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Abstract

Evidence suggests that people evaluate outcomes relative to expectations.

I analyze this expectation-based loss aversion [Kőszegi and Rabin (2006, 2009)]

in the context of dynamic and static auctions, where the reference point is

given by the (endogenous) equilibrium outcome. If agents update their ref-

erence point during the auction, the arrival of information crucially affects

equilibrium behavior. Consequently, I show that—even with independent pri-

vate values—the Vickrey auction yields strictly higher revenue than the En-

glish auction, violating the well known revenue equivalence. Thus, dynamic

loss aversion offers a novel explanation for empirically observed differences

between these auction formats.
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Weizsäcker for helpful comments, as well as participants at the 11th World Congress of the Econo-
metric Society (Montreal), the 2015 EEA conference (Mannheim), the Applied Theory Workshop
at Toulouse School of Economics, the 2016 EARIE conference (Lisbon), the CRC conference in
Berlin, the ZEW Research Seminar, and the 2017 Annual Conference of the Verein für Socialpoli-
tik (Vienna). I gratefully acknowledge financial support of the Deutsche Forschungsgemeinschaft
through CRC TRR 190 and RTG 1659.

†Humboldt-Universität zu Berlin, Institute for Economic Theory 1, Spandauer Str. 1, D-10178
Berlin (Germany), jonas.wangenheim@fu-berlin.de

1



1 Introduction

Auctions are a universal tool to organize sales in markets. At the core of auction

theory stand the famous revenue equivalence results. In particular, Vickrey (1961)

notes the strategic equivalence between the dynamic English and the static Vick-

rey auction: if values are independent and private, there is no effect of sequential

information and it is a weakly dominant strategy to bid (up to) one’s private val-

uation in both formats.1 These powerful theoretical predictions, however, stand in

contrast to the experimental literature, which mostly finds lower revenues for the

English auction.2 I identify endogenous preferences in form of expectation-based

loss aversion as a possible explanation for this phenomenon.

In my model, bidders evaluate any auction outcome relative to their reference

point, formed by rational expectations. Consequently, neither in the second-price

(Vickrey), nor in the ascending-clock (English) auction it is optimal any more to

bid (up to) the own intrinsic valuation. In particular, loss aversion leads to strong

overbidding for high types in the Vickrey auction. Moreover, if agents update their

reference point with respect to new information, opponents’ behavior influences

bidders’ reference point, and thus their endogenous preferences. Hence, even if

valuations for the object are entirely private, sequential information affects the bid-

ding behavior. Consequently, the English and the Vickrey auction are no longer

strategically equivalent. I demonstrate that—consistent with most of the exper-

imental evidence—the English auction yields lower revenue. I establish that this

effect is driven by a time-inconsistency problem, which dynamic expectation-based

loss averse bidders face when forming their bidding strategy.

Following the concept of loss aversion by Kőszegi and Rabin (2006), I assume

bidders experience—in addition to classical utility —gain-loss utility from compar-

ing the outcome to their expectations. Further, I assume that bidders assign gains

and losses separately to money and good (narrow bracketers). For the ease of ex-

position, I consider mostly bidders who are only loss averse with respect to the

object.3 If they win the auction, they experience a feeling of elation, increasingly

1Myerson (1981) extends the results to show that all main auction formats give rise to the same
expected revenue.

2For a summary of the experimental literature, see Kagel (1995).
3I show in section 6.1 that the main insights generalize to the case where bidders assign gains

and losses separately to the money and good dimension.
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in the extent to which winning was unexpected. Similarly, they perceive a feeling

of loss if they lose, increasingly in their expectations to win. Taking that into ac-

count, bidders will overbid their intrinsic valuation. Since losses with respect to

expectations weigh stronger than gains, high types—who expect to win—overbid

more aggressively than low types in the Vickrey auction.

To model the impact of dynamic information on the reference point in the dy-

namic English auction, I take the continuous-time limit of Kőszegi and Rabin (2009):

every clock increment bidders observe whether opponents drop out from the auction.

This information permanently updates expectations about winning the auction and

about how much to pay. If the changes in beliefs immediately update the bidders’

reference points, they instantaneously perceive gain-loss utility, which means that

they assign gains and losses to changes in the reference distribution.

I consider the two extreme cases as benchmarks: if the reference-point updating

is sufficiently lagged with respect to changes in beliefs, there is no updating during

the auction process and therefore no impact of sequential information. The English

auction remains equivalent to the Vickrey auction in that case.

If the new information immediately updates the reference point, however, bid-

ders’ utility depends on the observed signals about opponents’ bidding strategies

during the auction process, even though values are private.

Kőszegi and Rabin interpret the reference point as lagged beliefs. Recent exper-

imental findings, however, suggest that the reference point adjusts quickly to new

information. Whether instantaneous reference-point updating is a realistic approx-

imation may depend on the exact auction environment, e.g. the speed at which the

price augments, which can differ immensely across different English auctions. Al-

together, instantaneous updating constitutes a natural and important benchmark.

Since losses weigh stronger than gains, expected reference dependent utility is

always negative. In particular, bidders dislike fluctuation in beliefs. As bidders

are forward looking, they will account for these costs when they form their bidding

strategy. In principle, an aggressive bid would to some extent insure against belief

fluctuations during the auction process. However, as the auction prevails, bidders’

beliefs to win the auction eventually decline. They become less attached to the

auctioned object, and at the point they would have to bid aggressively, it is time
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inconsistent to do so. They eventually perceive themselves as a low type with

respect to the active bidders in the remaining auction. This leads to only moderate

overbidding - similarly as for low types in the Vickrey auction. Therefore, bidding

is less aggressive in the English auction with updated reference points.

Since bidders dislike belief fluctuations, they would prefer to refrain from ob-

serving the auction process and rather use proxies to bid on their behalf. The

logic is related to Benartzi et al. (1995) and Pagel (2016), who explain the equity

premium puzzle by loss aversion: since stock prices fluctuate, an investor who reg-

ularly checks her portfolio will experience negative reference-dependent utility in

expectation. This disutility makes stocks relatively less attractive to bonds.

Lange and Ratan (2010) highlight that in the presence of loss aversion in hedonic

dimensions most laboratory results may not be transferable to the field: the effects

of loss aversion are mainly driven by the assumption that bidders account losses

and gains separately in the money and the good dimension (narrow bracketing). In

order to control for private values, most auction experiments, however, use auction

tokens, which can be interchanged for money at the end of the experiment. In

context of these induced value experiments, bidders might not evaluate gains and

losses to tokens and money separately, as they are in fact both money.4 Since

I assume narrow bracketing throughout this paper, my results are more likely to

apply to real commodity auctions, rather than to experiments on induced value

auctions. It can therefore explain the revenue gap between the Vickrey auction and

the English auction in the induced-value experimental literature, only if we assume

that bidders don’t perceive the tokens as money.

There is surprisingly little experimental literature that compares revenues of the

English auction and the Vickrey auction for real commodities.5 The only laboratory

controlled experiment that I am aware of, is conducted by Schindler (2003). She

reports 14 percent lower revenues in the English auctions, therefore confirming the

findings of the induced-value literature, as well as my theoretical predictions.

The remainder of the paper is structured as follows: Section 2 discusses the

4Indeed, Shogren et al. (1994) run Vickrey auctions to sell different goods and show that an
endowment effect is strongest for non-market goods with imperfect substitutes.

5The only field experiment I am aware of is conducted by Lucking-Reiley (1999), who trades
magic cards on an internet auction platform. He finds no significant difference in revenues, though
he admits himself that he cannot entirely control for a potential selection bias and endogenous
entry.

4



related literature, Section 3 analyzes the Vickrey auction with loss-averse bidders,

while Section 4 analyzes the English auction with loss-averse bidders. In Section

5, I discuss the revenue comparison of both auction formats. Section 6 discusses

several extensions, while Section 7 concludes.

2 Related Literature

Kahneman et al. (1990) establish the endowment effect that agents’ valuation for

goods increase with ownership. It has since been experimentally replicated un-

der many different circumstances, for summaries see Camerer (1995) and Horowitz

and McConnell (2002). Tversky and Kahneman (1991) propose loss aversion with

respect to the status quo to explain the endowment effect.

Kőszegi and Rabin (2006) suggest recent rational expectations as reference

point. The hypothesis that expectations play a role in individual’s preferences

have been supported in recent experiments (Ericson and Fuster (2011) and Abeler

et al. (2011)), as well as challenged (Heffetz and List (2014)).6

The idea that the reference point is determined by recent beliefs leads to the nat-

ural question of the speed of reference-point adjustment. Strahilevitz and Loewen-

stein (1998) provide early evidence that the time span for which individuals hold

beliefs has an impact on the reference point. Gill and Prowse (2012) use a real ef-

fort task to measure loss aversion and find that in their framework “the adjustment

process is essentially instantaneous”. Smith (2012) induces different probabilities

of winning an item across groups of individuals. After the uncertainty resolves, he

measures the willingness to pay for the item among bidders who have not won. In

contrast to Ericson and Fuster (2011), who elicit valuations before the uncertainty

resolves, Smith finds no significant difference between different groups, which sug-

gests that the reference point is not so much determined by lagged beliefs, but

rather adjusts quickly to the new information.7

For static environments Kőszegi and Rabin (2006) has arguably become the

standard model of reference-dependent preferences, and been successfully applied to

various fields, like mechanism design (Eisenhuth (2012)), contract theory (Herweg

6For a literature revue on related evidence, see Ericson and Fuster (2014).
7Smith’s confidence intervals are, however, rather wide.
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et al. (2010)), industrial organization (Heidhues and Kőszegi (2008)), and labor

markets (Eliaz and Spiegler (2014)). Heidhues and Kőszegi (2014) show that buyers

in monopolistic markets may face a similar form of time inconsistency as I establish

for bidders in the English auction: ex ante they would like to commit not to buy.

If the seller induces low prices with some probability, this plan, however, is time

inconsistent. As a result, the consumer ends up buying for a high prices as well.

Dato et al. (2017) extend the equilibrium concepts of Kőszegi and Rabin (2006) to

strategic interaction in static games.

In the context of auctions with reference-dependent preferences, Lange and

Ratan (2010) point out that loss-averse bidders may behave differently in laboratory

experiments than in the field; bidders may not bracket narrowly in induced-value

experiments. Further, they calculate the equilibrium bidding function of loss averse

bidders in the first-price auction and Vickrey auction for a different equilibrium

concept than I use in this paper. (For a more detailed discussion of the equilibrium

concepts see section 3.)

Ehrhart and Ott (2014) introduce a model of the Dutch and English auc-

tion, where sequential information updates the reference point, but—in contrast

to Kőszegi and Rabin (2009)—does not induce gain-loss utility. As a result, in

equilibrium there is never any feeling of loss in the English auction, since by the

time a bidder drops out she expects to lose. Eisenhuth and Ewers (2010) show that

the all-pay auction yields higher payoffs than the first-price auction for narrow-

bracketing bidders, since loss-averse bidders dislike payment uncertainty.

For dynamic environments Kőszegi and Rabin (2009) propose a model of dy-

namic loss aversion, where updates of expectations carry reference-dependent utility.

This model has so far only been applied sparsely. First applications nevertheless

seem promising. Rosato (2014) uses a two-period dynamic model to show that

revenues are decreasing in sequential auctions with loss-averse bidders, due to a

discouragement effect. To my best knowledge, Pagel is the first to rigorously apply

Kőszegi and Rabin (2009) to dynamic problems with a long time horizon. Pagel

(2016) shows that dynamic reference-dependent preferences can explain the histor-

ical levels of equity premiums and premium volatility in asset prices. Related to

the logic in the English auction, loss-averse agents dislike price fluctuations, which
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makes assets relatively unattractive. Pagel (2017) shows that dynamic reference-

dependent preferences can explain empirical observations about saving schemes for

life-cycle consumption.

To my best knowledge, my model is the first to analyze strategic interaction of

loss-averse players in a dynamic game with more than two periods.

3 The Vickrey Auction

3.1 Auction Rules

The second-price auction or Vickrey auction is a static, sealed-bid auction format.

We assume that there are N loss averse bidders participating in the auction for a

non-divisible good. Bidder i’s valuation θi is privately observed and independently

drawn from a common distribution

θi ∼ G,

where G has a differentiable density g which is strictly positive on its support

[θmin, θmax], with 0 ≤ θmin < θmax. After learning their private valuation, every

participant submits a sealed bid. The bidder with the highest bid is assigned the

object and has to pay the amount of the second highest bid.

