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DETERMINATION OF DOMAIN DISTRIBUTION BY ANALYSIS OF LEED BEAM PROFILES.
W. Moritz and D. Wolf

Institut f. Kristallographie, Universitdt Miinchen, Theresienstr. 41,
D-8000 Miinchen 2, W.-Germany

Abstract

Angular profiles of LEED beams from Au(110)-(1x2) have been measured
and analyzed with respect to shape, half-widths and energy dependence
of half-widths. .- Beam broadening is mainly caused by steps. The dis-
tribution of terrace widths has been determined, analyzing the shape of
the profiles which have been found to be well described by a Cauchy
function. This profile is caused by an exponential decrease of domain
size probabilities.

1. Introduction

Imperfections in the surface registry, such as statistically distribut-
ed domains or steps, cause broadening or splitting of the LEED beams.
The average number of defects can be obtained from the half-widths of
the angular profiles whereas the information about the distribution of
defects is contained in the shape of the profile. In a first approxi-
mation the angular profile - after deconvolution with the instrumental
function - is given by the Fourier transform of the correlation func-
tion. A Gaussian~like distribution of domain sizes causes satellite
reflections or splitting of the beams still at rather broad distribu-
tions [1]. As Henzler E2] has shown, such splitting disappears and a
continuously broadened beam with a Gaussian shape appears at asymmetric
distributions of domain sizes where still a preference for a certain
domain size exists but short domains are strongly suppressed. A dif-
ferent type of distribution is given by an exponential decrease of do-
main size probabilities where the shortest domain has the maximum
probability. Such a distribution leads to a Cauchy function in the
beam profiles and is preferably described by continuing probabilities
rather than domain sizes, that means, the distribution is ruled by the
probability that one step or domain boundary is followed by another
at the next possible lattice place [3]. The physical process produc=-
ing this distribution is different from that one which causes a Gaus-
sian shape of the profile.

2. Experimental Results

An Au(110) surface has been prepared by spark erosion and electroche-
mical polishing [4]. After ion bombardment and annealing the surface
shows a (1x2) super;tructure with slight diffuseness of the diffrac-
tion spots in [001] « Measurements were performed with a Faraday cup
withoan entrgnce slit of 0.45x4 mm corresponding to an aperture of
0.44 x 3.78°. Angular profiles of (Ok) reflections,_integer and
half order beams, have been measured parallel to [Oglj at energies
between 20 and 220 eV at angles of incident g 75 and 90, and of
the (hO) reflections in the perpendicular direction [IlO] at the same
energies and angles of incidence.
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The instrumental function has been determined in a way described b
Wang and Laga*ly [5] from the minima of the half-widths of the (00
beam in {110 , assuming a Gaussian function of the primary beam con-
voluted with the Faraday cup slit function.

o, 00 o, 01 00 10

Fig. 1 Half-widths

of different beams

as a function of the

. ; : scattering vector,

T T 7 T ! Tt 1 = measured in two lat-_
| ] B i . tice directions [001

24 P+ 1 : te and [T10].

- X : : The dashed lines in-
dicate the thecorcti-
: ' y 8 cal function.

11 1F 1< 1 _F 1 Reciprocal units of
B the bulk lattice are
used.

+
+
e

rec. units
s
-
-
P

M

rec. units

3. Analysis of Profiles

Deconvolution of narrow profiles directly by Fourier transform causes
numerical problems which are overcome by a fit procedure in which a
theoretical function is convoluted with the instrumental function and
compared with the measured profiles. In all cases best fit has been
achieved with a Cauchy function as theoretical profile.

Fig. 2 Angular bgam
o profiles jin [001]
ol and [110]". In both
108 ev directions the pro-

files are fairly
well represented by
Cauchy functions.
Solid line:

Cauchy function
dashed line:

Gauss function
full dots:

measurement
The thin dashed line
igs the instrumental
function

arb. units

T
0 0,1
rec. units rec. units
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It should be mentioned that the information about the correlation
function is contained in the profile wings, whereas the half-widths
can be determined nearly as well by use of a Gaussian function.

4, Discussion

The energy dependence of the peak widths indicates a stepped surface
structure. The integer order beams broaden alternately as can be seen
in Fig. 1, and the superstructure beams broaden and sharpen in the

same way but are shifted by a quarter of the period. This behaviour

is produced by steps which are displaced by a quarter of the super-
structure lattice spacing. The step height corresponds approximately
to the bulk value of 1.442 A. A more precise determination of the step
height seems difficult because of the uncertainties in the measure-
ments.

All observations are consistent with the missing row model distorted
by steps. Of course, profile analysis is not suited for structure de-
termination, butl any

other structure model

must permit the exist-

ence of terraces l—_1_—|’ 2'___'|

shifted parallel and

normal by a quarter 020,020~ ~0n ~020-02020-020
of a superlattice Q020202030202020C0202CRR0
spacing and a bulk O~0~¥0~0~0~0~-0~ 0~ 0~"0"0~"0~0
layer spacing, re- '
spectively, as shown

in Fig. 3. The exist- Fige 3 Two types of lattice faults in the
ence of antiphase missing row model. The arrow indicates an
boundaries produced antiphase boundary (see text for explana-
by an occurrence of tion). Terrace widths are related to the
the bulk lattice superstructure spacing.

spacing can be widely
excluded since for this model the integer order beams remain sharp and
the half order beams are diffuse, independent of energy.

A formerly discussed model [6] in which both types of lattice faults
have been assumed to occur with equal probability does not produce a
sufficient variation of the half-
widths of the superstructure beams.

We therefore conclude that mainly p
steps occur at the surface. The
existence of other types of faults
cannot be excluded completely since
the reflections do not get perfgct-
ly sharp at any energy in [001] .

f

Fig. 4 Distribution of terrace
widths. Unit is a superlattice 11
spacing.
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This effect could also be a consequence of multiple scattering pro-
cesses. The distribution of terrace widths follows from the "Cauchy"
shape of the profiles. The probability of finding a domain with a
single lattice spacing is determined from the maxima of the half-widths
shown in Fig. 1.

The average terrace widths are 3-4 superlattice spacings (25-35 X) in
[001] and 25-35 lattice spacings (70-100 &) in [T10].

The main uncertainty in the analysis of half-widths and profile shapes
is due to the errors made in the determination of the instrumental
function, A further limitation arises from the fact that contribu-

tions from thermal diffuse scattering to the profile cannot be re-
solved.
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