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Abstract—For two groups of male C3H mice an eastbound transmeridional flight was simulated by inducing a 
time shift of the L:D schedule of 8 hr. The assumed flight brought about a maxima) reduction of the daily light 
and dark span, respectively. A third group remained unshifted. At seven different times during the following 
day, subgroups of the time shifted mice as well as of the group with unchange schedule were exposed to whole 
body X-irradiation. Mortality and body temperature of each animal were registered for 30 days following 
exposure and were regarded as indicators of radiation response. Radioresistance was found to be highest 
during the second half of the daily light span, confirming earlier reports by other authors. Well defined effects of 
the time shift and a corresponding shift of the acrophase of radioresistance could be demonstrated. There was no 
significant difference between the two time shifted groups, but there was a consistent slight trend towards an 
advantage for the group whose L:D shift resulted in a maximally reduced dark span. 

Key words—Time shift, acute radiation injury, circadian rhythms, radioresistance, mice, body temperature. 

Introduction 

To date there have been numerous investigations 
dealing with the question if mammalian 
radiation response depends upon the phase of 
circadian systems at exposure time (1-4). After 
some contradictory results (5, 6) it now seems 
generally accepted that animals such as rats (7, 8) 
and mice (9-11) show lower radiation suscepti­
bility during the daily light/rest as compared to 
the daily dark/activity span. Most of the authors 
simply regarded lethality or mean survival time 
as indicators for radiation injury, some more 
recent reports however even found bone marrow 
cell-cycle dependence of X-radiosensitivity (12, 
13). Transmeridional flights with resulting time 
shift of synchroniser phase are known to impose 
considerable stress to biological systems (14-18). 
Stress during acute radiation sickness reportedly 
increases lethality (19), whereas corticosteroids 
(20) or skin lesions in the combined injury model 

(21) could decrease radiation sensitivity in mice 
when applied shortly before exposure. 

Considering the aforementioned reports, it 
seemed worthwhile to evaluate the circadian 
rhythm of radioresistance, recording additional 
parameters such as rectal temperature and to 
investigate the influence of a sudden time shift 
shortly before irradiation. 

Materials and Methods 
Animals 

Male C3H mice with an age of 3 weeks were 
purchased from GSF, Munich and housed five 
animals per Makrolon® cage under standard 
laboratory conditions (24±1°C room tem­
perature, 65% humidity, Altromin® hard role 
food and tap water ad libitum). A group of 80 
mice (group I) was kept on an illumination 
regimen L 0600-2100, D 2100-0600, correspond-
ing to the natural day-night ratio during the time 
of the experiment. 

•The experiments were performed at the Laboratories of Experimental Radiology, SANAk BW, Ingolstädter Landstr. 2 
D-8042 Neuherberg, Federal Republic of Germany. 
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Time shift 
For two groups of 160 mice in total (groups I I , 

I I I ) the lighting cycle was shifted by 120° (8 hr) to 
L 1400-0500, D 0500-1400 3 weeks before 
irradiation. 2 weeks after this 8-hr shift of 
synchronizer phase, rectal temperature of every 
mouse was taken at seven about equidistant 
times during one day (Telethermometer 43TF, 
temperature probe 520, Yellow Springs In­
strument Co., Ohio, U.S.A.) to make sure that 
there had been a corresponding shift in 
acrophase of body temperature and metabolism. 
One week later, an eastbound transmeridional 
flight of 8-hr duration was simulated, with a 
maximal reduction of the daily dark (for group 
II) and light span (for group I I I ) , respectively: at 
0930, after only 4.5 hr of darkness, the mice of 
group I I and at 2130, after only 7.5 hr of light 
period, the mice of group I I I were transferred to 
a room with the L:D schedule of group I . The 
next morning, each animal's body temperature 
was recorded and seven (Nos 1-7) separate sets 
of 10 mice each of groups I—III were irradiated 
once at one of seven different times over the 24 
hours, each being at about 3.5-hr intervals from 
another. Age of the animals at this time was 
about 10 weeks. 