3.2 Preferences

I assume that bidders are loss averse in the sense of Kőszegi and Rabin (2006). In

addition to classical utility from an endowment x ∈ R, bidders perceive a feeling

of gain or loss, depending on whether the endowment is higher or lower than their

reference point r ∈ R. If we assume that classical utility is linear in x, this means:

u(x|r) = x+ µ(x− r),

where µ characterizes the gain-loss utility. In the Vickrey auction there are two

commodity dimensions—money and good. We assume that bidders are narrow

bracketers: utility is additively separable and gains and losses are evaluated sepa-

rately across the two different dimensions: for any endowment level x = (xm, xg)
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and any reference level r = (rm, rg), agents utility is given by

u(x|r) =
∑

k∈{m,g}

xk + µk(x
k − rk),

where we allow for different loss specifications across dimensions.

If the bidder is loss averse she will weigh losses with respect to her reference

point stronger than gains. Following Section IV in Kőszegi and Rabin (2006) and

most of the literature, I assume µk to be a piecewise linear function with a kink at

zero:

µk(y) =







ηky y ≥ 0

λkηky y < 0,

where ηk > 0, λk > 1, and Λk := λkηk − ηk < 1 for k ∈ {m, g}.8 Because it suffices

for demonstrating the novel economic effect and allows for a significantly simpler

exposition, I first focus on the case in which bidders are loss averse in the good

dimension only, i.e. ηm = 0. In the extensions, I show that my results generalize to

the case where we allow for loss aversion in the money dimension as well.9

The key feature in Kőszegi and Rabin (2006) is that the reference point is

stochastic and endogenously determined by rational beliefs over future endowment

levels. Consider an agent, who faces an uncertain payoff of x in some commodity

dimension, which is distributed according to some distribution F . Let the reference

point be determined by the agent’s beliefs F ′ about the outcome. A realization x

of x then yields an ex post utility in this commodity dimension of

u(x|F ′) = x+

∫

µ(x− r)dF ′(r).

Then the ex-ante expected utility of the endowment x is given by

U(F |F ′) := Eu(x, |F ′) =

∫ (

x+

∫

µ(x− r)dF ′(r))

)

dF (x).

8The condition Λ < 1 is referred to as ”no dominance of gain-loss utility” by Herweg et al. (2010)
It ensures that the dislike for uncertainty isn’t too strong. If Λ > 1 a bidder could potentially
prefer a strictly dominated safe outcome to a lottery.

9Horowitz and McConnell (2002) conclude in their summary that the endowment effect is
”highest for non-market goods, next highest for ordinary private goods, and lowest for experiments
involving forms of money.” In this sense it may be plausible that loss aversion mainly applies to
the good dimension.
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If the agent has rational expectations, we have F = F ′, and the expected utility of

the lottery is

U(F |F ) := Eu(x, |F ) =

∫ (

x+

∫

µ(x− r)dF (r))

)

dF (x).

3.3 Equilibrium Concept

I adapt Kőszegi and Rabin’s equilibrium concept under uncertainty to allow for in-

teractive decision problems. I take an interim approach in the sense that each bidder

i forms her strategy after she learns her private valuation θi. Fixing all opponents’

behavior, we summarize their strategy in the distribution H of the maximal oppo-

nent bid. Given θi and H, any bid b induces some distribution of auction outcomes

and therefore payoff distribution F k = F k(b, θi, H) in the respective commodity

dimensions k ∈ {m, g}.

Definition 1. A bid b∗ ∈ R+ constitutes an unacclimated personal equilibrium

(UPE) in the Vickrey auction for bidder i if for all b ∈ R+,

∑

k∈{m,g}

U(F k(b∗, θi, H)|F k(b∗, θi, H)) ≥
∑

k∈{m,g}

U(F k(b, θi, H)|F k(b∗, θi, H)).

In other words b∗ is a UPE if, given the reference point generated by the ac-

tion b∗, there is no profitable deviation b. It contrasts the definition of a choice-

acclimating personal equilibrium (CPE), where we require

∑

k∈{m,g}

U(F k(b∗, θi, H)|F k(b∗, θi, H)) ≥
∑

k∈{m,g}

U(F k(b, θi, H)|F k(b, θi, H))

for all b ∈ R+. Thus, in contrast to the UPE-bidder, a CPE-bidder—which is ana-

lyzed in Lange and Ratan (2010)—already internalizes the effects of her deviation

on the reference point. I believe the UPE is the appropriate equilibrium concept in

the Vickrey auction, mainly for two reasons.

Firstly, I apply the model as proposed by Kőszegi and Rabin who suggest that

the UPE is more appropriate if the bidder “anticipates the decision she faces but

cannot commit to a choice until shortly before the outcome” (Kőszegi and Rabin

(2007)). In auction settings bidders may know her valuation and form expectations
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long before the auction starts. Bids are, however, typically placed only shortly

before the auction uncertainty resolves, and may depend on characteristics specific

to the environment, such as the number of bidders actually participating in the

auction.

Secondly, the UPE is the static analog of the concept of a personal equilibrium,

which will be introduced in Section 4 to analyze the dynamic English auction. In

this context one can gather another (dynamic) interpretation for the UPE: the

decision maker ex ante forms a plan before the auction actually starts. This plan

will determine her reference-point. The plan is a UPE if it is time-consistent in the

sense that the decision maker is willing to carry it through at the time of action.

In a joint equilibrium, the first order statistic of the n − 1 opponent bids H is

endogenously determined by the equilibrium bidding strategy. Thus, if b(θ) consti-

tutes a symmetric increasing equilibrium bidding function, we necessarily have

H(b(θ)) = Gn−1(θ).

Definition 2. In the Vickrey auction with n loss averse bidders, an increasing

function b(θ) constitutes a symmetric UPE if for all θ and all b′

∑

k∈{m,g}

U(F k(b(θ), θ, Gn−1(b−1(·)))|F k(b(θ), θ, Gn−1(b−1(·))))

≥
∑

k∈{m,g}

U(F k(b′, θ, Gn−1(b−1(·)))|F k(b(θ), θ, Gn−1(b−1(·)))).

3.4 The Equilibrium

In this section we restrict attention to agents who are loss averse only in the good

dimension. A more elaborate analysis of the general case, which allows for loss

aversion in the money dimension is relegated to the extensions. Consider a bidder

of type θ who plans to submit a bid of b∗. Given the distribution H of the highest

opponent bid, the plan induces the reference distribution to win a utility of θ with

probability of H(b∗). Suppressing some notation, the utility of bidding b if planning
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to bid b∗ is given by

u(b, θ|b∗) :=
∑

k∈{m,g}

U(F k(b, θ,H)|F k(b∗, θ,H))

= H(b)
︸ ︷︷ ︸

Prob to win

(
θ + (1−H(b∗))µ(θ)

)

︸ ︷︷ ︸

feeling of gain

+(1−H(b))
︸ ︷︷ ︸

Prob to lose

H(b∗)µ(−θ)
︸ ︷︷ ︸

feeling of loss

+

∫ b

0

−sH(s)

︸ ︷︷ ︸

money dimension

=

∫ b

0

(θ − s)dH(s)

︸ ︷︷ ︸

classical utility

+H(b)(1−H(b∗))µ(θ) + (1−H(b))H(b∗)µ(−θ)
︸ ︷︷ ︸

total reference-dependent utility

.

In any symmetric equilibrium, b = b∗ must be the utility maximizing bid, where H

is given by opponents’ symmetric bidding behavior.

Theorem 1. The unique symmetric increasing continuously differentiable UPE in

the Vickrey auction with n bidders who are loss averse with respect to the good is

given by

b(θ) =
(
1 + η(1−Gn−1(θ)) + ληGn−1(θ)

)
θ.

Note that all types overbid with respect to their intrinsic valuation θ. This

should not be too surprising since we have assigned loss aversion only to the good

dimension, and therefore made the good relatively more important, compared to

money. More interestingly, the degree of overbidding is increasing in the type. The

lowest type moderately overbids by

b(θmin) = (1 + η)θmin,

while the highest type aggressively overbids by

b(θmax) = (1 + λη)θmax.

The reason is the so called attachment effect: high types believe to win. Not winning

would create a feeling of loss, which they try to prevent by placing an aggressive

bid. As we will see section 6.1, this intuition remains intact, if we allow for loss

aversion in money as well.
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4 The English Auction

4.1 The Model

The Auction Format

The English auction format I am considering is sometimes referred to as the “As-

cending Clock Auction” or the “Japanese Auction”. In contrast to the “Open

Outcry Auction” bidding starts at a fixed price and is raised incrementally by the

auctioneer each time period. Each bidder signals—for example by raising or drop-

ping her hand—when she wishes to drop out of the auction. Once a bidder dropped

out she cannot bid again. The auction ends if there is only one active bidder left.

This bidder has to pay the price, at which the last of her opponents dropped out.

For simplicity, we assume that there is no reservation price—the clock starts

with a price of zero. The effect of a reserve price is analyzed in extension 6.3.

Preferences

We assume that bidders’ intrinsic valuations θi for the object are privately observed

and independently drawn

θi ∼ G

from a distribution G that has a differentiable and strictly positive density g on a

positive support [θmin, θmax]. The distribution G is common knowledge. Bidders

are assumed to be loss averse.

I follow Kőszegi and Rabin (2009) in how to model loss aversion in a dynamic

discrete-time environment: agents hold rational beliefs about winning the auction

and the respective transfers made after the auction is over. Every period, the agent

observes, whether any opponents drop out at the current price and thus receives

an information signal about the outcome. We denote by F k
t , the beliefs over final

transfers in k ∈ {money, good}, as anticipated at time t. As the signal at any

time t changes beliefs over the auction outcome, this instantaneously gives rise to

psychological gain-loss utility, denoted by N(F k
t |F

k
t−1), separately to changes in

money and good.

For the evaluation of gain-loss utility, agents are assumed to assign gains and

losses to changes in the respective quantiles of the distribution function. The intu-
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ition is that the agents rank possible outcomes from worst to best and then evaluate

changes to the worst, the second worst ,..., until the best outcome. Let us denote

with cFk
t
the quantile function of F k

t , which is mathematically just the inverse of

F k
t . Then

N(F k
t |F

k
t−1) =

∫ 1

0

µk(cFk
t
(p)− cFk

t−1

(p))dp,

where again

µ(x) =







ηk · x x ≥ 0

ηk · λk · x x < 0,

ηk > 0, λk > 1, and Λk := λkηk − ηk < 1.

In other words, during the auction process bidders accumulate information about

the auction outcome. They absorb this information in their reference-point, which

instantaneously exposes them to (possibly mixed) feelings of gains and losses. The

total utility perceived in the auction process is given by the accumulated gain-loss

utility and the classical utility from trade if the auction is won. In the following

analysis, it is convenient to index the distributions with the current price rather than

with the time period. After learning her type θi, bidder i forms a bidding strategy,

which induces beliefs Fm
0 and F g

0 about the auction outcome. If the auction runs

for at most T increments of ε, we can write the total utility of the auction as

ui =

T∑

t=1

(
N(Fm

tε |F
m
(t−1)ε) +N(F g

tε|F
g

(t−1)ε)
)
+ (θi − x)

if bidder i wins the auction at a price of x, and as

ui =

T∑

t=1

(
N(Fm

tε |F
m
(t−1)ε) +N(F g

tε|F
g

(t−1)ε)
)

if bidder i loses the auction. Note that the upper bound of T in the sum is without

loss of generality; if the auction terminates early, all subsequent periods can be

regarded as uninformative, and carry no further reference-dependent utility.
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Equilibrium Concepts

I concisely sketch the equilibrium concept of Kőszegi and Rabin (2009). For full

details and a psychological justification of the specific dynamic modeling choices, I

refer to their paper.

Definition 3. An action plan specifies an action for every realization of informa-

tion at every point in time. An action plan constitutes a personal equilibrium

(PE) if, given the reference point resulting from the plan, it maximizes expected

utility at any point in time among all plans that the agent is willing to carry through.

This means in particular:

• The bidder can only make credible plans in the sense that she cannot commit

to plans that her future self does not want to carry through at the time of

actions. Committing to unfavorable actions could be profitable, because it

would manipulate beliefs, and therefore the own reference point.

