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1. Introduction

When confronted with data sets with missing values it is often assumed in
applied research that observations are missing at random (MAR) in the sense
of Rubin [1976]. This condition requires that the probability of observing
potential outcomes only depends on observed data. To help to decide whether
MAR based techniques could be applied we develop in this paper a test for
the MAR assumption. In general, MAR is not refutable without further
assumptions and here we rely on instruments that are independent of the
response mechanism given potentially observed outcomes. We show that this
condition is sufficient to ensure testability of MAR and derive the asymptotic
distribution under MAR of a proposed test statistic. We provide an extension
of our testing procedure to asses the hypothesis missing completely at random
(MCAR).
If the missing data mechanism does not follow MAR, a correction of the
potential selection bias is necessary to ensure consistency of the estimation
procedure. There exist two different instrumental variable approaches to
overcome the problem of missing variables. The first approach relies on in-
struments that determine response but not the outcome and was pioneered
by Heckman [1974]. Such instruments, however, are difficult to find when
response is directly driven by the outcome. The second approach, also con-
sidered in this paper, relies on instruments that are independent of response
given potential outcomes. This framework was used in parametric regression
analysis by Chen [2001], Liang and Qin [2000], Tang et al. [2003], Ramalho
and Smith [2013], and Zhao and Shao [2015]. A nonparametric extension was
proposed by D’Haultfoeuille [2010] and Breunig et al. [2015]. While such in-
strumental variable methods reduce bias in general, if the data are MAR, they
unnecessarily increase variance. Indeed, D’Haultfoeuille [2010] showed that
estimation of the distribution of the potential outcome leads to a statistical
inverse problem that is ill-posed in general. This implies that the variance of
the estimator becomes arbitrarily large relative to the degree of ill-posedness.
We also provide a test for the MCAR assumption which imposes a stronger
condition on the response mechanism than MAR. Indeed, MCAR rules out
any correlation between response and outcome. When data are MAR but
not MCAR various types of correction methods have been suggested so far
and include weighted generalized estimating equations (Robins et al. [1994]),
nonparametric estimation of the conditional estimating scores (Reilly and
Pepe [1995]), and multiple imputation (Rubin [2004], Little and Rubin [2002]).
For an overview and further references we refer to Ibrahim et al. [2005]. This
literature makes either parametric model assumptions or has difficulties in
dealing with continuous data. Using such correction methods reduces bias
if MAR holds, under MCAR, however, this unnecessarily increases variance.
Thus, it is of interest to examine the observed data for evidence whether the
response mechanism satisfies not only MAR but also MCAR.
We show that the MAR hypothesis is equivalent to an identified conditional
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moment equation and is related to significance testing problems. Based on
this moment equation we construct our test statistic using a weighted inte-
grated squared distance. Under the null hypothesis the test statistic converges
to a series of independent, χ2–squared distributed random variables. The test
statistic and its critical values can be easily implemented. Also only a slight
modification is necessary to obtain a test for MCAR. Under a bounded com-
pleteness assumption, our testing procedure is shown to be consistent against
fixed alternatives. For significance testing see, for instance, Fan and Li [1996],
Lavergne and Vuong [2000], or Delgado and González Manteiga [2001]. In
contrast, our test statistic is entirely based on series estimators and weights
the generalized Fourier coefficients. We show in this paper, that the new
testing procedure has desirable finite sample properties.
Besides a Monte Carlo simulation we demonstrate the finite sample properties
in an empirical illustration using data from the German Socio-Economic Panel
(SOEP). A common phenomenon in population surveys is that wealth or
income questions are typically associated with high rates of item nonresponse.
We provide evidence that the item nonresponse for labor income questions is
selective, using income information from previous waves as an instrument.
In our instrumental variable framework, a test of MCAR has been proposed
by Ramalho and Smith [2013]. Their Hausman type test statistic relies on a
parametric model specification with discrete outcomes and differs form our
method where no restriction on the marginal distribution of the outcome is
imposed. Likelihood ratio tests to verify the hypothesis MCAR have been
suggested by Fuchs [1982] and Little [1988], while Chen and Little [1999]
considered a Wald-type test and Qu and Song [2002] proposed a generalized
score type test based on quadratic inference functions. Kline and Santos
[2013] develop a method for assessing the sensitivity of empirical conclusions
to departures from MAR based on sharp bounds of conditional quantiles.
As far as we know, a consistent test for MAR has not been proposed. We
further emphasize that our testing procedure does not require knowledge
of the conditional probability of observing potential outcomes up to a finite
dimensional parameter.
The remainder of the paper is organized as follows. Section 2 provides suffi-
cient conditions for testability of MAR and MCAR. The asymptotic distribu-
tions of the tests are derived and their consistency against fixed alternatives
is established. Section 3 examines the finite sample performance of our test
in a Monte Carlo simulations study while Section 4 illustrates the usefulness
of our procedure in an empirical application.
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2. The Test Statistic and its Asymptotic

Properties

This section is about testability of missing at random assumptions and the
asymptotic behavior of our proposed test statistics. First, we provide suf-
ficient conditions on instruments to ensure testability of MAR and MCAR.
Second, we build on identified conditional moment restrictions to construct
test statistics. Third, the test statistics’ asymptotic distributions under the null
hypotheses are derived and we establish consistency of the tests against fixed
alternatives.

2.1. Testability

Let Y∗ denote a scalar, partially observed random variable and X a dx–
dimensional vector of covariates which are always observed. Further, ∆
is a binary missing–data indicator for Y∗, such that ∆ = 1 if a realization of Y∗

is observed and ∆ = 0 otherwise. We write Y = ∆Y∗.
First, we consider hypothesis MAR, whether the response mechanism only
depends on observed variables X. In this case, the null hypothesis under
consideration is given by

MAR : P(∆ = 1|Y∗,X) = P(∆ = 1|X) (2.1)

and the alternative by P
(
P(∆ = 1|Y∗,X) = P(∆ = 1|X)

)
< 1.1

Second, we consider the MCAR hypothesis whether response is completely
at random. As this hypothesis rules out any correlation between response
and observed data, MCAR is stronger than MAR. The hypothesis under
consideration is

MCAR : P(∆ = 1|Y∗,X) = P(∆ = 1)

and the alternative is P
(
P(∆ = 1|Y∗,X) = P(∆ = 1)

)
< 1.

We now provide sufficient conditions for testability of the above hypotheses.
More precisely, we provide conditions under which the hypotheses MAR and
MCAR are equivalent to restrictions of identified conditional moments. We
can thus determine these conditional moments exactly given a sufficiently
large sample of observed variables only. A key requirement is that an ad-
ditional vector W, an instrument, is available which satisfies the following
conditions.

Assumption 1. For each unit we observe ∆, Y, X, and W.

1Since conditional probabilities/expectations are defined only up to equality a.s., all equal-
ities with conditional probabilities/expectations are understood as equalities a.s., even if
we do not say so explicitly.
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Assumption 1 is satisfied when only observations of Y∗ are missing. In the fol-
lowing, we assume that the random vector W is independent of the response
variable conditional on potentially observed variables Y∗ and covariates X.

Assumption 2. It holds

∆ y W | (Y∗,X).

