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THE INFLUENCE OF TIMESHIFT ON CIRCADIAN RHYTHM OF
SENSITIVITY TO X-IRRADIATION IN MICE*
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Abstract—For two groups of male C3H mice an eastbound transmeridional flight was simulated by inducing a
time shift of the L:D schedule of 8 hr. The assumed flight brought about a maximal reduction of the daily light
and dark span, respectively. A third group remained unshifted. At seven different times during the following
day, subgroups of the time shifted mice as well as of the group with unchange schedule were exposed to whole
body X-irradiation. Mortality and body temperature of each animal were registered for 30 days following
exposure and were regarded as indicators of radiation response. Radioresistance was found to be highest
during the second half of the daily light span, confirming earlier reports by other authors. Well defined effects of
the time shift and a corresponding shift of the acrophase of radioresistance could be demonstrated. There was no
significant difference between the two time shifted groups, but there was a consistent slight trend towards an
advantage for the group whose L:D shift resulted in a maximally reduced dark span.

Key words—Time shift, acute radiation injury, circadian rhythms, radioresistance, mice, body temperature.
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Introduction

To date there have been numerous investigations
dealing with the question if mammalian
radiation response depends upon the phase of
circadian systems at exposure time (1-4). After
some contradictory results (5, 6) it now seems
generally accepted that animals such as rats (7, 8)
and mice (9-11) show lower radiation suscepti-
bility during the daily light/rest as compared to
the daily dark/activity span. Most of the authors
simply regarded lethality or mean survival time
as indicators for radiation injury, some more
recent reports however even found bone marrow
cell-cycle dependence of X-radiosensitivity (12,
13). Transmeridional flights with resulting time
shift of synchroniser phase are known to impose
considerable stress to biological systems (14-18).
Stress during acute radiation sickness reportedly
increases lethality (19), whereas corticosteroids
(20) or skin lesions in the combined injury model

(21) could decrease radiation sensitivity in mice
when applied shortly before exposure.

Considering the aforementioned reports, it
seemed worthwhile to evaluate the circadian
rhythm of radioresistance, recording additional
parameters such as rectal temperature and to
investigate the influence of a sudden time shift
shortly before irradiation.

Materials and Methods

Animals

Male C3H mice with an age of 3 weeks were
purchased from GSF, Munich and housed five
animals per Makrolon® cage under standard
laboratory conditions (24+1°C room tem-
perature, 65% humidity, Altromin® hard role
food and tap water ad libitum). A group of 80
mice (group I) was kept on an illumination
regimen L 0600-2100, D 2100-0600, correspond-
ing to the natural day-night ratio during the time
of the experiment.

*The experiments were performed at the Laboratories of Experimental Radiology, SANAk BW, Ingolstadter Landstr. 2,

D-8042 Neuherberg, Federal Republic of Germany.
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Time shift

For two groups of 160 mice in total (groups 11,
III) the lighting cycle was shifted by 120° (8 hr) to
L 1400-0500, D 0500-1400 3 weeks before
irradiation. 2 weeks after this 8-hr shift of
synchronizer phase, rectal temperature of every
mouse was taken at seven about equidistant
times during one day (Telethermometer 43TF,
temperature probe 520, Yellow Springs In-
strument Co., Ohio, U.S.A.) to make sure that
there had been a corresponding shift in
acrophase of body temperature and metabolism.
One week later, an eastbound transmeridional
flight of 8-hr duration was simulated, with a
maximal reduction of the daily dark (for group
IT) and light span (for group I1I), respectively: at
0930, after only 4.5 hr of darkness, the mice of
group II and at 2130, after only 7.5 hr of light
period, the mice of group I1I were transferred to
a room with the L:D schedule of group 1. The
next morning, each animal’s body temperature
was recorded and seven (Nos 1-7) separate sets
of 10 mice each of groups I-III were irradiated
once at one of seven different times over the 24
hours, each being at about 3.5-hr intervals from
another. Age of the animals at this time was
about 10 weeks.