• In suppressed notation, an action plan that induces a distribution F is an

equilibrium if and only if at any point in time u(Ft|Ft) ≥ u(F ′
t |Ft) for any

distribution F ′
t that would result from another credible plan.

• Given the opponents’ behavior, an agent determines her set of personal equi-

libria by backward reasoning: she evaluates any action in T − 1 with respect

to her optimal actions in period T , and proceeds backwards.

The only constraint on initial beliefs is that they are rational, given the action plan.

In general, there may be multiple personal equilibria.

Definition 4. A personal equilibrium is a preferred personal equilibrium if it

is the utility maximizing PE at time zero.

The set of personal equilibria depends on the belief about other players’ actions.

To analyze the interaction between multiple bidders, we focus on symmetric personal

equilibria.

Definition 5. A strategy b(θ) assigns to each possible type θ an action plan. A

strategy constitutes a (preferred) symmetric equilibrium in the English auction

if for each type θ and the belief that all opponents bid according to strategy b the

action plan b(θ) constitutes a (preferred) personal equilibrium.
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Timing

First bidders privately learn their valuation θi for the object. Then each bidder

forms an action plan, which prescribes for any time (clock price) and any opponent

drop-out history, the decision whether to drop out or to remain. Rational beliefs

induced by this action plan form the bidder’s reference point. Finally, the auction

takes place. Any period during the auction process is characterized by the following

timing:

• The price on the clock ascends and bidders simultaneously signal whether they

stay in or drop out. If a bidder deviates from her action plan, she updates her

reference point according to new rational beliefs. The update instantaneously

induces reference-dependent utility

• Bidders observe, whether opponents drop out and update their reference point

about payoffs. The update instantaneously gives rise to gain-loss utility.

• If there is at most one bidder remaining active, the auction is terminated. The

remaining bidder is assigned the object and pays the current clock price.10

4.2 Analysis

Illustrative Example of Updating

This example aims to provide an illustration how gain-loss utility is formed during

the auction process, and to show why bidders would always prefer a proxy to bid

on their behalf in the English auction—taken behavior of opponents as given.

Consider an English auction with two bidders. Let bidder 1—in the following

referred to as the bidder—have a valuation of θ for the object. Assume that the

bidder plans to drop out at a price of 8 and knows that the drop-out price of bidder

2 — in the following called opponent—is ex ante uniformly distributed on [0, 10] (we

do not consider here, under which circumstances this behavior would be optimal).

Ex ante, the bidder has a probability of 0.8 to win the auction and to have a payoff

of θ in the good dimension. In the money dimension she faces a probability of

0.2 to pay nothing. Prices between 0 and 8 are uniformly distributed and have a

10For mathematical convenience, I abstract from tie breaking rules and assume that the good
is not sold, if the remaining bidders drop out simultaneously. With our assumption of continuous
density of types, as we let the increment size go to zero, this becomes equivalent to a tie breaking
rule by coin-flip.

15



mass of 0.8 all together (if we assume arbitrary small increments on the clock for

mathematical convenience). Thus, the ex ante quantile functions are given by

cF g
0
(p) =







0 p ≤ 0.2

θ p > 0.2

in the good dimension, and

cFm
0
(p) =







−8 + 10p p ≤ 0.8

0 p > 0.8

in the money dimension.

Assume the opponent drops out at a price of 6. While the clock price ascends,

the bidder permanently updates her beliefs. Let us look at the good dimension: for

any increment below the price of 6, the bidder realizes that the opponent didn’t

drop out at that price, which reduces her beliefs to win the auction by some small

amount. This means that during the auction process she accumulates perceived

losses in the good dimension. Figure 1 shows the quantile functions at different

clock prices.

At a clock price of 0—that is before the auction starts—the bidder holds her prior

belief to win the auction with a probability of 0.8. The respective quantile function

is a step function which is zero with probability 0.2, and θ with probability 0.8

(dotted line). At a price of 4 the bidder knows that the opponent hasn’t dropped

out between 0 and 4. Therefore bidder’s updated belief to win is given by the

probability that the opponent will drop out at price between 4 and 8, conditional

on the fact that he will drop out between 4 and 10. It has thus decreased to two

third which is indicated by the dashed quantile function. The medium grey shaded

area is proportional to the loss the bidder has accumulated up to the price of 4 as

the difference of the initial and current quantile function. Just before the opponent

drops out at 6, bidder’s belief has further decreased to almost one half—she wins if

opponent drops out between 6 and 8, but loses if the opponent drops out between 8

and 10 (solid quantile function with jump at 0.5). The light shaded area shows the

additional loss just before a price of 6 is announced. The losses have to be weighted

with a factor of λη. The moment the price increases to 6, the opponent drops out
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and the bidder wins with certainty. The quantile function jumps to the constant

function cF g
6
= θ, inducing a feeling of gain of η times the three combined shaded

areas.

Figure 1: Updating in the English Auction

Thus, the net gain-loss utility in the good dimension is (0.2η + 0.3(η − λη))θ =

(0.2η−0.3Λ)θ. Since losses weight stronger than gains, the relief of winning the light

gray and medium gray area after all can only partly make up for the disappointment

felt during the auction process. If the bidder could use a bidding proxy that enabled

her to ignore new information until the auction was over, she would forgo the

unpleasant variation in beliefs, which causes disutility of −0.3Λθ. This logic is

due to Kőszegi and Rabin (2009), who find that, ceteris paribus, any collapse of

information signals weakly increases agents’ utility. Note that the use of a proxy

in our two-bidder example is equivalent to submitting a sealed maximum bid. The

example thus illustrates that——fixing her strategy and other bidders behavior—a

loss averse bidder obtains weakly higher utility in the Vickrey auction than in the

English auction.

The updating with respect to money is a bit more complex than the updating in

the good dimension: if an opponent does not drop out at some price, the probability

of losing and paying nothing increases as well as the probability of paying a high

price. Nevertheless the same intuition applies: fluctuations in beliefs are costly, and

loss-averse bidder would prefer to get all information at once. To summarize:

Corollary 1. Loss-averse agents would prefer the use of proxies to bid on their

behalf in the English auction. Thus, for a given set of bidders’ maximal bids, any
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loss-averse bidder receives weakly higher utility in a Vickrey auction than in an

English auction.

Equilibrium Behavior for 2 Bidders

In the following, I analyze the set of equilibria in the English auction with two

bidders, who are loss averse in the good dimension, as the increment size goes to

zero. In section 6.4, I show that the main insights generalize to the n bidder auction.

While the history-dependend strategy space in an n-bidder English auction is huge,

it is fairly simple in a two-bidder game. Given type θ, an action plan prescribes

the price at which the bidder plans to drop out, provided that the opponent is still

active.

Each period the bidder observes whether her opponent remains in the auction.

This information permanently updates her reference point, which induces gain-loss

utility in each increment. An optimal bidding strategy will take the expected gain-

loss utility from news into account.

For calculating the ex-ante expected gain-loss utility, it is more convenient to

work with distribution functions rather than with quantile functions. This is possi-

ble, since they are inverse functions of each other, and the integral between functions

equals the integral between their inverses up to the sign:

Lemma 1. Let F1 and F2 be continuous distributions on an interval [a, b] and let

cF1
, cF2

be the respective quantile functions. Then

∫ b

a

(F1(x)− F2(x))dx =

∫ 1

0

(cF2
(p)− cF1

(p))dp.

With this result, one can look at the expected disutility from news.

Proposition 1. Assume that a loss-averse bidder’s payoff is distributed according

to some distribution F1 with a probability of ∆, and according to distribution F2 with

a probability of 1 −∆. Let [a, b] be the common support of F1 and F2. We denote

with F = ∆F1 + (1−∆)F2 the ex ante distribution of the payoff. Then the ex ante

expected reference-dependent utility from learning, whether the true distribution is

F1 or F2, is given by

E(N(Fi|F ) = −∆Λ

∫ 1

0

|cF1
(p)− cF (p)|dp,
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or equivalently by

E(N(Fi|F ) = −∆Λ

∫ b

a

|F (x)− F1(x)|dx.

The intuition for the result is as follows: on average, there is “as much good

news as bad news”. If gains and losses weighted equally, one would have zero gain-

loss utility in average. Since losses loom larger than gains, variation will give us

negative utility in expectation where the amount of negative utility is proportional

to the expected variation and the loss dominance parameter Λ.

With this result we can calculate the accumulated expected loss due to gain-loss

utility, as the increment size goes to zero. Let us denote with F the distribution of

the opponent’s drop-out price, in the sense that an opponent with drop-out price y

remains in the auction at any clock price t < y, and drops out at prices t ≥ y.

Proposition 2. Consider a loss-averse bidder of type θ in the English auction with

increments of ε and one opponent. Let the opponent’s drop-out price be distributed

according to distribution F with density f . Assume the bidder plans to drop out at

x, and the opponent hasn’t dropped out until time t < x. Then, for ε going to zero,

in the limit the ex ante expected marginal gain-loss utility at time t is given by

ℓt(x, θ, F ) =
−f(t)

(1− F (t))2
(1− F (x))Λθ.

Expected gain-loss utility for the remaining auction at time t is in the limit given

by

Lt(x, θ, F ) = ln

(
1− F (x)

1− F (t)

)
1− F (x)

1− F (t)
Λθ.

Since losses weight stronger than gains, expected gain-loss utility is always neg-

ative. Note that the amount of marginal disutility is decreasing in x: an aggressive

strategy induces less belief fluctuation at each information update, and thus partly

insures against high gain-loss disutility in each increment. There is, however, a

countervailing effect on total gain-loss disutility: the higher bidder’s drop-out price,

the longer she may stay in the auction and be exposed to gain-loss disutility. Fig-

ure 2 shows total expected gain-loss disutility at the beginning of the auction for

F ∼ U [0, 1]. We see that losses are the strongest for intermediate bids who face
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the highest uncertainty. Bidding 0 or 1 induces no uncertainty, and therefore no

gain-loss utility.

In the following, we refer to the limit result as we let the increment size go to

zero as the continuous English auction.11

Figure 2: Total Expected Loss for F ∼ U [0, 1]

With Lt(x, θ, F ) we have established a function for the expected gain-loss utility

on the equilibrium path for the strategy x. We now calculate the instantaneous gain-

loss utility that the bidder perceives, if she decides to deviate from strategy x to

strategy y at some point in time:

Lemma 2. Consider a loss averse bidder in an English auction with one opponent.

Let the opponent’s drop-out price be distributed according to F . If at time t the

bidder changes her strategy from dropping out at x ≥ t to dropping out at y ≥ t,

this deviation induces an instantaneous gain-loss utility of

N(F y
t |F

x
t ) =

µ(F (y)− F (x))

1− F (t)
θ.

Let us denote with ut(y, θ, F |x) for t ≤ x, y the remaining expected utility of

the agent at time t in the continuous English auction if she deviates at time t from

11This notion does not intend to refer to the concept of continuous games by Simon and Stinch-
combe (1989). One should still regard the game as one with discrete increments on the clock which
are, however, arbitrarily small.
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strategy x to strategy y. Then, summarizing Proposition 2 and Lemma 2 we obtain

ut(y, θ, F |x) =

∫ y

t
(θ − s)dF (s)

1− F (t)
︸ ︷︷ ︸

classical utility

+
µ(F (y)− F (x))

1− F (t)
θ

︸ ︷︷ ︸

gain/loss from one-time update

+ Lt(y, θ, F ).
︸ ︷︷ ︸

expected gain-loss utility

of remaining auction

All three terms change if a bidder deviates to another strategy. Note that the

deviation utility is non-differentiable at y = x, since µ has a kink at zero.

With this notation and the above results, we can restate the condition for a

strategy to be an equilibrium as we let the increment size go to zero.

Corollary 2. In the continuous English auction a bidding strategy x is a personal

equilibrium if and only if

ut(y, θ, F |x) ≤ ut(x, θ, F |x)

for all 0 ≤ t ≤ x, y and all strategies y that are credible at all times s > t.

Since the equilibrium concept restricts to strategies x that the agent wants to

carry through at any time, it is in particular necessary that the agent does not want

to drop out just before x is reached. This leads to the following constraint on time

consistent plans.

