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1 Introduction

Outliers or anomalies are a common occurrence in data. They can for instance re-
sult from defected measurement devices, wrongly transferred data, human error, fraud,
change in population or other reasons. In the past, many methods were developed to
address this issue, such as Z-score analysis, linear regression models, probabilistic and
statistical modeling. But in times of increasing computational power, increasing amount
of produced data, new possibilities to store data and advanced algorithms, many con-
ventional statistical methods aren’t adequate anymore. As a result, machine learning
methods become increasingly important.
Detecting and differentiating anomalies from normal data is a classification problem.
However, the differences of binary classification and anomaly detection are also the no-
table challenges, namely the lack of labels and highly unbalanced class data. In some
cases, only data from one class are available. Thus, anomaly detection algorithms which
can train on data containing only one class are also called one-class classification. The
learning problem is then described as semi-supervised. If there is no information about
the data set available at all, the learning problem is then described as unsupervised.
The first aim of this work is to analyse three different machine learning methods to
detect anomalies for semi-supervised and unsupervised settings, which are the one-class
support vector machine (OC-SVM), local outlier factor (LOF) and autoencoder (AE).
Moreover, performance measurements to tune hyper parameter sets and the evaluation
of the used methords are of special interest. With the lack of labels, there are no possi-
bilities to use performance measurement of classic binary classification. As it is essential
to draw conclusions about the quality of used methods or it chosen hyper parameter sets
an unsupervised performance measurement is investigated in this work.
The second aim of this work is to implement the anomaly detection class into the already
established mlR package in R and make it available for other users.
This work starts with a general definition of the term "Anomalies" in Section 2.1 and how
the application of anomaly detection methods depends on the nature of input data in
Sections 2.1.1. Section 2.2 gives two short examples of real-life anomaly detection cases.
Major challenges of anomaly detection are covered in Section 2.3. Since choosing an ap-
propriate evaluation measure is one of the main challenges, Section 3.1 covers supervised
measurements and Section 3.2 a new defined unsupervised measurement "Area under the
Mass Volume Curve (AUMVC)". The measurement can be used on any anomaly de-
tection methods such as the one-class SVM (Section 4.1), local outlier factor (LOF)
(Section 4.2) or autoencoders (AE) (Section 4.3). To apply tuning on those methods,
additional resampling strategies are introduced in Section 5. Following the algorithm
in Section 6, the score value outputs of the methods are converted into probabilities
to embed the methods into mlR and to guarantee some other advantages listed in Sec-
tion 6. Section 7 gives a brief overview of the mlR package in R, what has been done
to implement the anomaly detection class into mlR as well as how to use the newly
implemented class. Finally, Section 8 explains the used data sets and settings for the
following benchmark analysis in Section 9. The results section is divided into two parts:
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the first is about investigating the AUMVC and its settings (Section 9.2), the second
about using AUMVC(hd) with the previously introduced anomaly detection methods
(Section 9.2.1). And lastly, Section 10 gives a summary of the results of this work.
The Appendix contains additional measurements for unbalanced class sizes (A), tables,
and figures to provide more details of the results (B).

2 Anomaly Detection

Throughout the years several anomaly detection methods have been developed. The
typical anomaly detection methods build models of normal data and detect deviations
from the normal model in observed data [Eskin et al., 2002, p. 79]. However, to formulate
the specific anomaly detection problem, the following aspects need to be taken into
consideration: the nature of the input data (Section 2.1.1), type of anomalies (Section
2.1.2), availability of labels (Section 2.1.3) and constraints and requirements from the
application domain [Chandola et al., 2009, p. 6]. This section starts with the definition
of anomalies in Subsection 2.1, before focusing on the above mentioned aspects.

2.1 Definition of Anomalies

According to the Oxford English Dictionary, an anomaly is "something that deviates from
what is standard, normal, or expected". In the data context, anomalies are observations,
which deviate from the majority of the data [Amer et al., 2013, p. 1]. Depending on the
application domain, anomalies are also referred to as outliers, discordant observations,
exceptions, aberrations, surprises, peculiarities, contaminants [Chandola et al., 2009, p.
1], novelties, noise or deviations [Dau et al., 2014, p. 2].
Some popular definitions are

• "An outlying observation, or outlier, is one that appears to deviate markedly from
other members of the sample in which it occurs." [Grubbs, 1969]

• "An observation (or subset of observations) which appears to be inconsistent with
the remainder of that set of data." [Hodge and Austin, 2004, p. 2]

• "An outlier is an observation which deviates so much from other observations as
to arouse suspicions that it was generated by a different mechanism." [Hawkins,
1980]

• "Anomaly detection refers to the problem of finding patterns in data that do not
conform to expected behaviour." [Chandola et al., 2009, p. 1]

There are two ways of handling anomalies, either delete or correct them, for example to
yield statistically significant increase in accuracy [Smith and Martinez, 2011, p. 1] or
translate them into significant actionable information [Chandola et al., 2009, p. 1].
Anomalies caused by measurement errors, for instance, are a good example of anomalies
that should be deleted. In contrast to this, anomalous traffic patterns in a computer
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network that could be interpreted as a hacker attack, are a good example of anomalies
that should be detected to prevent it [Kumar, 2005].

