First International Symposium
and Swiss Hypertension Workshop
on Atrial Natriuretic Peptides

18-19 November 1985 Berne, Switzerland

Editors: Peter Weidmann
 Edward D. Frohlich
 John H. Laragh

Sponsored by the Swiss Association Against High Blood Pressure, the Ciba-Geigy Company, Basle, Switzerland and the Bissendorf-Peptide Company, Wedemark, Federal Republic of Germany

Journal of Hypertension
Supplement

Official Journal of the International Society of Hypertension
Contents

S1 Introduction
 Edward D. Frohlich

S3 Functional-Morphological Studies on *In Vitro* Cardionatrin Release
 Adolfo J. de Bold, Mercedes L. de Bold and Inder R. Sarda

S9 Molecular Forms of Atrial Natriuretic Peptides in Rat Tissues and Plasma
 Atsuro Miyata, Kenji Kangawa and Hisayuki Matsuo

S13 Atropeptins: Circulating Volume Regulatory Hormones with Potential Therapeutic Role in Chronic Renal Failure
 Barbara R. Cole, David Schwartz, Pamela T. Manning, Nobuo C. Katsube and Philip Needleman

S17 The Character of the Atrial Natriuretic Response: Pressure and Volume Effects
 Edward H. Blaine, Lynn A. Heinel, Terry W. Schorn, Elizabeth A. Marsh and Margaret A. Whinnery

S25 Observations on the Natriuretic Response to Intravenous Infusions of Atrial Natriuretic Factor in Water-Loaded Anaesthetized Rats
 Franco Spinelli, Bruno Kamber and Christian Schnell

S31 Effect of Atrial Natriuretic Factor on Acid-Base Homeostasis
 Martin G. Cogan, Chou-Long Huang, Fu-Ying Liu, Dolores Madden and Kenneth R. Wong

S35 Acute Haemodynamic Effects of the Atrial Natriuretic Hormone in Rats
 Nick C. Trippodo, Merrill B. Kardon, Barbara L. Pegram, Francis E. Cole and Allan A. MacPhee

S41 Acute and Chronic Haemodynamic and Natriuretic Effects of Atropeptin II in Conscious Rats
 Karl G. Hofbauer, Leoluca Criscione, Christel Sonnenburg, Alison Muir and Seng Chin Mah

S49 Cyclic GMP as Mediator and Biological Marker of Atrial Natriuretic Factor
 Pavel Hamet, Johanne Tremblay, Stephen C. Pang, Romana Skuherska, Ernesto L. Schiffrin, Raul Garcia,
 Marc Cantin, Jacques Genest, Roberta Poulmear, Frank R. Ervin, Stephen Martin and Ronald Goldwater

S57 Effect of Synthetic Atrial Natriuretic Peptide on Rat Renal Juxtaglomerular Cells
 Armin Kurtz, Roberto Della Bruna, Josef Pfeilschifter and Christian Bauer

S61 Effects of Atrial Natriuretic Peptide on the Stimulation by Angiotsensin II of Various Target Cells
 Alessandro M. Capponi, P. Daniel Lew, Rudolf Wüthrich and Michel B. Vallotton

S67 Effect of Atrial Natriuretic Polypeptide on Angiotsensin II-Induced Increase of Cytosolic Free Calcium in Cultured Smooth Muscle Cells
 Marcus Knorr, Rudolf Locher, Michael Stimpel, Dorotha Edmonds and Wilhelm Vetter

S71 Cardiovascular, Endocrine and Renal Effects of Atrial Natriuretic Peptide in Essential Hypertension
 Peter Weidmann, Markus P. Gnädinger, Hans R. Ziswiler, Sidney Shaw, Claude Bachmann,
 Wolfgang Rascher, Dominik E. Uehlinger, Loretta Hasler and François C. Reubi

S85 Studies on the Secretion, Metabolism and Action of Atrial Natriuretic Peptide in Man
 Eric A. Espiner, M. Gary Nicholls, Tim G. Yandle, Ian G. Crozier, Ross C. Cuneo, David McCormick and
 Hamid Ikram