Lemma 3. Consider a loss-averse bidder of type θ in the continuous English auction

with one opponent. Let the opponent’s drop-out price be distributed according to

distribution F with nonzero density f on some positive support [a, b]. Then, any

time consistent bidding strategy x ∈ (a, b) satisfies

x ≤ (1 + η)θ.

To understand the significance of this result, it is insightful to look at plans the

bidder would choose if she could commit to a bidding strategy before the auction

starts. She would not like to deviate from a strategy ex ante if and only if

u0(y, θ, F |x) ≤ u0(x, θ, F |x)
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for all y.

Proposition 3. If two loss averse bidders could commit ex ante to a bidding strategy

in the continuous English auction, the lowest symmetric increasing differentiable

equilibrium would satisfy

b(θ) =
(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ.

Figure 3 shows the ex ante optimal strategy (solid function) and the boundary

of time-consistent strategies (dashed line) for two loss averse bidders.

Figure 3: G(θ) ∼ U [0, 1], η = 0.3, λ = 4

We see that low types ex ante may wish to underbid, while high types wish to

strongly overbid. The intuition here is the same as in the Vickrey auction: bidders

want to reduce expected gain-loss utility, and therefore try to reduce the uncertainty

about winning. In particular high types would wish to insure with an aggressive

bid against belief fluctuations during the auction process.

However, it is time-inconsistent to bid above x = (1 + η)θ. Even though a

bidder with a high valuation would ex ante like to commit to an aggressive bidding

strategy, at the time she has to do so, she is not any more willing to carry that action

through: as the auction proceeds, the winning chances for the bidder gradually

decline. Thus, she gradually becomes a low type with respect to the remaining
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auction, and therefore her initial strategy of overbidding becomes less appealing.

Just one increment before the bidder’s drop out, she perceives the remaining auction

similarly as a Vickrey auction, where she has the lowest possible type. Hence, at

that point in time, her optimal bidding strategy resembles that of the lowest type

in the Vickrey auction, i.e. she bids no more than x = (1 + η)θ.

We have so far only considered constraints on equilibrium behavior at time 0

and at time x. It turns out that these are the binding constraints.

Lemma 4. Consider a loss-averse bidder of type θ in the continuous English auc-

tion with one opponent. Let the opponent’s drop-out price be distributed according

to distribution F with nonzero density f on some positive support [a, b]. Then a

strategy x ∈ (a, b) is a PE if and only if

1. x ≤ (1 + η)θ;

2. for any y ∈ [x, (1 + η)θ] we have u0(x, θ, F |x) ≥ u0(y, θ, F |x).

Theorem 2. An increasing, almost everywhere differentiable function b(θ) is a

symmetric equilibrium in the continuous English auction with two loss averse bidders

if and only if for all θ

1. b(θ) ≤ (1 + η)θ;

2. b(θ) ≥ min
{
(1 + η)θ ; (1 + η − Λ(1 + ln(1−G(θ)))

)
θ
}
.

Thus, any increasing smooth function in the the gray shaded area of Figure 4

constitutes a symmetric equilibrium.

The thick line indicates the preferred symmetric equilibrium (PPE). Point

A, where the PPE hits the boundary of time consistent strategies can be easily

determined:

(1 + η − Λ(1 + ln(1−G(θ)))
)
θ = (1 + η)θ

if and only if G(θ) = 1− 1/e ≈ 0.632.

Note that the PPE is tangent to (1+ η−Λ)θ at the lowest type. Hence there is

underbidding for low types if and only if η − Λ > 0, thus if and only if λ > 2.
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Figure 4: G(θ) ∼ U [0, 1], η = 0.3, λ = 4

Corollary 3. The symmetric PPE in the continuous English auction with two loss

averse bidders is given by

bPPE(θ) =







(1 + η − Λ(1 + ln(1−G(θ)))
)
θ G(θ) ≤ 1− 1/e

(1 + η)θ G(θ) > 1− 1/e.

Low types underbid their intrinsic valuation θ in the PPE if and only if λ > 2.

5 Revenue Comparison

The equilibrium bidding function of an English auction with loss-averse bidders

strongly depends on the question how quickly new information is absorbed in the

reference point.

If the reference point consists of lagged beliefs, and the lag is sufficiently high,

new information during the auction process will have no impact on bidders reference

point. If values are private, there is therefore no impact of information gathered

during the auction process. Each bidder will form her optimal decision with respect

to the initial belief, and thus faces the same objective function as in the Vickrey

auction—the strategic equivalence between English and Vickrey auction remains.
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If bidders, however, update their reference point dynamically with respect to

new information, loss-averse bidders bid at most (1 + η)θ.

The following figure shows the equilibrium bidding function for the Vickrey

auction, bVickrey(θ), and the PPE of the English auction with dynamic reference

point updating, bEnglish(θ). The shaded area indicates the potential other symmetric

equilibria in the English auction, which are bounded by the line (1 + η)θ.

Figure 5: G(θ) ∼ U [0, 1], η = 0.3, λ = 4

As we have seen in section 3, overbidding with respect to θ is moderate for low

types and strong for high types in the Vickrey auction. We can see that bVickrey(θ)

at the lowest type is tangent to (1 + η)θ—the upper bound of equilibria in the

English auction. The intuition is that for low types the decision problem in both

auction formats becomes increasingly similar: since bidders in the English auction

only learn, whether there are opponents with lower valuation than their own, the

information difference between the two auction formats at the time the bidder places

her (maximal) bid is small for low types.

Since the bidding function in the Vickrey auction satisfies bVickrey(θ) > (1+ η)θ

for all types θ > θmin, it is immediate that the Vickrey auction dominates the

English auction with respect to revenue.
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Theorem 3. 1. If bidders are loss averse and do not update their reference point

during the auction process, the Vickrey auction and the English auction are

strategically equivalent: for a given continuous belief on the maximal opponent

bid, bidding b is a UPE in the Vickrey auction if and only if bidding up to b

is a PE in the English auction.

2. If bidders are loss averse and update their reference point instantaneously

during the auction process, equilibrium bids of the lowest type may coincide

for both auction formats. For all other types, the Vickrey auction attains

strictly higher revenue than the English auction.

6 Extensions and Robustness

6.1 Loss Aversion in the Money Dimensions

We generalize the baseline model to the case where bidders are loss averse in both

commodity dimensions—money and good.

The Vickrey Auction

The utility of a bidder of type θ who places a bid of b but has a reference point as

if bidding b∗ is given by

u(b, θ|b∗) :=
∑

k∈{m,g}

U(F k(b, θ,H)|F k(b∗, θ,H))

=

∫ b

0

(

−s+

∫ b∗

0

µm(t− s)dH(t) +

∫ ∞

b∗
µm(−s)dH(t)

)

dH(s)

+

∫ ∞

b

(
∫ b∗

0

µm(t)dH(t) +

∫ ∞

b∗
µm(0)dH(t)

)

dH(s)

+

∫ b

0

(

θ +

∫ b∗

0

µg(0)dH(t) +

∫ ∞

b∗
µg(θ)dH(t)

)

dH(s)

+

∫ ∞

b

(
∫ b∗

0

µg(−θ)dH(t) +

∫ ∞

b∗
µg(0)dH(t)

)

dH(s),

where H is again the distribution of the maximal opponent bid. The variable s

corresponds to the realization of H, the variable t to the reference point. The first
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of the four summands corresponds to the utility in money if bidder i wins, the

second if she loses. Similarly the third summand corresponds to utility in the good

dimension if the auction is won, and summand four if the auction is lost.

In equilibrium the order statistic H is again endogenously determined by the

opponents’ equilibrium bids b(θ−i). Using the opponents’ response functions, it is

straightforward to calculate the symmetric equilibrium bidding function:

Theorem 4. The unique symmetric increasing continuously differentiable UPE for

n loss averse bidders in the Vickrey auction for commodities is given by

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ+

∫ θ

θmin

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm
(Gn−1(θ)−Gn−1(x))

)

dG(x).

Note that

b(θmin) =
1 + ηg

1 + λmηm
θmin,

while for any θ > θmin

b(θ)) >
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ >

1 + ηg
1 + λmηm

θ.

In particular, for equally weighted loss aversion in both dimensions, low types un-

derbid, while

b(θmax) >
1 + η + ΛGn−1(θmax)

1 + λη
θmax

=
1 + η + Λ

1 + λη
θmax

= θmax

shows that high types overbid their intrinsic valuation. The intuition is that low

types don’t expect to win and try to avoid unexpected losses in the money dimen-

sion. In contrast, high types expect to win and try to avoid unexpected losses in

the good dimension.

The English Auction

We avoid to fully classify the set of symmetric PE again, but rather straightfor-

wardly prove that the revenue ranking between the two auction formats remains
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intact.12 The following Lemma parallels Lemma 3.

Lemma 5. Consider a loss-averse bidder of type θ in the continuous English auction

with one opponent. Let the opponent’s drop-out price be distributed according to

distribution F with nonzero density f on some positive support [a, b]. Then, any

time consistent bidding strategy x ∈ (a, b) satisfies

x ≤
1 + ηg

1 + λmηm
θ.

Again, the bidders of high type ex ante like to commit excessive bids, but they

know that the plan to bid above the threshold of
1+ηg

1+λmηm
θ is time-inconsistent.

Just one increment before they drop out, their belief to win and pay is virtually

zero and—similarly to the lowest type in the Vickrey auction—they trade off the

unexpected gain of the good against the unexpected loss in money, which may both

occur with very small probability. If loss aversion is equally pronounced in both di-

mensions, then bidders underbid their intrinsic value θ, since losses weight stronger

than gains.

Revenue Comparison

Since in the Vickrey auction we have

bVickrey(θ) ≥
1 + ηg

1 + λmηm
θ,

with equality only for θmin, and in the English auction we have

bEnglish(θ) ≤
1 + ηg

1 + λmηm
θ,

it is immediate that the Vickrey auction remains to dominate the English auction

with respect to revenue. Figure 6 shows the gray shaded area of potential equilibria

in the English auctions, together with its PPE, and the equilibrium in the Vickrey

auction. If loss aversion is equally pronounced in both dimensions, there is unam-

biguously underbidding in the English auction, while in the Vickrey auction low

types underbid and high types overbid.

12The full derivation of the symmetric equilibrium bidding functions is available on request.
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Figure 6: G(θ) ∼ U [0, 1], η = 0.4, λ = 3

6.2 False Beliefs or Heterogeneous Preferences

So far we have assumed that all participating bidders are loss averse and hold

rational beliefs over opponents’ behavior. This is not a crucial assumption. Loss-

averse bidders will bid higher in the Vickrey auction than in the English auction for

any continuous belief with full support that they hold over opponents strategies.

Following the analysis of section 4, equation 1 in the proof of Theorem 3.4 states

that for any such belief H the bidding function in the Vickrey auction is given by

b(θ) =
(
1 + η(1−H(b(θ))) + ληH(b(θ))

)
θ,

which shows that

b(θ) > (1 + η)θ

for all types, who win with positive probability. Contrary, in the English auction

Lemma 3 shows that for any such belief

b(θ) ≤ (1 + η)θ.
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6.3 Reserve Price

A reserve price is a prominent tool in auctions to guarantee some minimum price.

If agents are loss averse, a reserve price will also impact the bidding strategy of the

bidders above the reserve price.

Consider a Vickrey auction with n loss-averse bidders. Since the implementation

of a reserve price excludes low types from participation, an ex ante announcement of

such would have a selection effect on bidders who participate. It would considerably

change beliefs about the participating opponents’ types. To abstract away from this

effect, assume that a reserve price x is announced after the bidders committed to

participate, and before bidders form their strategies. Bids below the reserve price

remain feasible, but cannot win.

Proposition 4. Let b(θ) be the equilibrium bidding function of n loss-averse bidders

in the Vickrey auction without reserve price. If bidders are loss averse with respect

to money, a public reserve price x > b(θmin) increases the equilibrium bid of all

bidders with b(θ) ≥ x.

Thus, if the object is sold, a reserve price increases revenues, even if it is not

binding. To get the intuition for this result, note that the reserve price has no

direct effect on the winning probability for bidders with b(θ) > x in any symmetric

increasing equilibrium. A reserve price has therefore no impact on loss aversion in

the good dimension. However, the belief of paying less than x decreases. If bidders

are loss averse with respect to money, high prices now induce less loss in the money

dimension, with respect to expectations. This reduces expected gain-loss disutility

from a high bid.