In both cases, methods are needed to find these anomalies. Methods that find, delete,
modify or ignore anomalies are often referred to as noise removal and noise accommo-
dation [Hodge and Austin, 2004, p. 4]. Whereas methods that find anomalies to extract
relevant information are referred to as anomaly detection. Since both categories of meth-
ods are related, the above mentioned definitions of anomaly detection are suitable for
both types. The aim of anomaly detection in machine learning is to build a model that
can differentiate anomalies from the remaining normal data [Dau et al., 2014, p. 2]. In
this work, we will focus on anomaly detection with machine learning techniques in order
to retrieve interesting information from the database.

2.1.1 Nature of Input Data

The applicability of anomaly detection methods depends on the nature of the input
data, i.e., the characteristics of the input data. Input data usually contains a collection
of instances which can be described as univariate, multivariate, binary, categorical or
continuous [Chandola et al., 2009, p. 6]. Those attributes affect the range of methods
to choose from. Moreover, the instances can have a relationship with each other, e.g.,
sequence data such as time series, spatial data or graph data. If no relationship among
the data instances is assumed, one is dealing with record data or so-called point data.
In this work we will assume to have point data with only continuous features. For these
characteristics the OC-SVM (Section 4.1), LOF (Section 4.2) and AE (Section 4.3) are
applicable.

2.1.2 Types of Anomaly

Before applying an anomaly detection method, it is also crucial to know which type of
anomaly is present [Chandola et al., 2009, p. 8].
We can make a distinction based on whether the data contains point anomalies, collec-
tive anomalies or contextual anomalyies.
Point Anomaly is the simplest type of anomaly. Point anomaly is an individual data
instance, which is anomalous with respect to the rest of the data [Chandola et al., 2009,
p. 7]. A simple real life example is credit card fraud when only the amount spent by
a person is analyzed: a transaction where the amount spent is much higher than the
average amount spent is likely to be a point anomaly. But in the context of time, this
kind of a transaction during Christmas instead of a summer month might be normal
for that person. In the summer month, this kind of transaction would be referred to
as contextual anomaly. Therefore, the contextual anomaly can be determined by con-
sidering behavioural attributes, e.g. amount spent within contextual attributes, such
as time. [Chandola et al., 2009, p. 8]. Another type is collective anomaly, which only
occurs in data sets with related instances. The single data points in a collective anomaly

3



may not be considered as anomalies by themselves, but the occurrence of these single
points together indicates an anomaly [Bontemps et al., 2016, p. 2]. In the example of
credit card fraud, a transaction for which the amount spent is in the normal range, is
considered as normal. Now, if this amount of transaction happens every hour of a day,
the occurrence together as a collection is anomalous.

2.1.3 Availability of Labels

Besides the nature of input data and anomaly type, the availability of labels is also essen-
tial when it comes to selecting the anomaly detection method. However, the availability
of labels is one of the biggest challenges [Dau et al., 2014, p. 1]. Collecting labels is very
expensive and requires a lot of effort, as it is often done manually by human experts
[Chandola et al., 2009, p. 10]. This fact leads to three fundamental approaches to the
problem of anomaly detection: supervised, semi-supervised and unsupervised anomaly
detection.

Supervised Anomaly Detection The ideal situation would be to have a training
data set with labels for anomalies and normal data. In this case, it is a classification
problem [Hodge and Austin, 2004, p. 5], where the classifier learns the classification
model. However, this approach is limited to what the model has seen before or what is
known as anomalies, thus it requires at least enough data to cover the entire distribution
of each class in order to generalize a classifier [Hodge and Austin, 2004, p. 6]. This is
usually not the use case as labeled anomalous data is expensive to get [Hodge and Austin,
2004, p. 7] or the share of anomaly data is too small to derive a generalized distribution.
A summary on how to handle classification and imbalanced classification problems can
be found in the online tutorial of mlR (see [mlr]).

