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screening model. We use this result and apply well-established techniques from static screen-

ing to obtain solutions for classes of sequential screening models for which standard sequen-

tial screening techniques are not applicable. Moreover, we identify the counterparts of well–
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1 Introduction

Recent years have witnessed an increased interest in dynamic adverse selection models in which

agents receive novel private information over time. One of the most fundamental dynamic ad-

verse selection models, the so-called sequential screening model, has been introduced by Courty

and Li (2000). In this model, a seller offers a single good for sale, but in contrast to a static

environment, the buyer initially has private information only about the distribution of his valua-

tion, and he fully learns his valuation only after contracting has taken place. Due to its analytical

tractability, the sequential screening model has become the workhorse model for analyzing var-

ious applied dynamic contracting problems such as ticket pricing, dynamic procurement, or the

sale and disclosure of information.1

Dynamic adverse selection models are not only practically relevant, they also raise interesting

conceptual questions about their relation to well-understood static adverse selection models. In

this paper, we demonstrate that for the sequential screening model this relation is actually surpris-

ingly tight. More specifically, we show that any sequential screening model can be equivalently

represented as a canonical textbook static screening model (as, e.g., described in Fudenberg and

Tirole 1991) so that any contract which is feasible (resp. optimal) in one problem is also feasible

(resp. optimal) in the other. Reversely, we identify a class of static screening models that each

correspond to an appropriate sequential screening model.

Sequential screening problems are best understood in so-called regular environments which

require that the (sequential) virtual trade surplus satisfies a certain monotonicity condition. In

contrast, little is known for non-regular environments. In the second step of our analysis, we show

that our equivalence result can be used to obtain solutions for classes of non-regular sequential

screening problems. More precisely, we identify conditions for which the sequential screening

problem is not regular, but the corresponding static screening problem can be solved with well–

known techniques from static screening.2

1For applications of sequential screening models, see Dai et al. (2006), Esö and Szentes (2007a, b), Hoffmann and

Inderst (2011), Nocke et al. (2011), Krähmer and Strausz (2011, 2015a, b), Inderst and Peitz (2012), Bergemann

and Wambach (2014), Deb and Said (2014), Liu and Lu (2015), Li and Shi (2015). For a textbook treatment, see

Krähmer and Strausz (2015c). For more general models of dynamic adverse selection, see Baron and Besanko (1984),

Battaglini (2005), and Pavan et al. (2014).
2While the solutions we obtain may involve bunching, we show how an approach developed in Nöldecke and

Samuelson (2007) can be applied in our setting, which does not require optimal control techniques to identify optimal

bunches.
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Moreover, our equivalence result clarifies the role of the ordering of the agent’s private in-

formation in sequential screening models. The most often used ordering in sequential screening

is that a buyer type is higher if he is more likely to obtain favorable subsequent information in

the sense of first order stochastic dominance. As it turns out, the equivalent condition in the

corresponding static screening model is precisely that the agent’s utility function satisfies the

single–crossing condition. Reversely, a sequential screening problem in which types are not or-

dered according to first order stochastic dominance corresponds to a static screening problem

without single–crossing.

Key in establishing the connection between the sequential and the static model is to explicitly

allow for the use of stochastic contracts in the static model. Intuitively, stochastic contracts enter

the picture, because in the sequential model the terms of trade depend on the buyer’s valuation

that realizes ex post and are, from an ex ante perspective, therefore stochastic. Our insight is

that the induced distribution of terms of trade can be replicated by a stochastic contract in the

static model so that a party’s expected utility in the sequential model, where the expectation is

taken with respect to the buyer’s future valuation, coincides with its expected utility in the static

model, where the expectation is taken with respect to the uncertainty generated by the stochastic

contract. By allowing for stochastic contracts, our equivalence result also sheds light on their

optimality in sequential screening environments.

It is worth mentioning that our result is not implied by a general principle, such as, for ex-

ample, Pontryagin’s maximum principle which states that a dynamic optimization problem can

be reduced to some static problem subject to some constraints. Rather, the insight of our paper is

more specific and, therefore, more surprising: the sequential screening model can be represented

as a very specific static model, namely exactly as the familiar standard principal agent adverse

selection model.

The paper is organized as follows. The next section introduces the two models and derives our

equivalence result. Section 3 applies the equivalence result to non-regular sequential screening

problems, and Section 4 concludes.
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2 Sequential versus Static Screening

2.1 The sequential screening problem

This subsection considers the sequential screening model of Courty and Li (2000). There is a

buyer (the agent, he) and a seller (the principal, she), who has a single unit of a good for sale.