The same holds for similar reasons in the English auction with loss aversion in

money, which we omit to prove here. In the English auction with loss aversion in

the good dimension only, a reserve price has again no effect on equilibrium behavior.

Proposition 5. Consider a continuous English auction with two bidders, who are

loss averse in the good dimension. A reserve price of x has no effect on an equilib-

rium bidding function b for any type θ with b(θ) > x.
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6.4 Generalization to n bidders

In auctions where bidders face more than one opponent, the set of possible action

plans becomes very large. Recall that an action plan prescribes a consistent action

for any history and any future contingency at any time. While in the two bidder case

the history is rather simple—either the opponent dropped out and the auction is

over, or we are still in the auction process—with more bidders the individual decision

at each time may in principle depend on the exact timing at which opponents

dropped out in the past.

Since each decision must be sequentially optimal, given expectations about the

future, one might hope to be able to restrict to Markov perfect equilibria, in the

sense that at time t the individual type θi and the number of currently active bidders

is a sufficient statistic for the optimal decision of bidder i. However, this is not the

case. While the set of personal equilibria starting at time t can be determined

without looking into the past, the specific equilibrium path will depend on the

evolution of beliefs up to time t.

In order to deal with strategies contingent on histories, we define the following

notation:

Definition 6. For any n-bidder auction, define for all k ∈ {0, ..., n− 2}

Hk = {(t1, ..., tk)|0 ≤ t1 ≤, ...,≤ tk}

as the set of histories / future contingencies with k drop outs at the respective prices

t1, ..., tk, with the convention H0 = {∅}.

With this notation, a complete action plan prescribes for each history and future

contingency the price at which a bidder of type θ plans to drop out:

Definition 7. A pure strategy action plan prescribes a bidding strategy

b :
⋃

0≤k≤n−2

Hk × [θmin, θmax] → R+,

with the restriction that if for any (t1, ..., tk, θ) we have

b(t1, ..., tk, θ) > tk,
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The latter condition on the bidding function ensures that bidders cannot condi-

tion their drop out on events that happen after the drop out.

Again, we restrict attention to differentiable and increasing equilibrium bidding

functions in the following sense:

Definition 8. A bidding strategy b in the English auction is differentiable and

increasing if for all (t1, ..., tk) ∈
⋃

0≤k≤n−2 Hk the function b(t1, ..., tk, θ) is differen-

tiable and increasing in θ.

Example 1. Consider a continuous English auction with three loss-averse bidders.

A complete strategy prescribes for every θ:

• A price b(θ) at which the bidder drops out if no opponent dropped out before

• For any opponent drop out at some price t < b(θ), a price b(t, θ) at which the

bidder drops out in the subsequent two-bidder auction

The aim of the example is to illustrate, why the optimal strategy b(t, θ) for

the two-bidder auction following the first drop out depends on t.Suppose that all

three bidders bid according to the same symmetric equilibrium bidding strategy

(b(θ), b(t, θ)). Let us focus on the decision problem of a bidder, whose valuation θ

is sufficiently high, such that b(θ) = (1+ η)θ were the only time-consistent strategy

in the two-bidder English auction.

Suppose first that an opponent has a valuation of zero and drops out at t = 0. For

the strategy b(0, θ) the bidder is now bound by the set of time-consistent strategies

of the two-bidder auction, as outlined in Theorem 2. Since she has high beliefs to

win, the only time-consistent strategy is b(0, θ) = (1 + η)θ.

Next, we analyze optimal strategies b(t, θ) for t being smaller, but close to b(θ).

Similar to the two-bidder auction, a bidder with a high winning probability would

ex ante like to insure against belief fluctuations with an aggressive strategy. Any

strategy for b(t, θ), however, must be time consistent in the sense that the bidder

is willing to stick to it until t. Just before t the belief to win the auction has

decreased considerably. The bidder trades off the expected gains from trade against

the expected loss from news. The following Lemma states the expected loss at time

t for the three bidder case.
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Lemma 6. Consider a continuous English auction with three loss-averse bidders.

Assume all bidders follow a symmetric, differentiable, increasing bidding strategy

(b(θ), b(t, θ)). Assume further that no bidder dropped out until t ∈ [b(θmin), b(θmax)].

Let θ(t) be defined by b(θ) = t. Then expected gain-loss utility at time t is given by

Lt(θ) = −Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(1−G(θ(t)))2

[
G(θ)−G(s)

1−G(s)
−

(
G(θ)−G(s)

1−G(s)

)2

︸ ︷︷ ︸

A

− ln

(
1−G(θ)

1−G(s)

)
1−G(θ)

1−G(s)
︸ ︷︷ ︸

B

]

ds

The terms of Lt(θ) are easy to interpret. At time t the conditional marginal prob-

ability that the first drop out is of type s is given by 2g(s)(1−G(s))
(1−G(θ(t)))2 . In this case, the

bidder would update the winning probability from
(

G(θ)−G(s)
1−G(s)

)2

to G(θ)−G(s)
1−G(s) (term

A). Further, term B shows the expected loss for the following 2-bidder auction, as

calculated in Proposition 2.

Term A indicates an additional source of expected gain-loss disutility, compared

to the two bidder auction: even if a bidder loses after all, beliefs to win don’t

necessarily gradually decline to zero, but might temporarily increase due to one

opponent dropping out. This effect leads to more belief fluctuations and worsens

bidder’s trade-off between expected news disutility and expected gains from trade.

As a result, it is no longer time consistent to bid up to b(t, θ) = (1− η)θ for all t.

Corollary 4. In any symmetric, increasing, differentiable equilibrium (b(θ), b(t, θ))

of the English auction with three loss-averse bidders, expected news disutility for

any θ ∈ (θmin, θmax) satisfies

lim
t→b(θ)

Lt(θ)
(

G(θ)−G(θ(t))
1−G(θ(t))

)2 = −2Λθ.

If b(t, θ) is continuous in t, then—by time-consistency—

lim
t→b(θ)

b(t, θ) ≤ (1 + η − Λ)θ.

Since we have argued above that b(0, θ) = (1+ η)θ, the corollary illustrates that

bidding behavior b(t, θ) in general depends on opponents’ drop-out history t.

Even if the sales price depends on all type realizations, it is immediate that for n

bidders the revenue ranking between the two auction format remains: since bidders
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generically don’t share the same valuation, in any symmetric continuous increasing

equilibrium they will drop out of the auction consecutively, in order of their types.

Eventually, with probability one, the two bidders with the highest valuation will

end up in the two-bidder subgame. Here they are bound to the constraints on

time-consistent behavior, as analyzed in section 4.2. In particular by Lemma 3, any

time-consistent strategy for the two-bidder auction satisfies b(θ) ≤ (1 + η)θ.

To summarize:

Corollary 5. In a symmetric increasing equilibrium of the continuous English

auction with n loss-averse bidders, the revenue may depend on all type realiza-

tions. For any opponent drop-out history, every bidder’s maximal bid is bounded by

b(θ) ≤ (1 + η)θ. Thus, with n loss-averse bidders, the English auction remains to

yield lower revenues than the Vickrey auction.

Even if the auction outcome for many bidders is similar to the one for two bid-

ders, it is worth noting that individual bidders obtain less utility, compared to two-

bidder auctions with the same sales price. To see this, consider—hypothetically—

that bidders could choose not to observe individual drop outs, but rather learn in

each period, whether any opponent is still in the game. The auction would then

subjectively resemble an English auction with two bidders, where the opponent’s

type is drawn from the first order-statistic over all opponents. The key difference is

that information is fluctuating much less. As already mentioned earlier and stated

in generality in Proposition 1 of Kőszegi and Rabin (2009), the collapse of multiple

signals into one will always weakly decrease gain-loss disutility.

7 Conclusion

I studied the effects of expectation-based preferences in dynamic environments, com-

paring the dynamic English auction to the static Vickrey auction. If the reference

point is static and doesn’t respond to information, there is no strategic difference

between the English auction and the Vickrey auction. If bidders update their refer-

ence point instantaneously with respect to new information, however, dynamic in-

formation in the English influences bidders endogenous preferences, and thus their

bidding strategies. The classical strategic equivalence between the the two auction
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formats breaks down and the English auction attains strictly lower revenue than

the Vickrey auction.

This difference highlights the importance of understanding the evolution of the

reference point in dynamic environments. In particular, research about the speed

of reference point adaptation with respect to new information is still in its infancy

and deserves further study.

The non-equivalence of the two auction formats stands in sharp contrast to the

revenue equivalence principles by Vickrey (1961) and Myerson (1981). Indeed, the

powerful approach of mechanism design and the revelation principle relies on the

assumption that agents’ valuations are exogenously given and do not depend on

the choice of mechanism. This assumption is violated if bidders have endogenous

preferences that depend on expectations induced by the mechanism itself. In par-

ticular, if agents update their reference point with respect to new information in

a multi-stage mechanism, such a mechanism cannot be replaced by a simple di-

rect mechanism without changing agents’ incentives. The failure of the revelation

principle naturally leads to the question of optimal mechanism design in dynamic

environments with expectation-based loss-averse agents. The study of optimal ex-

pectation management in these environments leaves an interesting field for future

research.

8 Appendix

Proof of Theorem 3.4. Suppose that all opponents bid according to some increasing,

continuously differentiable bidding function b(θ). Since G(θ) is a distribution with

strictly positive, continuous density g, it follows that the distribution of the maximal

opponent bid, H(x) = Gn−1(b−1(x)), is a differentiable distribution with positive,

continuous density h(x) on [b(θmin), b(θmax)] as well.

The bidding function b(θ) constitutes a UPE if and only if the utility function

u(x, θ|b(θ)) attains its maximum at x = b(θ) for all θ. Differentiation with respect

to x yields

∂u(x, θ|b(θ))

∂x
=(θ − x)h(x) + h(x)(1−H(b(θ))µ(θ)− h(x)H(b(θ))µ(−θ).
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By dividing by h(x) and evaluating at x = b(θ) we obtion the first-order condition

0 = (θ − b(θ)) + (1−H(b(θ)))ηθ +H(b(θ))ληθ.

Rearranging yields

b(θ) =
(
1 + η(1−H(b(θ))) + ληH(b(θ))

)
θ. (1)

Using that H(b(θ)) = Gn−1(θ) we obtain

b(θ) =
(
1 + η(1−Gn−1(θ)) + ληGn−1(θ)

)
θ

as the unique equilibrium candidate. For sufficiency note first that

h(b(θ)) =
(Gn−1)′(θ)

b′(θ)
=

(n− 1)Gn−2(θ)g(θ)

(1 + η(1−Gn−1(θ)) + ληGn−1(θ)) + Λ(n− 1)Gn−2(θ)g(θ)θ

is differentiable since g(θ) is differentiable. Now it is immediate that

∂2ui(x, θ|b(θ))

(∂x)2
∣
∣
x=b(θ)

= −h(b(θ))+h′(b(θ))[(θ − b(θ)) + (1−H(b(θ))µ(θ)−H(b(θ))µ(−θ)
︸ ︷︷ ︸

=0

] < 0.

Proof of Lemma 1. By the theorem of the integral over inverse functions, we have

∫ b

a

Fi(x)dx = bFi(b)− aFi(a)−

∫ 1

0

cFi
(p)dp = b−

∫ 1

0

cFi
(p)dp.

Now, it is immediate that

∫ b

a

(F1(x)−F2(x))dx = (b−b)−

∫ 1

0

cF1
(p)dp+

∫ 1

0

cF2
(p)dp =

∫ 1

0

(cF2
(p)−cF1

(p))dp.

Proof of Proposition 1. By applying Lemma 1, and using the fact that µ is piecewise
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linear, we can write

E(N(Fi|F ) = ∆N(F1|F ) + (1−∆)N(F2|F )

= ∆

∫ 1

0

µ(cF1
(p)− cF (p))dp+ (1−∆)

∫ 1

0

µ(cF2
(p)− cF (p))dp

= ∆

∫ b

a

µ(F (x)− F1(x))dx+ (1−∆)

∫ b

a

µ(F (x)− F2(x))dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ((1−∆)F (x)− (1−∆)F2(x))dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ((1−∆)F (x)− (F (x)−∆F1(x))dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ(−∆F (x) + ∆F1(x))dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+∆

∫ b

a

µ(−F (x) + F1(x))dx

= ∆(−λη + η)

∫ b

a

|F (x)− F1(x)|dx

= −∆Λ

∫ b

a

|F (x)− F1(x)|dx

= −∆Λ

∫ 1

0

|cF1
(p)− cF (p)|dp.