Assumption 2 requires missingness to be primarily determined by (Y∗,X). In
particular, this exclusion restriction requires any influence of W on ∆ to be
carried solely through (Y∗,X). Conditional independence assumptions of this
type are quite familiar in the econometrics and statistics literature. Examples
are treatment effects (cf. Imbens [2004]) or non-classical measurement error
(cf. Hu and Schennach [2008]). For further discussion of Assumption 2
and illustrative examples we refer to Ramalho and Smith [2013] in case of
nonresponse and D’Haultfoeuille [2010] in case of counterfactuals. As was
shown by D’Haultfoeuille [2010], Assumption 2 is equivalent to a conditional
moment restriction (see also Example 2.1 below) and thus testable under a
completeness assumption (see Section 2.2 of D’Haultfoeuille [2010]).

Assumption 3. For all bounded measurable functions φ, E[φ(Y∗,X)|X,W] = 0
implies that φ(Y∗,X) = 0.

Assumption 3 is known as bounded completeness. In contrast, to ensure iden-
tification in nonparametric instrumental variable models, stronger versions of
Assumption 3, such as L2–completeness, are required. This type of complete-
ness condition requires Assumption 3 to hold for any measurable function
φ with E |φ(Y∗,X)|2 < ∞. L2–completeness is also a common assumption in
nonparametric hypothesis testing in instrumental variable models, see, for
instance, Blundell and Horowitz [2007] or Fève et al. [2016]. There are only a
few examples in the nonparametric instrumental regression literature where
it is sufficient to assume completeness only for bounded functions. One ex-
ample is estimation of Engel curves as in Blundell et al. [2007] which, by
definition, are bounded between zero and one. We emphasize that bounded
completeness is much less restrictive than L2 completeness. Sufficient con-
ditions for bounded completeness have been provided by Mattner [1993] or
D’Haultfoeuille [2011] among others. We see below that inference under the
considered hypotheses does not require bounded completeness. On the other
hand, we need to impose Assumption 3 to ensure consistency against fixed
alternatives.
If a valid instrumental variable W is available then consistent density estima-
tion and regression is possible even if MAR does not hold true. On the other
hand, using instrumental variable estimation methods when MAR holds can
be inappropriate as the following two examples illustrate.

Example 2.1 (Density Estimation with Selectively Missing Variables). The
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joint probability density function of (Y∗,X) satisfies

pY∗X(y, x) =
P(∆ = 1,Y∗ = y,X = x)

P(∆ = 1|Y∗ = y,X = x)

assuming that the conditional probability in the denominator is bounded
away from zero. The conditional probability P(∆ = 1|Y∗ = y,X = x) is not
identified in general. On the other hand, if instrumental variables W are avail-
able, satisfying more restrictive completeness assumptions than Assumption
3, then this probability is identified (see D’Haultfoeuille [2010]) through the
conditional moment restriction

E

(
∆

P(∆ = 1|Y∗,X)

∣∣∣∣X,W
)
= 1. (2.2)

Estimating P(∆ = 1|Y∗,X) via this equation leads to a large variance relative
to the ill-posedness of the underlying inverse problem and the accuracy of
this estimator can be very low (see D’Haultfoeuille [2010] and Breunig et al.
[2015]). If the data, however, reveals that MAR holds true then P(∆ = 1|Y∗,X)
can be directly estimated from the data. �

Example 2.2 (Regression with Selectively Missing Outcome). Consider esti-
mation of E(φ(Y∗)|X) for some known function φ and Y∗ scalar. Either φ is
the identity function in case of mean regression or φ(Y∗) = ✶{Y∗ 6 q} in quan-
tile regression for some quantile q ∈ (0, 1). Let the conditional probability
P(∆ = 1|Y∗,X) be bounded away from zero. As in Breunig et al. [2015] (p. 5)
it holds

E(φ(Y∗)|X) = E

(
∆φ(Y∗)

P(∆ = 1|Y∗,X)

∣∣∣∣X
)

where P(∆ = 1|Y∗,X) can be estimated via the conditional mean restric-
tion (2.2). As shown in Breunig et al. [2015], the first step estimation of
P(∆ = 1|Y∗,X) leads to an additional bias term which can reduce accuracy
of estimation. Also in this case, imposing MAR is desirable to simplify the
estimation procedure and increase estimation precision. �

Example 2.3 (Relation to Triangular Models). Assumptions 2 and 3 hold true
in the triangular model

∆ = ϕ(Y∗,X, η) with η y (W, ε) |X
Y∗ = φ(ψ(X,W) + ε) with W y ε |X

under a large support condition of ψ(X,W), regularity assumptions for ε,
and if the conditional characteristic function of ε given X is infinitely often
differentiable and does not vanish on the real line. See D’Haultfoeuille [2011]
page 462–463 for further details. Requiring this characteristic function to be
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nonvanishing is a standard assumption in the deconvolution literature. The
normal, Student, χ2, gamma, and double exponential distributions all satisfy
this assumption while the uniform and the triangular distributions are the
only common distributions to violate this restriction.
In this triangular model, MAR requires the function ϕ in the selection equa-
tion to be dependent on X and η only; that is, ∆ = ϕ(X, η). Under MCAR, ϕ
depends neither on Y∗ nor on X and hence, the structural equation simplifies
to ∆ = ϕ(η). The triangular model illustrates the difference to Heckman’s ap-
proach (cf. its nonparametric version in Das et al. [2003]) where an instrument
enters the selection equation. �

The following result states that the null hypothesis MAR is testable under the
previous conditions. Further, exploiting the properties of the instrument W
shows that MAR is equivalent to an identified conditional moment restriction.

Theorem 2.1. (i) Under Assumptions 1–2, MAR implies E[∆−P(∆ = 1|X)|X,W] =
0. (ii) Under Assumptions 1–3, MAR is equivalent to E[∆−P(∆ = 1|X)|X,W] = 0.

Proof. The null hypothesis MAR implies (or is equivalent under Assumption
3) to

E

[
P(∆ = 1|Y∗,X) − P(∆ = 1|X)

∣∣∣X,W
]
= 0.

By Assumption 2 we have P(∆ = 1|Y∗,X) = P(∆ = 1|Y∗,X,W) and thus, the
law of iterated expectations yields E[P(∆ = 1|Y∗,X)|X,W] = E[∆|X,W]. Hence,
MAR implies (or is equivalent under Assumption 3) to

E

[
∆ − P(∆ = 1|X)

∣∣∣X,W
]
= 0

where the left hand side is point identified. �

The following corollary provides a testability result for the hypothesis MCAR.
The result follows as in the proof of Theorem 2.1 by replacingP(∆ = 1|X) with
P(∆ = 1).

Corollary2.2. (i) Under Assumptions 1–2, MCAR implies E[∆−P(∆ = 1)|X,W] =
0. (ii) Under Assumptions 1–3, MCAR is equivalent to E[∆ − P(∆ = 1)|X,W] = 0

In the following, we present two examples of possible applications where
MAR might be difficult to justify but instrumental variables W are avail-
able that satisfy our exclusion restriction. For further examples we refer to
D’Haultfoeuille [2011] in case of counterfactuals in case of schooling data and
Zhao and Shao [2015] in an application using health data.