The buyer’s valuation of the good is x ∈ [0, 1], and the seller’s opportunity costs are c ≥ 0. The

terms of trade specify the probability q ∈ [0, 1]with which the good is exchanged and an expected

payment t ∈ R from the buyer to the seller. The parties are risk neutral and have quasi-linear

utility functions. That is, the seller’s profit equals payments minus her expected opportunity costs,

t − cq, and the buyer’s utility equals his expected valuation minus payments, xq− t . Each party’s

reservation utility is normalized to 0.

There are three periods. At the contracting stage in period 1, no party knows the buyer’s

true valuation, but the buyer privately knows that his valuation x is distributed according to the

distribution function G(x |θ ) on the support [0, 1] with density g(x |θ ). While the buyer’s ex ante

type θ is his private information, it is commonly known that θ is drawn from the distribution F(θ )

with support [0, 1] and density f (θ ). In period 2, after the buyer has accepted the contract, the

buyer privately observes his true valuation x . We refer to x as the buyer’s ex post type. Finally,

in period 3, the contract is implemented. We allow the seller’s opportunity costs c = c(θ , x) to

depend on the buyer’s types.3

The seller’s problem is to design a contract that maximizes her expected profits. By the reve-

lation principle for sequential games (e.g., Myerson 1986), the optimal contract can be found in

the class of direct and incentive compatible contracts which, on the equilibrium path, induce the

buyer to report his type truthfully. Formally, a direct contract

γd ≡ {(qd(θ̂ , x̂), t d(θ̂ , x̂))|(θ̂ , x̂) ∈ [0, 1]2} (1)

requires the buyer to report an ex ante type θ in period 1, and an ex post type x in period 2. A

contract commits the seller to a selling schedule qd(θ̂ , x̂) and a transfer schedule t d(θ̂ , x̂).

If the buyer’s true ex post type is x and his period 1 report was θ̂ , then his utility from reporting

3Our equivalence result in Propositions 1 and 2 below goes through for discrete (ex ante and/or ex post) type

spaces as well. For tractability reasons, the application in Section 3, where we illustrate the usefulness of our equiv-

alence result, is developed for continuous type spaces.
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x̂ in period 2 is

ũ( x̂ |θ̂ , x)≡ xqd(θ̂ , x̂)− t d(θ̂ , x̂). (2)

We denote the buyer’s period 2 utility from truth–telling by

u(θ , x)≡ ũ(x |θ , x). (3)

The contract is incentive compatible in period 2 if it gives the buyer an incentive to announce his

ex post type truthfully:

u(θ , x)≥ ũ( x̂ |θ , x) ∀ x̂ ,θ , x . (4)

If the contract is incentive compatible in period 2, the buyer announces his ex post type truthfully

no matter what his report in the first period.4 Hence, if the buyer’s true ex ante type is θ , then

his period 1 utility from reporting θ̂ is

Ũ d(θ̂ |θ ) ≡

∫ 1

0

u(θ̂ , x)dG(x |θ ). (5)

We denote the buyer’s period 1 utility from truth–telling by

U d(θ ) ≡ Ũ d(θ |θ ). (6)

The contract is incentive compatible in period 1 if it induces the buyer to announce his ex ante type

truthfully:

U d(θ ) ≥ Ũ d(θ̂ |θ ) ∀θ̂ ,θ . (7)

Finally, an incentive compatible contract is ex ante individually rational if it yields the buyer at

least his outside option of zero:

U d(θ ) ≥ 0 ∀θ . (8)

We say a contract is feasible if it is incentive compatible in both periods and ex ante individually

rational.

The following lemma is a standard result in monopolistic screening, and we therefore omit

the proof.

4Because the buyer’s period 2 utility is independent of his ex ante type, a contract which is incentive compatible

in period 2 automatically induces truth–telling in period 2 also off the equilibrium path, that is, if the buyer has

misreported his ex ante type in period 1.
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Lemma 1 A contract γd satisfies the period 2 incentive compatibility constraints (4) if and only if (i)

u(θ , x) is absolutely continuous in x; (ii) qd(θ , x) is increasing in x; and (iii) ux(θ , x) = qd(θ , x)

for almost all x.5

Since u is absolutely continuous in x , we may use integration by parts to rewrite the agent’s

period 1 utility as

Ũ d(θ̂ |θ ) =

∫ 1

0

u(θ̂ , x)dG(x |θ ) =

∫ 1

0

qd(θ̂ , x)[1− G(x |θ )]d x + u(θ̂ , 0). (9)

The seller’s payoff from a feasible contract is the difference between aggregate surplus and

the buyer’s utility. That is, if the buyer’s ex ante type is θ , the seller’s conditional expected payoff,

conditional on θ , is

W d(θ ) =

∫ 1

0

[(x − c(θ , x))qd(θ , x)− u(θ , x)]dG(x |θ ). (10)