Irradiation 
The unanesthesized mice were exposed to 

whole body X-irradiation (X-ray unit MG 300, 
C.H.F. Müller, Hamburg, FRG;250kV, 12 mA, 
half-value layer 1.9 mm Cu, dose rate 88 
cGy/min). At a focus-mouse distance of 40 cm, 
the total dose was 640 cGy (simultaneous 
dosimetry with Duplex Dosimeter, Freiburg, 
P.T.W., FRG). For 30 days following ir­
radiation, rectal temperature was recorded daily 
at fixed times. 

Statistical analysis 
The data were analysed on a CYBER 175 

computer using SPSS library routines as well as 
own FORTRAN programs for linear rhythm 
estimation. From the raw data the following 
variables were calculated as indicators for radio-
sensitivity: 

TEMP m j n : Minimal body temperature 
measured during observation. 

TEMP d j f f : Maximal reduction of body terrn 
perature compared to day before 
irradiation and 

SVT : Mean survival time after ir­
radiation (observation span was 
30 days). 

Means and standard deviations for all 
variables were calculated within each of the 7 
subgroups of groups I—III and were displayed in 
chronograms (cf. Figure 2). 2-way analyses of 
variance were calculated for the dependent 
variables T E M P m m , TEMP d i f f and SVT, using 
time of irradiation and time shift ( I , I I or I I I ) as 
independent variables. Weight before irradiation 
and age were first included as covariates, then 
removed from the model after showing no 
significant effects. Subgroups of high and low 
response, respectively, were identified by mul­
tiple classification analysis. Linear contrasts and 
/-tests calculated for TEMP m i n , TEMP d i f f and 
SVT showed significant differences between 
subgroups with high (group I : subgroups 1, 5, 6, 
7; groups I I , I I I : 1, 2, 3, 7) and low (group I : 
subgroups 2, 3, 4; groups I I , I I I : 4, 5, 6) radio-
sensitivity in all cases. 

Finally, more accurate estimates of para­
meters of radioresistance rhythm were obtained 
by COSINOR analysis using the subgroup 
means of the variables TEMP m i n , TEMP d i f f , SVT 
and TEMP d l f f /SVT. 

Results 

(1) Pre synchronization 
Two weeks past the 8-hr shift of the L:D 

schedule, every animal's circadian profile of 
rectal temperature was taken. Population Mean 
Cosinors (Figure 1) demonstrate an average 8-hr 
shift of acrophase in groups I I and I I I . indicating 
the effects of presynchronization. There are no 
significant differences of mesors and amplitudes 
between the groups, which proves good 
randomization of the animals. 

(2) Circadian Rhythm of Radiosensitivity 
Lethality as well as mean survival time within 
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Figure 1. Population Mean Cosinor of circadian temperature rhythm in groups I , I I , III 
2 weeks after 8-hr shift of the L:D regimen for groups II and I I I . Population rhythms 
were significant at P<.02. 95% confidence intervals are indicated for mesor (upper 
right-hand portion of figure) and amplitude (lower right-hand portion of figure). 

30 days post irradiation are generally regarded as 
indicators of radiation effects in mice. Figure 
2(a) shows the mean survival time of groups I—III 
(S VT) as a function of the time of exposure (sub­
groups 1-7). For group I , mean survival time 
proved to be significantly higher in animals 
irradiated during the light span. Due to the fact 
that a time shift had not been performed until 
shortly before irradiation, radioresistance in 
groups I I and I I I was found to be significantly 
higher in animals irradiated at times cor­
responding to the light span in their pre-
synchronization schedule. 

During acute radiation sickness with the so-
called "Hematopoetic syndrom" (22), the second 
and third week after exposure were to be 
regarded as the critical period. In many animals 
body temperature as a marker of metabolic 
activity sank considerably, in prefinal stages 
even to as low as 34° C. The lowest rectal 
temperature of each animal during the time of 
observation [ T E M P m i n , Figure 2(b)] as well as 
the difference between the individual normal 
body temperature before irradiation and the 
lowest temperature—at corresponding times of 

the day—[TEMP d i f f , Figure 2(c)] were regarded 
as suitable indicators of radiation susceptibility. 
Again, highly significant advantages were to be 
seen for the mice irradiated during the light 
phase. 