Proof of Proposition 2. Suppose the current clock price is t and the opponent hasn’t

dropped out yet. If the clock increases in increments of ε, then the conditional

probability that the opponent drops out at the next increment is given by

∆t :=
F (t+ ε)− F (t)

1− F (t)
.

Given her strategy x and that the opponent hasn’t dropped out at t, the bidder

faces the conditional probability of 1−F (x)
1−F (t) to lose the auction. Thus, if F x

t denotes

the belief about payoffs in the good dimension at time t given strategy x, we have

F x
t (z) =







1−F (x)
1−F (t) z < θ

1 z ≥ θ.

37



If the bidder wins in the next increment, the belief will update to

F x
t+ε(z) =







0 z < θ

1 z ≥ θ

According to Proposition 1, expected gain-loss utility of the increment from t to

t+ ε is then given by

E(N(F x
t+ε|F

x
t ) = −∆tΛ

∫

|F x
t (z)− F x

t+ε(z)|dz = −∆tΛ
1− F (x)

1− F (t)
θ.

Now, the marginal loss at time t if ε goes to zero reads

ℓt(x, θ, F ) = lim
ε→0

−∆tΛ
1−F (x)
1−F (t) θ

ε
=

−f(t)

(1− F (t))2
(1− F (x))Λθ.

To calculate total expected gain-loss utility starting at time t, note that any infor-

mation update at time s > t is only informative and carries gain-loss utility if the

opponent hasn’t already dropped out between t and s, which holds true with the

conditional probability 1−F (s)
1−F (t) . Thus

Lt(x, θ, F ) = lim
ε→0

⌊ x−t
ε

⌋−1
∑

i=0

N(F x
t+(i+1)ε|F

x
t+iε)

= lim
ε→0

⌊ x−t
ε

⌋−1
∑

i=0

−
1− F (t+ iε)

1− F (t)
∆t+iεΛ

1− F (x)

1− F (t+ iε)
θ

=

∫ x

t

−f(s)

1− F (s)

1− F (x)

1− F (t)
Λθds

= (ln(1− F (x))− ln(1− F (t))
1− F (x)

1− F (t)
Λθ

= ln

(
1− F (x)

1− F (t)

)
1− F (x)

1− F (t)
Λθ.

Proof of Lemma 2. At time t the winning probability is given by the probability

that the opponent drops out between t and x, given he didn’t drop out before t,
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thus F (x)−F (t)
1−F (t) . Thus, the update changes the probability of getting θ by

F (y)− F (t)

1− F (t)
−

F (x)− F (t)

1− F (t)
=

F (y)− F (x)

1− F (t)
.

Hence,

N(F y
t |F

x
t ) = µ

(
F (y)− F (x)

1− F (t)
θ

)

=
µ(F (y)− F (x))

1− F (t)
θ.

Proof of Lemma 3. The bidder does not want do deviate to a lower strategy at any

time t, given plan x if and only if

ut(y, θ, F |x) ≤ ut(x, θ, F |x)

for all t ≤ y ≤ x. In particular it is necessary that for all t < x the derivative from

the left satisfies

0 ≤ lim
yրx

∂ut(y, θ, F |x)

∂y

=
f(x)

1− F (t)

(

θ − x+ ληθ − Λ

(

1 + ln

(
1− F (x)

1− F (t)

))

θ

)

.

This expression is well defined, since F (t) < F (x) < 1. Now, as t approaches x we

get

0 ≤ lim
t→x

f(x)

1− F (t)

(

θ − x+ ληθ − Λ

(

1 + ln

(
1− F (x)

1− F (t)

))

θ

)

=
f(x)

1− F (x)
(θ − x+ ληθ − Λθ) .

Since, by assumption, f(x) > 0, this means that necessarily

x ≤ (1 + λη − Λ)θ = (1 + η)θ.

Proof of Proposition 3. Given opponent’s strategy F and bidder’s type θ, a bid b(θ)
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is a personal equilibrium in the auction with commitment if and only if

u0(y, θ, F |b(θ)) ≤ u0(b(θ), θ, F |b(θ))

for all y. In particular, it is necessary that

lim
yցb(θ)

∂u0(y, θ, F |b(θ))

∂y
≤ 0.

Since for y > b(θ) the utility at time zero reads

u0(y, θ, F |b(θ)) =

∫ y

0

(θ− s)dF (s)+η(F (y)−F (b(θ)))θ+ln(1−F (y))(1−F (y))Λθ,

this necessary condition is equivalent to

f(b(θ))
(
θ − b(θ) + ηθ − Λ(1 + ln(1− F (b(θ))))θ

)
≤ 0.

In any symmetric equilibrium, the opponent bids according to b(θ) as well, and

therefore we have F (b(θ)) = G(θ). From g(θ) = f(b(θ))b′(θ) and the restriction

that b is increasing it follows that f(b(θ)) > 0. Hence we have

b(θ) ≥
(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ

for any equilibrium candidate. It remains to verify that

b(θ) =
(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ

is a personal equilibrium, given opponent’s response b(θ). For this it is sufficient to

show that

∂u0(y, θ, F |b(θ))

∂y
≤ 0

for all y > b(θ), and

∂u0(y, θ, F |b(θ))

∂y
≥ 0

for all y < b(θ). Note that we can without loss of generality restrict to y ∈ [b(θmin), b(θmax)].

For any such y there exists some θ̃ with y = b(θ̃), since the bidding function is
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continuous.

Consider first y > b(θ), thus θ̃ > θ. Then

∂u0(y, θ, F |b(θ))

∂y
|y=b(θ̃) = f(b(θ̃))

(
θ − b(θ̃) + ηθ − Λ(1 + ln(1− F (b(θ̃))))θ

)

< f(b(θ̃))
(
θ̃ − b(θ̃) + ηθ̃ − Λ(1 + ln(1− F (b(θ̃))))θ̃

)

= lim
yցb(θ̃)

∂u0(y, θ̃, F |b(θ))

∂y

= 0.

Similarly, for y < b(θ), thus θ̃ < θ we have

∂u0(y, θ, F |b(θ))

∂y
|y=b(θ̃) = f(b(θ̃))

(
θ − b(θ̃) + ληθ − Λ(1 + ln(1− F (b(θ̃))))θ

)

> f(b(θ̃))
(
θ̃ − b(θ̃) + ηθ̃ − Λ(1 + ln(1− F (b(θ̃))))θ̃

)

= lim
yցb(θ̃)

∂u0(y, θ̃, F |b(θ))

∂y

= 0.

Proof of Lemma 4. Consider a bidding strategy x.

Claim 1: If and only if x ≤ (1+ η)θ, it is at no time t < x profitable to deviate

to a lower strategy y ∈ [t, x).

Proof: the “only if” has been proved in Lemma 3. For the “if”, assume that

x ≤ (1+ η)θ. Consider a deviation at some time t < x from x to y ∈ [t, x). We first

look at the change in expected gain-loss disutility: term A can be interpreted as

the change due to different expectations at each time between t and y, while term
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B is forgone gain-loss disutility, since the auction necessarily ends at y:

Lt(y, θ, F )− Lt(x, θ, F )

=Λθ

(

ln

(
1− F (y)

1− F (t)

)
1− F (y)

1− F (t)
− ln

(
1− F (x)

1− F (t)

)
1− F (x)

1− F (t)

)

=Λθ

(∫ y

t

−f(s)

1− F (s)
ds

1− F (y)

1− F (t)
−

∫ x

t

−f(s)

1− F (s)
ds

1− F (x)

1− F (t)

)

=Λθ

(∫ y

t

−f(s)

1− F (s)
ds

1− F (y)

1− F (t)
−

∫ y

t

−f(s)

1− F (s)
ds

1− F (x)

1− F (t)
−

∫ x

y

−f(s)

1− F (s)
ds

1− F (x)

1− F (t)

)

=Λθ








∫ y

t

−f(s)

1− F (s)
ds

F (x)− F (y)

1− F (t)
︸ ︷︷ ︸

A

−

∫ x

y

−f(s)

1− F (s)
ds

1− F (x)

1− F (t)
︸ ︷︷ ︸

B








≤Λθ

∫ x

y

f(s)

1− F (s)
ds

1− F (x)

1− F (t)

<Λθ

∫ x

y

f(s)ds
1− F (x)

(1− F (x))(1− F (t))

=Λθ
F (x)− F (y)

1− F (t)

Now we have

ut(y, θ, F |x)− ut(x, θ, F |x) =
1

1− F (t)

(

−

∫ x

y

(θ − s)dF (s) + µ(F (y)− F (x))θ + Λθ(F (x)− F (y))

)

<
F (x)− F (y)

1− F (t)
(−θ + x− ληθ + Λθ)

=
F (x)− F (y)

1− F (t)
(−(1 + η)θ + x)

≤ 0.

Thus, there is no profitable deviation to y < x at any time, which concludes the

proof of claim 1.

Claim 1 directly shows the necessity of 1. for any PE. Certainly, 2. is necessary

as well.

Claim 2: If it is not profitable to deviate to a strategy y > x at time t = 0,
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then it is not profitable at any time t ≤ x.

Proof: It is not profitable to deviate to a strategy y > x at time t if and only if

0 ≥ ut(y, θ, F |x)− ut(x, θ, F |x)

Now,

ut(y, θ, F |x)− ut(x, θ, F |x)

=
1

1− F (t)

(∫ y

x

(θ − s)dF (s) + µ(F (y)− F (x))θ

)

+ Λθ

(
1− F (y)

1− F (t)
ln

(
1− F (y)

1− F (t)

)

−
1− F (x)

1− F (t)
ln

(
1− F (x)

1− F (t)

))

=
1

1− F (t)

(
∫ y

x

(θ − s)dF (s) + µ(F (y)− F (x))θ ...

...+ Λθ((1− F (y)) ln(1− F (y))− (1− F (x)) ln(1− F (x)) + (F (y)− F (x)) ln(1− F (t)))

)

.

Note that the expression in the big brackets is decreasing in t. Thus, if it is negative

for t = 0, then it is as well negative for all t > 0. Hence, if

0 ≥ u0(y, θ, F |x)− u0(x, θ, F |x)

then

0 ≥ ut(y, θ, F |x)− ut(x, θ, F |x)

for all t > 0, which concludes the proof of claim 2.

Now we are ready to show sufficiency: assume 1. and 2. hold. Then by claim 1

it can’t be profitable to deviate to a lower strategy at any time. To show that there

is no profitable deviation to a higher strategy, take any time-consistent strategy

y ≥ x. By claim 1 this necessarily means y ∈ [x, (1 + η)θ]. From 2. it follows that

u0(x, θ, F |x) ≥ u0(y, θ, F |x). Then, by claim 2, the agent does not want to deviate

to a higher strategy at any time, and x is indeed a PE.

Proof of Theorem 2. Take some increasing equilibrium function. By Lemma 4, it

satisfies b(θ) ≤ (1 + η)θ for all θ ∈ (θmin, θmax). If b(θ) < (1+η)θ for some θ, then—

again by Lemma 4—any y ∈ [x, (1+ η)θ] satisfies u0(x, θ, F |x) ≥ u0(y, θ, F |x). This

means that

lim
yցx

∂u0(y, θ, F |x)

∂y
≤ 0,
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which—as we have seen in the proof of Proposition 3—straightforwardly solves to

b(θ) ≥
(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ

in equilibrium. This shows that any increasing equilibrium satisfies 1. and 2. for all

θ ∈ (θmin, θmax). By continuity it also holds for all θ ∈ [θmin, θmax].

Conversely, assume that b(θ) satisfies 1. and 2. By Lemma 4 it only remains to

show that for any

y ∈ [b(θ), (1 + η)θ]

we have

u0(b(θ), θ, F |b(θ)) ≥ u0(y, θ, F |b(θ)).