Using (9), we can rewrite the seller’s payoff as

W d(θ ) =

∫ 1

0

�

x − c(θ , x)−
1− G(x |θ )

g(x |θ )

�

qd(θ , x)dG(x |θ )− u(θ , 0). (11)

To present our equivalence result with maximum clarity, we will, without loss of generality, impose

the conditions qd(θ , 0) = 0 and qd(θ , 1) = 1.6 The seller’s problem is therefore to find a selling

schedule qd and utility levels u(·, 0) for the buyer’s lowest ex post type that solves the following

maximization problem:

P d : max
qd(·,·),u(·,0)

∫ 1

0

W d(θ )dF(θ ) s.t.

qd(θ , x) increasing in x , qd(θ , 0) = 0, qd(θ , 1) = 1, (12)

U d(θ )≥ Ũ d(θ̂ |θ ),

U d(θ )≥ 0.

5In what follows, subindices denote partial derivatives.
6These restrictions are without loss of generality, because i) if some schedule qd is feasible, then it remains feasible

also when we adapt it to satisfy these two endpoint restrictions and ii) the adapted schedule yields identical payoffs

since changing qd at a single point does not affect integrals over [0,1]. Hence, if the original schedule qd is optimal,

so is the adapted schedule.
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2.2 A general static screening problem

We now specify a general static screening problem that is based on the formulation in Fudenberg

and Tirole (1991), but explicitly allows for stochastic contracts. In particular, we consider a

principal and a privately informed agent who can trade some quantity x ∈ [0, 1]. An allocation

specifies a, possibly stochastic, quantity x to be traded and a transfer t ∈ R from the agent to

the principal. Before the principal offers a contract, the agent privately learns his type θ ∈ [0, 1],

which is drawn from a distribution F(θ ) with support [0, 1] and density f (θ ). Given a type θ

and an allocation (x , t), the principal’s utility is S(θ , x) + t , and the agent’s utility is V (θ , x)− t .

Hence, as in Fudenberg and Tirole (1991), our specification allows for arbitrary quasi-linear utility

functions, including the interdependent value case where the principal’s utility depends directly

on the agent’s type.

Applying the revelation principle, the principal offers the agent a direct contract

γs = {(qs(θ̂ , x), t s(θ̂))|θ̂ ∈ [0, 1]}. (13)

We explicitly allow the principal to propose a contract with a stochastic quantity schedule. Hence,

qs(θ , x) represents a cumulative distribution function (cdf) with the interpretation that, if the

agent reportsθ , then the probability that the quantity traded is at most x is qs(θ , x). Consequently,

qs(θ , x) is positive and increasing in x . Moreover, without loss of generality, we impose the

restrictions qs(θ , 0) = 0 and qs(θ , 1) = 1.7 The expected utility from a contract γs for agent type

θ who reports θ̂ therefore corresponds to the (Riemann–Stieltjes) integral with respect to the

function qs(θ̂ , ·):

Ũ s(θ̂ |θ ) ≡

∫ 1

0

V (θ , x)dqs(θ̂ , x)− t s(θ̂ ). (14)

We denote agent type θ ’s expected utility from truth–telling by

U s(θ ) ≡ Ũ s(θ |θ ). (15)

7Note that in case qs has a mass point at x = 0, this departs from the convention that a cdf is right–continuous.

Indeed, since x ∈ [0,1] by assumption, right-continuity implies that qs(θ , 1) = 1 and qs(θ , 0) = 0 if qs has no mass

point in x = 0. If qs does have a mass point in x = 0, then right-continuity implies qs(θ , 0) > 0. In this case, however,

since changing qs in one single point does not affect integrals with respect to qs(θ , ·) over [0,1], we can re-define

qs so that qs(θ , 0) = 0. This means that qs so re–defined is not right–continuous in x = 0 anymore. (Alternatively,

instead of restricting qs(θ , ·) to the unit interval, we could define the cdf on (−∞,∞). In what follows, we would

then integrate over (−∞,∞) instead of over [0,1].)
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A contract is feasible if it is incentive compatible, that is,

U s(θ ) ≥ Ũ s(θ̂ |θ ) ∀θ̂ ,θ (16)

and individually rational, that is,

U s(θ ) ≥ 0 ∀θ . (17)

The principal’s expected utility from a feasible contract is

W s(θ ) ≡

∫ 1

0

S(θ , x)dqs(θ , x) + t s(θ ). (18)

Consequently, an optimal contract (qs, t s) in the static principal agent problem solves

P s : max
qs(·,·),ts(·)

∫ 1

0

W s(θ )dF(θ ) s.t.

qs(θ , x) increasing in x , qs(θ , 0) = 0, qs(θ , 1) = 1, (19)

U s(θ )≥ Ũ s(θ̂ |θ ),

U s(θ )≥ 0,

where the first constraint expresses the fact that qs(θ , ·) is a cdf on [0, 1].