In order to define the most resistant and the 
most sensitive phases more precisely, the data of 
Figure 2 were put to COSINOR analysis. SVT 
and T E M P m i n [Figures 3(a) and 3(b)] showed 
radioresistance to be highest at about 1500 
(group I) and 2400 (groups I I , I I I ) , respectively; 
in other words rather exactly after two thirds of 
the daily light span. Cosinors of TEMP d i f f and 
TEMP d i f f /SVT [Figures 3(c) and 3(d)] with 
acrophases at about 0300 and 1230, respectively, 
indicated highest susceptibility to X-irradiation 
to be during the last third of the daily dark span. 

(3) Effects of time shift 
Cosinor analysis quite clearly demonstrates a 

shift of the acrophase of radioresistance 
approximately corresponding to the pre-
synchronization time shift of groups I I and I I I . 
There is a general tendency towards lower 
resistance of groups I I and I I I as compared to 
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SCHEDULE BEFORE TIME SHIFT 

Figure 2. Subgroup means ± S . E . M . (subgroups 1-7) plotted vs the corresponding times of irradiation, 
separately for groups II—III. The bars at the bottom of each plot display the general L :D regimen after 
irradiation which is unchanged for group I only, and the L : D schedule immediately before time shift. As a 
consequence of presynchronization, groups I I and I I I exhibit a corresponding shift of radioresistance. 
Significance levels (/-test) of difference between subgroups of high and low radiosensitivity were P<.05 for 
groups I—II I . Subgroups with high radiosensitivity (group 1:1,5,6, 7; groups I I , I I I : 1,2,3, 7) are marked by 
open circles, subgroups with low radiosensitivity (group 1:2, 3, 4; groups I I , 111:4, 5, 6) are marked by solid 
circles, (a) Mean survival time, (b) Lowest body temperature during observation span, (c) Maximal 
reduction of body temperature. 

group I , demonstrated by the lower mesors of 
SVT and T E M P m i n . But only TEMP d l f f and 
TEMP d i f t /SVT show a significantly higher 
radiosensitivity of the time shifted groups 
(Analysis of variance, P<0.05, see also mesor 
plots in Figure 3). There are very slight trends 
towards greater radiation injury in group I I I as 
compared to group I I for all variables, but 
differences between the two time shifted groups 
were not significant (cf. Figure 3). 

Discussion 

In earlier years, some authors obtained 
contradictory answers to the question of 
circadian rhythms of radiosensitivity. This fact 
might be explained by undefined light schedules 
or seasonal conditions or the use of female 
animals with possible cyclic interference of 
radioprotective sexual hormones. Considering 

not only lethality and mean survival time, but 
also regarding body temperature, this report 
confirms more recent investigations (12, 23) that 
defined the second half of the daily light span as 
the time of highest radioresistance in mice (L:D 
12:12). With a lighting regimen of 15:9 (L:D) 
corresponding to the natural seasonal conditions 
during the time of experimentation, highest and 
lowest radioresistance were found to be after two 
thirds of the light span and in the last third of the 
dark span, respectively. This can be closely 
correlated with the circadian rhythms of general 
activity (24), body temperature (25), metabolic 
(26) and mitotic (12) activity. 

The corresponding shift in the acrophase of 
radioresistance following a sudden time shift 
supports the above mentioned diurnal rhythms. 
The stress of a sudden time shift shortly before 
X-irradiation did not reduce the effects of 
radiation injury; there were even strong and 
partly significant signs of an aggravation of 
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Figure 3. Cosinor analysis of the data in Figure 2. Plots with 95% significance level: 
(a) SVT; (b) T E M P m i n ; (c) T E M d i f T and (d) T E M P d i f f / S V T . 
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radiation sickness. Group I I with shortening of 
the dark/activity span by time shifting showed 
very slight but not significant advantages as 
compared to group I I I with reduced light/rest 
span. 
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