Semi-supervised Anomaly Detection In the case that the data is only labeled for
the normal class, the problem can be categorized as a one-class learning problem for
which semi-supervised anomaly detection techniques are needed. The main idea is to
train a model for the class of normal behaviours, which is then used in the test data
to identify anomalous behaviour [Chandola et al., 2009, p. 11], [Amer et al., 2013, p.
1]. This approach is analogous to the semi-supervised recognition of detection, where
the model learns only the normal class and derives a boundary of normality [Hodge and
Austin, 2004, p. 6]. For this approach, the methods don’t require anomalous data for
training but enough labeled normal data to be able to derive a generalized distribution
[Hodge and Austin, 2004, p. 6]. The semi-supervised anomaly detection method is the
most used one, just take for example production machines, cars or any machines, they
usually run as expected and the produced data can be labeled as normal data. It is hard
to simulate a situation which is not normal, and even if it would be possible to simulate
this situation, there is no possibility to know if all potential situations of anomalies are
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covered.
The methods one-class SVM and autoencoder are semi-supervised detection methods
(see Section 4.1 and Section 4.3) and can be applied on the one-class learning problem.

Unsupervised Anomaly Detection Another common and challenging situation is
to have no labeled data at all. Basically, the challenge is the non-existence of prior
knowledge about the data, e.g. the question which oberservations are anomalous or what
share of the data is anomalous etc. This situation is referred to as unsupervised anomaly
detection [Hodge and Austin, 2004, p. 4]. To apply unsupervised anomaly detection
techniques, no separation of training and testing phase is needed. Additionally [Amer
et al., 2013, p. 1], one needs to make the implicit assumption that normal instances
are far more frequent than anomalies [Chandola et al., 2009, p. 11] and that anomalies
can be separated from the normal data [Hodge and Austin, 2004, p. 4]. The underlying
concept is to model a static distribution and mark remote points as potential anomalies.
For the unsupervised setting, a popular method is the local outlier factor (LOF), which
is further described in Section 4.2.

2.2 Application of Anomaly Detection

Anomaly detection plays an important role in many areas such as intrusion detection,
fraud detection, medical anomaly detection, industrial damage detection or anomaly de-
tection in text [Chandola et al., 2009, p. 11].
An example of a medical anomaly detection problem is the mammography data set
(Section 8.1). Mammography is one of the most effective methods for screening breast
cancer. Physicians interpret the screening and decide whether a biopsy to extract sam-
ple cells or tissue is necessary to confirm the presence of breast cancer. However, 70%
biopsies have a benign outcome and are therefore unnecessary [Elter et al., 2007].
In order to reduce those unnecessary biopsies, the learning algorithm should help to
predict the type of tumor based on mammography screens. To train the model a data
set with the attributes age, shape, margin and density can be used to predict if the
mammography screen is likely to show a benign (normal) or malignant (anomaly) tu-
mor. Most of the labeled data belongs to healthy patients, thus classification for highly
unbalanced class data or semi-supervised anomaly detection methods can be used to
train the model.
Another example is intrusion detection that refers to the detection of malicious activity
in a computer-related system [Chandola et al., 2009, p. 12]. Especially when computer
systems store sensible data (such as patient data, government data, customer data, etc.),
the security for protecting the system against intrusion or so-called hacker attacks should
be very high. One of the challenges of this problem is the constant modification of these
attacks. Over time attackers will learn how to outsmart the detection system, and over
time the detection system is improved to shield again newly evolved attacks. Since
the only sure knowledge about the system is how the normal status look likes, semi-
supervised or unsupervised anomaly detection methods should be preferred [Chandola
et al., 2009, p. 12].
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2.3 Challenges

First evidence for challenges in anomaly detection is described in the previous section
when dicussing the availability of labels. The availability of labels does not only de-
termine the method of choice, but also the limits of the the possibilities to tune the
chosen model or to evaluate if the chosen model could actually detect anomalies in new,
unlabeled data. Thus training, but also validation of the model is one of the major
challenges in anomaly detection [Chandola et al., 2009, p. 3].
In addition, normal data as well as anomalies evolve over time in many areas, thus cur-
rent anomalies but also normal data might not be representative for future observations.
Furthermore, if anomalies occurred due to intervention of, e.g., hackers, these anomalies
would appear to be similar to normal data. Hence it is more difficult for the model to
distinguish between anomalies and normal oberservations or to define a normal train-
ing set for semi-supervised anomaly detection methods. The definition of the normal
data set is another challenge, as covering all possible normal behaviour is very difficult.
Additionally, anomalies in different domains might differ in their behaviour. In some
domains, slight deviation from the normal behaviour is already tagged as anomalous
whereas in others the same anomalies might be tagged as normal. Similar to judging if
noise in the data are anomalies or normal. [Chandola et al., 2009, p. 3]
Due to those challenges, anomaly detection is a wide and underresearched area. Many
anomaly detection methods and research papers are solving one specific problem for a
specific characteristic of input data and domain. Those methods are developed from dis-
ciplines such as statistics, machine learning, data mining and others. [Chandola et al.,
2009, p. 3]
In the following, this work will focus on semi-supervised and unsupervised machine learn-
ing methods applied to data containing point anomalies, while not taking into account
the specific domain where the data comes from.