Irradiation

The unanesthesized mice were exposed to
whole body X-irradiation (X-ray unit MG 300,
C.H.F. Miiller, Hamburg, FRG; 250kV, 12 mA,
half-value layer 1.9 mm Cu, dose rate 88
c¢Gy/min). At a focus-mouse distance of 40 cm,
the total dose was 640 cGy (simultaneous
dosimetry with Duplex Dosimeter, Freiburg,
P.T.W., FRG). For 30 days following ir-
radiation, rectal temperature was recorded daily
at fixed times.

Statistical analysis

The data were analysed on a CYBER 175
computer using SPSS library routines as well as
own FORTRAN programs for linear rhythm
estimation. From the raw data the following
variables were calculated as indicators for radio-
sensitivity:

TEMP, : Minimal body temperature

measured during observation,

min

Chronobiology International

TEMP

s . Maximalreduction of body tem=

perature compared to day before
irradiation and

: Mean survival time after ir-
radiation (observation span was

30 days).

Means and standard deviations for all
variables were calculated within each of the 7
subgroups of groups I-11I and were displayed in
chronograms (cf. Figure 2). 2-way analyses of
variance were calculated for the dependent
variables TEMP_ ., TEMP and SVT, using
time of irradiation and time shift (I, IT or III) as
independent variables. Weight before irradiation
and age were first included as covariates, then
removed from the model after showing no
significant effects. Subgroups of high and low
response, respectively, were identified by mul-
tiple classification analysis. Linear contrasts and
t-tests calculated for TEMP,,, TEMP, and
SVT showed significant differences between
subgroups with high (group I: subgroups 1, 5, 6,
7, groups II, III: 1, 2, 3, 7) and low (group I:
subgroups 2, 3, 4; groups 11, 111: 4, 5, 6) radio-
sensitivity in all cases.

Finally, more accurate estimates of para-
meters of radioresistance rhythm were obtained
by COSINOR analysis using the subgroup
means of the variables TEMP ... TEMP,, SVT
and TEMP,,,/SVT.

SVT

Results

(1) Presynchronization

Two weeks past the 8-hr shift of the L:D
schedule, every animal’s circadian profile of
rectal temperature was taken. Population Mean
Cosinors (Figure 1) demonstrate an average 8-hr
shift of acrophase in groups Il and I11. indicating
the effects of presynchronization. There are no
significant differences of mesors and amplitudes
between the groups, which proves good
randomization of the animals.

(2) Circadian Rhythm of Radiosensitivity
Lethality as well as mean survival time within
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TEMP (°0)

POPULATION MEAN COSINOR

AMPL | TUDE
I 1.09 (.59. 1.60)
I .81 (.25 1.46)
m .79 (.25 1.33)

Figure 1. Population Mean Cosinor of circadian temperature rhythm in groups I, II, IT1
2 weeks after 8-hr shift of the L:D regimen for groups Il and IIl. Population rhythms
were significant at P<.02. 95% confidence intervals are indicated for mesor (upper
right-hand portion of figure) and amplitude (lower right-hand portion of figure).

30 days post irradiation are generally regarded as
indicators of radiation effects in mice. Figure
2(a) shows the mean survival time of groups I-111
(SVT) as a function of the time of exposure (sub-
groups 1-7). For group I, mean survival time
proved to be significantly higher in animals
irradiated during the light span. Due to the fact
that a time shift had not been performed until
shortly before irradiation, radioresistance in
groups II and III was found to be significantly
higher in animals irradiated at times cor-
responding to the light span in their pre-
synchronization schedule.

During acute radiation sickness with the so-
called “Hematopoetic syndrom” (22), the second
and third week after exposure were to be
regarded as the critical period. In many animals
body temperature as a marker of metabolic
activity sank considerably, in prefinal stages
even to as low as 34°C. The lowest rectal
temperature of each animal during the time of
observation [TEMP ., Figure 2(b)] as well as
the difference between the individual normal
body temperature before irradiation and the
lowest temperature—at corresponding times of

the day—[TEMP,,,, Figure 2(c)] were regarded
as suitable indicators of radiation susceptibility.
Again, highly significant advantages were to be
seen for the mice irradiated during the light
phase.