2.3 Equivalence result

We now formalize the sense in which both models are equivalent. We first argue that any se-

quential screening model with primitives G and c corresponds to a static screening problem with

appropriately defined primitives V and S. Before stating this result, note that (12) and (19) imply

that any selling schedule qd in the sequential model corresponds to a stochastic trading schedule

in the static model. Therefore, for t s(·) = −u(·, 0), the choice variables in the two problems P d

and P s are the same. As we now show, there are functions V and S so that also the parties’

payoffs are the same.

Proposition 1 Suppose (qd , u(·, 0)) is a solution toP d . Then (qs, t s(·)) = (qd ,−u(·, 0)) is a solution

to P s, where

V (θ , x) =

∫ 1

x

1− G(z|θ )dz, (20)

S(θ , x) =

∫ 1

x

(z − c(θ , z))g(z|θ )− [1− G(z|θ )]dz. (21)
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Proof of Proposition 1: We show that for t s(θ ) = −u(·, 0), and for V and S defined in (20) and

(21):

Ũ s(θ̂ |θ ) = Ũ d(θ̂ |θ ), and W s(θ ) =W d(θ ). (22)

This implies that P s and P d are equivalent and thus the solutions coincide.

To see (22), observe that V (θ , x) is a decreasing function in x with dV = −(1− G(x |θ ))d x .

Hence, we can write (9) as a Riemann–Stieltjes integral with respect to V :

Ũ d(θ̂ |θ ) = −

∫ 1

0

qd(θ̂ , x)dV (θ , x) + u(θ̂ , 0). (23)

Applying integration by parts for Riemann–Stieltjes integrals, we obtain

Ũ d(θ̂ |θ ) = −qd(θ̂ , x)V (θ , x)

�

�

�

1

0
+

∫ 1

0

V (θ , x)dqd(θ̂ , x)+u(θ̂ , 0) (24)

=

∫ 1

0

V (θ , x)dqd(θ̂ , x) + u(θ̂ , 0) (25)

=

∫ 1

0

V (θ , x)dqs(θ̂ , x)− t s(θ̂) (26)

= Ũ s(θ̂ |θ ), (27)

where in the second line, we have used that V (θ , 1) = 0 and qd(θ̂ , 0) = 0, and in the third line

we have used the definitions of qs(θ̂ , x) and t s(θ̂ ) in the statement of the proposition.

The proof that W s(θ ) =W d(θ ) is analogous. Q.E.D.

The main argument behind Proposition 1 can be most easily seen when qd is a step function

as illustrated in Figure 1. In this case, the agent’s expected utility (9) in the sequential model for

given (θ , θ̂ ) rewrites as

Ũ d(θ̂ |θ ) = 0 ·

∫ x1

0

(1− G(x |θ ))d x + q̃·

∫ x2

x1

(1− G(x |θ ))d x + (28)

+1·

∫ 1

x2

(1− G(x |θ )) d x + u(θ̂ , 0). (29)

The three integrals are illustrated in the left panel of Figure 1. Instead of integrating along d x ,

we can as well integrate along dq, as illustrated in the right panel of Figure 1. Then the previous

expression can be written as

0+ (q̃− 0)·

∫ 1

x1

(1− G(x |θ )) d x + (1− q̃)·

∫ 1

x2

(1− G(x |θ )) d x + u(θ̂ , 0). (30)
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qd

q̃
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qd

q̃

1
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Figure 1: Expected utility in the sequential (left) and static (right) model.

But, with V as defined in (20) and t s(θ̂ ) = −u(θ̂ , 0), this equals the agent’s expected utility

Ũ s(θ̂ |θ ) as defined in (14) for the static model. The same argument works to show that W d(θ ) =

W s(θ ), implying that P d and P s are identical.

Next, we state a reverse of Proposition 1 which specifies conditions under which a static screen-

ing problem with primitives V and S corresponds to a sequential screening problem with primi-

tives G and c. In principle, G and c can be obtained by simply inverting the equations (20) and

(21). However, since G needs to be a cdf, additional conditions on V are required to ensure this.8

Proposition 2 Suppose (qs, t s(·)) is a solution to P s. If

Vx(θ , 0) = −1; Vx(θ , 1) = 0; Vx x ≥ 0, (31)

then (qd , u(·, 0)) = (qs,−t s(·)) is a solution to P d , where

G(x |θ ) = Vx(θ , x) + 1, (32)

c(θ , x) = x −
Vx(θ , x)

Vx x(θ , x)
+

Sx(θ , x)

Vx x(θ , x)
. (33)

Proof of Proposition 2: Observe first that G(x |θ ) as defined in (32) is a cumulative distribution

function by the properties in (31). Next, the same argument as in the proof of Proposition 1 imply

that the solutions coincide if the equations (20) and (21) hold, which follow from (32) and (33)

by re–arranging terms and integration. Q.E.D.