3 Evaluation

Evaluation criteria, also called performance measurements, help the user to choose an
optimal method for a data set and the problem at hand. Therefore the evaluation criteria
should be chosen at the beginning and used as an optimization criteron. The choice
of performance measurement depends on the type of output of the anomaly detection
method, which can be either scores or labels and the availability of true labels. If true
labels are given the user should use supervised performance measurements (Subsection
3.1), otherwise unsupervised performance measurements (Subsection 3.2).
For methods that return scores, the analyst needs to define an optimal threshold to
determine the anomalies, which can be done domain specific or model specific [Chandola
et al., 2009, p.11]. For returned labels the analyst can indirectly control the threshold
by controlling parameters within each method (e.g. controlling the ‹ variable in the
OC-SVM method) [Chandola et al., 2009, p.11]. In order to find the optimal controlling
parameter or threshold the user can again tune the model with an appropriate evaluation
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criterion. As anomaly detection methods classify the observation in two classes (normal
and anomaly), if labels are available for testing, most of the known binary classification
performance measurements as well as a view anomaly detection specific performance
measurements can be used (Section 3.1). There are almost no performance measurements
available yet for data without labels, but one recently developed method is the Area
under the Mass Volume curve (AUMVC), which is introduced in Section 3.2 and further
analyzed in (Section 8).

3.1 Supervised Performance Measurement

Although unsupervised anomaly detection deals with unlabeled data, most anomaly de-
tection papers use labels to evaluate their algorithms. In more detail, they train the
model on unsupervised data but evaluate the performance of the algorithm using true
labels. By doing so, a comparison over different anomaly detection algorithms is possible
(e.g. Hodge and Austin [2004] or Goldstein and Uchida [2016]). But in practice, the
true labels are usually not available. Section 3.2 deals with this situation.
In this section some supervised performance measurements, which are commonly used
for anomaly detection, are introduced. Since we assume labeled data for evaluation, most
of them are performance measurements for binary classification, that are also suitable
for data with imbalanced class sizes, such as AUC, F-Score, true positive rate and true
negative rate (e.g. Campos et al. [2016]). Nevertheless, not all measurements derived
from the confusion matrix are adequate for the specific case of anomaly detection. For
instance, the accuracy measure ACC defined as (TP + TN)/N (see definition in Figure
1) is not suitable for imbalanced classes. In anomaly detection we usually expect a max-
imal share of 10% of anomalies, therefore the TP is comparatively small to the TN and
the proportion between TP and TN is highly unbalanced. Thus, although in case the
algorithm performs worse in detecting anomalies, its ACC can still yield a high value.
For this reason, Campos et al. [2016, p.900] introduce additional performance measure-
ments such as the weighted accuracy, top-p accuracy, precision at n, adjusted precision
at n or average precision at n, which will be explained in more detail in Appendix A
and are also implemented in mlR.
For the benchmark analysis, we only focus on the AUC as supervised performance mea-
surement for anomaly detection.
Overview of some notations in this section:

• O: set of true anomalies or outliers in the data set

• I: set of true normal observations

Confusion matrix In supervised classification, a confusion matrix is often used for
evaluation, as it indicates whether the algorithm confuses two classes. An overview of
the content of a confusion matrix and measures that can be derived from it are displayed
in Figure 1.
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Figure 1: A confusion matrix, partly taken out from Fawcett [2006, p.2]. The positive
class is the anomaly class (P), the negative class the normal class (N).

Most of the measures in Figure 1 are commonly known and self-explanatory Fahrmeir
et al. [2016], the rest is shortly described in the following:

• The F1 does not take the TN (=normal) class into account, which is favorable
as the focus in anomaly detection is on detecting anomalies [Garcıa et al., 2009,
p.1].F1 œ [0, 1], where 1 is indicating best prediction.

• The G-mean is the geometric mean of TPR and PPV and is also considered as a
measure suitable for imbalanced data [Kubat et al., 1997, p.2]. G-mean œ [0, 1],
where 1 indicates best prediction.

• Bac is also a performance measure for skewed class distributions [Garcıa et al.,
2009, p.1], that compares the number of positives and negatives relative to their
class sizes (TPR and TNR). Bac œ [0, 1], where 1 indicates best prediction.

• The wac is a weighted bac. For weights w = 0.5 the wac is the bac. Although bac is
already suitable for imbalanced data, the user can focus more on the detection of
anomalies (positive class) than the detection of the normal class (negative class).