Example 2.4. Huck et al. [2015] analyze the impact of expectations on stock
market returns on the financial investment decisions of households. In their
survey, individuals obtain an exogenous treatment which is the historical
DAX (Germany’s prime blue chip stock market index) return of a randomly
drawn year. Individuals may choose not to respond to questions regarding
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investment decision, which might be directly related to the latent expectation
on the stock market returns. For instance, individuals with very positive
expectations on DAX returns could be more likely to respond.
While MAR is difficult to justify here, an exclusion restriction for the instru-
ment can be motivated as follows. Based on the exogenous treatment, an indi-
vidual updates his latent expectations on future DAX returns. As we control
for these expectations it appears reasonable to assume that the treatment has
no direct impact on the likelihood of response, i.e., P(∆ = 1|Expect∗,Treat) =
P(∆ = 1|Expect∗). Consequently, we could use such an exogenous treatment
as instrument (given that it is provided prior to an individual’s participation
decision) to assess the plausibility of MAR. �

Example 2.5. In firm level surveys, questions concerning profits are typically
associated with high rates of nonresponse. In particular, whether a firm re-
ports its profits might be directly driven by its productivity, e.g., a firm might
be less willing to report after weak performance over the fiscal year. On
the other hand, the introduction of new technologies such as IT-Outsourcing
clearly affects the firm’s profits but may not directly influence its response be-
havior. Breunig et al. [2016] used this variation to identify the firm’s response
behavior. �

2.2. The Test Statistic

In the previous section, we observed that each null hypothesis is equivalent
to a conditional moment restriction

E

[
r(∆,X)

∣∣∣X,W
]
= 0

for some bounded function r. Equivalently, by considering the squared inte-
grated distance we obtain

∫
E

[
r(∆,X)

∣∣∣X = x,W = w
]2
π(x,w)d(x,w) = 0

for some weight function π which is strictly positive almost surely (a.s.) on
X ×W (X and W denote the supports of X and W, respectively). Let pXW

denote the joint probability density function of (X,W). Further, let ν be an
a.s. strictly positive density function on X ×W. Let us introduce approx-
imating functions { f j} j>1 which are assumed to form an orthonormal basis

in the Hilbert space L2
ν :=

{
φ :

∫
|φ(x,w)|2ν(x,w)d(x,w) < ∞

}
. Now choosing
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π(x,w) = p2
XW(x,w)/ν(x,w) together with Parseval’s identity yields

0 =

∫ ∣∣∣∣ E
[
r(∆,X)

∣∣∣X = x,W = w
]

pXW(x,w)/ν(x,w)
∣∣∣∣
2

ν(x,w)d(x,w)

=

∞∑

j=1

(
E

[
r(∆,X) f j(X,W)

])2

.

Given a strictly positive sequence of weights (τ j) j>1 the last equation is equiv-
alent to

∞∑

j=1

τ j

(
E

[
r(∆,X) f j(X,W)

])2

= 0. (2.3)

Our test statistics below are based on an empirical version of the left hand side
of (2.3). To do so, we truncate the infinite sum at some finite integer. Below we
choose (τ j) j>1 to be a strictly decreasing which implies that we reduce weight
to those generalized Fourier coefficients as basis functions are becoming more
nonlinear. Additional weighting of the testing procedure was also used by
Horowitz [2006], Blundell and Horowitz [2007], and Breunig [2015].
Our test statistic is based on an empirical analog of the left hand side of
(2.3) given (∆1,Y1,X1,W1), . . . , (∆n,Yn,Xn,Wn) of independent and identical
distributed (iid.) copies of (∆,Y,X,W) where Y = ∆Y∗. Let us introduce the
notation for the conditional probability function h(·) = P(∆ = 1|X = ·). We
estimate h by the series least square estimators

ĥn(·) = ekn(·)t (Xt
nXn)− X

t
n∆n

where ∆n = (∆1, . . . ,∆n), ekn(·) := (e1(·), . . . , ekn(·))t is a vector of basis functions,

and Xn :=
(
ekn(X1), . . . , ekn(Xn)

)t
. In the multivariate case, we consider a tensor-

product linear sieve basis, which is the product of univariate linear sieves.
The dimension parameter kn increases with sample size n.
Consider the null hypothesis MAR. From the proof of Theorem 2.1, we deduce

r(∆,X) = ∆ − h(X). Replacing h by the proposed estimator ĥn we obtain the
test statistic

SMAR
n =

mn∑

j=1

τ j

∣∣∣∣n−1

n∑

i=1

(
∆i − ĥn(Xi)

)
f j(Xi,Wi)

∣∣∣∣
2

(2.4)

where mn increases with sample size n and (τ j) j>1 is a strictly positive sequence
of weights which is nonincreasing. We reject null hypothesis MAR if the test
statistic SMAR

n becomes too large.
For the null hypothesis MCAR, Corollary 2.2 gives r(∆,X) = ∆ − P(∆ = 1).
Again, following the derivation of the statistic SMAR

n we obtain a statistic for
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MCAR given by

SMCAR
n =

mn∑

j=1

τ j

∣∣∣∣n−1

n∑

i=1

(
∆i − ∆̂n

)
f j(Xi,Wi)

∣∣∣∣
2

(2.5)

where ∆̂n = n−1
∑n

i=1 ∆i. We reject MCAR if the test statistic SMCAR
n becomes

too large.

2.3. Assumptions for Inference

In the following, Y, X, andW denote the supports of Y, X, and W, respec-
tively. The usual Euclidean norm is denoted by ‖ · ‖ and ‖ · ‖∞ is the supremum
norm.

Assumption 4. (i) We observe a sample (∆1,Y1,X1,W1), . . . , (∆n,Yn,Xn,Wn) of
independent and identical distributed copies of (∆,Y,X,W) where Y = ∆Y∗. (ii) The
functions { f j} j>1 form an orthonormal basis in L2

ν. (iii) There exists some constant

C > 0 such that sup(x,w)∈X×W

{
pXW(x,w)/ν(x,w)

}
6 C.

In our simulations, we used trigonometric basis functions or orthonormalized
Hermite polynomials where Assumption 4 (ii) is automatically satisfied if,
respectively, ν is Lebesque measure on [0, 1] or ν is the standard normal
density. Assumption 4 (iii) is a mild restriction on the density of (X,W)
relative to ν. Assumption 4 implies E | f j(X,W)|2 6 C. The next assumption

involves the linear sieve spaceHn :=
{
φ : φ(·) = βt

nekn(·) where βn ∈ Rkn

}
where

the dimension of the sieve space kn increases with sample size n.

Assumption 5. (i) There exists Eknh ∈ Hn such that ‖Eknh − h‖2∞ = O(1/γkn) for
some increasing sequence (γl)l>1. (ii) It holds supx∈X ‖ekn(x)‖2 = O(kn) such that

k2
n log(n) = o(n). (iii) The smallest eigenvalue of E[ekn(X)ekn(X)t] is bounded away

from zero uniformly in n.

Assumption 5 (i) determines the sieve approximation error for estimating the
function h in the supremum norm and is used to control the bias of the estima-
tor of h. The sieve approximation error is directly related to the smoothness
of the function h, see also Example 2.6 below for primitive conditions and
detailed discussion of the rate requirements. For the relation to L2 approx-
imation conditions see Belloni et al. [2015] or Chen and Christensen [2015].
An excellent review of approximating properties of different sieve bases is
given in Chen [2007]. Assumption 5 (ii) and (iii) restrict the magnitude of
the approximating functions {e j} j>1 and impose nonsingularity of their sec-
ond moment matrix (cf. Newey [1997]). Assumption 5 (ii) is automatically
satisfied by trigonometric basis functions, orthonormalized Hermite poly-
nomials, B-splines, or wavelets. Assumption 5 (iii) holds true when pX is
bounded away from zero and e1, . . . , ekn are orthonormal basis functions.
Consistent estimation of critical values requires the following additional as-
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sumption, where we use the notation ψ j(·) = E[ f j(X,W)|X = ·].
Assumption 6. There exists Eknψ j ∈ Hn such that max16 j6mn ‖Eknψ j − ψ j‖2∞ =
O(1/γkn).