This condition is trivially satisfied for any θ with b(θ) = (1+η)θ. Consider therefore

θ with b(θ) < (1 + η)θ. It suffices to show that

∂u0(y, θ, F |b(θ))

∂y
≤ 0

for all y ∈ [b(θ), (1 + η)θ]. Let ỹ be any of such y. Since

b(θmax) = (1 + η)θmax > (1 + η)θ ≥ ỹ ≥ b(θ),

and b is continuous, there exists some θ̃ ≥ θ with b(θ̃) = ỹ. Now,

∂u0(y, θ, F |b(θ))

∂y

∣
∣
y=ỹ

= [(1 + η)θ − ỹ − Λθ(1 + ln(1− F (ỹ)))]f(ỹ)

= [(1 + η − Λ(1 + ln(1− F (b(θ̃)))))
︸ ︷︷ ︸

>0

θ − b(θ̃)]f(b(θ̃))

≤ [(1 + η − Λ(1 + ln(1− F (b(θ̃)))))θ̃
︸ ︷︷ ︸

≤b(θ̃)

−b(θ̃)]f(b(θ̃))

≤ 0.
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Proof of Corollary 3. We have

(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ ≤ (1 + η)θ

if and only if −(1 + ln(1 − G(θ))) ≤ 0, which is equivalent to G(θ) ≤ 1 − 1/e.

Therefore, by Theorem 2, a fuction b(θ) is a symmetric equilibrium if and only if

• b(θ) ∈
[
(1 + η − Λ(1 + ln(1−G(θ))))θ, (1 + η)θ

]
for G(θ) ≤ 1− 1/e, and

• b(θ) = (1 + η)θ for G(θ) > 1− 1/e.

We determine the utility maximizing equilibrium on the interval whereG(θ) ≤ 1− 1/e.

Bidder’s expected utility of a bid x is

u0(x, θ, F |x) =

∫ x

0

(θ − s)dF (s) + Lt(x, θ, F )

=

∫ x

0

(θ − s)dF (s) + Λθ ln(1− F (x))(1− F (x)).

Thus, for any x ≥
(
1 + η − Λ(1 + ln(1−G(θ)))

)
θ

∂u0(x, θ, F |x)

∂x
= (θ − x)f(x)− Λθ(1 + ln(1− F (x)))f(x)

≤ (θ − (1 + η − Λ(1 + ln(1−G(θ))))θ)f(x)− Λθf(x)

≤ (θ − (1 + η − Λ)θ)f(x)− Λθf(x)

= −f(x)ηθ

< 0.

This shows that the lowest x among all equilibrium strategies yields the highest

utility.

Finally, since for the PPE

b(θmin) =
(
1 + η − Λ(1 + ln(1−G(θmin)))

)
θmin = (1 + η − Λ)θmin,

there is underbidding for low types in the PPE if and only if

0 > η − Λ = 2η − λη,
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hence if and only if λ > 2.

Proof of Theorem 3. For (1) we show that without interim update the equilibrium

concepts of the static UPE and the dynamic PE coincide. Given type θ and a contin-

uous belief H on the maximal opponent bid, bidding (up to) b induces the same pay-

off belief (and therefore reference point) F k(b, θ,H) for k ∈ {money, good} = {m, g}

in the Vickrey and the English auction. Consider a bidder in the English auction

who plans to bid up to b but deviates during the auction process, such that the

final payoff in dimension k ∈ {m, g} is distributed according to F . If there is no

interim updating during the auction, the bidder updates her reference point only

once when the auction is terminated. Integrating the utility in dimension k for each

possible auction outcome yields expected utility of

UEnglish(F |F k(b, θ,H)) =

∫

(x+N(✶[x,∞)|F
k(b, θ,H)))dF (x)

=

∫ (

x+

∫ 1

0

µ(x− cF (p))dp

)

dF (x)

=

∫ (

x+

∫ ∞

−∞

µ(x− cF (F (s)))dF (s)

)

dF (x)

=

∫ (

x+

∫ ∞

−∞

µ(x− s)dF (s)

)

dF (x)

= UVickrey(F |F k(b, θ,H)).

Thus, equally for the UPE concept in the Vickrey auction and the PE concept in

the English auction, an action b is an equilibrium if and only if for all distributions

(Fm, F g) that are induced by a deviation strategy we have

∑

k∈{m,g}

U(F k(b, θ,H)|F k(b, θ,H)) ≥
∑

k∈{m,g}

U(F k|F k(b, θ,H)).

The subtle difference lies in the fact that a bidder in the Vickrey auction is con-

strained to deviations b̂ ∈ R
+, while a bidder in the English auction with multiple

opponents can use complex history dependent deviation strategies, leading to are

larger set of potential price distributions than in the Vickrey auction. Clearly, if

action b is optimal with respect to all possible deviations in the English auction, it

is in particular optimal with respect to deviations to all history-independent strat-

egy b̂ ∈ R
+. Thus, if bidding up to b is a PE in the English auction, then bidding
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b is a UPE in the Vickrey auction. For the converse, assume that b is a UPE in

the Vickrey auction and let (Fm, F g) be the payoff distribution of some deviation

strategy in the English auction. Since H is continuous, there is some b̂ such that

F g(b̂, θ,H) = F g. Further, since strategy b̂ wins the auction if and only if the max-

imal opponent strategy is below b̂, it is the most cost effective strategy that wins

with probability H(b̂). Thus the distribution Fm induces weakly higher costs than

Fm(b̂, θ,H) in the sense of first-order stochastic dominance. It follows that

U(Fm|F k(b, θ,H)) ≤ U(Fm(b̂, θ,H)|F k(b, θ,H)) ≤ U(Fm(b, θ,H)|F k(b, θ,H)),

and since consequently

∑

k∈{m,g}

U(F k(b, θ,H)|F k(b, θ,H)) ≥
∑

k∈{m,g}

U(F k|F k(b, θ,H)),

the strategy b is a PE in the English auction.

For (2) note that by Theorem 4 the equilibrium bidding function for the Vickrey

auction is given by

bVickrey(θ) = (1 + η + ΛGn−1(θ))θ,

whereas any equilibrium bidding function in the English auction with instantaneous

reference point updating by Lemma 4 satisfies

bEnglish(θ) ≤ (1 + η)θ.

Since, by assumption, Gn−1(θ) is strictly increasing, we have Gn−1(θ) > 0 for all

θ > θmin, and the claim follows.

Proof of Theorem 4. The structure of the proof is similar to Lange and Ratan
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(2010). The utility function can be simplified to

u(b, θ|b∗) =

∫ b

0

(θ − s)dH(s)

+

∫ b

0

∫ b∗

0

µm(t− s)dH(t)dH(s) + (1−H(b∗))

∫ b

0

µm(−s)dH(s)

+ (1−H(b))

∫ b∗

0

µm(t)dH(t)

+H(b)(1−H(b∗))µg(θ) +H(b∗)(1−H(b))µg(−θ).

Suppose that all opponents bid according to some increasing, continuously dif-

ferentiable bidding function b(θ). Since G(θ) is a distribution with strictly pos-

itive, continuous density g, distribution of the maximal opponent bid H(x) =

Gn−1(b−1(x)) is a differentiable distribution with positive, continuous density h(x)

on [b(θmin), b(θmax)] as well. The bidding function b(θ) constitutes a UPE if and

only if the utility function u(x, θ|b(θ)) attains a maximum at x = b(θ) for all θ.

Differentiation of the utility function with respect to x yields

∂u(x, θ|b(θ))

∂x
=(θ − x)h(x) +

∫ b(θ)

0

µm(t− x)h(x)dH(t) + (1−H(b(θ)))µm(−x)h(x)

− h(x)

∫ b(θ)

0

µm(t)dH(t) + h(x)(1−H(b(θ)))ηgθ + h(x)H(b(θ))λgηgθ.

By dividing by h(x) and evaluating at x = b(θ), we obtain the first-order condition

0
!
=(θ − b(θ)) +

∫ b(θ)

0

µm(t− b(θ))dH(t) + (1−H(b(θ))µm(−b(θ))

−

∫ b(θ)

0

µm(t)dH(t) + (1−H(b(θ)))ηgθ +H(b(θ))λgηgθ

=(θ − b(θ))− λmηm

∫ b(θ)

0

(b(θ)− t)dH(t) + (1−H(b(θ)))(−λgηgb(θ))

− ηm

∫ b(θ)

0

tdH(t) + (1−H(b(θ)))ηgθ +H(b(θ))λgηgθ,

which simplifies to

0 = (1 + ηg)θ − (1 + λmηm)b(θ) + Λm

∫ b(θ)

0

tdH(t) + ΛgH(b(θ))θ. (2)
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Using that H(b(θ)) = Gn−1(θ) we can rewrite this equation to

0 = (1 + ηg)θ − (1 + λmηm)b(θ) + Λm

∫ θ

0

b(s)dGn−1(s) + ΛgG
n−1(θ)θ.

Differentiation with respect to θ yields

0 = (1 + ηg)− (1 + λmηm)b′(θ) + Λmb(θ)(Gn−1)′(θ) + Λg(G
n−1(θ)θ)′.

The rearranged equation

b′(θ) =
Λm(Gn−1)′(θ)

1 + λmηm
b(θ) +

1 + ηg + Λg(θG
n−1(θ))′

1 + λmηm

is a first-order linear differential equation, which solves to

b(θ) = exp

(
Λm

1 + λmηm
Gn−1(θ)

)(∫ θ

0

1 + ηg + Λg(xG
n−1(x))′

1 + λmηm
exp

(

−
Λm

1 + λmηm
Gn−1(x)

)

dx+ C

)

,

where C is the constant of integration. Since G(x) = 0 for x ≤ θmin, we have

b(θmin) = exp(0)

(
∫ θmin

0

1 + ηg
1 + λmηm

exp(0)dx+ C

)

=
1 + ηg

1 + λmηm
θmin + C.

To determine C, we insert θmin into equation (2) and obtain that

0 = (θmin − b(θmin)) + (−λmηmb(θmin)) + ηgθ
min,

or equivalently

b(θmin) =
1 + ηg

1 + λmηm
θmin,

which shows that C = 0. Now we can use partial integration in order to rewrite the

solution into

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ +

∫ θ

0

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm
(Gn−1(θ)−Gn−1(x))

)

dG(x).

Since G(x) = 0 for all x ≤ θmin, we finally have

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ+

∫ θ

θmin

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm
(Gn−1(θ)−Gn−1(x))

)

dG(x).

49



For sufficiency note first that b′(θ) is differentiable, since g(θ) is—by assumption—

differentiable. It follows that

h(b(θ)) =
(Gn−1)′(θ)

b′(θ)

is differentiable as well. Now it is immediate that

∂2u(x, θ|b(θ))

(∂x)2

∣
∣
∣
∣
x=b(θ)

=
∂

∂x

(

h(x)
∂u(x, θ|b(θ)/∂x)

h(x)

) ∣
∣
∣
∣
x=b(θ)

=h′(b(θ))

(
∂u(x, θ|b(θ)/∂x)

h(x)

) ∣
∣
∣
∣
x=b(θ)

︸ ︷︷ ︸

=0

+ h(b(θ))

[

−1 +

∫ b(θ)

0

−λmηmdH(t)− λmηm(1−H(b(θ)))

]

︸ ︷︷ ︸

<0

< 0.

Proof of Lemma 5. Assume the clock increases in increments of ε and the bidder

plans to bid up to x ∈ (a, b). Assume the clock price is x− ε, and the opponent has

not dropped out yet. We analyze bidders incentives to bid at x given her plan to

do so.

Let ∆ = ∆(ε) = F (x)−F (x−ε)
1−F (x−ε) be the probability that the opponent drops out at

x, given he is still in at x− ε. This means the bidder beliefs to win the auction and

get a payoff of (θ,−(x− ε)) with probability ∆. If the bidder bids at x she receives

a utility of

u(x, θ, F |x) = ∆(θ − (x− ε))
︸ ︷︷ ︸

classical utility

+∆(1−∆)(ηgθ − λmηm(x− ε))
︸ ︷︷ ︸

gain-loss of winning the auction

+(1−∆)∆(−λgηgθ + ηm(x− ε)).
︸ ︷︷ ︸

gain-loss of losing the auction

If she drops out before bidding x, she receives

u(x− ε, θ, F |x) = ∆(−λgηgθ + ηm(x− ε))
︸ ︷︷ ︸

gain-loss of losing the auction

.
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If bidding up to x is time consistent, then

u(x, θ, F |x) ≥ u(x− ε, θ, F |x).

This is equivalent to

∆[θ − (x− ε) + (1−∆)(ηgθ − λmηm(x− ε))−∆(−λgηgθ + ηm(x− ε))] ≥ 0.