ROC and AUC The Receiver-Operating-Characteristic-Curve (ROC) is a graphical
method to evaluate the performance of an algorithm. ROC plots the TPR against the
FPR [Powers, 2011, p.4]. Algorithms yielding coordinates in the far top left corner,
which means having a FPR of 0 and a TPR of 1, are the best classifiers (and vice versa
for the worse classifiers). Algorithms that classify as good as random guessing will score
along the diagonal, where TPR = FPR [Powers, 2011, p.4]. Therefore, a classifier whose
ROC curve is strictly above the ROC of another classifier is considered to perform better
in terms of the ROC. Thus the ROC is a tool to compare different classifiers [Powers,
2011, p.4]. In cases where two ROC curves intersect, it is sometimes hard to determine
which classifier performs better. In case the user wants to perform tuning with several
different settings, a visual evaluation isn’t effective nor accurate enough. Instead of
using the ROC curve we can summarize the ROC in one value, the area under the curve
(AUC). The classifier that has a higher AUC value performs better. The ROC and AUC
are insensitive to imbalanced data, as they consider TPR and FPR. As the AUC is one
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of the most popular measures, which is widely used in other anomaly detection papers,
we will use it as the benchmark measure for the experiments in Section 8.

3.2 Unsupervised Performance Measurement: Area under the Mass-Volume
Curve (AUMVC)

One of the key challenges in unsupervised learning is to evaluate performance without
having access to labels. Until today, there is no established way to measure performance
in unsupervised learning. Most of the papers dealing with anomaly detection build the
model on data pretending to don’t have labels, but evaluate on data with labels, as their
objective is simply to compare different algorithms in a general manner, see for example
Goldstein and Uchida [2016]. Research is beginning to develop measurements to ad-
dress the problem of unsupervised performance measures. For example the algorithm
in Thomas et al. [2016] and Goix [2016], both based on the theory of the Mass-Volume
Curve (MV curve) for scoring functions from which they extract a scalar measurement
value called the Area under the Mass-Volume curve. It can be applied on low dimen-
sional data (AUMVC) with less than 8 features or high dimensional data (AUMVChd).
The AUMVC is specifically developed for tuning in the unsupervised setting.
Figure 2 is a visualization of the problem of unsupervised learning of hyper parameter,
it shows the sorted scores for the data sets 5perc and banana (see Section 2.1.3). In
unsupervised learning, it is usually not possible to color the data points, (anomalies red
and the normal observation blue). Imagine we would set a threshold based on this two
graphics (without colors). For the left we would choose a threshold at ≠50 and if we
have the labels, we would know that the chosen threshold is an appropriate one. For the
right graphic we would choose a threshold around ≠500. With labels, one can verify that
there isn’t any appropriate threshold, as the anomaly detection algorithm was already
failing to calculate a correct scoring function to map the data. But as labels are not
available, we wouldn’t know how appropriate the threshold is.
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Figure 2: Sorted score values generated by an OC-SVM on the synthetic data set 5perc
and the banana data set (see Section 8.1).
Note: In unsupervised learning the observations usually can not be colored as
there are no labels.

AUMVC is developed as measure to enable tuning in the unsupervised setting and is
based on the Mass Volume curve. The theory of the MV curve for scoring anomalies was
introduced by Clémençon and Jakubowicz [2013]. Based on this theory, Thomas et al.
[2016] developed a method to assess the performance of scoring functions by extracting
the MV curve and subsequently the AUMVC. The main difference between MV curve
and AUMVC is that the MV curve assesses the performance of a scoring function at one
point – œ [0, 1) (probability mass of the normal data) and the AUMVC within a certain
interval I = [–1, –2] ™ [0, 1).
The theory is further explained in the following subsections.
Overview of some notations in this chapter:

• X = {x1, x2, ..., xn}: set of N observations drawn from the d-dimensional space
R

d, also called random variables

• X = Xtrain fi Xtest the available observations are randomly split

• f/F : true underlying density/distribution of X in training and test set

• ◊ œ Θ hyper parameter settings of the anomaly detection algorithm

• A : X ◊ Θ æ R
R

d

anomaly detection algorithm

• (X ◊ ◊) ‘æ A(X ◊ ◊) =: ŝX,θ estimated scoring function based on the anomaly
detection algorithm A, the available data set X and the hyper parameter settings
◊
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• S = {s1, s2, ..., sn} score values for each observation in X that result from applying
the scoring function ŝX,θ; within this section low scores are considered to be an
indicator for an anomalous observation.