Assumption 6 ensures that the basis functions { f j}16 j6mn can be as well ap-
proximated as h by using the sieve spaceHn. Below we choose for f j Hermite
polynomials or cosine basis functions which, as analytic functions, can be
sufficiently well approximated.

2.4. Asymptotic Distribution under MAR

Before establishing the asymptotic distribution of the test statistic SMAR
n under

MAR, we require the following definition. For any realization (δ, x,w) of
(∆,X,W), let ε(δ, x,w) be an infinite dimensional vector with j-th entry given
by

ε j(δ, x,w) =
√
τ j

(
δ − h(x)

)(
f j(x,w) −

∞∑

l=1

E

[
f j(X,W)el(X)

]
el(x)

)
.

It holds E[ε(∆,X,W)] = 0 under MAR. We assume E |ε j(∆,X,W)|2 < ∞, which
is automatically satisfied if {el}l>1 forms an orthonormal basis. Thereby, under
MAR the covariance matrix given byΣ = E[ε(∆,X,W)ε(∆,X,W)t] of ε(∆,X,W)
is well defined. The ordered eigenvalues of Σ are denoted by (λ j) j>1. Further-
more, we introduce a sequence {χ2

1 j
} j>1 of independent random variables that

are distributed as chi-square with one degree of freedom. The proof of the
next theorem can be found in the appendix.

Theorem 2.3. Let Assumptions 1, 2, 4, and 5 hold true. If

mn∑

j=1

τ j = O(1), n = o(γkn), and m−1
n = o(1) (2.6)

then under MAR

n SMAR
n

d→
∞∑

j=1

λ j χ
2
1 j.

The rate n = o(γkn) ensures that bias for estimating the function h vanishes suf-
ficiently fast. Below, we show that under classical smoothness assumptions
this rate requires an undersmoothed estimator for h. We also like to empha-
size that for the asymptotic result in Theorem 2.3, the bounded completeness
condition stated in Assumption 3 is not required. Below we write an ∼ bn

when there exist constants c, c′ > 0 such that cbn 6 an 6 c′bn for all sufficiently
large n.
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Example 2.6. Let X be continuously distributed. Let e1, . . . , ekn be spline basis
functions and p be the number of continuous derivatives of h. Then Assump-
tion 5 (i) holds true with γ j ∼ j2p/dx (see Newey [1997]). Condition n = o(γkn)
and Assumption 5 (ii) is satisfied if kn ∼ nκ with dx/(2p) < κ < 1/(2 + ε) for
any small ε > 0. Here, the required smoothness of h is p > (2 + ε)(1 + dx)/2.
Hence, the estimator of h needs to be undersmoothed. �

Remark 2.1 (Estimation of Critical Values). The asymptotic distribution of our
test statistic derived in Theorem 2.3 depends on unknown population quan-
tities. As we see in the following, the critical values can be easily estimated.
Let us define

ε̂ j(δ, x,w) =
√
τ j

(
δ − ĥn(x)

)
 f j(x,w) −

kn∑

j′=1

(1

n

n∑

i=1

f j(Xi,Wi)e j′(Xi)
)
e j′(x)

.

We replace Σ by the mn ×mn dimensional matrix

Σ̂n = n−1

n∑

i=1

(
ε̂1(∆i,Xi,Wi), . . . , ε̂mn(∆i,Xi,Wi)

)t(
ε̂1(∆i,Xi,Wi), . . . , ε̂mn(∆i,Xi,Wi)

)
.

Let (̂λ jn)16 j6mn denote the ordered eigenvalues of Σ̂n. To obtain the critical

values, we replace
∑∞

j=1 λ jχ
2
1 j

by the finite sum
∑mn

j=1 λ̂ jnχ
2
1 j

. �

The following result establishes consistency of the empirical critical values as
introduced in the previous remark. In contrast to Theorem 2.3, we have to
impose an upper bound on the size of the dimension parameter mn.

Proposition 2.4. Let the conditions of Theorem 2.3 and Assumption 6 be satisfied.
Assume mn = o(

√
n). Then for all z it holds

P

( mn∑

j=1

λ̂ jnχ
2
1 j 6 z

)
− P

( ∞∑

j=1

λ jχ
2
1 j 6 z

)
= o(1).

2.5. Asymptotic Distribution under MCAR

We now derive the asymptotic distribution of the statistic for testing SMCAR
n

under the null hypothesis MCAR. For any realization (δ, x,w) of (∆,X,W), let
us introduce an infinite dimensional vector ν(δ, x,w) with j-th entry

ν j(δ, x,w) =
√
τ j

(
δ − P(∆ = 1)

) (
f j(x,w) − E[ f j(X,W)]

)
.

We have E[ν j(∆,X,W)] = 0 under MCAR. Let Σν be the covariance matrix of
ν(∆,X,W); that is, Σν = E[ν(∆,X,W)ν(∆,X,W)t].
In this subsection, the ordered eigenvalues of Σν are denoted by (λl)l>1. The
next result is a direct consequence of Theorem 2.3 and hence, we omit its

12



proof.

Corollary 2.5. Let Assumptions 1, 2, and 4 hold true. If

mn∑

j=1

τ j = O(1) and m−1
n = o(1)

then under MCAR

n SMCAR
n

d→
∞∑

j=1

λ j χ
2
1 j.

Remark 2.2 (Estimation of Critical Values). Estimation of critical values in
case of Corollary 2.5 follows easily from Remark 2.1. Let us define

ν̂ j(δ, x,w) =
√
τ j

(
δ − ∆̂n

)
 f j(x,w) − n−1

n∑

i=1

f j(Xi,Wi)



with ∆̂n = n−1
∑n

i=1 ∆i. We replace Σν by the mn ×mn dimensional matrix

Σ̂n = n−1

n∑

i=1

(
ν̂1(∆i,Xi,Wi), . . . , ν̂mn(∆i,Xi,Wi)

)t(
ν̂1(∆i,Xi,Wi), . . . , ν̂mn(∆i,Xi,Wi)

)
.

Let (̂λ jn)16 j6mn denote the ordered eigenvalues of Σ̂n. To obtain empirical

critical values, we replace
∑∞

j=1 λ jχ
2
1 j

by the finite sum
∑mn

j=1 λ̂ jnχ
2
1 j

. Consistency

follows as in Proposition 2.4. �

2.6. Consistency against Fixed Alternatives

Under each null hypothesis, the asymptotic distribution results remain valid
if (Y∗,X) is not bounded complete for (X,W); that is, Assumption 3 does not
hold true. On the other hand, we show that, under bounded completeness,
consistency of our tests against fixed alternatives can be obtained. To establish
this property we require the following additional assumption.

Assumption 7. The function pXW/ν is uniformly bounded away from zero.

If MAR fails, Assumption 7 together with Assumption 3 ensures that the gen-
eralized Fourier coefficients E[r(∆,X) f j(X,W)] are non-zero for some integer
j > 1. Instead of Assumption 7, we may also assume that (KTr)(X,W) , 0
and that pXW/ν is uniformly bounded away from zero on the support of
(KTr)(X,W), where T denotes the conditional expectation operator defined
by Tφ = E[φ(∆,X)|Z] and K is a smoothing operator with eigenvalue decom-
position { √τ j, f j} j>1. The following proposition shows that our test has the
ability to reject a false null hypothesis with probability 1 as the sample size

13



grows to infinity. For the next results, let us introduce a sequence (an)n>1

satisfying an = o(n). The proof of the next proposition can be found in the
appendix.