8Without imposing these conditions on V , we still obtain the insight that any static screening problem that allows

for stochastic selling schedules q corresponds to a linear optimization problem (linear with respect to q) of the type

P d with linear constraints, where G is not necessarily a cdf. Such problems are, e.g., considered in Samuelson

(1984).
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Remark 1 While our transformation of the sequential screening model yields a static screening

problem that is fully consistent with a stochastic formulation of Fudenberg and Tirole (1991),

its economic interpretation is somewhat non-standard. The agent’s utility function (20) has the

property that

V (θ , 0) =

∫ 1

0

1− G(z|θ )dz > 0, and Vx(θ , x) = G(x |θ )− 1≤ 0. (34)

In other words, the agent derives positive utility when the traded quantity is x = 0, and his

utility is decreasing in x . Thus, in contrast to the original sequential screening model, where x

represents the agent’s valuation as a buyer and his utility is naturally increasing in x , in the static

counterpart, the agent is best interpreted as a producer who has costs V (θ , 0)−V (θ , x) to produce

the quantity x and obtains a positive utility V (θ , 0) from being in the relation per se (e.g., in the

form of “prestige”).

Turning to the principal, we first observe from (21) that the principal’s utility S(θ , x) depends

directly on the agent’s type θ , since it includes the distribution G(·|θ ) explicitly. Hence, even if

the original sequential screening problem is one of private values where c is independent of the

agent’s type θ , its corresponding static version displays interdependent values.

Moreover, for the typical case that the principal’s marginal production costs c in the sequential

model are type–independent (i.e., c(θ , x) = c), the principal’s marginal utility in the correspond-

ing static screening model is

Sx(θ , x) = −{(x − c)g(x |θ )− [1− G(x |θ )]}. (35)

If the hazard rate (1 − G(x |θ ))/g(x |θ ) is decreasing in x , this means that the principal’s util-

ity function S(θ , x) is hump-shaped: it is increasing in x on [0, x̄(θ )] and decreasing in x on

( x̄(θ ), 1], where x̄(θ ) ∈ (0, 1) is the intersection point of x − c with the hazard rate. While some-

what unusual for a static screening problem, this can be interpreted to mean that the principal

has horizontally differentiated tastes, and in state θ , his most preferred “variety” is x̄(θ ).

3 Application of the equivalence result

In this section, we apply our equivalence result and show how solution methods from the theory

of static screening allow us to solve sequential screening problems to which current approaches

in the literature are not directly applicable.
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A standard technique in static screening is the so-called local approach which solves a relaxed

problem where only “local” incentive constraints are imposed. Under appropriate conditions, the

solution to the relaxed problem can then be shown to be a solution of the original problem.

More precisely, the local approach simplifies the static screening problem P s by (a) replacing

the global incentive constraint U s(θ ) ≥ Ũ s(θ̂ |θ ) for all θ , θ̂ by the local incentive constraints

∂ U s(θ |θ )/∂ θ̂ = 0, which, by an envelope argument pins down the agent’s marginal utility as

d

dθ
U s(θ ) =

∫ 1

0

Vθ (θ , x) dqs(θ , x), (36)

and (b) by imposing the participation constraints U s(θ ) ≥ 0 for all θ only for the extreme type

θ = 0.

After inserting the incentive and the participation constraints in the principal’s objective, we

obtain the problem

R s : max
qs(·,·)∈[0,1]

∫ 1

0

∫ 1

0

Z(θ , x) dqs(θ , x)dF(θ ) s.t . (37)

qs(θ , x) increasing in x , qs(θ , 0) = 0, qs(θ , 1) = 1, (38)

where Z(θ , x) = S(θ , x)+V (θ , x)− (1− F(θ ))/ f (θ ) ·Vθ (θ , x) is the (static) virtual surplus. The

solution to R s is given by the degenerate distribution which places all mass on the point-wise

maximizer of Z:

x s
R
(θ ) = arg max

x∈[0,1]
Z(θ , x). (39)

We may write the associated distribution function as

qs
R
(θ , x) = 1[x s

R
(θ ),1](x), (40)

where 1A(x) expresses the indicator function, which equals 1 if x ∈ A and 0 otherwise.