S93 Increases in Circulating Atrial Natriuretic Factor During Immersion-Induced Central Hypervolaemia in Normal Humans
 Murray Epstein, Rodger D. Loutzenhiser, Edward Friedland, Rose M. Aceto, Maria J.F. Camargo and
 Steven A. Atlas
S101 Clinical Pharmacology of Atrial Natriuretic (3-28) Eicosahexapeptide
Jérôme Biollaz, Jürg Nussberger, Bernard Waeber and Hans R. Brunner

S109 Atrial Antipressor Natriuretic Peptide: Release Mechanisms and Vascular Action in Man
Franco B. Müller, Paul Erne, Anthony E.G. Raine, Peter Bolli, Lilly Linder, Thérèse J. Resink,
Christoph Cottier, Fritz R. Bühler

S115 Changes in Plasma Immunoreactive Atrial Natriuretic Peptide in Response to Saline Infusion or to
Alterations in Dietary Sodium Intake in Normal Subjects
Giuseppe A. Sagnella, Nirmala D. Markandu, Angela C. Shore and Graham A. MacGregor

S119 Plasma Atrial Natriuretic Peptide Values in Cardiac Disease
Rudolf E. Lang, Rainer Dietz, Andreas Merkel, Thomas Unger, Heikki Ruskoaho and Detlev Ganten

S125 Some Physiopathological Aspects of Atrial Natriuretic Factor
Raul Garcia, Marc Cantin, Jean R. Cusson, Jacques Genest, Jolanta Gutkowska, Pierre Larochelle,
Ernesto L. Schiffrin and Gaétan Thibault

S131 Atrial Natriuretic Factor in Plasma of Patients with Arterial Hypertension, Heart Failure or Cirrhosis of
the Liver
Rainer M. Arendt, Alexander L. Gerbes, Detlef Ritter, Elisabeth Stangl, Peter Bach and Josef Zähringer

S137 The Plasma Atrial Natriuretic Peptide Response to Treatment of Acute Cardiac Failure, Spontaneous
Supraventricular Tachycardia and Induced Re-entrant Tachycardia in Man
John V. Anderson, J. Simon R. Gibbs, Peter W.R. Woodruff, Cesare Greco, Edward Rowland and
Stephen R. Bloom

S143 The Endocrine Control of Blood Volume, Blood Pressure and Sodium Balance: Atrial Hormone and
Renin System Interactions
John H. Laragh

S157 List of Contributors
Since the discovery of the atrial natriuretic factor (ANF) an endocrine function has been attributed to the mammalian heart. This function may include definition of optimal conditions for efficient performance of the heart, e.g. by reduction of afterload in hypertension or of preload and afterload in heart failure. Plasma ANF levels were measured in various cardiovascular disease states and compared with those of controls and of patients with liver cirrhosis. Plasma ANF levels in hypertensive patients were sevenfold higher than in controls, and in patients with heart failure 40-fold higher than normal values. Small differences were detected between controls and patients with cirrhosis of the liver, in spite of the impaired renal sodium handling seen in cirrhotics. Plasma ANF levels were significantly correlated with haemodynamic parameters and were inversely related to the cardiac index. Treatment with an angiotensin converting enzyme inhibitor led to a significant decrease in plasma ANF levels in parallel with the haemodynamic improvement. Preliminary chromatographic analysis suggested differences in the structure of plasma ANF between normotensive and hypertensive subjects.

Keywords: Atrial natriuretic factor, cardiovascular disease, volume homeostasis, cirrhosis, chromatographic analysis.
Methods

Radio-immunoassay
A radio-immunoassay was developed by conventional techniques, as described previously [10]. Briefly, a polyclonal antibody was raised against α-human (α-h) ANF (Nova Biochem, Switzerland), the 28-amino-acid residue portion of the human precursor-ANF. 125I-alpha-human ANF was prepared by the chloramine T method. The final antibody dilution in the radio-immunoassay was 1:35 000. Separation of bound and free hormone following overnight incubation at 5°C was achieved by activated charcoal suspension.

