AST
�J

 
  For the 5 inheritance vector classes in the context of ASTs we 

obtain:

  c 3(k, l, m, n) = 1/64 ( f    
3  km  +  f    3  kn  +  f    3  lm  +  f    3  ln )

  c 2(k,
, l, m, n) = 3/64 ( f  km  f  kn ( f  km  +  f  kn ) +  f  lm  f  ln ( f  lm  +  f  ln ))

  c 2(k,
, l, m, n) = 3/64 ( f  km  f  lm ( f  km  +  f  lm ) +  f  kn  f  ln ( f  kn  +  f  ln ))

  c 1(k, l, m, n) = 3/64 ( f  km  f  ln ( f  km  +  f  ln ) +  f  kn  f  lm ( f  kn  +  f  lm ))
  c 0(k, l, m, n) = 3/32 ( f  km  f  kn ( f  lm  +  f  ln ) +  f  lm  f  ln ( f  km  +  f  kn ))

, , ,

, , ,

, , ,

|

k l m n

D D D

i pat mat

i i i

k l m n

c P D k l D m n

P AST IBD P IBD P AST IBD

�

�

J

 

pat

mat
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2 3 3 3 2 3
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pat mat
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12 2
0

3
16

3
8

mat

pat pat pat

pat matD

pat mat

pat pat mat mat

D

pq f f f f f

p f pqf pqf q f
w

P AST p f pqf pqf q f

p f p qf f f f f f f

f
w p q

P AST

�

3 3
, 1, 2 1, 1, 2 1, 0

2 1, 0 1, 1, 0

3 2 2 4 3
0 1, 1, 0 1, 1, 0 0

pat mat pat mat pat

mat pat mat

pat pat mat mat

f f f f f f f

f f f f f f

pq f f f f f f f q f  

.

   Table 1A.  IBD configurations for three affected siblings A, B, and 
C (adapted from Knapp  [23] )

IBD configuration/
inheritance vector
class i

Alleles  shared IBD by Mendelian 
probability AB AC BC

3 2 2 2 1/16
2pat 2 1pat 1pat 3/16
2mat 2 1mat 1mat 3/16
1 2 0 0 3/16
0 1pat 0 1mat 3/8

For each IBD configuration, i.e. inheritance vector class, i, the 
Mendelian probability and a representative sharing among the 3 
siblings are given. Note that the 3 siblings A, B, and C cannot be 
distinguished, such that e.g. siblings A and C could be flipped, 
which reduces the number of inheritance vector classes. Hence, 
with 16 inheritance vectors for an AST, the Mendelian probability 
of e.g. inheritance vector class i = 1 is 3/16, because the sharing of 
2 alleles IBD can take place either between A and B, A and C, or B 
and C, which does not have to be distinguished.

  Table 2A.  Mating types and conditional probabilities ci (adapted from Knapp  [23] ) 

No. Parental 
mating type 
(pat × mat)

Probability 
of mating 
type

c3 c2, pat c2, mat c1 c0 ∑ici

1 DD × DD p4 1/16 f  
3

2 3/16 f  
3

2 3/16 f  
3

2 3/16 f  
3

2 3/8 f  
3

2 f  
3

2

2 DD × Dd 2p3q 1/32 (f  
3

2 + f  
3

1, pat) 3/32 (f  
2

2 f1, pat 
+ f2 f  

2
1, pat)

3/32 (f  
3

2 
+ f  

3
1, pat)

3/32 (f  
2

2 f1, 
pat + f2 f  

2
1, pat)

3/16 (f  
2

2 f1, pat 
+ f2 f  

2
1, pat)

1/8 (f2 + f1, 
pat)3

3 Dd × DD 2p3q 1/32 (f  
3

2 + f  
3

1, mat) 3/32 (f  
3

2 
+ f  

3
1, mat)

3/32 (f  
2

2 f1, 
mat + f2 f  

2
1, mat)

3/32 (f  
2

2 f1, 
mat + f2 f  

2
1, mat)

3/16 (f  
2

2 f1, mat 
+ f2 f  

2
1, mat)

1/8 (f2 + f1, 
mat)3

4 DD × dd p2q2 1/16 f  
3

1, pat 3/16 f  
3

1, pat 3/16 f  
3

1, pat 3/16 f  
3

1, pat 3/8 f  
3

1, pat f  
3

1, pat

5 dd × DD p2q2 1/16 f  
3

1, mat 3/16 f  
3

1, mat 3/16 f  
3

1, mat 3/16 f  
3

1, mat 3/8 f  
3

1, mat f  
3

1, mat

6 Dd × Dd 4p2q2 1/64 (f  
3

2 + f  
3

1, 
pat + f  

3
1, mat + f  

3
0)

3/64 (f  
2

2 f1, pat 
+ f2 f  

2
1, pat

+ f  
2

1, mat f0 
+ f1, mat f  

2
0)

3/64 (f  
2

2 f1, 
mat + f2 f  

2
1, mat 

+ f  
2

1, pat f0 
+ f1, pat f  

2
0)

3/64 (f  
2

2 f0 
+ f2 f  

2
0 +

f  
2

1, pat f1, mat 
+ f1, pat f  

2
1, mat)

3/32 (f2 f1, pat f1, mat 
+ f2 f1, pat f0
+ f2 f1, mat f0, 
+ f1, pat f1, mat f0)

1/64 (f2 + f1, 
pat + f1, mat 
+ f0)3

7 Dd × dd 2pq3 1/32 (f  
3

1, pat + f  
3

0) 3/32 (f  
3

1, pat 
+ f  

3
0)

3/32 (f  
2

1, pat f0 
+ f1, pat f  

2
0)

3/32 (f  
2

1, pat f0 
+ f1, pat f  

2
0)

3/16 (f  
2

1, pat f0 
+ f1, pat f  

2
0)

1/8 (f1, pat 
+ f0)3

8 dd × Dd 2pq3 1/32 (f  
3

1, mat + f  
3

0) 3/32 (f  
2

1, mat f0 
+ f1, mat f  

2
0)

3/32 (f  
3

1, mat 
+ f  

3
0)

3/32 (f  
2

1, mat f0 
+ f1, mat f  

2
0)

3/16 (f  
2

1, mat f0 
+ f1, mat f  

2
0)

1/8 (f1, mat 
+ f0)3

9 dd × dd q4 1/16 f  
3

0 3/16 f  
3

0 3/16 f  
3

0 1/16 f  
3

0 3/8 f  
3

0 f  
3

0

 A diallelic disease locus with susceptibility allele D, normal allele d, and allele frequencies p = P(D), q = P(d) = 1 – p is assumed. If the 
order of alleles within a parent is ignored, 9 mating types (k, l, m, n) ∈ J, with J = {D, d}4 have to be distinguished. The mating type pro-
babilities are given under the assumption of Hardy-Weinberg equilibrium at the disease locus. ci

(k, l, m, n) denotes the probability of the 
joint occurrence of 3 affected sibs that have IBD configuration i at the disease locus, given that the paternal and maternal genotypes are 
(k, l) and (m, n). (f0, f1, pat, f1, mat, and f2) are the penetrances with fi denoting the probability that an individual with i copies of the disease 
allele develops the disease. For the heterozygous individuals, separate penetrances for paternal and maternal transmission of the disease 
allele are distinguished to take imprinting into account.
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