Following this approach and explicitly allowing for stochastic contracts, Strausz (2006) iden-

tifies sufficient conditions for qs
R
(θ , x) to be a solution to the original problem P s.9

Lemma 2 (Strausz 2006) The schedule qs
R
(θ , x) is a solution to P s if the following conditions are

jointly met:

9Strausz (2006) proves Lemma 2 in a model with discrete types, but the extension to continuous types is straight-

forward.
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(i) Vθ x(θ , x) ≥ 0 for all (θ , x);

(ii) Vθ (θ , x)≥ 0 for all (θ , x);

(iii) x s
R
(θ ) is decreasing in θ .

Condition (i) is the familiar single-crossing condition.10 It is well-known that if x s
R
(θ ) satisfies

(iii), the single-crossing condition ensures that the local incentive compatibility constraints imply

the global incentive compatibility constraints that were neglected in the relaxed problem. Con-

dition (ii) ensures that the agent’s utility U s is increasing in his type θ so that the participation

constraint for the “least efficient” type θ = 0 implies the participation constraints for all other

types that were neglected in the relaxed problem.

The next lemma shows that for the static screening problem to satisfy conditions (i) and (ii),

the underlying sequential screening problem must have the property that the family of conditional

distributions {G(x | θ ) | θ ∈ [0, 1]} is ranked in the sense of first order stochastic dominance

(FOSD).

Lemma 3 Let V be given by (20).

(i) Vθ x(θ , x) ≥ 0 for all (θ , x) if and only if G(x | θ ) is decreasing in θ for all x.

(ii) Vθ (θ , x)≥ 0 for all (θ , x) if G(x | θ ) is decreasing in θ for all x.

The proof of the lemma follows from a straightforward calculation.11,12

To relate condition (iii) in Lemma 2 to conditions in the underlying sequential screening

model, observe that by (20) and (21), the static virtual surplus Z induced by the sequential

screening problem is

Z(θ , x) =

∫ 1

x

(z − c(θ , z))g(z|θ )dz +
1− F(θ )

f (θ )

∫ 1

x

Gθ (z|θ )dz. (41)

Therefore,

Zx(θ , x) = −φ(θ , x)g(x |θ ), (42)

where

φ(θ , x) = x − c(θ , x) +
1− F(θ )

f (θ )

Gθ (x |θ )

g(x |θ )
. (43)

10This condition is also referred to as “sorting”, “constant sign”, or “Spence-Mirrlees” condition.

11Note that Vθ (θ , x) = −
∫ 1

x
Gθ (z|θ)dz, and Vθ x (θ , x) = Gθ (x |θ).

12We discuss an economic interpretation of the Lemma in more detail at the end of this section.

13



x

θ

1

1

φ(θ , x) = 0;xs
R(θ )

q = 1

q = 0

x

θ

1

1

q = 1

q = 0

θ̄

xs
R(θ )

φg = 0

x

θ

1

1

q = 1

q = 0

x−
R
(θ )

xs
R(θ )

θ
R
(x
)

x̄

Figure 2: Regular case (left), φg increasing in θ (center), resp. in x (left)

The function φ features prominently in the sequential screening literature because it corresponds

to the sequential virtual surplus from trade. Courty and Li (2000) refer to φ as regular if it is

increasing in both arguments and they show that together with the condition that {G(x | θ )|θ ∈

[0, 1]} is FOSD-ranked, regularity of φ ensures that the trading schedule qs
R

is a solution to the

sequential screening problem P d .

Our equivalence result reveals the significance of the regularity of φ from the perspective of

static screening: Because φ is increasing in x , (42) implies that x s
R
(θ ) is the unique solution to

the first–order condition φ(θ , x s
R
(θ )) = 0, or is a corner solution. Because φ is increasing in θ ,

x s
R
(θ ) is decreasing in θ . By Lemma 2, qs

R
(θ ) is therefore a solution to P s, and therefore also to

P d by Proposition 1. We illustrate the regular case in the left panel of Figure 2.

Little is known about optimal sequential screening contracts if φ is not regular.13 Our next

two propositions provide new results by treating cases where φ is not necessarily regular. Rather

than monotonicity of φ in both arguments, we require monotonicity of φg in one argument.14,15

13See also Battaglini and Lamba (2015), who argue that in dynamic mechanism design regularity typically fails

when types are persistent.
14Because φ(θ , x s

R
(θ)) = 0 if and only if φ(θ , x s

R
(θ))g(x s

R
(θ)|θ) = 0, the argument in the previous paragraph goes

through unchanged if the condition that φ is increasing in both arguments is replaced by the condition that φg is

increasing in both arguments. Note however that φ being monotone in both arguments does not imply that φg is

monotone in one argument.
15It is easy to see that our subsequent arguments apply to an even larger class of models–those for which φ crosses

zero at most once from below both in direction x and in direction θ . In particular, Proposition 3 (resp. Proposition

4) also hold for the weaker requirement that φg crosses zero at most once from below in direction θ (resp. x).
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Proposition 3 Let {G(x | θ )|θ ∈ [0, 1]} be FOSD-ranked, and let φ(θ , x)g(x | θ ) be increasing in

θ for all x. Then x s
R
(θ ) is a solution to P s.