Sample collection and plasma extraction
Peripheral blood was drawn into pre-cooled 20-ml syringes and immediately transferred to pre-cooled polystyrene tubes containing 500 KIU/ml aprotinin and 1 mg/ml sodium ethylenediaminetetraacetic acid. Plasma was separated and stored at −70°C until extraction. Extraction was performed by adsorption to Amberlite XAD-2 adsorbent resin (particle size 0.3-1.0 mm; Serva, Heidelberg, Federal Republic of Germany) and adsorbed ANF was eluted with 55% acetonitrile in 0.1 mol/l acetic acid. The extraction recovery was 68% and was independent of the concentration in the range 6-200 fmol/ml; plasma values were not corrected for recovery. Eluates were lyophilized and either redissolved in buffer for radio-immunoassay or subjected to chromatographic analysis.

Chromatography
High performance gel permeation chromatography of plasma extracts was performed on a TSK-125 Bio Sil column (7.5 × 600 mm; Bio Rad, Munich, Federal Republic of Germany) eluted with 0.09% trifluoroacetic acid containing 0.005 mol/l NaH₂PO₄ plus 0.002 mol/l NaH₂PO₄ and 30% acetonitrile, as a solvent. The flow rate was 0.4 ml/min, and aliquots from column fractions were analysed for immunoreactive α-hANF. Thereafter immunoreactive peaks were re-chromatographed on a Waters C18 μ-Bondapak reverse-phase column (3.9 × 300 mm) and fractions assayed for α-hANF immunoreactivity.

Patient characteristics
Blood was drawn from 41 normotensive control subjects who showed no evidence of cardiovascular, renal, pulmonary or gastrointestinal disease. Twenty-seven patients with essential hypertension were examined also; at the time of examination their mean blood pressure was 176 ± 4.1 (systolic) and 101 ± 3.5 (diastolic) mmHg. Thirteen hypertensive patients were either newly diagnosed or had discontinued their therapies. In addition, 14 patients with congestive heart failure [New York Heart Association (NYHA) stages II-IV] were studied also. Patients were hospitalized 1 week before catheterization of the heart and all medication was discontinued except for diuretics and digitals. Measurements were taken before, immediately following and 6 months after institution of therapy with an angiotensin converting enzyme inhibitor (enalapril, usually 2 × 5 mg orally a day). Twenty patients with cirrhosis of the liver, confirmed by biochemical and histological examination, were investigated. Ascites was not evident in nine patients, moderate in five and severe in five. Ascitic patients were receiving spironolactone (100-400 mg orally a day). In five patients ANF measurements were reported after diuretic treatment had been discontinued for 4 days. All patients were on a hospital diet containing 150 mmol NaCl daily.

Experimental protocols were approved by the institutional committee on the ethics of human investigation.

Results
Plasma levels of irANF for various clinical conditions are given in Table 1. Hypertensive patients on average displayed a sevenfold increase in plasma irANF compared with normotensive controls. A subgroup of untreated patients with essential hypertension had comparably high levels.

<table>
<thead>
<tr>
<th>Clinical Condition</th>
<th>Mean ± s.e.m.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normotensive controls (n = 41)</td>
<td>8.8 ± 1.1</td>
</tr>
<tr>
<td>Hypertensive patients (n = 27)</td>
<td>62.2 ± 16.8**</td>
</tr>
<tr>
<td>- untreated hypertension (n = 13)</td>
<td></td>
</tr>
<tr>
<td>BP 188 ± 6/103 ± 4 mmHg</td>
<td>51.0 ± 20.0**</td>
</tr>
<tr>
<td>- treated hypertension, patients still</td>
<td></td>
</tr>
<tr>
<td>hypertensive (n = 14)</td>
<td></td>
</tr>
<tr>
<td>BP 168 ± 5/100 ± 5 mmHg</td>
<td>73.0 ± 27.0**</td>
</tr>
<tr>
<td>Patients with congestive failure heart (n = 14)</td>
<td>365 ± 133**</td>
</tr>
<tr>
<td>Patients with cirrhosis of the liver (n = 19)</td>
<td>13.5 ± 1.3*</td>
</tr>
<tr>
<td>Patients with pericardial tamponade (n = 4)</td>
<td></td>
</tr>
<tr>
<td>- before puncture</td>
<td>34.2 ± 24.7</td>
</tr>
<tr>
<td>- following puncture</td>
<td>297 ± 215</td>
</tr>
<tr>
<td>Water immersion (n = 15)</td>
<td></td>
</tr>
<tr>
<td>- before immersion</td>
<td>6.5 ± 0.8</td>
</tr>
<tr>
<td>- during immersion</td>
<td>12.0 ± 2.6†</td>
</tr>
<tr>
<td>- following immersion</td>
<td>6.1 ± 0.8</td>
</tr>
</tbody>
</table>