Since F has a positive density, we have ∆ > 0, and it follows

(1 + ηg)θ − (1 + λmηm)(x− ε) + ∆(Λgθ + Λm(x− ε)) ≥ 0.

Since F has no atoms, limε→0 ∆(ε) = 0. Thus, in the limit as the increment size

goes to zero, we obtain

(1 + ηg)θ − (1 + λmηm)x ≥ 0,

or equivalently

x ≤
1 + ηg

1 + λmηm
θ.

Proof of Proposition 4. I sketch the main steps of the proof. If a bidder wins the

auction, he has to pay max{b, x} with b being the maximal opponent bid. Given

opponents’ strategies, let HRP (b) be the distribution of the maximal opponent bid

with reserve price x. By replacing s with max{s, x} and t with max{t, x} in the

utility function in section 6.1, the utility of a bidder of type θ who bids b with a
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reference point as if bidding b∗ is

u(b, θ|b∗) =

∫ b

0

(

−max{s, x}+

∫ b∗

0

µm(max{t, x} −max{s, x})dHRP (t)

)

dHRP (s)

+

∫ b

0

∫ ∞

b∗
µm(−max{s, x})dHRP (t)dHRP (s)

+

∫ ∞

b

(
∫ b∗

0

µm(max{t, x})dHRP (t) +

∫ ∞

b∗
µm(0)dHRP (t)

)

dHRP (s)

+

∫ b

0

(

θ +

∫ b∗

0

µg(0)dHRP (t) +

∫ ∞

b∗
µg(θ)dHRP (t)

)

dHRP (s)

+

∫ ∞

b

(
∫ b∗

0

µg(−θ)dHRP (t) +

∫ ∞

b∗
µg(0)dHRP (t)

)

dHRP (s).

Following the derivation of the necessary condition for a symmetric increasing equi-

librium13 in the proof of Theorem 4 with this modified utility function, we obtain

for all θ with bRP (θ) ≥ x the following modification of equation (2):

0 =(1 + ηg)θ − (1 + λmηm)bRP (θ) + ΛgHRP (bRP (θ))θ + Λm

∫ bRP (θ)

0

ydHRP (y) +HRP (x)x.

Rearranging yields

bRP (θ) =
1

1 + λmηm

(

(1 + ηg)θ + ΛgHRP (bRP (θ)) + Λm

∫ bRP (θ)

x

ydHRP (y) +HRP (x)x

)

.

Let θ be defined by b(θ) = x. We need to show that b(θ) < bRP (θ) for any θ ≥ θ.

Assume otherwise, and let θ̃ = min{θ ∈ [θ, θmax]|b(θ) ≥ bRP (θ)}. The minimum

13The proof of existence of a symmetric increasing continuous equilibrium bidding function
bRP (θ) with reserve price, and its uniqueness for θ with b(θ) ≥ x is omitted. It is a modification
of Proof 4.
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exists by continuity of b and bRP . Now we have

b(θ̃) =
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgH(b(θ̃)) + Λm

∫ b(θ̃)

0

ydH(y)

)

<
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgH(b(θ̃)) + Λm

∫ b(θ̃)

b(θ)

ydH(y) +H(x)x

)

=
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgG
n−1(θ̃) + Λm

∫ θ̃

θ

b(s)dGn−1(s) +Gn−1(θ)x

)

≤
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgG
n−1(θ̃) + Λm

∫ θ̃

θ

bRP (s)dG
n−1(s) +Gn−1(θ)x

)

=
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgHRP (bRP (θ̃)) + Λm

∫ bRP (θ̃)

bRP (θ)

ydHRP (y) +HRP (bRP (θ))x

)

≤
1

1 + λmηm

(

(1 + ηg)θ̃ + ΛgHRP (bRP (θ̃)) + Λm

∫ bRP (θ̃)

x

ydHRP (y) +HRP (x)x

)

= bRP (θ̃),

a contradiction.

Proof of Proposition 5. For any given opponent strategy distribution F , the imple-

mentation of a reserve price x is perceived by the bidder as if playing against a

distribution

FRP (z) =







0 z < x

F (z) z ≥ x.

In particular FRP (z) = F (z) for all z ≥ x. Following Lemma 4, a strategy x > x is

a PE if and only if

1. x ≤ (1 + η)θ

2. For any y ∈ [x, (1 + η)θ] we have u0(x, θ, F |x) ≥ u0(y, θ, F |x).

Since for any y, x > x we have

u0(y, θ, FRP |x) = u0(y, θ, F |x),

these conditions remain unchanged under a reserve price of x. Therefore, the set of

symmetric equilibria for two loss-averse bidders remains unchanged as well.

Proof of Lemma 6. From the perspective of a representative bidder, we denote with
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F (x) the distribution of prices, at which a particular opponent drops out, i.e.

F (b(θ)) = G(θ). Similarly we denote with Ft(x) the distribution of drop-out prices

of the remaining opponent, given the other opponent drops out at t. Since the re-

maining opponent j didn’t drop out until t, his type θj necessarily satisfies θj > θ(t),

and therefore

Ft(b(t, θ)) = Prob(θj ≤ θ|θj > θ(t)) =
G(θ)−G(θ(t))

1−G(θ(t))
.

If we denote with L2,t expected gain-loss utility in the two-bidder subgame following

an opponent’s drop out at price t, then by Proposition 2

L2,t(θ) = ln

(
1− Ft(b(t, θ))

1− Ft(t)

)
1− Ft(b(t, θ))

1− Ft(t)
Λθ

= ln(1− Ft(b(t, θ))(1− Ft(b(t, θ))Λθ

= ln

(
1−G(θ)

1−G(θ(t))

)
1−G(θ)

1−G(θ(t))
.

For the 3-bidder auction leading to the first drop out, consider first price increments

of ε. Suppose the clock is at price s and both opponents are still remaining. Since

we restrict to symmetric increasing bidding functions, a bidder of type θ wins the

auction if and only if both opponents have a type lower that θ. Given that they

didn’t drop out until s, this holds true with probability
(

G(θ)−G(θ(s))
1−G(θ(s))

)2

.

The probability that a particular opponent j drops out at the next increment is

∆(s) =
F (s+ ε)− F (s)

1− F (s)
.

At the next increment s+ ε there are three possibilities:

• With probability (∆(s))2 both opponents drop out. The bidder wins with

certainty, which induces a gain of

(

1−
(

G(θ)−G(θ(s))
1−G(θ(s))

)2
)

ηθ.

• With probability 2∆(s)(1−∆(s)) exactly one opponent drops out. The bidder

updates her belief to win, which induces a gain of

(

G(θ)−G(θ(s+ε))
1−G(θ(s+ε)) −

(
G(θ)−G(θ(s))
1−G(θ(s))

)2
)

ηθ.

• With probability (1−∆(s))2 no opponent drops out, which induces a loss of
((

G(θ)−G(θ(s+ε))
1−G(θ(s+ε))

)2

−
(

G(θ)−G(θ(s))
1−G(θ(s))

)2
)

ληθ.
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Since F is continuous, ∆(s) approaches zero, as the increment size goes to zero.

Therefore, in the limit for the continuous English auction, the probability that

both opponents drop out at the same time is of second order and has no impact on

expected gain-loss utility. Applying Proposition 1, expected gain-loss utility in the

increment from s to s+ ε for small ε with both opponents being active approaches

Ls+ε(θ)−Ls(θ) = −2∆(s)(1−∆(s))

(

G(θ)−G(θ(s+ ε))

1−G(θ(s+ ε))
−

(
G(θ)−G(θ(s))

1−G(θ(s))

)2
)

Λθ.

As the increment size goes to zero, in the limit the marginal expected gain-loss

utility with both opponents being active at time s is given by

ℓ(s)(θ) =
−2f(s)

1− F (s)

(

G(θ)−G(θ(s))

1−G(θ(s))
−

(
G(θ)−G(θ(s))

1−G(θ(s))

)2
)

Λθ.

At time t, the probability that time s > t is reached without at least one opponent

drop out is
(

1−F (s)
1−F (t)

)2

. Consequently the marginal probability of a drop out at

s—which triggers the 2-bidder auction with expected loss L2,s—is

∂

∂s

(
(1− F (s))2

(1− F (t))2

)

=
2f(s)(1− F (s))

(1− F (t))2
.

Putting the two sources of gain-loss utility together and integrating over s yields

Lt(θ) =

∫ b(θ)

t

((
1− F (s)

1− F (t)

)2

ℓ(s) +
2f(s)(1− F (s))

(1− F (t))2
L2,s(θ)

)

ds

=− Λθ

∫ b(θ)

t

2f(s)(1− F (s))

(1− F (t))2

(
G(θ)−G(θ(s))

1−G((θ(s))
−
(G(θ)−G(θ(s))

1−G(θ(s))

)2
)

ds

+ Λθ

∫ b(θ)

t

2f(s)(1− F (s))

(1− F (t))2
ln

(
1−G(θ)

1−G(θ(s))

)
1−G(θ)

1−G(θ(s))
ds

Since F (s) = G(θ(s)) and consequently f(s) = g(θ(s))/b′(θ(s)), integration by

substitution yields

Lt(θ) = −Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(1−G(θ(t)))2

[
G(θ)−G(s)

1−G(s)
−

(
G(θ)−G(s)

1−G(s)

)2

−ln

(
1−G(θ)

1−G(s)

)
1−G(θ)

1−G(s)

]

ds
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Proof of Corollary 4. Define

δ(s) =
G(θ)−G(s)

1−G(s)

Since for θ < θmax we have δ(s) < 1, and we can use the power series of the

logarithm to rewrite

Lt(θ) = −Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(1−G(θ(t)))2
[
δ(s)−(δ(s))2−(−δ(s)−

δ(s)2

2
−
δ(s)3

3
...)(1−δ(s))

]
ds

Since lims→θ δ(s) = 0, we have

lim
t→b(θ)

Lt(θ)
(

G(θ)−G(θ(t))
1−G(θ(t))

)2

= lim
t→b(θ)

−Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(G(θ)−G(θ(t))2
[
δ(s)− (δ(s))2 − (−δ(s)−

δ(s)2

2
...)(1− δ(s))

]
ds

= lim
(θ(t)→θ

−Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(G(θ)−G(θ(t))2
[
δ(s)− (δ(s))2 − (−δ(s)−

δ(s)2

2
...)(1− δ(s))

]
ds

= lim
θ(t)→θ

−Λθ

∫ θ

θ(t)

2g(s)(1−G(s))

(G(θ)−G(θ(t))2
2δ(s)ds

= lim
θ(t)→θ

−2Λθ

∫ θ

θ(t)

2g(s)(G(θ)−G(s))

(G(θ)−G(θ(t))2
ds

= lim
θ(t)→θ

−2Λθ

[
−(G(θ)−G(s))2

(G(θ)−G(θ(t))2

]θ

θ(t)

= lim
θ(t)→θ

−2Λθ

=− 2Λθ

Now, since b(t, θ) is continuous in t, limt→b(θ) b(t, θ) exists. We prove the threshold

of time-consistent behavior for (θmin, θmax) by contradiction. For the boundaries it

follows by continuity. Assume that there is some θ ∈ (θmin, θmax) with

lim
t→b(θ)

b(t, θ) > (1 + η − Λ)θ.

Since b(t, θ) is continuous there is some t̂ < b(θ) and θ̂ ∈ [θ(t̂), θ], such that

b(t, θ) > (1 + η − Λ)θ
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for all t ∈ [t̂, b(θ)], θ ∈ [θ̂, θ]. This implies that the sales price for the good exceeds

(1+η−Λ)θ if no bidder drops out until t̂. If b(t, θ) is a time-consistent strategy, then

at time t̂ a bidder of type θ must weakly prefer this strategy to an instantaneous

drop out. Since at time t̂ her belief to win is
(

G(θ)−G(θ(t̂))

1−G(θ(t̂))

)2

, this condition reads

−ληθ

(
G(θ)−G(θ(t̂))

1−G(θ(t̂))

)2

<

(
G(θ)−G(θ(t̂))

1−G(θ(t̂))

)2

(θ − (1 + η − Λ)θ) + Lt̂(θ),

with strict inequality since the price strictly exceeds (1+η−Λ)θ. This is equivalent

to

Lt̂(θ) > −2Λθ

(
G(θ)−G(θ(t̂))

1−G(θ(t̂))

)2

,

a contradiction for t̂ sufficiently close to b(θ).
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