Proposition 2.6. Assume that MAR does not hold. Let Assumptions 1–7 be satis-
fied. Then

P

(
n SMAR

n > an

)
= 1 + o(1).

The rate (an)n>1 is arbitrarily close to the parametric rate n−1 which is due the
weighting sequence (τ j) j>1 with

∑mn

j=1 τ j = O(1). The next result is a direct

consequence of Proposition 2.6 and hence, its proof is omitted.

Corollary 2.7. Assume that MCAR does not hold. Let Assumptions 1–4 and 7 be
satisfied. Then

P

(
n SMCAR

n > an

)
= 1 + o(1).

3. Monte Carlo Simulations

In this section, we study the finite-sample performance of our test by present-
ing the results of a Monte Carlo simulation. The experiments use a sample
size of 500 and there are 1000 Monte Carlo replications in each experiment.
Results are presented for the nominal level 0.05.
As basis functions { f j} j>1 used to construct our test statistic, we use throughout
the experiments orthonormalized Hermite polynomials. Hermite polynomi-
als form an orthonormal basis of L2

̟ with a weighting function being the den-

sity of the standard normal distribution; that is, ̟(x) = exp(−x2)/
√

2π. They
can be obtained by applying the Gram–Schmidt procedure to the polynomial

series 1, x, x2, . . . under the inner product 〈φ,ψ〉̟ = (2π)−1/2
∫
φ(x)ψ(x) exp(−x2)dx.

That is, H1(x) = 1 and for all j = 2, 3, . . .

H j(x) =
x j−1 −∑ j−1

k=1
〈id j−1, p j〉ωp j(x)

∫ (
x j−1 −∑ j−1

k=1
〈id j−1, p j〉ωp j(x)

)
ω(x)dx

. (3.1)

Our testing procedure is now build up on the basis functions

f j(·) =
H j+1(·)

√
〈H j,H j〉ω

for all j = 1, 2, . . . If the support of the instrument W or its transformation
lies in the interval [0, 1] then one could also use, for instance, cosine basis
functions

f j(x) =
√

2 cos(π jx)

14



for j = 1, 2, . . . . We also implemented our test statistic with these cosine func-
tions in the settings studied below. But as the results are very similar to the
ones with Hermite polynomials presented below we do not report them here.
Throughout our simulation study, the number of orthonormalized Hermite
polynomials is 10. In the multivariate case, we consider a tensor product of
those weighted Hermite polynomials. Due to the weighting sequence (τ j) j>1,
results not too sensitive to the number of Hermite polynomials. In contrast,
results might be more sensitive to the choice of basis functions kn used to
estimate h. Below we use cross validation to choose the appropriate number
of basis functions for this function.

Testing MCAR Realizations of (Y∗,W) were generated by W ∼ N(0, 1) and

Y∗ ∼ ρW +
√

1 − ρ2 ε where ε ∼ N(0, 1). The constants ρ characterizes the
”strength” of the instrument W and is varied in the experiments. For a random
variable V, introduce the function φ.2(V) = ✶{V > q} + 0.1 ∗ ✶{V 6 q} where
q is the 0.2 quantile of the empirical distribution of V. In each experiment,

Model Empirical Rejection probability of nSn with Little’s test

ρ ν τ j = j−2 τ j = j−3 τ j = j−4

0.2 0.0 0.055 0.057 0.056 0.062

0.3 0.148 0.159 0.162 0.155

0.5 0.290 0.297 0.304 0.338

0.7 0.505 0.529 0.530 0.568

0.3 0.0 0.055 0.057 0.056 0.062

0.3 0.253 0.265 0.268 0.273

0.5 0.559 0.588 0.592 0.611

0.7 0.839 0.855 0.857 0.853

0.4 0.0 0.055 0.057 0.056 0.062

0.3 0.387 0.393 0.398 0.430

0.5 0.813 0.831 0.840 0.843

0.7 0.985 0.988 0.986 0.988

Table 1: Empirical Rejection probabilities for Testing MCAR

realizations of the response variable ∆were generated by

∆ ∼ Bin
(
1, φ.2

(
νY∗ +

√
1 − ν2 ξ

))

for some constant 0 6 ν 6 1 and where ξ ∼ N(0, 1). If ν = 0 then response ∆
does not depend on Y∗ and hence the null hypothesis MCAR holds true.
The critical values are estimated as in Remark 2.2. For m = 100 we observed
that the estimated eigenvalues λ̂ j are sufficiently close to zero for all j > m. To
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provide a basis for judging whether the power of our test is high or low, we
also provide the empirical rejection probabilities when using a test of MCAR
for normal data proposed by Little [1988].
The empirical rejection probabilities of test statistic SMCAR

n using different
weightings and Little’s test are depicted in Table 1. First, we observe, not
surprisingly, that the power of all tests increase as the correlation between Y∗

and W (measured by ρ) becomes larger. Second, power also increases with
constant ν. From Table 1 we also see that our tests with different weighting
sequences have similar power properties and our tests behave similar as
Little’s test, which, as we want to emphasize, relies on the knowledge of the
underlying distribution up to a finite dimensional parameter.

Testing MAR Realizations of (Y∗,X,W) were generated by W ∼ N(0, 1),

X ∼ 0.2 W +
√

1 − 0.22 ξ and Y∗ ∼ ρW +
√

1 − ρ2 ξ + ε where ξ ∼ N(0, 1) and
ε ∼ N(0, 0.25). The constant ρ is varied in the experiments. The critical values
are estimated as described in Remark 2.1.
In each experiment, realizations of response ∆were generated by

∆ ∼ Binomial
(
1, φ.2

(
νY∗ +

√
1 − ν2 X

))

for some constant 0 6 ν 6 1. Clearly, if ν = 0 then the null hypothesis
MAR holds true. We estimate the function h using B-splines. The number of

Model Empirical Rejection probability of nSn with Delgado and

ρ ν τ j = j−2 τ j = j−3 τ j = j−4 Manteiga’s Test C∗∗n

0.3 0.0 0.045 0.049 0.050 0.049

0.3 0.091 0.090 0.093 0.201

0.5 0.105 0.109 0.113 0.301

0.7 0.147 0.151 0.153 0.399

0.5 0.0 0.045 0.049 0.050 0.051

0.3 0.354 0.359 0.358 0.230

0.5 0.595 0.584 0.582 0.386

0.7 0.759 0.750 0.747 0.492

0.7 0.0 0.045 0.049 0.050 0.050

0.3 0.733 0.717 0.709 0.323

0.5 0.943 0.938 0.936 0.508

0.7 0.986 0.980 0.979 0.626

Table 2: Empirical Rejection probabilities for Testing MAR

knots and orders is chosen via cross validation. Computational procedures
were implemented using the statistical software R using the crs Package
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Hayfield and Racine [2007]. In our experiments, cross validation tended to
undersmooth the estimator of h which implied a sufficiently small bias of
this estimator. On the other hand, to obtain appropriate undersmoothing one
could also use a data driven choice of basis functions suggested by Picard and
Tribouley [2000]. Critical values are estimated as described in Remark 2.1.
We also compare our testing procedure to the bootstrap significance test
proposed by Delgado and González Manteiga [2001]. Their test statistic is
based on the empirical version of E[T2(X,W)] with T(x,w) = E[pX(X)(∆ −
h(X))✶{X6x} ✶{W6w}], where pX denotes the marginal probability density func-
tion of X. Delgado and González Manteiga [2001]’s statistic builds on a kernel
estimator of h. We follow their implementation of their Cramér-von Mises
type statistic. Only we use the Gaussian kernel and the bandwith is chosen
with smaller constant, i.e., h = 0.004 ∗ n−1/3. This choice of a smaller constant
for the bandwith ensures that the test has accurate finite sample coverage.
The bootstrap version of the test is based on bootstrap innovations as sug-

gested by Mammen [1993], i.e., (1 −
√

5)/2 with probability (1 +
√

5)/(2
√

5)

and (1 +
√

5)/2 with probability 1 − (1 +
√

5)/(2
√

5). The implemented test
statistic corresponds to C∗∗n of Delgado and González Manteiga [2001]. The
authors also propose other boostrap testing procedures but, as they point out,
the statistic C∗∗n has a slightly better finite sample performance than their other
statistics.
Table 2 depicts the empirical rejection probabilities of the tests SMAR

n when
using different weightings and C∗∗n . From Table 2, we see that both tests, SMAR

n

and C∗∗n have accurate finite sample coverage for varying values of ρ and ν.
For ρ = 0.3 the test statistic C∗∗n has larger empirical rejection probabilities in
the alternative model, while for all other values of ρ the test SMAR

n appears to
have larger finite sample power. In contrast to our proposed statistic SMAR

n ,
the testing procedure of Delgado and González Manteiga [2001] is surpris-
ingly insensitive with respect to the choice of the strength of the instruments
captured by ρ. We also implemented the test of Delgado and González Man-
teiga [2001] with ρ = 0 and the power properties are similar to the case where
ρ = 0.3. This indicates that, in our setting, the finite sample power of their
test rather derives from specific sample properties than the strength of the
instrument.

4. Empirical Illustration

We now apply our testing procedure to analyze response mechanisms in a
data set from the German Socio-Economic Panel (SOEP).

4.1. Missing Income Data in the SOEP

As mentioned above, a common phenomenon in population surveys is that
wealth and income questions are typically associated with high rates of item
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nonresponse which, in addition, has been found to be selective (see Watson
and Wooden [2009]). Regarding labor income questions in the SOEP, this
response behavior was also emphasized by Schräpler [2004] and Frick et al.
[2007].
We apply our methodology to a dataset which is a subsample of the SOEP
longitudinal survey. The current subsample includes 454 full-time employed
male respondents aged between 26–63 in the year 2013 who have not switched
jobs in the past year. 2 Further, all individuals are German and have obtained
Abitur (comparable to a high school graduation certificate). It has been
assured that all subjects in the subsample participated in the SOEP survey
and were successfully interviewed both in 2013 and in one years of 2000–2012.
Missingness in the gross labor income variable is thus due to item nonresponse
in the survey questionnaire and our sample contains no individuals that were
added to the SOEP (as a replacement for individuals missing due to sample
attrition for e.g.) only in 2013. Moreover, we ensure that all individuals in
our sample participate in the labor market in 2013. In our subsample, 8.6%
of participants do not respond to the question on current gross labor income.
In the following, we asses the sensitivity of nonresponse regarding the latent
labor income level.
Despite the missing labor income information in 2013, nearly all individuals
have reported their gross labor income in one of the previous waves. This
possibly indicates that individuals become more sensitive in reporting their
labor income during their working career. As instrumental variable we use the
latest gross labor income information of the individuals available in the years
2000–2012.3 In this case, the exclusion restriction translates to the assumption
that past income affects the current response behavior only through current
income. This pins down to the behavioral assumption that the disutility of
reporting current income is driven by the latent current income but not by the
observed income of the previous years. In other applications, the exclusion
restriction, when using past information as an instrument, might be less
evident and has to be justified carefully (for a further discussion we also refer
to Hirano et al. [2001] in the case of refreshment samples). Nevertheless, we
provide an empirical assessment of its plausibility at the end of this section.
In the following, the instrumental variable W denotes the logarithm of an
individual’s most recent gross labor income from previous waves. From the
rich SOEP data set we pick two covariates that have a significant impact on the
response mechanism. We consider an individual’s time with a firm and hours
worked per week. In the following, X1 denotes the demeaned logarithm of an

2In Germany, a typical age for a graduate student to take up a full-time job is 26 and the
average retirement age is close to 63.

3There are only 11 individuals who do never report their gross labor income level and for
those we use average gross labor income for males of the respective profession, in the
respective working sector, available on Eurostat for the year 2010. Similarly, we replace
9 missing values for actual work time by the average work time with respect to job
classification according to ISCO-8 for German male workers in the year 2013.
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individual’s length of time with firm and X2 denotes the demeaned logarithm
of individual’s actual work time per week. Summary statistics are provided
in the following:

Min. 1st Qu. Med. 3rd Qu. Max. St. Dev.

W -2.47 -0.30 0.02 0.32 2.62 0.54

X1 -2.35 -0.39 0.16 0.55 1.27 0.76

X2 -1.61 -0.12 0.00 0.10 0.57 0.20

4.2. Results and Details of Implementation

Testing MCAR and MAR The test statistics are constructed as described
in the previous section using Hermite functions. We choose the dimension
parameter mn such that mn is approximately

√
n. Again, we emphasize that

the results are not sensitive regarding mn due to the additional weighting of
the coefficients. For testing MAR, we choose the dimension parameter kn

by cross validation. Finally, we provide results below for varying weights.
In practice, we recommend to choose the weighting sequence to maximize
the ratio of the value of the test statistic and the associated empirical critical
values.
Table 3 depicts the values of our test statistics for testing MCAR and MAR
using different control variables. As we see from this table, our test statistic
rejects the hypothesis MCAR at the 0.05 nominal level. Our test also rejects
MAR if we only control for the length of time with firm but fails to reject
MAR if we control for actual working time. As such, the information on
length of time with firm alone is not sufficient for explaining the individual
response behavior. This indicates that one has to be careful about the choice
of covariates for MAR and how the proposed test can be useful in practice.
The values of the test statistic and the critical values vary slightly with the
degree of weighting, and so does the fraction of them. For instance, in the
second and third rows of Table 3, the fraction of nSMCAR

n and its critical value
is 1.182 if τ j = j−2, 1.191 if τ j = j−3, and 1.199 if τ j = j−4. In Table 3, we
depict those values of tests and their empirical values in bold, for which their
fraction is maximized.

Further analysis of the missingness mechanism In Figure 1, we esti-
mate the conditional probability P(∆ = 1|Y∗). This conditional probability is
identified through the conditional mean equation E[∆/P(∆ = 1|Y∗)|W] = 1
(cf. D’Haultfoeuille [2010]). We use a sieve minimum distance estimator
based on B-splines as in Breunig et al. [2015] to estimate P(∆ = 1|Y∗). From
Figure 1 we see that the estimator of P(∆ = 1|Y∗) is not constant as required
by MCAR. In particular, Figure 1 indicates that individuals with low gross
labor income are less likely to report it. This pattern is also shown when we
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τ j = j−2 τ j = j−3 τ j = j−4

MCAR: P(∆ = 1|Y∗) = P(∆ = 1) Value of nSMCAR
n 0.049 0.039 0.036

Critical Values 0.041 0.033 0.030

MCAR: P(∆ = 1|Y∗,X1) = P(∆ = 1) Value of nSMCAR
n 0.072 0.061 0.058

Critical Values 0.055 0.047 0.043

MAR: P(∆ = 1|Y∗,X1) = P(∆ = 1|X1) Value of nSMAR
n 0.063 0.053 0.050

Critical Values 0.054 0.045 0.042

MAR: P(∆ = 1|Y∗,X2) = P(∆ = 1|X2) Value of nSMAR
n 0.013 0.011 0.010

Critical Values 0.019 0.016 0.015

Table 3: Values of nSMCAR
n and nSMAR

n for different covariates together with
their empirical critical values at 0.05 nominal level.

estimate the average of observed income. Identification of P(∆ = 1|Y∗) yields
identification of the population mean of the potential income Y∗ since

E[Y∗] = E[Y∗∆/P(∆ = 1|Y∗)],

see also Breunig et al. [2015]. The value of the empirical version of this
inverse probability weighted mean is given by 4834.54 Euros. In contrast, the
empirical mean of observed income is 5231.42 Euros. Consequently, without
correcting for selective nonresponse we overestimate the mean of the true
income.

Testing the exclusion restriction for the instrument Whether or not we
observe gross labor income Y∗ is assumed to be independent of past labor
income W conditional on Y∗. Moreover, we directly perform a test of assump-
tion ∆ y W|Y∗ based on Breunig et al. [2015] which builds on Theorem 2.4
of D’Haultfoeuille [2010]. Namely, given that P(∆ = 1|Y∗) is strictly positive
on the support of Y∗ and a slight modification of our completeness assump-
tion as maintained hypotheses, conditional mean independence ∆ y W|Y∗ is
equivalent to the existence of a function φ(·) > 1 solving E[∆φ(Y∗)|W] = 1.
Note that the completeness assumption ensures that if such a function exists
it holds that φ(Y∗) = 1/P(∆ = 1|Y∗). While the completeness assumption is
not directly testable, the rejection of the MCAR hypothesis in Table 3 indi-
cates that the instrument W is sufficiently strong to explain variations in Y∗.
The test is based on checking whether there exists a smooth function φ with
φ(·) > 1 satisfying E[∆φ(Y∗)|W] = 1. The value of the L2 test statistic proposed
by Breunig et al. [2015] is −0.626 (or 0.783 when additionally controlling for
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Figure 1: Graph of P(∆ = 1|Y∗ = ·)

X1) with p-value 0.734 (or 0.217 when controlling for X1). At the 0.05 nominal
level, we thus fail to reject the exclusion assumption on the instrument W.

A. Appendix

Throughout the Appendix, let C > 0 denote a generic constant that may
be different in different uses. Further, to keep notation simple we define
Z := (X′,W′)′ and let

∑
i =

∑n
i=1. In the following, εmn(δ, x,w) and εh

mn
(δ, x)

denote mn–dimensional vectors with j– th entries given by ε j(δ, x,w) and

εh
j
(δ, x) :=

√
τ j

(
δ − h(x)

)∑∞
l=1 E[ f j(Z)el(X)]el(x), respectively. In the appendix,

f τmn
denotes a mn dimensional vector with entries

√
τ j f j for 1 6 j 6 mn.

Proof of Theorem 2.3. The proof is based on the decomposition

n−1/2
∑

i

(
∆i − ĥn(Xi)

)
f τmn

(Zi)

= n−1/2
∑

i

εmn(∆i,Zi)

+ n−1/2
∑

i

((
h(Xi) − ĥn(Xi)

)
f τmn

(Zi) + ε
h
mn

(∆i,Xi)
)

= In + IIn (say).

Consider In. Consider some fixed integer m > 1. Using Cramer Wold device
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it is easily seen that

n−1/2
∑

i

εm(∆i,Zi)
d→N(0, Σm)

where Σm is the upper m ×m submatrix of Σ. Hence, we have

m∑

j=1

∣∣∣∣n−1/2
∑

i

ε j(∆i,Zi)
∣∣∣∣
2 d→

m∑

j=1

λ jχ
2
1 j

with λ j, 1 6 j 6 m, being eigenvalues of Σm. On the other hand, observe

∑

j>m

E

∣∣∣∣n−1/2
∑

i

ε j(∆i,Zi)
∣∣∣∣
2

=
∑

j>m

Var
(
n−1/2

∑

i

ε j(∆i,Zi)
)
=

∑

j>m

E ε2
j (∆,Z)

which becomes sufficiently small for large m as E ε2
j
(∆,Z)/τ j 6 C for all j > 1.

Hence, from page 199 in Serfling [1981] we infer that ‖In‖2 d→ ∑
j>1λ jχ

2
1 j

.

Consider IIn. We have

‖IIn‖2 6 2

mn∑

j=1

∣∣∣∣τ1/2
j

n−1/2
∑

i

(̂
hn(Xi) − (Eknh)(Xi)

)
f j(Zi) − εh

j (∆i,Xi)
∣∣∣∣
2

+ 2

mn∑

j=1

τ j

∣∣∣∣n−1/2
∑

i

(Eknh − h)(Xi) f j(Zi)
∣∣∣∣
2

= 2An1 + 2An2 (say).

Consider An1. In the following, we denote Qn := n−1
∑

i ekn(Xi)ekn(Xi)
t. It

holds ĥn(·) = ekn(·)t(nQn)−1
∑

i ∆iekn(Xi). By Assumption 5, the eigenvalues of

E[ekn(X)ekn(X)t] are bounded away from zero and hence, it may be assumed

that E[ekn(X)ekn(X)t] = Ikn where Ikn is the kn dimensional identity matrix (cf.
Newey [1997], p. 161). We observe

An1 6 2

mn∑

j=1

∣∣∣τ1/2
j

kn∑

l=1

E[ f j(Z)el(X)]Q−1
n n−1/2

∑

i

(
∆i−Eknh(Xi)

)
ekn(Xi)−εh

j (∆i,Xi)
∣∣∣2

+ 2‖Eknh − ĥn‖2X
mn∑

j=1

τ j

kn∑

l=1

∣∣∣n−1/2
∑

i

el(Xi) f j(Zi) − E[el(X) f j(Z)]
∣∣∣2

= 2Bn1 + 2Bn2 (say). (A.1)

22



For Bn1 we evaluate due to the relation Q−1
n = Ikn −Q−1

n (Qn − Ikn) that

Bn1 6 2
∥∥∥ E[ f τmn

(Z)ekn(X)t]n−1/2
∑

i

(∆i − Eknh(Xi))ekn(Xi) − εh
mn

(∆i,Xi)
∥∥∥2

+ 2
∥∥∥ E[ f τmn

(Z)ekn(X)t]
∥∥∥2∥∥∥Qn − Ikn

∥∥∥2 ∥∥∥Q−1
n

∥∥∥2 ∥∥∥n−1/2
∑

i

(
∆i − Eknh(Xi)

)
ekn(Xi)

∥∥∥2

= 2Cn1 + 2Cn2 (say).

Further, from E

[(
∆ − Eknh(X)

)
ekn(X)

]
= 0, E

[
(h − Eknh)(X)ekn(X)

]
= 0, and

E[εmn(∆,Z)] = 0 we deduce

Cn1 62

mn∑

j=1

τ j E

∣∣∣
∑

l>kn

E[ f j(Z)el(X)](h(X) − ∆)el(X)
∣∣∣2

+ 2

mn∑

j=1

τ j E

∣∣∣
kn∑

l=1

E[ f j(Z)el(X)](Eknh − h)(X)el(X)
∣∣∣2

62

mn∑

j=1

τ j E

∣∣∣
∑

l>kn

E[ f j(Z)el(X)]el(X)
∣∣∣2

+ C kn ‖Eknh − h‖2X
mn∑

j=1

τ j

kn∑

l=1

E[ f j(Z)el(X)]2

=o(1)

using that E[(h(X) − ∆)2|X] is bounded,
∑mn

j=1 τ j

∑kn

j=1 E[ f j(Z)el(X)]2 = O(1), and

by assumption

k2
n ‖Eknh − h‖2X = O(k2

n/γkn) = O(k2
n/n) = o(1).

Consider Cn2. Further, by Rudelson’s matrix inequality (see Rudelson [1999]
and also Lemma 6.2 of Belloni et al. [2015]) it holds

∥∥∥Qn − Ikn

∥∥∥2
= Op

(
n−1 log(n) kn

)
.

Moreover, since the difference of eigenvalues of Qn and Ikn is bounded by
‖Qn − Ikn‖, the smallest eigenvalue of Qn converges in probability to one and
hence, ‖Q−1

n ‖2 = 1 + op(1). Further,

kn∑

l=1

E

∣∣∣n−1/2
∑

i

(
∆i − Eknh(Xi)

)
el(Xi)

∣∣∣2 =
kn∑

l=1

E

∣∣∣
(
∆ − Eknh(X)

)
el(X)

∣∣∣2 = O(kn)

and hence Cn2 = Op

(
n−1 log(n) k2

n

)
= op(1). Consequently, Bn1 = op(1). Consider

23



Bn2. It holds

kn∑

l=1

∣∣∣n−1
∑

i

el(Xi) f j(Zi) − E[el(X) f j(Z)]
∣∣∣2 = Op(kn/n).

Since ‖Eknh− ĥn‖2X = Op(kn/n) (cf. Theorem 1 of Newey [1997]) and k2
n/n = o(1)

it follows that Bn2 = o(1). Thus, we conclude An1 = op(1). For An2 we observe
that

E An2 6 n

mn∑

j=1

τ j E |(Eknh − h)(X) f j(Z)|2

6 n‖Eknh − h‖2∞
mn∑

j=1

τ j E f 2
j (Z) = O

(
n/γkn

)
= o(1).

Consequently, we have IIn = op(1), which completes the proof. �

For the next proof we introduce the following notations. Withγ jn = E[ f j(Z)ekn(X)]

and γ̂ jn its empirical version, we define ψ jn(x,w) = f j(x,w) − γt
jn

ekn(x) and

ψ̂ jn(x,w) = f j(x,w) − γ̂t
jn

ekn(x). Moreover, let Σ̃n denote a mn ×mn matrix with

j, l–th entry n−1
∑

i
√
τ jτl (∆i − Eknhn(Xi))

2ψ jn(Zi)ψln(Zi). Let β̂n and βn be such

that ĥn(·) = β̂′nekn(·) and Eknh(·) = β′nekn(·).

Proof of Proposition 2.4. We first observe that
∑

j>mn
λ jχ

2
1 j
= op(1), which

follows from the following relation, namely that the trace of the matrix Σ is
equal to the sum of its eigenvalues, i.e.,

∞∑

j=1

λ j =

∞∑

j=1

τ j E

[
r2(∆,X)

(
f j(Z) −

∞∑

l=1

E[ f j(Z)el(X)]el(X)
)2]

= O(1).

Consequently, it is sufficient to consider

mn∑

j=1

λ̂ jnχ
2
1 j =

∞∑

j=1

λ jχ
2
1 j +

mn∑

j=1

(̂λ jn − λ j)χ
2
1 j + o(1).

Let χ2
mn

denote the chi-square distribution with mn degrees of freedom. We
have

mn∑

j=1

(̂λ jn − λ j)χ
2
1 j 6 χ

2
mn

max
16 j6mn

|̂λ jn − λ j|.

It holds χ2
mn
= Op(mn) and it thus remains to show max16 j6mn |̂λ jn − λ j| =
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Op(1/
√

n). Let Σmn denote the upper mn ×mn matrix of Σ. We have

max
16 j6mn

|̂λ jn − λ j| 6 ‖Σ̂n − Σmn‖ 6 ‖Σ̂n − Σ̃n‖ + ‖Σ̃n − Σmn‖,

where for the first summand on the right hand side we conclude

‖Σ̂n − Σ̃n‖2

6

mn∑

j,l=1

τ jτl

∣∣∣1
n

∑

i

(
2(∆i−Eknh(Xi))(̂hn(Xi)−Eknh(Xi))+(̂hn(Xi)−Eknh(Xi))

2
)
ψ jn(Zi)ψln(Zi)

+ (∆i − ĥn(Xi))
2
(
2(ψ̂ jn − ψ jn)(Zi)ψln(Zi) + (ψ̂ jn − ψ jn)(Zi)(ψ̂ln − ψln)(Zi)

)∣∣∣∣
2

6 C

mn∑

j,l=1

τ jτl

{∣∣∣ E[(∆ − Eknh(X))ψ jn(Z)ψln(Z)ekn(X)t](β̂n − βn)
∣∣∣2

+
∣∣∣(β̂n − βn)t

E[ekn(X)ψ jn(Z)ψln(Z)ekn(X)t](β̂n − βn)
∣∣∣2

+
∣∣∣ E[(∆ − Eknh(X))2ψln(Z)ekn(X)t](γ̂ jn − γ jn)

∣∣∣2

+
∣∣∣(γ̂ jn − γ jn)t

E[(∆ − Eknh(X))2ekn(X)ekn(X)t](γ̂ln − γln)
∣∣∣2
}

+Op(k4
n/n

2)

= Op(1/n).

Finally, it is easily seen that ‖Σ̃n − Σmn‖2 = Op(1/γkn + 1/n) = Op(1/n), which
proves the result. �

For the next proof, recall the definition of the smoothing operator K which
is determined by the eigenvalue decomposition { √τ j, f j} j>1 and the condi-
tional expectation operator T defined by Tφ = E[φ(∆,X)|Z] for any bounded
function φ.

Proof of Proposition 2.6. Since pZ/ν is uniformly bounded away from zero
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by some constant C > 0 we obtain

Sn =

mn∑

j=1

τ j

∣∣∣∣n−1
∑

i

r(∆i,Xi) f j(Zi)
∣∣∣∣
2

+ op(1)

=

mn∑

j=1

τ j

∣∣∣ E
[
r(∆,X) f j(Z)

]∣∣∣2 + op(1)

=

∞∑

j=1

∣∣∣
∫

X×W

√
τ j E(r(∆,X)|Z = z)

pZ(z)

ν(z)
f j(z)ν(z)d(z)

∣∣∣2 + op(1)

=

∫

X×W

∣∣∣(KTr)(z)
pZ(z)

ν(z)

∣∣∣2ν(z)dz + op(1)

> C E

∣∣∣(KTr)(Z)
∣∣∣2 + op(1).

Since K is nonsingular by construction it follows from the proof of Theorem
2.1 that E |(KTr)(Z)|2 > 0. �
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