In order to define the most resistant and the
most sensitive phases more precisely, the data of
Figure 2 were put to COSINOR analysis. SVT
and TEMP,_, [Figures 3(a) and 3(b)] showed
radioresistance to be highest at about 1500
(group I) and 2400 (groups 11, I1I), respectively;
in other words rather exactly after two thirds of
the daily light span. Cosinors of TEMPand
TEMP,,/SVT [Figures 3(c) and 3(d)] with
acrophases at about 0300 and 1230, respectively,
indicated highest susceptibility to X-irradiation
to be during the last third of the daily dark span.

(3) Effects of time shift

Cosinor analysis quite clearly demonstrates a
shift of the acrophase of radioresistance
approximately corresponding to the pre-
synchronization time shift of groups II and IIL
There 1s a general tendency towards lower
resistance of groups 1l and III as compared to
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Figure 2. Subgroup means + S.E.M. (subgroups 1-7) plotted vs the corresponding times of irradiation,
separately for groups II-III. The bars at the bottom of each plot display the general L:D regimen after
irradiation which is unchanged for group I only, and the L:D schedule immediately before time shift. Asa
consequence of presynchronization, groups Il and III exhibit a corresponding shift of radioresistance.
Significance levels (/-test) of difference between subgroups of high and low radiosensitivity were P<.05 for
groups I-1II. Subgroups with high radiosensitivity (group I:1, 5,6, 7; groups 11, I1I:1, 2, 3, 7) are marked by
open circles, subgroups with low radiosensitivity (group I:2, 3, 4; groups I1, I11:4, 5, 6) are marked by solid
circles. (a) Mean survival time. (b) Lowest body temperature during observation span. (¢) Maximal

reduction of body temperature.

group I, demonstrated by the lower mesors of
SVT and TEMP,_,. But only TEMP,, and
TEMP,/SVT show a significantly higher
radiosensitivity of the time shifted groups
(Analysis of variance, P<0.05, see also mesor
plots in Figure 3). There are very slight trends
towards greater radiation injury in group III as
compared to group Il for all variables, but
differences between the two time shifted groups
were not significant (cf. Figure 3).

Discussion

In earlier years, some authors obtained
contradictory answers to the question of
circadian rhythms of radiosensitivity. This fact
might be explained by undefined light schedules
or seasonal conditions or the use of female
animals with possible cyclic interference of
radioprotective sexual hormones. Considering

not only lethality and mean survival time, but
also regarding body temperature, this report
confirms more recent investigations (12, 23) that
defined the second half of the daily light span as
the time of highest radioresistance in mice (L:D
12:12). With a lighting regimen of 15:9 (L:D)
corresponding to the natural seasonal conditions
during the time of experimentation, highest and
lowest radioresistance were found to be after two
thirds of the light span and in the last third of the
dark span, respectively. This can be closely
correlated with the circadian rhythms of general
activity (24), body temperature (25), metabolic
(26) and mitotic (12) activity.

The corresponding shift in the acrophase of
radioresistance following a sudden time shift
supports the above mentioned diurnal rhythms.
The stress of a sudden time shift shortly before
X-irradiation did not reduce the effects of
radiation injury; there were even strong and
partly significant signs of an aggravation of
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SVT (days)

SINGLE COSINOR

AMPL I TUDE

1 284 (.51 6.20
o 3,77 (1.01. 6.52)
m 3.47 (.45, 6.45)

(a)

TEMP min (°C)

SINGLE COSINOR

AMPL | TUDE

1 .31 (.00, .62)
T .33 (.10, .56)
m .5 (.03 .47)

(b)
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TEWP diff (°C)

SINGLE COSINOR

AMPL1TUDE

1 .25 (.07, .57)
T .4 (,8. .79

© m .39 (.12, .66)
TEMP diff (C) / SVT (days)
SINGLE COSINOR_
0000
AMPL 1 TUDE
1 .64 (.00, .08)
o .65 (.61, .09
(d)

m .07 (.62, .1

1200

Figure 3. Cosinor analysis of the data in Figure 2. Plots with 95% significance level:
(a) SVT; (b) TEMPpip; (c) TEM g and (d) TEMP/SVT.
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