The result is an immediate consequence of Theorem 4 in Milgrom and Shannon (1994) which

says that if Zθ x ≤ 0, then x s
R
(θ ) is decreasing so that Lemma 2 applies. But by (42), the condition

that Zθ x ≤ 0 is the same as the condition that φg be increasing in θ . A “typical” shape of φg is

illustrated in the center panel of Figure 2, where the 0–level set of φg (resp. of φ) is inverted

S-shaped, and xR displays a downward jump.

Our next proposition considers the case that φg is increasing in x . As illustrated in the right

panel of Figure 2, x s
R
(θ )might then not be decreasing in θ , and hence Lemma 2 is not applicable.

If x s
R
(θ ) is not decreasing in θ , little is known about how a solution to P s in the class of all

stochastic trading schedules qs(θ , x) can be obtained. Instead, the literature on static screening

restricts attention to finding deterministic solutions toP s. In particular, Nöldecke and Samuelson

(2007) provide a tractable procedure to find deterministic solutions to static screening problems

where the solution to the relaxed problems violates monotonicity. By following their approach,

we now show how our equivalence result can be used to identify optimal sequential screening

contracts in the class of deterministic sequential screening contracts.16

A schedule qs(θ , x) is deterministic if it corresponds to a degenerate distribution function

which places mass 1 on a distinct quantity x s(θ ). Thus, we can identify a deterministic schedule

qs(θ , x) with the schedule x s(θ ) of quantities it delivers with probability 1. Within the class of

deterministic contracts, an optimal static schedule solves the problem

P̃ s : max
x s(·)

∫ 1

0

Z(θ , x s(θ )) dF(θ ) s.t . x s(θ ) is decreasing in θ . (44)

Following Nöldecke and Samuelson (2007), let

Z−(x ,θ ) =

∫ θ

0

Zx(τ, x) f (τ) dτ, and θR(x) = argmax
θ

Z−(x ,θ ). (45)

For a function θ (x) which is (not necessarily strictly) decreasing in x , recall the definition of the

generalized inverse:

x−(θ ) = inf{x ∈ [0, 1] | θ (x)≥ θ}. (46)

With this definition, we can express the following result.

16For other techniques, see Guesenerie and Laffont (1984), Jullien (2000), and Toikka (2011).
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Proposition 4 Let {G(x | θ )|θ ∈ [0, 1]} be FOSD-ranked, and let φ(θ , x)g(x | θ ) be strictly in-

creasing in x for all θ . Then θR(x) is decreasing in x, and its generalized inverse denoted by x−
R
(θ )

is a solution to P̃ s.

To see the intuition, note that by (42), φg being strictly increasing in x means that Z is strictly

concave in x for all θ . This implies that the point-wise maximizer xR of Z is the unique solution

to the first–order condition Zx(θ , xR(θ )) = φ(θ , xR(θ )) = 0. However, since xR does not need

to be decreasing in θ , it is generally no solution to P̃ s. In this case, a solution to P̃ s displays

“bunching”, i.e., there are intervals of types θ within which each type trades the same quantity.

For the case that Z is strictly concave in x for all θ , Nöldecke and Samuelson (2007) present

a procedure by which the solution can be obtained as the result of an unconstrained optimization

problem.17 The idea is to invert the problem, and instead of looking for an optimal quantity for

each type, to look for an optimal type for each quantity. More formally, the inverted problem is

P̃ s− : max
θ (·)

∫ 1

0

Z−(x ,θ (x)) d x s.t . θ (x) is decreasing in x , (47)

and θ (·) is a solution to P̃ s− if and only if its generalized inverse is a solution to P̃ s.18 As pointed

out by Nöldecke and Samuelson (2007), the point-wise maximizer θR(x) of the “inverse virtual

surplus” Z− is decreasing in x if Z is strictly concave in x .19 Because Z is strictly concave in x if

and only if φg is strictly increasing in x by (42), it follows that θR(x) is a solution to P̃ s− , and its

generalized inverse of x−
R
(θ ) is a solution to P̃ s. For an illustration, see the right panel in Figure

2.