• – œ [0, 1) the probability mass of the normal data

• t œ R is a threshold. If the score value of an observation is greater than the
threshold it is assumed to be a normal observation, otherwise anomalous (i.e. low
score values indicative of anomalies)

• nsim œ N number of Monte-Carlo samples used to calculate AUMV C

• dÕ Æ 8 parameter controlling the number of features for feature sub-sampling, on
which to apply AUMVC

• m number of subsamples with dimension nsim ◊ dÕ used to calculate AUMV Chd

• k = 1, ..., m indicate the k-th subsample

3.2.1 Mass-Volume Curve (MV curve)

To understand the idea behind the MV curve for a scoring function we constructed the
MV curve step by step by using score values extracted from the synthetic data 5perc
and the banana data set (see Figure 2 and Section 8.1 for more details on the data set).
The score values are calculated based on an OC-SVM with radial basis kernel and the
default values from the R-package e1071 [Meyer et al., 2015].
First step is to calculate the score values from the anomaly detection algorithm A

A : X ◊ Θ æ R
R

d

(1)

with the scoring function ŝX,θ using the hyper parameter settings ◊ œ Θ of the anomaly
detection algorithm and the available data set X

(X ◊ ◊) ‘æ A(X ◊ ◊) =: ŝX,θ (2)

If the estimated score function ŝX,θ is an increasing transformation of the true density
f , the sorted score values can help to set a threshold. However, the scoring function
strongly depends on the anomaly detection algorithm A and especially on the used hyper
parameter setting ◊. An example, where the estimated score function is not an increas-
ing transformation of the true density f is shown for the pen.local data in Figure 12. If
the score function is an increasing transformation of the true f , anomalies would lie in
the tail of the true distribution.

To understand the intuition behind the Mass Volume curve we will disassemble its
definition into their individual parts and plot them. As the name "Mass Volume for a
scoring function" (3) indicates, the measure has two components: the mass, which is
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defined as –sX,θ
(4) and the volume, which is defined as ⁄sX,θ

(5) for a scoring function
sX,θ. Furthermore, the MV curve is a parametric function of the threshold t.

MV CsX,θ
: t œ R ‘æ (–sX,θ

(t), ⁄sX,θ
(t)) (3)

with the mass at threshold t

–sX,θ
(t) = P(sX,θ(X) Ø t) (4)

and the volume (w.r.t. Lebesgue measure) at threshold t

⁄sX,θ
(t) = ⁄(x, sX,θ(X) Ø t) (5)

For calculating the mass –sX,θ(t)(t) the probability distribution P is needed, but as it
is unknown Clémençon and Jakubowicz [2013, p.2], an empirical probability –̂sX,θ

(t) is
defined

–̂sX,θ
(t) =

1

n

n
ÿ

i=1

1{x,sX,θ(x)Øt}(xi). (6)

Figure 3 visualizes the behaviour of the empirical mass/probability –̂sX,θ
(t) depending

on the threshold t with values that lie in the range of the score values S.
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Figure 3: Empirical mass/probabilities –̂sX,θ
, which shows the relative frequency that

the score values are greater than the threshold t. The score values are ex-
tracted with the scoring function sX,θ generated by OC-SVM on the synthetic
data set 5perc (left) and the banana data set (right) (see Section 8.1 for more
information on the data sets).
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Figure 3 shows that with increasing thresholds t, the number of score values which are
greater than the threshold t (6) are decreasing (less observations classified as normal).
So the lower the threshold t the greater is the mass of the data classified as normal.
In the left panel of the graphic (5perc data set) one can see that the threshold between
≠250 and ≠25 would yield the same mass –sX,θ

(t), whereas the right panel of the graphic
(banana data set) shows that the mass varies with a varying threshold.
Figure 4 visualizes the behaviour of ⁄sX,θ

(t) depending on the threshold t with values
that lie in the range of the score values S.
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Figure 4: Lebesgue measure or volume ⁄sX,θ
of the subset of x values for which the

corresponding score value si is greater than the threshold t. The score values
are extracted with the scoring function sX,θ generated by OC-SVM on the
synthetic data set 5perc (left) and the banana data set (right); (see Section 8.1
for more information on the data sets).

Figure 4 shows, that with increasing threshold t the volume ⁄sX,θ
(5) decreases, as

less score values exceed threshold t. Therefore, the set {x, sX,θ(X) Ø t} for calculating
the volume is smaller.
Thus, with increasing threshold t, both, the mass and the volume in the Mass Volume
curve definition are decreasing.
The definition of the MV curve up to this point has a two-dimensional output. If the
mass –sX,θ

(t) has no flat parts, which means that its derivatives are non-zero at a given
point [Glaister, 1991], than the MV curve can be defined as

MV CsX,θ
: – œ [0, 1) ‘æ ⁄sX,θ

(–≠1
sX,θ

(–)) (7)
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where the inverse of –sX,θ
(t) is defined as

–≠1
sX,θ

(–) = inf{t œ R, –sX,θ
(t) Æ –} (8)

The curve of –≠1
sX,θ

(–) is shown in Figure 5.
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Figure 5: The inverse function of –sX,θ
(t) is –≠1

sX,θ
(t) and is based on score values, which

are extracted with the scoring function sX,θ generated by OC-SVM on the
synthetic data set 5perc (left) and the banana data set (right); (see Section 8.1
for more information on the data sets).