*P < 0.02; **P < 0.001 (Student's unpaired t-test); †P < 0.01 (Wilcoxon matched pairs test); BP, blood pressure.

Patients with congestive heart failure (NYHA II-IV) displayed a 40-fold increase in plasma irANF. The relationship between the level of circulating irANF and cardiac performance was examined in more detail. Figure 1 shows plasma irANF levels plotted against mean right atrial pressure, mean pulmonary capillary wedge pressure and the cardiac index. Elevated plasma levels of irANF in patients with heart failure corresponded to increased atrial pressure and pulmonary capillary wedge pressure and were inversely related to the cardiac index. Haemodynamic parameters for patients with heart failure before and during treatment with the angiotensin converting enzyme inhibitor are given in Table 2. In parallel with the improvement in haemodynamic parameters, a statistically significant (P < 0.02, Wilcoxon paired-sample test) fall in plasma irANF to 43.8% of
ANF in Plasma
Arendt et al.

Fig. 1. Plasma levels of immunoreactive atrial natriuretic factor (ANF) are plotted versus (a) cardiac index ($r = -0.73, \ P < 0.01$), (b) mean pulmonary capillary wedge (PC) pressure ($r = 0.73, \ P < 0.01$) and (c) mean right atrial (RA) pressure ($r = 0.72, \ P < 0.01$) in patients with congestive heart failure.

Table 2. Haemodynamics and plasma levels of atrial natriuretic factor (ANF) in patients with heart failure before and during enalapril therapy ($n = 14$).

<table>
<thead>
<tr>
<th></th>
<th>Before enalapril</th>
<th>During enalapril</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC (mmHg)</td>
<td>30 ± 3.9</td>
<td>15 ± 3.1</td>
</tr>
<tr>
<td>PAP (mmHg)</td>
<td>41 ± 4.1</td>
<td>29 ± 3.9</td>
</tr>
<tr>
<td>RA (mmHg)</td>
<td>12 ± 1.5</td>
<td>8 ± 1.3</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>104 ± 4.4</td>
<td>92 ± 3.6</td>
</tr>
<tr>
<td>CI (l/min per m2)</td>
<td>2.0 ± 0.1</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>80 ± 3.9</td>
<td>77 ± 3.1</td>
</tr>
<tr>
<td>ANF level (fmol/ml)</td>
<td>237 ± 133</td>
<td>103 ± 64</td>
</tr>
</tbody>
</table>

PC, mean pulmonary capillary wedge pressure; PAP, mean pulmonary arterial pressure; RA, mean right atrial pressure; MAP, mean arterial pressure; CI, cardiac index; HR, heart rate. Values are given as means ± s.e.m.

pretreatment values (from 237 ± 133 to 104 ± 64 fmol/ml) was seen in seven patients (remaining samples await analysis).

Plasma levels of irANF in the cirrhotic group were slightly but significantly higher than in the control group (Table 1). Immunoreactive-ANF concentrations in the five patients with tense ascites ranged from 7.4 to 16.5 fmol/ml and did not differ from those of the other cirrhotic patients. When spironolactone was discontinued in five of the patients with ascites, an average increase of 47% was observed in irANF concentrations.