We conclude this section with remarks that provide additional insights of our analysis.

Remark 2 Under the conditions of Proposition 3 as well as in the regular case, an optimal contract

is deterministic. This is a helpful insight because in general, it is difficult to find an optimal

17The strict concavity of Z corresponds to Assumption 2 in Nöldecke and Samuelson (2007). Their other Assump-

tion 1—that the V is quasi–convex in θ for all x—is trivially satisfied in our setting since Vθ ≥ 0.
18To see this, note that for a decreasing function x(θ) with generalized inverse θ−(x), Fubini’s theorem implies:

∫ 1

0

Z(θ , x(θ)) f (θ) dθ =

∫ 1

0

[

∫ x(θ )

0

Zx (θ , x)d x + Z(θ , 0)] f (θ) dθ

=

∫ 1

0

∫ θ−(x)

0

Zx (θ , x) f (θ) dθd x + C =

∫ 1

0

Z−(x ,θ−(x))d x + C ,

where C =
∫ 1

0
Z(θ , 0) f (θ) dθ . Hence, x(θ) is a solution to P̃ s if and only if θ−(x) is a solution to P̃ s− .

19Indeed, by Theorem 4 in Milgrom and Shannon (1994), θR is decreasing if Z−
xθ
≤ 0. But observe that Z−

xθ
= Zx x f .
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sequential screening contract in the class of stochastic contracts (as, e.g., in the case of Proposition

4). The difficulty stems from the fact that the set of incentive compatible sequential screening

contracts cannot be easily characterized in terms of monotonicity constraints on the schedule

qd(θ , x). In particular, the condition that the schedule qd(θ , x) is increasing not only in x but also

in θ is not necessary for incentive compatibility. Given our equivalence result, it is not surprising

that identical complications arise in static screening models, where, similarly, monotonicity of the

stochastic schedule qs(θ , x) in θ is not necessary for incentive compatibility. Indeed, the potential

benefit of using stochastic contracts, both in sequential and in static screening, lies precisely in

the leeway they provide to relax monotonicity with respect to θ .

Remark 3 Lemma 3 clarifies that the FOSD-ranking of the agent’s beliefs in sequential screening

simply corresponds to the single-crossing condition from static screening. It therefore guaran-

tees that local incentive compatibility implies global incentive compatibility. Reversely, a sequen-

tial screening problem without FOSD-ranking corresponds to a static screening problem with-

out global single-crossing, causing potential problems with global incentive compatibility. One

intuitive approach to address these problems is to consider subdomains of the space of types

and allocations on which the single-crossing condition holds. (See Araujo and Moreira (2010),

Schottmüller (2015) for treatments of adverse selection problems without single-crossing.) In-

deed, applying steps in this spirit, Courty and Li (2000) characterize optimal solutions also for

sequential screening problems in which the conditional distributions are not FOSD-ranked but

are “rotation-ordered” (see Johnson and Myatt, 2006). The rotation-order ensures that the allo-

cations of an optimal solution fall in a subdomain where Vθ x is of constant sign and, hence, the

single-crossing condition holds locally.

Remark 4 It is instructive to highlight some economic efficiency features of an optimal contract.

These features are best illustrated for the case of type–independent costs: c(θ , x) = c. Under

Proposition 3, the point-wise maximizer of the virtual surplus x s
R
(θ ) is a solution toP s. It follows

from (41) that at the “most efficient” type θ = 1, we have that x s
R
(1) = c and, moreover, that

x s
R
(θ ) > c for all θ < 1. Likewise, under Proposition 4, the generalized inverse x−

R
(θ ) of the

point-wise maximizer, θR(x), of the inverted virtual surplus is a solution to P̃ s. It follows from

(45) that θR(c) = 1, so that we have x s
R
(1) = c and, moreover, θR(x)< 1 for all x > c. Therefore,

the definition of the generalized inverse implies that x−
R
(1) = c and, moreover, x−

R
(θ ) > c for all

θ < 1. These observations have two implications. First, under an optimal contract, trade occurs

at the most efficient ex ante type if and only if the ex post valuations x is larger than costs c, that
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is, there is no distortion at the top. Second, except at the most efficient type θ = 1, trade does not

take place for some ex post valuations x larger than costs c, that is, an optimal contract displays

downward distortions. Hence, also under our alternative conditions, the key efficiency properties

of optimal sequential screening contracts are qualitatively the same as in the regular case.

4 Conclusion

We establish a correspondence between sequential screening and static screening models, and

show how our equivalence result allows us to solve classes of sequential screening models for

which standard sequential screening techniques are not applicable. We also illuminate a number

of salient features of the sequential model in the light of their well–understood counterparts in

the static model.
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