As stated above the true density f is unknown, therefore we need to define the em-
pirical MV curve of a scoring function, given X and the empirical –̂sX,θ

(t):

\MV CsX,θ
: – œ [0, 1) ‘æ ⁄sX,θ

(–̂≠1
sX,θ

(–)) (9)

The MV curve with a one-dimensional output can be visualized as in Figure 6.
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Figure 6: The MVsX,θ(α) based on score values that are extracted with an OC-SVM from
the synthetic data set 5perc (left) and the banana data set (right); (see Section
8.1 for more information on the data sets).

Figure 6 shows, the higher the mass – of the normal data, the larger is the value of
the MV curve.

The output of the MV CsX,θ
characterizes the underlying score function sX,θ from an

anomaly detection algorithm at a given mass – i.e. it returns a performance measure
for sX,θ when the mass of the normal data is assumed to be –.
Moreover the MV curve can be used to compare different score functions and anomaly
detection algorithms at a given mass point –. Optimal scoring functions have MV curves
that are minimal everywhere according to Clémençon and Jakubowicz [2013, p.4]. In
the paper it is stated that if s1 and s2 are two scoring functions on X, than the ordering
provided by s1 is better than that provided by s2 when

’– œ [0, 1) MV Cs1(–) Æ MV Cs2(–) (10)

Furthermore Clémençon and Jakubowicz [2013, p.4] provide a proposition about the
optimal MV curve, which is the MV Cf curve based on the true density f(x) of the
random variable X. As the true density f(x) is not known, the optimal MC curve
should be based on the optimal scoring function, that ranks the observations X in the
same order as f(X), i.e., a strictly increasing transformation of f(X). The set of optimal
scoring functions is then defined as

Sú = {T ¶ f : T : Imf(X) æ R+, strictly increasing} (11)

The elements of Sú, therefore have the same MV curve and the same ordering as f .
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Thus, the best possible ordering in regard to the MV curve criterion, which is defined as

’(s, –) œ S ◊ [0, 1), MV Cú(–) Æ MV Cs(–) (12)

where MV Cú(–) = MV Cf (–) ’– œ [0, 1) (13)

So in the best case scenario MV CsX,θ
(–) equals MV Cú(–) for all –.

3.2.2 Area under the Mass Volume Curve (AUMVC)

So far the MV curve assesses the performance of a scoring function at one point –, the
AUMVC assesses the performance of a scoring function over an interval I = [–1, –2].
The basic idea is to calculate the distance between the optimal Mass Volume Curve
MV Cú and the estimated MV CŝX,θ

using the L1 distance over the interval I [Thomas
et al., 2016, p.2]:

||MV CŝX,θ
≠ MV Cú||L1 =

⁄

I
|MV CŝX,θ

(–) ≠ MV Cú(–)|d–. (14)

The distance indicates how far away the MV curve of the scoring function ŝX,θ is from
the optimal MV curve, therefore the smaller the distance the closer is the estimation to
the optimal curve. However, the distance can’t be calculated directly, as the optimal
Mass-Volume Curve MV Cú and the true density f(x) are unknown. But the main
objective is not to get the actual distance value, but to find the minimal distance to
identify the optimal scoring function. Therefore, the optimal hyper parameter setting ◊

is defined by

◊ú = arg min
θœΘ

||MV CŝX,θ
≠ MV Cú||L1 (15)

Equation (15) can be further simplified using equations (12) and (13). These equations
say that the optimal Mass Volume Curve MV Cú is minimal for all (s, –) œ S ◊ [0, 1).
Therefore minimizing the distance to MV Cú is equal to minimizing MV CŝX,θ

over I.