The nature of the rise in ANF in hypertension was studied in more detail by characterization of the molecular-weight pattern of ANF in individual patients. By analysis of plasma extracts on high performance gel permeation chromatography (Fig. 2) and subsequent reverse-phase high performance liquid chromatography (Fig. 3), we had previously found that in normotensive individuals irANF consisted exclusively of authentic 28-amino-acid α-hANF, the C-terminal portion of the human precursor pre-pro-ANF [11]. Chromatographic analysis of the plasma extracts of a still limited number of hypertensive patients revealed that irANF comprised a peak co-eluting with synthetic α-hANF as in normotensive subjects (Fig. 4). In the hypertensive patient shown on Fig. 4, both total irANF and 3100-dalton ANF were increased compared with normotensive controls. In contrast to normotensive controls, Fig. 4 shows the presence of a higher molecular weight ANF precursor of c. 13 000 dalton.

Discussion

In conjunction with a novel extraction and purification procedure employing adsorbent resins, our radioimmunoassay allows reliable detection of plasma irANF levels as low as 0.5 fmol/ml [10]. Plasma levels of irANF in healthy control subjects ranged from 1 to 23 fmol/ml.

It has been hypothesized that failure to elaborate a natriuretic hormone adequately contributes to sodium retention and ascites formation in cirrhotic patients [12]. However, we found that irANF was slightly increased in cirrhotics in comparison with normotensive controls. Moreover, the increase in plasma irANF that we found after discontinuation of diuretic treatment suggests that
release of ANF is unimpaired in cirrhosis. It is possible, therefore, that despite the expanded extracellular volume in cirrhotics, splanchnic sequestration of fluids may prevent an increase in central volume and atrial pressure, and thus release may not be adequate to combat the volume overload.

In contrast, patients with congestive heart failure have excessively elevated plasma levels of irANF. Elevations in plasma irANF concentrations in the present study were correlated with increases in right atrial and pulmonary capillary wedge pressure and were inversely related to cardiac index. While an accelerated release of ANF may be the physiological response to combat the volume overload in congestive heart failure, even a 40-fold increase in plasma irANF appears insufficient to reverse the clinical condition and may not improve symptomatology. The problem may be caused by receptor down-regulation [13] or by conformational changes resulting in a decreased response of ANF target organs even in the presence of elevated plasma levels. On the other hand, defective enzymatic processing or increased metabolism may lead to high levels of irANF without corresponding physiological activity. In this context, it is interesting that, in a preliminary study, patients suffering from heart failure and with elevated plasma levels of irANF benefited haemodynamically from the acute administration of synthetic α-hANF as a therapeutic agent; however, no data on chronic application are currently available [14].

Although volume load and atrial pressure stimulate ANF release [8], patients with pericardial effusion and developing tamponade have comparably low irANF (Table 1) in spite of elevated atrial and ventricular pressures. In the present study, plasma concentrations of irANF rose markedly following pericardial decompression (Table 1). This indicates that increased pressure alone may not be the only stimulus for ANF release.

Severe heart failure has of late been treated by angiotensin converting enzyme inhibitors. The beneficial effect of these inhibitors in congestive heart failure may be explained by a reduction in angiotensin II levels, but they are also associated with a reduction in circulating catecholamines, a decrease in antidiuretic hormone production and a reduction in aldosterone levels [15]. These factors may lead to the clinical improvement of patients and secondarily to a reduction in ANF release.

The greatest variability in plasma irANF levels was seen among hypertensive patients and ranged from normal to excessively elevated. The pathophysiological role of ANF in pressure regulation, and in 'pressure-diuresis', remains to be elucidated. Preliminary chromatographic data do not rule out the possibility that plasma ANF circulates in different molecular forms [16] and that differences in synthesis and enzymatic processing or metabolism may be involved in the pathophysiology of hypertension.

Acknowledgements

Professor Albert Herz is thanked for his unceasing support and interest. Dr Mark Millan and Professor David Greenblatt are gratefully acknowledged for critical reading of the manuscript. Heide Roth is thanked for the careful preparation of the manuscript. Monika Schimak, Tobias Gross and Holger Schwenk are gratefully acknowledged for their assistance. Dr Daniel Liebisch is thanked for his collaboration.

References

10. Arendt RM, Stangl E, Zähringer J, Liebisch DC, Herz A:

