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Abstract

The corporate finance literature documents that managers tend to over-invest in

their companies. A number of theoretical contributions have aimed at explaining this

stylized fact, most of them focusing on a fundamental agency problem between sharehol-

ders and managers. The present paper shows that over-investments are not necessarily

the (negative) consequence of agency problems between shareholders and managers,

but instead might be a second-best optimal response to address problems of limited

commitment and limited liquidity. If a firm has to rely on relational contracts to mo-

tivate its workforce, and if it faces a volatile environment, investments into general,

non-relationship-specific, capital can increase the efficiency of a firm’s labor relations.
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1 Introduction

A prominent and well established stylized fact in corporate finance is that managers tend to

over-invest, or, as Stein (2003) puts it, that they “...have an excessive taste for running large

firms, as opposed to simply profitable ones” (p. 119). Numerous theories have been deve-

loped to explain this pattern: managers’ taste for empire building (see Williamson (1964),

Jensen (1986), Jensen (1993)), short-termism of managers who focus on activities the market

can easily observe, (see Stein (1989), Bebchuk and Stole (1993)), managerial overconfidence

into their own abilities (Roll (1986), Heaton (2002)), or asymmetric information with respect

to new investment opportunities (see Inderst and Klein (2007)). All these theories share the

perception that over-investments are caused by agency problems between a firm and its ma-

nagement. Hence, mechanisms to reduce free cash-flow – and consequently the management’s

ability to invest – have been suggested as optimal responses to this perceived fundamental

agency problem. However, there is no clear evidence that reducing a firm’s free cash-flow

and restricting a manager’s investment opportunities increases firm value – on the contrary,

investors often assess capital investments positively (see McConnell and Muscarella (1985),

Myers (2003)).

This paper shows that investments into general, liquidity-generating, capital can have a

positive impact on firm value, namely by making it easier to motivate a firm’s workforce. If

a firm cannot use formal, court-enforceable contracts to provide incentives, and if payments

used to compensate its workforce is constrained by the firm’s volatile revenues, the scope

of incentive provision is limited. Then, the combination of limited commitment and limited

liquidity may cause an inefficiently low productivity. In this case, over-investments – inves-

tments where marginal costs exceed (direct) marginal benefits – can improve the power of

the firm’s incentive system because capital investments increase the firm’s financial flexibi-

lity as well as its commitment by generating additional cash flow. Hence, over-investments

partially mitigate contracting frictions, and are not necessarily an inefficient manifestation

of intra-firm agency problems.

More precisely, we develop a model where a principal needs physical capital and an agent’s

effort to produce, and the time horizon is infinite. Effort is potentially exerted in every

period and increases output. Capital investments are made at the beginning of the game and

increase output as well. The agent has to be motivated to exert effort, however neither his

effort nor potential performance signals are verifiable. Therefore, relational contracts where

the firm implicitly promises to reward performance have to be employed to incentivize the

agent. There, the principal only has an incentive to honor her promises if the net present

value of the firm’s profits is sufficiently large. This constraint on credible promises limits
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the level of enforceable effort if the discount factor is small. In addition to this standard

credibility problem of relational contracts, we consider the effect of a volatile environment on

the principal’s ability to make desired payments. It turns out that taking this into account can

restrict enforceable effort even for relatively large discount factors. In particular, we assume

that the principal is exposed to varying market conditions, i.e., demand may be either high

or low. The principal faces a liquidity constraint and can only use generated cash-flow –

funds that have been earned by selling the output – to compensate the agent. Under this

assumption the agent’s compensation is likely to vary with the principal’s earnings, and high

demand be associated with higher payments to the agent. However, the maximum amount

the principal is willing to pay out instead of reneging and shutting down is determined by her

expected future profits, independent of the differences in available liquidity between states

of the world. A big difference between the revenues in good and bad states, and hence

higher payment obligations in the good state, increases the principal’s reneging temptation

and limits enforceable effort to an inefficiently low level even if the discount factor is close

to 1. Therefore, the very combination of a liquidity constraint and the absence of formal

enforcement triggers efficiency reductions even for rather large discount factors.

The principal can mitigate this problem by (seemingly excessive) investments into physical

capital. We start by assuming that investments are not relationship specific, hence can be

re-sold at any time for the initial purchasing price. Higher investment levels raise the output

in all states and therefore increase the available cash-flow also in low-demand states, i.e.,

when the liquidity constraint binds. This direct positive effect of a higher liquidity in bad

states is further amplified by an indirect credibility effect that helps in good states: Because a

higher effort level can be implemented due to the additional liquidity in low-demand states,

expected profits today and in all future periods go up. This allows to credibly promise a

higher bonus in high-demand states (recall that effort is restricted by the combination of

limited liquidity in bad and limited commitment in good states) and consequently to further

increase implemented effort. In this context, over-investments – i.e., capital levels where the

marginal investment costs exceed the direct marginal benefits – are potentially optimal.

This result is remarkable in comparison to the “classic” corporate finance literature where

over-investments are interpreted as a consequence of agency problems between shareholders

and management: Means to reduce free cash-flow – like issuing debt – are proposed as

(second-best) solutions to the problem of over-investments; see, e.g., Hart and Moore (1995),

Zwiebel (1996). We show that the additional cash-flow generated by over-investments can

be used to increase the firm’s financial flexibility and mitigate an agency problem between

the firm and its workforce.
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Because we consider investments into general, non-relationship-specific, capital, over-

investments are not optimal for low discount factors, where only limited commitment and

not limited liquidity is a problem. This changes in Section 6.1, where we assume that the asset

is relationship-specific in a sense that its resale value is smaller than the initially invested

amount. Then, investment costs are (partially) sunk and thus not (fully) considered by the

principal whenever she faces the decision whether to keep her promises in the relational

contract or not. Due to sunk investment costs, and as an increased capital base positively

affects future rents, investments into capital improve the enforceability of relational contracts

and consequently also attenuate pure credibility problems. Then, over-investments can also

be optimal for rather low discount factors. This positive interaction between relationship-

specific up-front investments and the enforceability of relational contracts has previously been

identified by Halac (2015). She analyzes a setting where a principal and an agent interact

repeatedly, and the principal has to make an ex-ante relationship-specific investment. This

standard hold-up problem induces the principal to under-invest if she fears that the returns

from this investment will ex-post be expropriated by the agent. Then, the inability to use

formal contracts may increase the efficiency of the relationship, by a logic similar to ours:

A higher relationship-specific investment increases the benefits of keeping the relationship

going, reduces the reneging temptation and thereby increases effort in the relational contract.

Different from Halac (2015), we show that over-investments not only increase the value of

the relationship by creating quasi-rents that are lost after a deviation, but also mitigate

problems generated by volatile returns. In addition we show that over-investments can even

be optimal with general, non-relationship-specific, capital – a result that is not present in the

setup of Halac (2015). In Section 6.1., we further conduct comparative statics with respect

to the liquidation value of the asset. If it increases (which implies that the asset becomes

less relationship specific), the effect on investments is ambiguous, and the scope for over-

investments might actually go up: On the one hand, the benefits of over-investments then

go down because the associated increase in the firm’s outside option is more pronounced

for larger investments. On the other hand, the principal’s outside option becomes more

attractive, which fosters her incentives to deviate and therefore increases the benefits of

over-investments.

Our results also appear related to Klein and Leffler (1981). There, up-front relationship

specific investments are sunk and so allow future rents to be used as a bond to ensure

performance. However, those investments do not affect productivity but instead are necessary

to sustain an equilibrium with high performance in a market environment, by dissipating rents

and consequently restricting firm entry.
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In our benchmark case, we assume that the firm is neither able to enter a credit market,

nor to hoard cash in order to deal with liquidity shortages. Especially the latter assumption

not only simplifies our analysis, but also seems to describe the reality in a number of instances.

There are a variety of reasons for why firms are not able to keep large amounts of cash. For

example, short-sighted shareholders may insist on paying out cash or investing it in higher

return but less liquid assets. In such cases, this paper argues that a second-best option

might be to invest in stable, cash generating business. However, we also show that even if

we introduce a credit market (Section 6.2), and even allow for cash holdings (Section 6.3),

over-investments continue to be a viable instrument to improve the performance of a firm’s

incentive system.

Related Literature

The starting point of this paper is the moral hazard principal agent literature which focuses

on unobservable effort choice as a determinant of firm profitability (or productivity). An

improved solution to the moral hazard problem will, ceteris paribus, increase productivity.

While there exists a large literature, building on Holmstrom (1979) and Grossman and Hart

(1983), focusing on explicit contracts that reward the agent based on verifiable performance

measures, there has been an increased interest in implicit contracts as a way to mitigate the

moral hazard problem; see, e.g., Bull (1987), MacLeod and Malcomson (1989), Levin (2003).

In a more recent contribution, Gibbons and Henderson (2013) argue that different aspects

of relational contracts are responsible for observed persistent performance differences among

seemingly similar enterprises that also exist within industrialized countries.

Relational (or implicit) contracts employ repeated-game logic to use observable but un-

verifiable information and do not rely on explicit, court-enforceable, performance measures

to motivate workers. The performance of relational contracts is generally restricted by an

insufficient discounted future value of the relationship. This credibility problem hence ce-

teris paribus is more severe if players have rather low discount factors. The present paper

introduces a liquidity problem and shows that the efficiency of relational contracts can also

be restricted by volatile returns, even if discount factors are rather large. In the recent past

there have been a number of papers investigating richer dynamics and the effect of stochastic

shocks on the efficiency and stability of implicit contracts – see, e.g., Li and Matouschek

(2013), Englmaier and Segal (2011) – to which the present paper relates. In addition, we

relate to some recent papers linking a firm’s financing conditions and decisions to the enfor-

ceability of relational contracts. Contreras (2013) analyzes how relational contracts formed

between a firm and its supplier interact with the quality of financial markets. Fahn, Merlo,

4



and Wamser (2017) show how equity financing helps to enforce relational contracts. Debt

increases a firm’s reneging temptation because some of the negative consequences of brea-

king implicit promises can be shifted to creditors. In a related vein, Barron and Li (2015)

explore how the negative effect of debt on the enforceability of relational contracts affects

firm dynamics. They show that it is optimal for firms to first meet its financial obligations

at the expense of having low compensation and effort levels in early periods.

2 Model Setup

We first characterize the basic model. In the next subsection we will describe the informatio-

nal structure of the game. There is one principal (“she”) and one agent (“he”). The principal

needs two inputs for production, capital and the agent’s effort. Time is discrete, the time

horizon infinite; principal and agent are risk-neutral and share a common discount factor

δ ∈ (0, 1). In the first period of the game, t = 0, the principal makes capital investments

k ∈ [0, k], where k is assumed to be large enough. Capital investments are associated with

marginal investment costs of 1. They can either be funded by the principal herself or raised

from (passive) outside investors who provide equity. To sharpen our arguments, we abstract

from any agency conflicts between the principal and outside shareholders, and assume that

the latter automatically receive their fair share of residual profits. Furthermore, we assume

that the asset is not relationship-specific and can be resold at the end of every period, for a

value k. Below, in Section 6.1, we allow for asset specificity in the sense that the resale value

is below k. We also assume that the asset can only be liquidated as a whole and not parts

of it, and that the game is over once the asset has been sold.

In every period t = 1, 2, ..., the firm makes a short-term employment offer to the agent;

this offer consists of a fixed wage wt ≥ 0 and the promise to make a contingent bonus payment

bt ≥ 0. This bonus promise provides the agent with incentives and is paid at the principal’s

discretion.

The agent’s decision whether to accept an offer or not is captured by dt ∈ {0, 1}, where

dt = 1 describes an acceptance and dt = 0 a rejection. After accepting an offer, the agent

makes his effort choice et. Effort is continuous, et ∈ [0, e], where e is assumed to be large

enough, and associated with linear effort costs c · et, where c > 0.

If the agent rejects the principal’s offer, the principal consumes her outside option π ≥ 0,

and the agent consumes his outside option u ≥ 0 in the respective period.

The output generated in period t is yt = f (et, k). f (et, k) is a continuous function in

both arguments, with fe, fk > 0 and fee, fkk < 0. For simplicity, and without affecting any
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of our qualitative results, we further assume fek = 0, with one exception: f(0, kt) = 0 for

all kt ≥ 0. Therefore, at least some effort by the agent is needed for a productive use of the

asset.

After producing, the principal sells the output and generates revenues θtyt. θt ∈ {θl, θh}

is a parameter specifying the demand conditions for the principal’s output, with 0 < θl < θh,

and is realized after the output has been produced. High demand is realized with probability

p, low demand with 1 − p. These probabilities are independent over time, i.e., there is no

persistency in demand conditions. After the sale of output, payments wt and bt are made.

Hence, the bonus can be contingent on the realization of θ (in addition to chosen effort), i.e.,

bt(et, θt), whereas wt is fixed by assumption.

We assume that the principal is liquidity constrained: all funds used to compensate the

agent must be earned via the sale of its products. This implicitly assumes that the principal

does not retain profits earned in earlier periods and has no access to credit markets. We relax

the first assumption in Section 6.3 and show that it does not drive our results. The second

assumption is relaxed in Section 6.2. Furthermore, potential outside shareholders are not able

to inject additional funds into the firm in later periods. In this case, note that if they were

able at the beginning of the game to not only provide funds for physical investments but to

leave cash reserves in the firm to cover later shortages, our results would not be qualitatively

affected (see Section 6.3.).

Finally, note that although we do not further analyze potential interactions with outside

shareholders, their presence would not affect the principal’s incentives in her relationship

with the agent. Resulting dividend payments would just scale down all components of the

constraints proportionally and hence cancel out (see Fahn, Merlo, and Wamser (2017)).

The timing within every period t is summarized in the following graph:

P makes

offer to agent

Upon acceptance,

A chooses effort,

yt produced

θt realized

revenues θtyt
generated

P makes

payments

wt, bt(et, θt)
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Information, Payoffs, Strategies and Equilibrium

Generally, we assume that no contingent formal contracts are feasible. However, there are no

informational asymmetries between players, hence agency problems only arise because formal

contracts cannot be used to motivate the agent.1 More precisely, a formal, court-enforceable

contract can neither be based on the agent’s effort et, on output yt, revenues θtyt, nor on the

realization of the demand parameter θ. Still, all these aspects, as well as acceptance decisions

dt, and wage and bonus payments can be observed by the principal and by the agent.

Presuming that the asset is never liquidated, the principal’s payoff in any period t ≥ 1 is

Πt =E

{

∞
∑

τ=t

δτ−t [π + dτ (θτf (eτ , k)− (wτ + bτ (et, θτ ))− π)]

}

,

where expectation is over the realizations of θ. Furthermore,

Π0 = −k + δΠ1.

The agent’s expected discounted payoff stream equals

Ut = E

{

∞
∑

τ=t

δτ−t [u+ dτ (wτ + bτ (et, θτ )− c · et − u)]

}

.

We only consider pure strategies, and define a relational contract as a Subgame Perfect

Equilibrium (SPE) where after every history strategies determine a Nash Equilibrium. More

precisely, we are interested in a SPE that maximizes the principal’s expected profits at the

beginning of the game, i.e., Π0.

In the following, we focus on equilibria where the employment offer is accepted by the

agent (dt = 1).

In Appendix A, in Lemma 1, we show that, under the assumption that no formal contracts

based on θt can be written, we can without loss of generality focus on stationary contracts

that are independent of calendar time, as well as past realizations of demand shocks. Hence,

effort, wt, and bt are constant over time, allowing us to omit time subscripts t. This is driven

by shocks being distributed i.i.d., by effort being chosen before the state of the world is

realized, and by the principal – the party facing the liquidity constraint – being able to reap

the whole surplus. Hence, only equilibrium bonus payments might vary over time, depending

on the respective realization of θ. There, bh is the equilibrium bonus given θh is observed,

1See Englmaier and Segal (2011) or Li and Matouschek (2013) for an analysis of situations where shocks
to the firm are not observable to the workforce.
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and bl the bonus for θl. Finally, we set the outside options π = u = 0. This assumption

does not affect our results qualitatively, but simplifies our analysis given the firm’s liquidity

constraints.

3 Maximization Problem and Constraints

Our objective is to find levels of capital k, (stationary) effort e, as well as a compensation

package (w, bl, bh) to maximize

Π0 = −k + δΠ,

where

Π =
p(θhf(e, k)− bh) + (1− p)(θlf(e, k)− bl)− w

1− δ

is the principal’s expected discounted equilibrium payoff stream in any period t ≥ 1. Note

that an equilibrium that maximizes the principal’s profits involves no liquidation on the

equilibrium path.

The following constraints have to be satisfied to enforce a stationary SPE. First, it must

be optimal for the agent to accept an employment offer. This is captured by an individual

rationality (IR) constraint,

U ≥ 0, (IR)

where U = w + pbh + (1 − p)bl − c · e + δU is the agent’s expected discounted equilibrium

payoff stream. An incentive compatibility (IC) constraint must hold for equilibrium effort

e∗. For given bonus payments bl (after θ = θl) and bh (after θ = θh), this constraint equals

pbh + (1− p)bl − c · e∗ + δU ≥ 0. (IC)

There, we assume that the agent receives no further future offer after selecting e = 0.2

Because w ≥ 0, (IR) is automatically implied by the (IC) constraint.

Furthermore, because of the non-verifiability of effort and output, it must be in the interest

of the principal to actually pay out bl and bh to the agent, which is characterized by dynamic

enforcement (DE) constraints. There, if she fails to make a promised payment, we assume a

reversion to the static Nash equilibrium.3 This is characterized by no payments being made

2This is based on the assumption that once an agent deviated, the principal assumes he will not exert
effort in the future as well. The analysis would be identical, though, if the principal believed that an agent’s
deviation was a singular event, which is driven by the agent not receiving a rent in any profit-maximizing
equilibrium (derived below).

3Following Abreu (1988): The static Nash Equilibrium determines the lower bound on the principal’s
profits and should hence constitute her punishment following observable deviations.
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to the agent, who in return chooses e = 0. Therefore, if the principal reneges on a bonus

payment, she further will immediately shut down and consume the liquidation value of the

asset, k.

The two dynamic enforcement (DE) constraints, one for bl and one for bh, are

−bl + δΠ ≥ k (DEl)

and

−bh + δΠ ≥ k. (DEh)

In addition, a liquidation must never be optimal for the principal, i.e., Π ≥ k. Given

that bonus payments are non-negative, though, this condition is automatically implied by

the firm’s (DE) constraints.

Since the right hand sides of (DEl) and (DEh) are identical, only one of them has to be

considered, depending on whether bl or bh is larger.

Furthermore, payments must not violate the principal’s liquidity constraints, which state

that payments in any period cannot exceed respective revenues:

w + bl ≤ θlf(e, k) (Ll)

and

w + bh ≤ θhf(e, k). (Lh)

Finally, note that it must also not be optimal for the principal to liquidate the firm

and compensate the agent with the resulting funds. This however, is implied by the stated

constraints because a liquidation of the firm implies that no production takes place in any

future period.

Before characterizing equilibrium effort, we first derive the value of e that maximizes the

(unconstrained) total surplus. In the following, we denote this efficient – or first-best – effort

level eFB. For a given capacity level k, eFB is characterized by

(

pθh + (1− p)θl
)

fe(·)− c = 0. (FB)

To keep the analysis interesting, we impose Assumption 1, implying that operating is

strictly optimal for the principal.
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Assumption 1: There exists a k̃ > 0 such that δ
f(eFB ,k̃)(pθh+(1−p)θl)−eFBc

1−δ
− k̃ > 0

Given the concavity of the production function, Assumption 1 implies that investment

levels that satisfy such a condition also exist if first-best effort cannot be enforced.

Furthermore, we want the firm’s liquidity constraints to potentially have bite. Hence, we

impose Assumption 2:

Assumption 2: ceFB > θlf(eFB, k)

If Assumption 2 was violated, the firm would never be constrained by a lack of liquidity

and could always set bh = bl = ce.

4 Equilibrium Effort e∗

In this section, we derive the (profit-maximizing) equilibrium effort level – denoted e∗ – and

in particular explore how it is affected by the principal’s liquidity constraints. As a first step,

we can show that the (IC) constraint binds in any profit-maximizing equilibrium, and that it

is further optimal to set w = 0 (see Lemma 1 in Appendix A). These results follow from the

observability of effort and our focus on a profit-maximizing equilibrium. Hence, the principal

will aim at maximizing the total surplus subject to the constraints derived above.

Equilibrium effort is characterized in Proposition 1.

Proposition 1 For a given capital level k, the firm chooses equilibrium effort e∗ to maximize

Π =
(pθh+(1−p)θl)f(e,k)−ec

(1−δ)
, subject to

ce∗ ≤
δp2

1− δ + δp
θhf(e∗, k) + (1− p)θlf(e∗, k)−

(1− δ)p

(1− δ + δp)
k, (DE-L)

and

ce∗ ≤ δf(e∗, k)
(

pθh + (1− p)θl
)

− (1− δ)k. (DE)

There exist values δ and δ, with δ < δ < 1, such that

• e∗ = eFB for δ ≥ δ

• e∗ < eFB for δ ≤ δ < δ, and e∗ is determined by the binding (DE-L) constraint

• e∗ < eFB for δ < δ, and e∗ is determined by the binding (DE) constraint.

Proof: See Appendix B.
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The (DE-L) constraint is obtained by adding (Ll) (multiplied with 1 − p) and (DEh)

(multiplied with p), whereas the (DE) constraint follows from (DEh) and (DEl) provided

bh = bl = ce∗. Concerning the intuition behind Proposition 1, note that the principal

can only implement eFB with bh > bl – because having bh = bl = ceFB would require

ceFB ≤ θlf(eFB, k) which is ruled out by Assumption 2. Put differently, the binding liquidity

constraint in the low-demand state forces the principal to promise the agent a larger bonus

in the high-demand state. The maximum size of bh, however, is determined by the (DEh)

constraint. Because the principal’s willingness to reward the agent is determined by expected

discounted future rents and not by current profits, her reneging temptation is higher in the

high than in the low state. If δ is sufficiently large, though, (DEh) has no bite, and eFB

can be enforced. For δ ∈ [δ, δ), (DEh) binds because the principal cannot credibly promise

to pay a sufficiently high bonus. Therefore, the interaction of constrained credibility and

constrained liquidity restricts enforceable effort. Note that δ not only depends on the surplus

of the relationship, but also on the volatility of earnings. This aspect will be made more

precise in the next section.

For δ < δ, cash shortage is no longer a problem but instead the principal has a credibility

problem also when demand is low. Then, (DEl) bites as well, which makes it optimal to set

bh = bl = e∗c, yielding identical (DEh) and (DEl) constraints.

These results can be matched to empirically documented regularities. Proposition 1 also

implies that on average, firms with a higher discount factor have a larger variation in residual

cash flows because a binding liquidity constraint forces many of them to pass all their revenues

on to the agent if demand is low. On the other hand, if δ < δ, the liquidity constraint does

not bind, and free cash flow is also available if demand is low. Given we expect firms to

pay higher dividends to their shareholders in case they have more free cash flow, we predict

dividend payments of firms with a higher discount factor to vary more than of firms with a

lower discount factor. There, Michaely and Roberts (2012) show that privately held firms

in the UK smooth dividends significantly less than their publicly listed counterparts, and

respond more to transitory earnings shocks. Michaely and Roberts (2012) conjecture that

this might be due to agency problems, which are more prominent in publicly held firms. We

offer an alternative but related explanation, because of a notion that privately-held firms are

supposed to have larger discount factors: Privately held firms are often assumed to focus more

on long-term goals – in particular with respect to their employment relationships – compared

to publicly listed firms. Take family firms, where for example a study by Price Waterhouse

Cooper (2012) identifies a larger commitment to jobs, which leads “family-run businesses ... to

have more loyalty toward their staff – people are not just a number” (PriceWaterhouseCooper
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(2012), p. 6). This makes it more likely that (DE-L) is the relevant constraint, implying

more variation in dividend payments.

In a next step, we flesh out that it is not only players’ impatience (i.e., a low δ) that

limits the power of incentives if the firm faces a liquidity constraint. This is different from

“standard” contributions like MacLeod and Malcomson (1989) or Levin (2003), and also

Halac (2015), where the enforceability of relational contracts is solely determined by players’

credibility and in particular their discount factors. We can show that the liquidity constraint

might bind – and hence effort be restricted to inefficiently low levels – even if the principal is

arbitrarily patient. This is the case if the principal’s cash-flow is very uncertain in the sense

that the firm makes high profits with a small probability.

Proposition 2 Fix an arbitrary effort level ê > θlf(ê,k)
c

, and assume a discount factor δ ≥ δ,

i.e., the (DE) constraint can be omitted. Then, for fixed values θl and c, as well as for a fixed

per-period surplus f(ê)
(

pθh + (1− p)θl
)

− cê, there exists a p such that for p < p, constraint

(DE-L) does not hold for ê.

Proof: See Appendix B.

A reduction of p, accompanied by an increase of θh in order to keep the surplus for a given

effort level fixed will eventually lead to a violation of (DE-L).4 This result is driven by the

combination of liquidity and dynamic enforcement constraints. When constrained liquidity

has bite, larger shares of the compensation package must be shifted to high-demand states,

ceteris paribus increasing the temptation to renege. Hence, the (DE-L) constraint is more

likely to bind if the expected surplus generated in the relationship is high, and if the firm

operates in a high-risk environment. Absent (Ll), the enforceability of an effort level e would

– for a given discount factor δ – only depend on the future surplus, independent of the exact

specification of p and θ.

To sum up, this section establishes a new potential enforcement problem induced by a

combination of the standard credibility problem in relational contracts with liquidity con-

straints. Even if the principal is very patient, her commitment in the relational contract is

limited if earnings are volatile.

5 Optimal Capital Choice and the Scope for Over-Investments

We now derive the principal’s optimal capital choice. At the beginning of the game, the

principal sets the optimal investment level k∗ to maximize Π0 = −k+δΠ, taking into account

4Note that given effort, θl, c, and surplus stay constant and also δ is unaffected.
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the direct effect of k on output, but also potential indirect effects of k on equilibrium effort

in later periods. If equilibrium effort is at eFB, i.e., if neither (DE) nor (DE-L) bind, the

latter aspect does not affect equilibrium capital k∗ due to the envelope theorem. In this case,

the optimal capital level is defined by

∂Π0

∂k
= −1 +

δ

1− δ

(

pθh + (1− p)θl
)

fk = 0. (1)

In the following, let k̃ denote the capital level characterized by (1).5 We can show that

capital is above k̃ if (DE-L) binds. There, we make use of the critical discount factors δ and

δ (as defined in Proposition 1), which determine if eFB can be implemented, or if equilibrium

effort is restricted by a binding (DE) or (DE-L) constraint.

Proposition 3 The optimal capital level k∗ is given by one the following cases:

• k∗ > k̃ if (DE-L) binds at k̃, i.e., if δ is such δ ≤ δ < δ

• k∗ = k̃ if either eFB can be implemented (δ ≥ δ), or if (DE) binds (δ < δ) at k̃.

Proof: See Appendix B.

If the (DE-L) constraint binds, i.e., if δ ≤ δ < δ, over-investments are optimal because

a higher value of k increases output and thereby the available cash-flow in each state of the

world. Then a larger share of the agent’s compensation can be shifted to the low-demand

state, thereby also relaxing the principal’s (DEh) constraint. More precisely, the benefits of

having a capital level above k̃ consist of a direct liquidity effect and an indirect credibility

effect. The direct liquidity effect is caused by more available cash in periods where the firm

faces a negative demand shock and where the liquidity constraint binds. There, starting

from k̃ (which is associated with an effort level ẽ < eFB) and increasing capital by a small

dk increases the feasible bonus payment by dbl = θl
(

f(ẽ, k̃ + dk)− f(ẽ, k̃)
)

. Consequently,

higher effort can be implemented, with de = (1 − p)
θl(f(ẽ,k̃+dk)−f(ẽ,k̃))

c
, increasing per-period

profits by dπ = pθhf(ẽ+ de, k̃+ dk)+ (1− p)θlf(ẽ+ de, k̃+ dk)− c (ẽ+ de). This raises total

profits Π0, because the costs of having a capacity above k̃ are of second order at the margin,

whereas the benefits of having larger effort are of first order due to ẽ < eFB.

Moreover, the direct liquidity effect also gives rise to an indirect credibility effect which

helps the firm in high-demand periods where it is not restricted by a lack of liquidity. In

these periods, the principal wants to pay a higher bonus bh, but cannot credibly promise to

5Because fek = 0, k̃ is independent of effort.
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do so because her discounted future profits, δΠ, are not sufficiently high compared to her

outside option, k. The relaxed liquidity constraint and associated increase of expected future

effort induced by a higher capacity increase δΠ by more than it increases k (which, again, is

because the benefits of higher effort are of first order, whereas the costs of a higher capacity

are of second order at the margin). Consequently, the principal can credibly promise a higher

bh, thereby further increasing implemented effort and equilibrium profits. Concluding, the

combination of a direct liquidity and an indirect credibility effect renders over-investments

optimal for δ ≥ δ.

If (DE) binds, over-investments are not optimal. Higher levels of k increase on-path

profits, but also the liquidiation value. The first aspect relaxes, the second tightens the

(DE) constraint. For k∗ = k̃, both effects just offset each other. However, note that if the

liquidation value of the asset is lower than k, over-investments are also optimal if the (DE)

constraint binds. This aspect is further explored below, in Section (6.1).

Also note that, because fek = 0, k̃ is independent of effort, and hence the optimal capital

the same when eFB is implemented and when (DE) binds. For fek 6= 0, the capital level

in both cases would not be identical, however in each case still characterized by condition

(1). Only with a binding (DE-L) constraint, k∗ is above the level specified by condition (1),

irrespective of the sign of fek.

Concluding, we show that the very lack of free cash-flow in some states renders over-

investments ex-ante optimal. This result stands in contrast to the classic corporate finance

literature (see, e.g., Hart and Moore (1995) or Zwiebel (1996)), where a reduction of free

cash-flow is regarded as a potential remedy to overcome over-investment problems.

6 Extensions and Robustness

6.1 Asset Specificity

To focus on the effect of capital investments on a relational contract with liquidity constraints

– an interaction that has to our best knowledge not been identified before – we have assumed

that the asset’s outside value corresponds to the invested amount. This assumption serves

to isolate our main contribution that investments in general capital can improve the perfor-

mance of relational contracts. In this section, we analyze the effects of the investment being

(partially) relationship specific. Then, over-investments are optimal even for a binding (DE)

constraint. The reason is that investments increase revenues in all future periods. Since

investment costs are (partially) sunk, the difference between profits in and out-of equilibrium

increases, and promises made to the agent become more credible. Such a result has been
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identified before, for example by Halac (2015). She shows that the hold-up problem (gene-

rating under-investments into relationship-specific assets) can be less severe in a relationship

where relational contracts have to be used ex-post.

Here, we assume that the resale value of the asset is γk, with γ ∈ [0, 1]. Everything we

derived so far remains unaffected, only that k is replaced by γk. Hence, (DE) and (DE-L)

constraints, which determine enforceable effort, become

e∗c ≤ δ
(

pθh + (1− p)θl
)

f(w∗, k)− (1− δ)γk (DE)

and

e∗c ≤ (1− p)θlf(e∗, k) + p (δΠ− γk) . (DE-L)

A larger relationship specificity of the asset, i.e., a smaller γ, reduces the principal’s reneging

temptation because the liquidation value of the asset (which the principal consumes after a

deviation) is lower. Therefore, both constraints are relaxed, and a higher effort level can be

implemented.

Optimal effort and investment levels, as well as the effect of the degree of asset specificity

γ on (over-)investments are given in Proposition 4:

Proposition 4 There exist values δ(γ) and δ(γ), with δ(γ) < δ(γ) < 1, such that

• e∗ = eFB for δ ≥ δ(γ); in this case, k∗ = k̃, where k̃ is characterized by (1) .

• e∗ < eFB for δ(γ) ≤ δ < δ(γ), and e∗ is determined by the binding (DE-L) constraint;

in this case, k∗ > k̃ for all γ ≤ 1.

• e∗ < eFB for δ < δ(γ), and e∗ is determined by the binding (DE) constraint; in this

case, k∗ > k̃ for all γ < 1.

Furthermore, dδ(γ)/dγ > 0 and dδ(γ)/dγ > 0; if either (DE) or (DE-L) binds, k∗ might

increase or decrease in γ.

Proof: See Appendix B.

Concerning the marginal effect of the asset’s relationship specificity on optimal invest-

ments, note the following: First, critical discount factors are increasing in γ, hence a larger

γ increases the parameter range where constraints bind and over-investments are generally

optimal. This is because a larger γ increases the principal’s outside option and hence tightens

the relevant constraints. If δ < δ(γ), a higher γ has two opposing effects. On the one hand,
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it tightens the principal’s constraints, which amplifies the benefits of over-investments. On

the other hand, the increase in the principal’s outside option is more pronounced for a larger

k∗, hence a larger γ reduces the benefits of over-investments. The latter effect is relatively

stronger in case the (DE) constraint binds, i.e., for rather low discount factors. For interme-

diate discount factors such that (DE-L) is the relevant constraint, the marginal effect of γ on

k∗ is more likely to be positive. In this case, over-investments also provide additional cash

in low-demand states, whereas the increase of the principal’s outside option only matters for

high-demand states.

6.2 Principal has Access to a Credit Market

In this section, we explore whether the availability of a credit market can solve the problem

of constrained liquidity, sticking to the assumption that the asset’s outside value is γk. We

argue that even if a competitive credit market where repayment can be contingent on the

state of the world exists, over-investments remain optimal for many firms. Potentially, the

principal can benefit from a credit market if her (DE-L) constraint binds (if the DE constraint

binds, i.e., if effort is solely restricted by the principal’s lack of credibility, borrowing obviously

does not help). Then, the liquidity constraint could be relaxed by borrowing in low-demand

and repaying loans in high-demand states. In the following, we will therefore assume an

intermediate discount factor where the (DE-L) constraint binds (given no credit is taken by

the firm), whereas (DE) is slack.

Generally, the principal needs an incentive to repay the firm’s debt – supposing that a

default leads to a termination of the firm or that at least the principal has no access to

any future profits generated by it. Here we assume that the asset can be used as collateral

for a credit (otherwise, a credit market could not increase implementable effort). Then, the

credit market can effectively be used to smooth payments to the agent and thereby relax the

principal’s limited liability constraint. Consequently, a credit market can actually help to

enforce higher effort levels, however over-investments will still be optimal in many instances.

Assume there is a competitive credit market for short-term credit where creditors also

have a discount factor δ, and that repayment can be made contingent on the state of the

world. Furthermore, repayment is required in every high-demand period (even if the principal

has not borrowed in the previous period; this “smoothing” of repayments is optimal because

of the principal’s DE constraint in high-demand states). A credit market with an interest

larger than the rate reflecting time preferences, or with repayment not being fully contingent

on the state of the world would reduce its benefits and get us closer to our baseline situation.

We denote the amount borrowed by the principal in a low-demand state by D, and the
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amount repaid in a high-demand state by R. Because the credit market is competitive,

pR− (1− p)D = 0, hence R = (1− p)D/p.

First, note that for a given effort level, the principal’s profits are naturally unaffected

by the existence of the credit market, Π =
p(θhf(e,k)−bh−R)+(1−p)(θlf(e,k)−bl+D)

1−δ
, where by con-

struction pR = (1− p)D.

Furthermore, recall that the constraints that determine (DE-L) are (Ll) and (DEh), which

– taking the consequences of a credit market into account – now amount to

bl ≤ θlf(e∗, k) +D (Ll)

and

−bh −R + δΠ ≥ max {γk −R, 0} . (DEh)

The firm also needs an incentive to make the payment R (i.e., −R+ δΠ ≥ max {γk −R, 0}

must hold), which however is implied by (DEh). Enforceable effort again is determined by

the (DE-L) constraint, which is obtained by adding (Ll) (multiplied with 1− p) and (DEh)

(multiplied with p), taking into account that an agent’s (IC) constraint will bind. Hence,

−e∗c+ δpΠ+ (1− p)θlf(e∗, k) + (1− p)D − pR− max {pγk − pR, 0} ≥ 0. (DE-L)

The left hand side of the (DE-L) constraint is maximized for chosing D = p

(1−p)
γk, i.e., such

that R = γk. Larger values cannot be collateralized and hence do not further relax the

constraint.

This implies that the principal uses the credit market if the (DE-L) constraint binds in

order to increase implemented effort. She will either borrow an amount smaller than p

(1−p)
γk,

such that the (DE-L) constraint just binds (and either eFB can be implemented or (DE) has

become the relevant constraint), or she will borrow an amount D = p

(1−p)
γk (if (DE-L) still

binds at this debt level).

Over-investments remain optimal unless eFB can be implemented. Moreover, note that

there is an additional benefit of over-investments in case the (DE-L) constraint binds at

D = p

(1−p)
γk. Over-investments relax the “constraint” D ≤ p

(1−p)
γk. Hence, having a larger

value of k creates more collateral and allows to take more debt in order to smooth payments.

6.3 Firms can Accumulate Retained Earnings

So far, we have assumed that the firm cannot retain its high-demand earnings in order to relax

the liquidity constraint in low-demand periods. In this section, we show that over-investments
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can still be optimal if the principal is able to retain earnings. Doing so potentially allows the

principal to temporarily increase the implemented effort level, and might or might not be

optimal if the principal’s liquidity constraint binds. However, over-investments continue to

be part of the principal’s optimal investment decisions whenever effort is restricted. Further

note that the following can also be applied to analyze the possibility of keeping part of the

initial investment as a cash reserve to cover later shortages.

To simplify matters, we first assume that accumulated cash is kept by the principal and

does not generate interest payments. Later, we show that over-investments may also be

optimal if the principal can keep the retained cash in an interest-bearing current account.

Now, retained earnings can be used in two ways: On the one hand, effort can be increased

until the next realization of θl. On the other hand, a given effort level can be sustained for

more than just one subsequent realization of θl. We relegate a general characterization of

the principal’s optimal behavior to Appendix C (where we stick to the assumption of Section

6.1 and assume that the asset’s outside value is γk) and only present the main result in this

section.

Proposition 5 Retaining earnings is optimal if and only if in the situation without this

possibility, the (DE-L) constraint binds (i.e., if δ is between δ and δ, as defined above in

Proposition 1) and the following condition is satisfied:

(

δ (1− p)

[1− δp]
pθh + (1− p)θl

)

fe − c > 0. (2)

In this case, maximum effort is characterized by

(

δ (1− p)

[1− δp]
pθh + (1− p)θl

)

fe − c = 0. (3)

Proof: See Appendix C.

Holding cash reserves is never optimal if only (DE) constraints bind. However, a binding

liquidity constraint alone is only a necessary and not a sufficient condition for making it

optimal to retain earnings. Instead, the costs of holding cash reserves – delayed consumption

– might still be too high compared to the benefits of having higher effort in the future, which

is the case if condition (2) does not hold.

In Appendix C, we further show that after a cash stock has been built up and the principal

is hit by a number of negative shocks, effort is decreased gradually. Then, each low-demand

period triggers an effort reduction until all retained earnings have been used up. This parallels
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results in Li and Matouschek (2013) where implemented effort levels gradually decrease with

every adverse shock hitting a firm.

Note that the exact properties of these results rely on a number of simplifying assumpti-

ons. First, we assume that the liquidity constraints in high-demand states never bind. This

implies that one high-demand period is sufficient to replenish cash reserves to the principal’s

preferred (maximum) level, which gives rise to a “quasi-stationary” equilibrium. Without

this assumption, the level of retained earnings after a high-demand period might also be a

function of the stock of cash reserves preceding this period. Furthermore, we assume that the

principal can consume her retained earnings following a deviation. Therefore, retained ear-

nings not only relax the firm’s liquidity constraints, but also tighten its dynamic enforcement

constraints. This delivers an additional dimension of potential benefits of over-investments:

For γ < 1, those are relationship-specific in a way that retained earnings are not because

higher investments tighten dynamic enforcement constraints to a lesser degree than retained

earnings do.6 In any case, we can show that the possibility to accumulate cash reserves does

not eliminate over-investments.

Proposition 6 Assume retaining earnings is possible. Then over-investments are optimal if

in the situation without this possibility, either (DE) or (DE-L) constraints bind.

Proof of Proposition 6: If (DE) constraints bind, holding cash is not optimal and the

situation is equivalent to above – over-investments are an optimal response to relax the

constraint if γ < 1. If holding cash is optimal due to a binding (DE-L) constraint and

because condition (2) holds, effort never exceeds the level characterized by condition (3).

Hence, it is below the first best. The rest directly follows from the proof to Proposition 3.�

All of these arguments can also be applied to a setting where we allow the principal

to keep cash reserves at the beginning of the game: Assume that the principal or outside

investors not only have the possibility to invest into the physical asset, but are able to leave

cash in the firm to make up for later shortages. Then, the tradeoff still amounts to keeping

cash reserves in order to increase future effort versus instantaneous consumption. Therefore,

over-investments would remain optimal along the lines of Proposition (6).

Finally, note that retained earnings are also costly for the firm because they do not

generate any interest income and hence cause a first-order loss in profits, whereas over-

investments at the margin only entail a second-order loss. This changes once retained earnings

can be kept in a current account and generate interest. In the following, we argue that as

long as the discount rate does not fully make up for discounting, over-investments remain

6This is apparent in the respective formulations that can be found in Appendix C.
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optimal. Again, we relegate an in-depths analysis of this case to Appendix C and just present

the main results: If the interest rate is denoted by r, maximum effort is characterized by

δp (1− p)

(1− δp(1 + r))
θhfe +

(1− p)θlfe − c

(1 + r)
= 0,

with maximum effort being increasing in r. Indeed, for r = 1−δ
δ

, i.e., the interest rate

completely makes up for discounting, the condition becomes pθhfe + (1− p)θlfe − c = 0, and

maximum effort is at the first-best. But even then, over-investments will generally remain

optimal – because for effort always being at the first-best with probability 1, the firm would

need an infinite amount of cash reserves from the beginning of the game. In all other cases,

there would be a positive probability that the firm eventually runs out of cash and has

to reduce effort below the first-best level. But then, over-investments are optimal because

those only entail a second-order profit loss at the margin. Furthermore, an interest rate

r = (1 − δ)/δ would mostly be associated with fully efficient capital markets – whereas in

reality capital markets are regarded to entail at least some inefficiencies.

Internal capital markets have been identified as an instrument to mitigate a firm’s ex-

posure to inefficient external capital markets. If firms (or divisions within firms) pool their

resources, they might use their funds more efficiently and thereby improve capital allocation.

But internal capital markets are also associated with inefficiencies; see Stein (1997), or In-

derst and Laux (2005). Therefore, this paper can be used to argue that over-investments

might be an appropriate “internal” alternative to address inefficient external capital markets.

7 Discussion and Conclusion

The present paper has shown that observed over-investments are not necessarily the (ne-

gative) consequence of agency problems between shareholders and managers. Instead, they

might actually be a second-best optimal response to contracting frictions: In situations where

firms face volatile market conditions and hence varying cash-flow streams, and where they

cannot rely on court-enforceable contracts to motivate their workforce but have to use relatio-

nal contracts instead, “excessive” capital investments relax liquidity constraints by increasing

the firm’s cash-flow base.

We did not allow for different kinds of investments. In our setting, firms facing binding

(DE-L) constraints prefer investment opportunities with less volatile cash flows, even at

the cost of lower expected returns. I.e., these firms would abstain from making R&D-type

(high-risk/high return) investments and rather grow their business in a conservative way.
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Hence, there is potentially an additional indirect cost of low contract enforcement quality in

a country: reduced R&D activity and on the macro level reduced growth.7

7We are grateful to Bob Gibbons for pointing out this implication.
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A Maximization Problem, Constraints, and Proof of Sta-

tionarity

Note that it is sufficient to regard equilibrium effort as well as compensation as a function

of the history of past shocks. The reason is our focus on pure strategies. Denote the history

at the beginning of period t as θt−1 = {θ1, θ2, ..., θt−1}, with θt ∈ {θl, θh}, and θ0 = ∅. Then,

expected payoff streams can be written as

Π(θt−1) =p
[

θhf
(

e(θt−1), k
)

− e(θt−1)bh(θt−1)
]

+ (1− p)
[

θlf
(

e(θt−1), k
)

− e(θt−1)bl(θt−1)
]

− e(θt−1)w(θt−1) + δ
[

pΠ
(

θt−1, θh
)

+ (1− p)Π
(

θt−1, θl
)]

and

U(θt−1) =w(θt−1) + pbh(θt−1) + (1− p)bl(θt−1)− e(θt−1)c

+ δ
[

pU
(

θt−1, θh
)

+ (1− p)U
(

θt−1, θl
)]

,

where bh(θt−1) is the bonus paid for history θt−1 given a high shock is realized in period

t. Equivalent definitions hold for bl(θt−1), Π(θt−1, θt) and U (θt−1, θt).

Then, the firm’s objective function is to choose k as well as e(θt−1), w(θt−1), bh(θt−1) and

bl(θt−1) to maximize

Π0 = −k + δΠ(θ0),

subject to the following constraints, which must be satisfied for every history θt−1:

U(θt−1) ≥ 0 (IRA)

pbh(θt−1) + (1− p)bl(θt−1)− e(θt−1)c+ δ
[

pU
(

θt−1, θh
)

+ (1− p)U
(

θt−1, θl
)]

≥ 0 (IC)

bl(θt−1) ≤ δΠ
(

θt−1, θl
)

(DEl)

bh(θt−1) ≤ δΠ
(

θt−1, θh
)

(DEh)

Given both (DE) constraints, the firm’s individual rationality constraint, Π(θt−1) ≥ 0, is
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automatically satisfied.

w(θt−1) + bl(θt−1) ≤ θlf(e(θt−1)) (Ll)

w(θt−1) + bh(θt−1) ≤ θhf(e(θt−1)) (Lh)

Lemma 1 The (IC) constraint binds for every history θt−1.

Proof of Lemma 1: To the contrary, assume there is a history θ̃t−1 where (IC) does not

bind. At this point, reduce bh(θ̃t−1) as well as bl(θ̃t−1) by a small ε > 0 such that (IC)

for history θ̃t−1 is still satisfied. Furthermore, increase w(θ̃t−1) by ε and leave everything

else unchanged. This has no impact on Π0, as well as Π(θt−1) and U(θt−1) for any history

θt−1, hence does not affect any (IRA) constraint. Furthermore, all (Ll) and (Lh) constraints

remain unchanged. Finally (DEh) and (DEl) for history θ̃t−1 are relaxed and unaffected for

any other history.

�

Using the results of Lemma A1 gives U(θt−1) = w(θt−1),

Π(θt−1) =pθhf
(

e(θt−1), k
)

+ (1− p)θlf
(

e(θt−1), k
)

− e(θt−1)c

+ δ
[

pΠ
(

θt−1, θh
)

+ (1− p)Π
(

θt−1, θl
)]

and bh(θt−1) = e(θt−1)c−(1−p)bl(θt−1)
p

.

Furthermore, the remaining constraints are

w(θt−1) ≥ 0 (IRA)

bl(θt−1) ≤ δΠ
(

θt−1, θl
)

(DEl)

e(θt−1)c− (1− p)bl(θt−1)

p
≤ δΠ

(

θt−1, θh
)

(DEh)

bl(θt−1) ≤ θlf
(

e(θt−1), k
)

(Ll)

e(θt−1)c− (1− p)bl(θt−1)

p
≤ θhf

(

e(θt−1), k
)

(Lh)

This allows us to prove Lemma 2:
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Lemma 2 w(θt−1)(= U(θt−1)) = 0 for every history θt−1. Furthermore, contracts are statio-

nary in a sense that effort as well as bonus and wage payments in equilibrium are independent

of the history of shocks θt−1.

Proof of Lemma 2: We first show that a (constrained) surplus-maximizing equilibrium

is stationary and subsequently that the principal can extract the full rent.

In a surplus-maximizing equilibrium, none of the effort levels can optimally be above

eFB. Furthermore, the surplus is increasing in e(θt−1) for any possible history as long as

effort there is inefficiently low. Now, take any equilibrium effort level e(θt−2) and assume

that e(θt−2, θh) 6= e(θt−2, θl). If e(θt−2, θh) > e(θt−2, θl), replacing e(θt−2, θl) with e(θt−2, θh)

would violate no constraint and increase the surplus. If e(θt−2, θl) > e(θt−2, θh), on the

other hand, replacing e(θt−2, θh) with e(θt−2, θl) would violate no constraint and increase the

surplus. Hence effort in any period is independent of previous shock realizations and might

only be history-dependent based on the number of observed shocks, i.e., on timing. There,

however, note that the structure of the game is stationary. This implies that the highest

effort level that is enforceable in any period can be implemented in all other periods as well,

and it is surplus-maximizing to choose the maximum feasible effort (subject to e ≤ eFB) in

every period. Therefore, it is without loss of generality to also have payments bh, bl and w

history-independent.

Finally, assume that w > 0. Now a reduction of w by ε and an increase of pbh + (1− p)bl

by δε is feasible, does not violate any constraint and increases the firm’s profits. �

Note that Lemmas 1 and 2 establish that it is not optimal to promise the agent a higher

continuation payoff in a low-demand state, i.e., paying him a rent in a future period when

demand is high. The reason is that this tightens the high-state (DE) constraints equivalently

and hence does not allow for higher effort levels. This would change if formal contracts

based on the demand state could be written. Then, it might be optimal to let a low-demand

realization be followed by a promise to offer a high fixed wage in the next period conditional

on the demand then being high.

B Omitted Proofs

Proof of Proposition 1. Recall that the firm’s objective is to maximize Π0 = −k + δΠ,

subject to the relevant constraints. For a given value of k, however, e is chosen to maximize

Π. Furthermore, we show in Appendix A that (IC) and (IRA) constraints bind. Hence, we

can use w = 0 and pbh + (1− p)bl − ec = 0, giving the problem
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max
e

Π =
pθhf(e, k) + (1− p)θlf(e, k)− ec

1− δ
,

subject to

bl ≤ δΠ− γk (DEl)

ec− (1− p)bl

p
≤ δΠ− γk (DEh)

bl ≤ θlf(e, k) (Ll)

ec− (1− p)bl

p
≤ θhf(e, k). (Lh)

It follows that one of (DEl) and (Ll), as well as one of (DEh) and (Lh) generally can be

omitted. In a next step, we show that (Lh) cannot bind in equilibrium. To the contrary,

assume it binds. Then, either (Ll) or (DEl) must bind as well because otherwise, bl could be

increased and (Lh) relaxed without violating any constraint. First, assume that (Ll) binds

together with (Lh). This, however, would imply that Π = 0, which is not possible in a

profit-maximizing equilibrium with positive effort. Now, assume that (DEl) binds together

with (Lh). From section 3, we know that setting bh ≥ bl is optimal. Hence, (DEh) has to

bind as well, implying bh = bl. Then, θhf(e, k) = bh = bl = θlf(e, k), which - due to θh > θl

- is not possible for e > 0.

Now, consider all effort levels with θlf(e, k) ≥ δΠ− k. In this case, (Ll) is automatically

satisfied given (DEl). Adding (DEh) (multiplied with p) and (DEl) (multiplied with (1− p))

proves the necessity of (DE-L). Sufficiency immediately follows: Assuming (DE-L) holds,

there always exists a bl ≥ 0 such that (DEh) and (DEl) are satisfied.

For effort levels θlf(e, k) < δΠ − k (DEl) is automatically satisfied given (Ll). In this

case, necessity and sufficiency of (DE) are obtained equivalently as for (DE-L).

To prove that e∗ ≤ eFB, we set up the Lagrange function,

L =
pθhf(e, k) + (1− p)θlf(e, k)− ec

1− δ
+ λDE

[

δf(e, k)
(

pθh + (1− p)θl
)

− (1− δ)k − ec
]

+ λDEL

[

δp2

1− δ + δp
θhf(e, k) + (1− p)θlf(e, k)−

(1− δ)p

(1− δ + δp)
k − ec

]

,

giving the first order condition
∂L
∂e

=
(

pθhfe + (1− p)θlfe − c
) (

1
1−δ

+ δλDE + λDEL

)

− λDEc(1− δ)− λDELpθ
hfe

1−δ
1−δ+δp

= 0.

Hence, if either (DE-L) or (DE) binds,
(

pθhfe + (1− p)θlfe − c
)

> 0, and e∗ is inefficiently
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small.

Concerning values δ and δ, we first establish the existence of δ. To do so, we show

that both constraints are relaxed for larger values of δ, that eFB can be enforced if δ is

sufficiently large, and that (DE-L) is the relevant constraint to enforce eFB. To prove the

first aspect, we obtain the first partial derivatives of the right hand sides of the (DE) and (DE-

L) constraints with respect to δ, f(e, k)
(

pθh + (1− p)θl
)

+ k and p2

(1−δ+δp)2

(

θhf(e, k) + k
)

.

Both expressions are positive, hence (DE) and (DE-L) are relaxed by larger values of δ.

Furthermore, eFB can be enforced for δ sufficiently large because (DE) and (DE-L) converge

to e∗c ≤ pθhf(e∗, k)+(1−p)θlf(e∗, k) for δ → 1, which holds for eFB because of Assumption

1. To show that (DE-L) is the relevant constraint to enforce eFB, we set up (DE-L) for eFB

and let it hold as an equality:

eFBc =
δp2

1− δ + δp
θhf(eFB, k) + (1− p)θlf(eFB, k)−

(1− δ)p

(1− δ + δp)
k.

Solving this expression for (1− δ)k, and substituting it into the (DE) constraint for eFB,

yields

eFBc− f(eFB, k)θl ≥ 0,

which holds due to Assumption 2.

This, together with previous results, establishes the existence of δ above which eFB can

be implemented, and that for discount factors slightly below δ, (DE-L) binds and (DE) is

slack.

To establish the existence of δ, take an arbitrary effort level ẽ that is supposed to be

enforced. There, (DE-L) is the relevant constraint if the right hand side of (DE) is smaller

than the right hand side of (DE-L), or if

δ ≤
θl + γk

f(ẽ,k)

(pθh + (1− p)θl) + γk

f(ẽ,k)

. (4)

.

Condition (4) provides a treshold δ for a given effort level ẽ. This is not sufficient to

complete the proof, though, because δ is a function of enforceable effort, which itself is a

function of δ. Therefore, we show that, for a given effort level, a lower δ tightens (DE)

by more than it tightens (DE-L). This implies that for discount factors below δ (which is
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characterized by (4) holding as an equality), (DE) is the relevant constraint. We rewrite both

constraints as

0 ≤ δp2θhf(e∗, k) + (1− δ + δp) (1− p)θlf(e∗, k)− (1− δ + δp) e∗c− (1− δ)pk (DE-L)

and

0 ≤ δf(e∗, k)
(

pθh + (1− p)θl
)

− e∗c− (1− δ)k. (DE)

The partial derivative of the right hand side of (DE-L) with respect to δ equals

p2θhf(e∗, k)− (1− p)2θlf(e∗, k) + e∗c (1− p) + pk (5)

and the partial derivative of the right hand side of (DE) with respect to δ equals

f(e∗, k)
(

pθh + (1− p)θl
)

+ k. (6)

(5) is smaller than (6) if

e∗c < f(e∗, k)
{

pθh + θl + (1− p)θl
}

+ k.

This condition holds provided (DE), hence for all potential equilibrium levels of effort. �

Proof of Proposition 2. As we fix the surplus, as well as θl and ê, a decrease in p has to

be compensated by an appropriate increase in θh. More precisely, taking the total derivative

of the per-period surplus, f(ê, k)
(

dpθh + pdθh − dpθl
)

= 0, implies dθh

dp
= − (θh−θl)

p
.

Take an arbitrary high-state probability p where constraint (DE-L) is satisfied for effort

ê (if such a p < 1 does not exist for ê, we are done). For any probability p∗ < p, always

counterbalanced by an increase of θh that keeps the surplus constant, the right hand side of

(DE-L) equals
δ

1− δ + p∗δ
(p∗)2

(

θh + dθh
)

f(ê, k) + (1− p∗)θlf(ê, k)−
(1− δ)p∗

(1− δ + δp∗)
k

=
δ

1− δ + p∗δ
(p∗)2



θh − (θh − θl)

p̂

p∗

1

p
dp



 f(ê, k) + (1− p∗)θlf(ê, k)−
(1− δ)p∗

(1− δ + δp∗)
k

=
δ

1− δ + p∗δ
(p∗)2

(

θh − (θh − θl)lnp+ (θh − θl)lnp∗
)

f(ê, k) + (1− p∗)θlf(ê, k)−
(1− δ)p∗

(1− δ + δp∗)
k

For p∗ → 0, the last expression becomes
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δ
1−δ(1−p∗)

(θh − θl) lnp∗

1

(p∗)2
f(ê, k) + θlf(ê, k) = δ

1−δ
(θh − θl) (p

∗)2

−2
f(ê, k) + θlf(ê, k) = θlf(ê, k).

Since θlf(ê, k) < êc by assumption, effort ê will eventually not be enforceable anymore.

Finally, we have to show that the right hand side of (DE-L) is increasing in p.

There,
d
dp

= δ 2p(1−δ+pδ)−p2δ

(1−δ+pδ)2
θhf(e, k) + p2δ

1−δ+pδ
dθh

dp
f(e, k)− θlf(e, k)− (1−δ)2

(1−δ+δp)2
k

= (1−δ)

(1−δ+pδ)2

[

δ
(

θhf(e, k)p+ (1− p)θlf(e, k)
)

− θlf(e, k)− (1− δ)k
]

. Since θlf(e, k) < ce,

this expression is positive provided the (DE) constraint holds. �

Proof of Proposition 3. In order to maxime Π0 = −k+ δ
1−δ

[(

pθh + (1− p)θl
)

f(e, k)− ec
]

,

we have to take into account the effect of k on equilibrium effort in later periods.

Therefore, the first-order condition becomes

dΠ0

dk
= −1 +

δ

1− δ

[

(

pθh + (1− p)θl
)

fk +
((

pθh + (1− p)θl
)

fe − c
) de∗

dk

]

= 0.

If e∗ = eFB at k = k̃, where k̃ is the level characterized by −1+ δ
1−δ

(

pθh + (1− p)θl
)

fk =

0, the second term in squared brackets equals zero, and k∗ = k̃.

Now, assume that e∗ < eFB at k = k̃, which implies that either (DE) or (DE-L) binds.

In the first case, e∗ is characterized by e∗c = δf(e∗, k̃)
(

pθh + (1− p)θl
)

− (1− δ)k̃ and

de∗

dk
|k̃= −(1− δ)

δ
(1−δ)

fk
(

pθh + (1− p)θl
)

− 1

δfe (pθh + (1− p)θl)− c
. (7)

The denominator of (7) must be negative because otherwise, a larger effort level would

relax (DE), contradicting that it binds. The numerator of (7), as well as de∗/dk, are positive

for k < k̃, negative for k > k̃, and equal to zero for k = k̃. Therefore, dΠ0

dk
= 0 for k̃, and

k∗ = k̃.

In the second case where (DE-L) binds, e∗ is characterized by

e∗c = δp2

1−δ+δp
θhf(e∗, k̃) + (1− p)θlf(e∗, k̃)− (1−δ)p

(1−δ+δp)
k̃ and

de∗

dk
|k̃= −

p

1−δ+δp
(1− δ)

[

δ
(1−δ)

fk
(

pθh + (1− p)θl
)

− 1 + 1−p

p
θlfk

]

δp2

1−δ+δp
θhfe + (1− p)θlfe − c

. (8)

The denominator of (8) must be negative because otherwise, a larger effort level would relax

(DE-L), contradicting that it binds. The numerator of (8), as well as de∗/dk, are positive

for any k ≤ k̃. Therefore, dΠ0

dk
> 0 for any k ≤ k̃, and k∗ > k̃. �
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Proof of Proposition 4. Now, the relevant constraints are

ec ≤ δ
(

pθh + (1− p)θl
)

f(e, k)− (1− δ)γk (DE)

and

ec ≤

[

(1− p)θl +
δp2

(1− δ + pδ)
θh
]

f(e, k)−
(1− δ)p

(1− δ + pδ)
γk. (DE-L)

The thresholds δ(γ) and δ(γ), as well as according properties, are obtained as in the proof

to Proposition (1), only that k is replaced with γk.

Furthermore, ∂δ

∂γ
= k

f(e,k)

p(θh−θl)
[(pθh+(1−p)θl)+ γk

f(e,k) ]
2 and ∂δ

∂γ
=

(1−δ)(1−δ+pδ)k
pθhf(eFB ,k)+pγk

> 0, where the last

step uses the binding (DE-L) constraint.

In a next step, we solve for the optimal investment level. The first-order condition of the

principal’s maximization problem equals

dΠ0

dk
= −1 +

δ

1− δ

[

(

pθh + (1− p)θl
)

fk +
((

pθh + (1− p)θl
)

fe − c
) de∗

dk

]

= 0.

For δ ≥ δ(γ), effort is at its first best and the investment level is characterized by

−1 +
δ

1− δ

[(

pθh + (1− p)θl
)

fk
]

= 0.

Hence, there are no over-investments.

For δ < δ(γ), (DE) binds and (DE-L) is slack. Therefore, e∗ < eFB, and

de∗

dk
= −(1 − δ)

δ
(1−δ)

fk(pθh+(1−p)θl)−γ

δfe(pθh+(1−p)θl)−c
. This implies that also for a binding (DE), k∗ > k̃, and

over-investments are optimal. Furthermore, the (FOC) becomes

−δfe
(

pθh + (1− p)θl
)

(1− γ)− δ
(

pθh + (1− p)θl
)

fkc+ c (1− δγ) = 0.

This condition, together with the binding (DE) constraint,

δf(e∗, k∗)
(

pθh + (1− p)θl
)

− e∗c− (1− δ)γk∗ = 0,

determines effort e∗ and investment k∗.

Both conditions allow to compute dk∗/dγ, with

dk∗

dγ
=

∣

∣

∣

∣

∣

∣

∣

−δ
(

pθh + (1 − p)θl
)

fee (1 − γ) −δ
(

fe

(

pθh + (1 − p)θl
)

− c
)

δfe

(

pθh + (1 − p)θl
)

− c (1 − δ)k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−δ
(

pθh + (1 − p)θl
)

fee (1 − γ) −δ
(

pθh + (1 − p)θl
)

fkkc

δfe

(

pθh + (1 − p)θl
)

− c δfk

(

pθh + (1 − p)θl
)

− (1 − δ)γ

∣

∣

∣

∣

∣

∣

∣

,

where the denominator must be positive in order to satisfy the second order condition for
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a maximum. Hence, the sign of dk∗

dγ
is determined by the sign of the numerator, which equals

−δ
(

pθh + (1− p)θl
)

fee (1− γ) (1− δ)k

+δ
(

fe
(

pθh + (1− p)θl
)

− c
) (

δfe
(

pθh + (1− p)θl
)

− c
)

.

The first line is positive because fee < 0. The second line must be negative, for the

following reason: fe
(

pθh + (1− p)θl
)

− c > 0 because e∗ < eFB. δf
(

pθh + (1− p)θl
)

− c < 0

because otherwise, increasing e∗ would relax the (DE) constraint, contradicting that it binds.

Generally, the impact of the positive effect is larger if γ is rather small, whereas the impact

of the negative second term is larger if effort is rather small.

Now, assume that δ is such that δ(γ) ≤ δ < δ(γ), hence (DE-L) binds and (DE) is slack.

Therefore e∗ < eFB, and de∗

dk
= −

p
1−δ+δp

(1−δ)[ δ
(1−δ)

fk(pθh+(1−p)θl)−γ+ 1−p
p

θlfk]
δp2

1−δ+δp
θhfe+(1−p)θlfe−c

. This implies that

k∗ > k̃, and over-investments are optimal. Furthermore, the (FOC) becomes

−δfkpθ
hc− (1− δ) fe(1− p)θl + (1− δ) c− δp (1− γ)

[

fe
(

pθh + (1− p)θl
)

− c
]

= 0.

This condition, together with the binding (DE-L) constraint,

[

(1− p)θl +
δp2

(1− δ + pδ)
θh
]

f(e∗, k∗)− e∗c−
(1− δ)p

(1− δ + pδ)
γk∗ = 0,

determines effort e∗ and investment k∗.

Both conditions allow to compute dk∗/dγ, with

dk∗

dγ
=

∣

∣

∣

∣

∣

∣

∣

∣

− (1 − δ) fee(1 − p)θl − δp (1 − γ)
[

fee

(

pθh + (1 − p)θl
)]

−δp
[

fe

(

pθh + (1 − p)θl
)

− c
]

[

(1 − p)θl + δp2

(1−δ+pδ)
θh

]

fe − c
(1−δ)p

(1−δ+pδ)
k∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− (1 − δ) fee(1 − p)θl − δp (1 − γ) fee

(

pθh + (1 − p)θl
)

−δfkkpθ
hc

[

(1 − p)θl + δp2

(1−δ+pδ)
θh

]

fe − c

[

(1 − p)θl + δp2

(1−δ+pδ)
θh

]

fk −
(1−δ)p

(1−δ+pδ)
γ

∣

∣

∣

∣

∣

∣

∣

∣

,

where the denominator must be positive in order to satisfy the second order condition for

a maximum. Hence, the sign of dk∗

dγ
is determined by the sign of the numerator, which equals

− (1− δ) fee(1− p)θl − δp (1− γ) fee
(

pθh + (1− p)θl
)

(1−δ)p
(1−δ+pδ)

k∗

+
[(

(1− p)θl + δp2

(1−δ+pδ)
θh
)

fe − c
]

δp
[

fe
(

pθh + (1− p)θl
)

− c
]

.

The first line is positive because fee < 0. The second line must be negative, for the

following reason:

fe
(

pθh + (1− p)θl
)

− c > 0 because e∗ < eFB.
(

(1− p)θl + δp2

(1−δ+pδ)
θh
)

fe − c < 0 because otherwise, increasing e∗ would relax the (DE-

L) constraint, contradicting that it binds. �
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C Optimal Firm Behavior Given Cash Holdings are Pos-

sible

Starting from the equilibrium we derived in Section 4, assume that whenever demand condi-

tions are high, the principal can retain some of her earnings. These cash reserves are used to

increase effort from the next period on. After a number of subsequent low-demand periods,

the cash reserves are used up and effort is down at its original level e∗ - until the next high-

demand period. In the following, we analyze to what extent retaining earnings is optimal for

the principal (for the general case where the resale value of the asset is γk, with γ ≤ 1).

Define m ≥ 1 as the number of periods a higher effort level can at least be enforced, i.e.,

m is the subsequent number of low-demand periods after which all cash reserves are used up.

Furthermore, define the total retained amount as sm, and the effort level in the first period

after sm has been accumulated as em.

Now, assume that sm has been retained and effort raised to em in the following period.

If the firm faces a low-demand shock in this period, the agent is compensated accordingly.

However, some of the retained cash is needed, and available funds go down to sm−1. Furt-

hermore, effort in the next period will be em−1. This process is continued until either all

cash reserves are used (and effort is at e0 = e∗) or a high-demand shock allows to fill up

cash reserves and increase effort to em again. To keep the problem tractable, we assume that

income in a high-demand state is sufficiently large such that the optimal amount sm can be

retained in one high-demand state, i.e., we impose the following assumption:

Assumption A1: Assume the firm can retain earnings. Then, (Lh) does not bind in a

profit-maximizing equilibrium.

Assumption A1 implies that only one high-demand state is needed in order to replenish

the firm’s desired cash stock.

Profits

We write payoffs as functions of the remaining subsequent low-demand shocks before all cash

reserves are used up. Profits given retained earnings are at its maximum level are denoted

Π(m), since m has been defined as the number of periods an effort level above e∗ can at least

be enforced. Hence,

Π(m) = p
[

θhf(em, k)− bhm + δΠ(m)
]

+(1−p)
[

θlf(em, k)− blm + (sm − sm−1) + δΠ(m− 1)
]

.
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Note that bonus payments are the amounts actually paid out to the agent. Therefore, the

reduction of cash holdings in a low-demand state enters the principal’s profits positively.

Furthermore, profits after j < m subsequent low-demand periods are

Π(m− j) =p
[

θhf(em−j, k)− bhm−j − (sm − sm−j) + δΠ(m)
]

+ (1− p)
[

θlf(em−j, k)− blm−j + (sm−j − sm−j−1) + δΠ(m− j − 1)
]

.
After m − 1 subsequent low-demand period, higher effort can only be enforced for a

maximum of one more low-demand period. Then,

Π(1) = p
[

θhf(e1, k)− bh1 − (sm − s1) + δΠ(m)
]

+ (1− p)
[

θlf(e1, k)− bl1 + s1 + δΠ(0)
]

.

Finally,

Π(0) = p
(

f(e0, k)θ
h − bh − sm + δΠ(m)

)

+ (1− p)
(

f(e0, k)θ
l − bl + δΠ(0)

)

are profits given the firm has used all its cash.

Objective

The objective is to find levels of m ≥ 0, em−j (j ≤ m) and the respective amounts of cash that

maximize Π(0), given the constraints derived below. Hence, we maximize profits given no

cash is initially available. It will turn out, though, that the respective strategy also maximizes

−sm + δΠ(m), the principal’s objective given cash could also be raised at the beginning of

the game (when capital k is invested).

Constraints

The following constraints have to be satisfied. For all j ∈ {0, ...,m}, dynamic enforcement

constraints for low- and high-demand states must hold:

blm−j ≤ δΠ(m− j − 1)− sm−j−1 − γk (DEl(j))

and

bhm−j ≤ δΠ(m)− sm − γk. (DEh(j))

Cash holdings enter the above constraints since if the principal reneges on payments

promised to the agent, it will also be optimal to consume retained earnings. Furthermore,

note that s−1 = s0 = 0 and Π(−1) ≡ Π(0).

Since (Lh) is satisfied by assumption, liquidity constraints must only hold for low-demand

states.

32



For all j ∈ {0, ...,m}, we have

blm−j ≤ θlf(em−j, k) + (sm−j − sm−j−1) , (Ll(j))

where s−1 = 0 in LLl(m).

In addition the (IC) constraints must hold (where we already take into account that

agents receive no rent), namely

pbhm−j + (1− p)blm−j − em−jc ≥ 0

for all j ∈ {0, ...,m}.

For the same reasons as before, the (IC) constraint will bind on the equilibrium path,

giving blm−j =
em−jc−pbhm−j

1−p
.

Results

In this section, we first assume that it is optimal to accumulate strictly positive cash reserves

(which implies m ≥ 1) and derive properties of a profit-maximizing equilibrium. Then, we

work out conditions under which it is actually optimal to retain earnings.

First, we show that given retaining earnings is optimal, (DEl) constraints can be omitted.

Lemma 3 Assume m ≥ 1. Then, all (DEl) are automatically implied by the respective (Ll)

constraints.

Proof of Lemma 3: First, we plug blm−j =
em−jc−pbhm−j

1−p
into profits, which yields the set of

constraints

em−jc− pbhm−j

1− p
≤ δΠ(m− j − 1)− sm−j−1 − γk (DEl(j))

bhm−j ≤ δΠ(m)− sm − γk (DEh(j))

em−jc− pbhm−j

1− p
≤ θlf(em−j, k) + (sm−j − sm−j−1) . (Ll(j))

The left hand sides of DEl(j) and Ll(j) constraints are the same. Therefore, if

δΠ(m− j − 1)− γk ≥ θlf(em−j, k) + sm−j,
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DEL(j) constraints are implied by Ll(j) constraints.

To the contrary, assume there is a j∗ ≥ 0 where δΠ(m−j∗−1)−γk < θlf(em−j∗ , k)+sm−j∗ .

Reduce all sm−j with j ≤ j∗ by a small ε > 0. This tightens Ll(j∗) which however will

still hold for ε sufficiently small. Ll(j) constraints for all j besides j∗ remain unaffected.

Furthermore, profits change by ∆Π(0) = pε1−(δ(1−p))j
∗+1

1−δ(1−p)
, hence go up.

It remains to show that no other constraint is violated by this operation. Note that

∆Π(m) = −ε (δ(1− p))j
∗

(1− p) ,

∆Π(m− j∗) = −
ε (1− p)

1− δ(1− p)

(

1− δ + δp (δ(1− p))j
∗

)

and, for any 1 < k < m,

∆Π(m− (j∗ − k)) =
δp∆Π(m)− ε (δ(1− p))k [1− p] (1− δ)

1− δ(1− p)

and

∆Π(m− (j∗ + k)) =
pε

(

1− (δ(1− p))j
∗+1

)

1− δ(1− p)
.

Now we can show that no constraint is violated if all sm−j with j ≤ j∗ are reduced by

ε > 0:

• DEh(j) are relaxed as each right hand side changes by ε
(

1− (δ(1− p))j
∗+1

)

> 0

• DEl(0) is relaxed as its right hand side changes by ε
(

1− (δ(1− p))j
∗+1

)

> 0

• DEl(j∗) is relaxed, as its right hand side changes by ε

(

(1−δ)(1−δ(1−p))+δp
(

1−(δ(1−p))j
∗+1

)

1−δ(1−p)

)

>

0

• DE(j∗ + k) are relaxed as each right hand side changes by
pεδ

(

1−(δ(1−p))j
∗+1

)

1−δ(1−p)
> 0

• DE(j∗−k) are relaxed as each right hand side changes by ε
(1−δ)(1−(δ(1−p))k+1)+δp

(

1−(δ(1−p))j
∗+1

)

1−δ(1−p)
>

0.

Hence, reducing all sm−j with j ≤ j∗ by a small ε > 0 does not violate any constraint but

increases profits. �
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Lemma 3 implies that all DEl constraints can be omitted provided cash holdings are

optimal. This allows us to simplify the problem by adding DEh(j) (multiplied with p) and

LLl(j) (multiplied with (1 − p)) constraints for each j, which gives a set of necessary and

sufficient constraints (sufficiency follows from the same reasoning as in the situation without

retained earnings):

p (δΠ(m)− sm − γk)+(1−p)θlf(em−j, k)−em−jc+(1−p) (sm−j − sm−j−1) ≥ 0, (DE-L(j))

with s0 = s−1 = 0.

In a next step, we show that given holding cash is optimal, all DE-L constraints must

bind:

Lemma 4 If sm > 0, DE-L(j) constraints bind for each j ∈ {0, ...,m}.

Proof of Lemma 4: Assume there is a j∗ where DE-L(j∗) does not bind. Then, the re-

spective effort level can be increased without violating any constraint, thereby also increasing

profits. �

Lemma 4 allows us to plug the binding DE-L constraints

δpΠ(m) = e0c− (1− p)θlf(e0, k) + p (sm + γk)

and

(sm−j − sm−j−1) =
em−jc− δpΠ(m)− (1− p)θlf(em−j, k) + p (sm + γk)

(1− p)

into profits, giving

Π(0) =
p

1− δ(1− p)

(

f(e0, k)θ
h + γk

)

,

Π(m− j) = pθhf(em−j, k) + p (sm−j + γk) + δ(1− p)Π(m− j − 1),

and

Π(m) =
m−1
∑

i=0

(δ(1− p))i
(

pθhf(em−i, k) + p (sm−i + γk)
)

+ (δ(1− p))m
p

1− δ(1− p)
f(e0, k)θ

h.

In a next step, we can show that effort is gradually going down once cash reserves are

used in low-demand periods:
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Lemma 5 em−j+1 > em−j for all j ∈ {1, ...,m}.

Proof of Lemma 5: First, we show that em−j+1 ≥ em−j. To the contrary, assume there

is a j̃ with em−j̃+1 < em−j̃. Replace both effort levels and reduce sm−j̃ to keep DE-L(j̃ + 1)

unaffected, i.e.,

∆sm−j̃ = θlf(em−j̃, k)−
em−j̃c

(1− p)
−

(

θlf(em−j̃+1, k)−
em−j̃+1c

(1− p)

)

.

Note that this leaves DE-L(j̃) as well as other constraints unaffected. However, this change

increases Π(m) and thereby Π(0):
∆Π(m)

(δ(1− p))j̃−1
= pθh (f(em−j, k)− f(em−j+1, k)) + δ(1− p)pθh (f(em−j+1, k)− f(em−j, k))

+ p

[

θlf(em−j, k)−
em−jc

(1− p)
−

(

θlf(em−j+1, k)−
em−j+1c

(1− p)

)]

≥ pθh (f(em−j, k)− f(em−j+1, k)) + (1− p)pθh (f(em−j+1, k)− f(em−j, k))

+ p

[

θlf(em−j, k)−
em−jc

(1− p)
−

(

θlf(em−j+1, k)−
em−j+1c

(1− p)

)]

= p
(

pθhf(em−j, k) + (1− p)θlf(em−j, k)− em−jc
)

− p
(

pθhf(em−j+1, k) + (1− p)θlf(em−j+1, k)− em−j+1c
)

> 0,
where the last inequality follows from em−j > em−j+1, and from both effort levels being

inefficiently low.

To complete the proof, it remains to show that em−j+1 = em−j is not possible. To the

contrary, assume there is a ĵ with em−ĵ+1 = em−ĵ. Now, marginally increase em−ĵ+1 and

marginally decrease em−ĵ. Furthermore, dsm−ĵ = θl
∂f(e

m−ĵ+1,k)

∂e
− c

1−p
is set to keep DE-

L(ĵ + 1) and DE-L(ĵ) unaffected. Then,
dΠ(m)

(δ(1− p))ĵ−1
= pθh

∂f(em−ĵ+1, k)

∂e
+ δ(1− p)

(

−pθh
∂f(em−ĵ+1, k)

∂e
+ p

(

θl
∂f(em−ĵ+1, k)

∂e
−

c

1− p

))

≥ p

(

pθh
∂f(em−ĵ+1, k)

∂e
+ (1− p)θl

∂f(em−ĵ+1, k)

∂e
− c

)

> 0.

�

Finally, we can show that maximum effort em is independent of m.

Lemma 6 Maximum effort em is characterized by

δ(1− p)

(1− δp)
pθh

∂f(em, k)

∂em
+ (1− p)θl

∂f(em, k)

∂em
− c = 0.
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Proof of Lemma 6: Note that if holding cash is optimal, all DE-L(j) constraints bind for

a given m, which implies that

p (δΠ(m)− sm − γk) + (1− p)θlf(em−j, k)− em−jc+ (1− p) (sm−j − sm−j−1) = 0

can be used to obtain the necessary cash for all levels of em−j. Then, the objective is

to maximize Π(0) = p

1−δ(1−p)

(

f(e0, k)θ
h + γk

)

, which is obtained by using binding (DE-L)

constraints. Put differently, effort levels em−j are chosen to maximize e0. But holding cash can

only be optimal if DE-L(0) binds, in which case e0 is determined by p (δΠ(m)− sm − γk) +

(1−p)θlf(e0, k)−e0c = 0. Hence, the objective can be reformulated in a way to choose effort

levels em−j in order to maximize the left hand side of this condition, therefore δΠ(m)− sm,

and determined by setting ∂(δΠ(m)−sm)
∂em−j

= 0.

Furthermore, solving DE-L(m-j) for cash levels sm−j yields

sm−j = −
m−1
∑

i=j

p(δΠ(m)−sm−γk)+(1−p)θlf(em−i,k)−em−ic

(1−p)
.

This is done iteratively, starting with

s1 = −p(δΠ(m)−sm−γk)+(1−p)θlf(e1,k)−e1c

(1−p)
,

s2 = −p(δΠ(m)−sm−γk)+(1−p)θlf(e2,k)−e2c

(1−p)
− p(δΠ(m)−sm−γk)+(1−p)θlf(e1,k)−e1c

(1−p)
, and so on.

Therefore,

sm = −
m−1
∑

i=0

p(δΠ(m)−sm−γk)+(1−p)θlf(em−i,k)−em−ic

1−p
.

Furthermore, note that
∂sm−j

∂em
= 0 for j > 0 – because ∂(δΠ(m)−sm)

∂em−j
= 0 must be satisfied

provided sm > 0.

This implies ∂sm
∂em

= −
(1−p)θl

∂f(em,k)
∂em

−c

1−p
.

Finally, using

Π(m) =
m−1
∑

i=0

(δ(1− p))i
(

pθhf(em−i, k) + p (sm−i + γk)
)

+ (δ(1− p))m p

1−δ(1−p)
f(e0, k)θ

h

and computing ∂(δΠ(m)−sm)
∂em

= 0, allows to characterize em:

δ (1− p)

(1− δp)
pθh

∂f(em, k)

∂em
+ (1− p)θl

∂f(em, k)

∂em
− c = 0.

�

This result shows that a larger value of m does not increase maximum effort, but rather

“smoothes” the process of effort reductions after negative demand shocks.

Finally, we can prove Proposition 5.

Proof of Proposition 5: Lemma 6 gives condition (3) for maximum effort. Furthermore,

note that if retaining earnings is optimal, then em > em−1 > ... > e∗. Hence, if maximum
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enforceable effort without cash reserves satisfies
(

δ(1−p)
[1−δp]

pθh + (1− p)θl
)

fe − c ≤ 0, holding

cash cannot be optimal. �

Here, we do not aim for solving for the optimal m, i.e. the maximum number of subsequent

negative shocks until cash reserves are used up. The optimal level of m would again be

determined by maximizing δΠ(m)−sm. To get around integer problems, we would first treat

m as a continuous variable, set ∂(δΠ(m)−sm)
∂m

= 0 and get the optimal m as the largest integer

for which ∂(δΠ(m)−sm)
∂m

≥ 0.

Cash Holdings Generate Interest

Now, we derive the properties of an equilibrium if cash holdings generation interest r ≥ 0.

We assume that r ≤ 1−δ
δ

and that if indifferent between holding cash and consuming today,

the principal consumes today. Without the first part of the assumption, it would be strictly

optimal to never consume and instead save all profits. The second part simplifies the analysis

in case r = 1−δ
δ

, i.e., when the interest rate just makes up for discounting.

We stick to the assumption that the principal is able to retain her desired amount sm in

one high-demand period, i.e., liquidity constraints never bind in high-demand states. If this

were not the case, the benefits of holding cash would be muted.

As before, define the retained amount as sm, and the effort level in the first period after

sm has been accumulated as em.

Then,

Π(m) =p
[

θhf(em, k)− bhm + rsm + δΠ(m)
]

+ (1− p)
[

θlf(em, k)− blm + ((1 + r)sm − sm−1) + δΠ(m− 1)
]

.

There, sm−1 is the amount of cash kept for the next period (in which the principal can

spend (1 + r)sm−1). Note that interest income is consumed by the principal if high-demand

states are followed by high-demand states. However, interest income is never consumed in a

low-demand state. If this were the case, a reduction of savings in previous periods would be

optimal.

To further simplify our analysis, we also assume that (1+ r)sm−1 ≤ sm. This implies that

the principal only consumes interest income in high-demand states which follow high-demand

states.

Therefore,

Π(m− j) =p
[

θhf(em−j, k)− bhm−j − (sm − (1 + r)sm−j) + δΠ(m)
]

+ (1− p)
[

θlf(em−j, k)− blm−j + ((1 + r)sm−j − sm−j−1) + δΠ(m− j − 1)
]

.
After m − 1 subsequent low-demand period, higher effort can only be enforced for a

maximum of one more low-demand period. Then,
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Π(1) = p
[

θhf(e1, k)− bh1 − (sm − (1 + r)s1) + δΠ(m)
]

+(1−p)
[

θlf(e1, k)− bl1 + (1 + r)s1 + δΠ(0)
]

.

Finally,

Π(0) = p
(

f(e0, k)θ
h − bh − sm + δΠ(m)

)

+ (1− p)
(

f(e0, k)θ
l − bl + δΠ(0)

)

are profits given the firm has used all its cash.

Constraints

For all j ∈ [0,m], dynamic enforcement constraints equal

blm−j ≤ δΠ(m− j − 1)− sm−j−1 − γk (DEl(j))

and

bhm−j ≤ δΠ(m)− sm − γk. (DEh(j))

They are unaffected by the interest rate. This is because, for example, the (DE) constraint

in a high-demand state equals

−bhm−j − (sm − (1 + r)sm−j) + δΠ(m) ≥ γk + (1 + r)sm−j,

where the term that includes interest payments cancels out.

As before, s−1 = s0 = 0 and Π(−1) ≡ Π(0).

Since (Lh) is satisfied by assumption, liquidity constraints for all j ∈ {0, ...,m}, which

are only needed in low-demand states, equal

blm−j ≤ θlf(em−j, k) + ((1 + r)sm−j − sm−j−1) . (Ll(j))

Finally, binding (IC) constraints deliver blm−j =
em−jc−pbhm−j

1−p
.

Results

As before, all (DEl) are automatically implied by the respective (Ll) constraints if cash

holdings are optimal, and the following (DE-L) constraints are necessary and sufficient for
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implementing equilibrium effort levels:

p (δΠ(m)− sm − γk) + (1− p)θlf(em−j, k)− em−jc+ (1− p) ((1 + r)sm−j − sm−j−1) ≥ 0,

(DE-L(j))

with s0 = s−1 = 0.

These DE-L constraints must bind, which delivers profit levels

Π(0) =
p

1− δ(1− p)

(

f(e0, k)θ
h + γk

)

,

Π(m− j) = pθhf(em−j, k) + p ((1 + r)sm−j + γk) + δ(1− p)Π(m− j − 1),

and

Π(m) =
m−1
∑

i=0

(δ(1− p))i
[

pθhf(em−i, k) + p ((1 + r)sm−i + γk)
]

+(δ(1− p))m
p

1− δ(1− p)
f(e0, k)θ

h.

Still, effort is gradually going down once cash reserves are used in low-demand periods,

hence em−j+1 > em−j for all j ∈ {1, ...,m}.

Finally, we characterize maximum effort em in case retained earnings generate interest

payments.

Lemma 7 Maximum effort em is characterized by

δp (1− p)

(1− δp(1 + r))
θh

∂f(em, k)

∂em
+

(1− p)θl ∂f(em,k)
∂em

− c

(1 + r)
= 0. (9)

Proof of Lemma 7: Binding DE-L(j) constraints yield

p (δΠ(m)− sm − γk) + (1− p)θlf(em−j, k)− em−jc+ (1− p) ((1 + r)sm−j − sm−j−1) = 0,

which can be used to obtain the necessary cash for all levels of em−j. Then, the objective

is to maximize Π(0) = p

1−δ(1−p)

(

f(e0, k)θ
h + γk

)

. Thus, effort levels em−j are chosen in order

to maximize e0. Holding cash can only be optimal if DE-L(0) binds, in which case e0 is

determined by p (δΠ(m)− sm − γk) + (1 − p)θlf(e0, k) − e0c = 0. Hence, effort levels em−j

are optimally chosen to maximize δΠ(m)− sm and determined by setting ∂(δΠ(m)−sm)
∂em−j

= 0.

Solving DE-L(m-j) for cash levels sm−j yields

sm−j = −
m−1
∑

i=j

p(δΠ(m)−sm−γk)+(1−p)θlf(em−i,k)−em−ic

(1+r)i+1−j(1−p)
.

Therefore,
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sm = −
m−1
∑

i=0

p(δΠ(m)−sm−γk)+(1−p)θlf(em−i,k)−em−ic

(1+r)i+1(1−p)
.

Furthermore, note that
∂sm−j

∂em
= 0 for j > 0 because ∂(δΠ(m)−sm)

∂em−j
= 0 must be satisfied

provided sm > 0.

This implies ∂sm
∂em

= −
(1−p)θl

∂f(em,k)
∂em

−c

(1+r)(1−p)
.

Finally, using

Π(m) =
m−1
∑

i=0

(δ(1− p))i
[

pθhf(em−i, k) + p ((1 + r)sm−i + γk)
]

+ (δ(1− p))m
p

1− δ(1− p)
f(e0, k)θ

h,

and computing ∂(δΠ(m)−sm)
∂em

= 0, allows to characterize em:

δp (1− p)

(1− δp(1 + r))
θh

∂f(em, k)

∂em
+

(1− p)θl ∂f(em,k)
∂em

− c

(1 + r)
= 0. (10)

�
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