◊ú = arg min
θœΘ

||MV CŝX,θ
≠ MV Cú||L1 = arg min

θœΘ

||MV CŝX,θ
||L1 (16)

Calculating ||MV CŝX,θ
||L1 returns the Area Under the Mass Volume curve (AUMVC)

of a scoring function:

AUMV CI(ŝX,θ) := ||MV CŝX,θ
||L1 =

⁄

I
MV CŝX,θ

(–)d– (17)

To calculate the AUMVC in practice we need to consider the empirical MV curve (9),
as the true MV curve is unknown [Thomas et al., 2016, p.2]. Combining (16) and (17),

16



the optimal hyper parameter set ◊ by minimizing AUMVC such that

◊ú = arg min
θœΘ

AUMV CI(ŝX,θ) (18)

3.2.2.1 Tuning Hyper parameters with AUMVC

With the AUMVC we have a tool to compare two scoring functions, in the sense of
which scoring function is the closer representative of the true density f(x). The closer
the scoring function is to the optimal density, the smaller is its AUMVC value. Therefore,
the AUMVC provides a suitable measure for tuning in an unsupervised setting.
In unsupervised tuning, the usual tuning approach is to split the available data set into
training set Xtrain and test set Xtest to prevent overfitting [Thomas et al., 2016, p.2].
For a parameter set ◊ œ Θ and an anomaly detection algorithm A we use Xtrain to
determine the scoring function ŝXtrain,θ (see equations (1) and (2)). The performance of
A is assessed by estimating the empirical AUMVC from the test set Xtest on an interval
I = [–1, –2] [Thomas et al., 2016, p.2], that can be set by the user (see Section 3.2.2.4
on how to choose the interval). Applying (18) we therefore choose the parameter set ◊ú

as follows

◊ú = arg min
θœΘ

\AUMV C
test

I (ŝXtrain,θ) = arg min
θœΘ

⁄ α2

α1

\MV C
test

ŝXtrain,θ
(–)d– (19)

= arg min
θœΘ

⁄ α2

α1

⁄ŝXtrain,θ
(–̂≠1

ŝXtrain
(–))d– (20)

As integrating over the empirical MV curve is not obvious, Thomas et al. [2016, p.3]
introduce an automatic tuning algorithm (see Algorithm 1), which is the core component
for this tuning approach.

3.2.2.2 Computing the Volume in AUMVC

When running Algorithm 1, we need to calculate the volume ⁄test
ŝXtrain,θ

(fltest
β ) in a high

dimensional space, which is known to be difficult [Thomas et al., 2016, p.3]. Therefore,
we use the Monte-Carlo (MC) integration approach as a workaround. Applying the MC
integration to the AUMVC calculation yields Algorithm 2.

3.2.2.3 AUMVC on High-Dimensional Data (AUMV Chd)

Due to the curse of dimensionality it is only recommended for small dimensional data
of up to eight dimensions [Goix, 2016, p.3]. In Thomas et al. [2016] and [Albert], the
boundary for the dimension of the data is set to five dimension, in Goix [2016] it is
set to eight dimension. Within this work we will take eight dimension as the maximal
dimension for the AUMVC.
[Goix, 2016] introduce a solution to how to apply AUMVC on high dimensional data.
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Algorithm 1: Automatic Hyper Parameter Selection

Require: A anomaly detection algorithm
X data set
Xtrain and Xtest random split of X to a training and test set
Θ hyper parameter subspace
[–1, –2] integration interval
nα discretization parameter
for each hyper parameter ◊ œ Θ do

ŝXtrain,θ = A(Xtrain, ◊)
for — in {–1 + j α2≠α1

nα≠1 ; j œ {0, ..., nα ≠ 1}} do

Compute the offset fltest
β ,which is the empirical 1 ≠ — quantile of ŝ(Xtrain,θ)(Xtest)

and ⁄test
ŝXtrain,θ

(fltest
β ) on the test data Xtest

end for
Compute \AUMV C

test

I (ŝXtrain,θ)
end for
return ◊+ = arg min

θœΘ

\AUMV C
test

I (ŝXtrain,θ) and ŝ+
Xtrain,θ+

Algorithm 2: Monte Carlo Integration in AUMVC for ⁄test
ŝXtrain,θ

(fltest
β )

Require: Xtest test set
ŝXtrain,θ scoring function
nsim number of samples to draw from the hypercube
fltest

β offset/threshold
Calculate the hypercube of Xtest:

H = {(min(xtest,1), max(xtest,1)), ..., (min(xtest,d), max(xtest,d))}
Calculate the volume of the hypercube H:

V =
rd

j=1(max(xtest,j) ≠ min(xtest,j))
Sample nsim œ [1, n] uniform samples from the hypercube H: U
Calculate the score values of samples U : SU = ŝ(Xtrain,θ)(U)
Calculate the relative ratio of normal classified observations in U :

r = –̂ŝXtrain,θ
(fltest

β ) = 1
nsim

qnsim

i=1 1{ui,ŝXtrain,θ(u)Øρtest
β

}(U)

return the Volume of normal classified observations in U :
⁄test

ŝXtrain,θ
(fltest

β ) = r ú V
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The basic idea is to do several feature subsamples of dimension dÕ Æ 8 to reduce the
dimension of the data. The number of subsamples are m œ N and k = 1, ..., m indicate
the k-th subsample, therefore AUMVC can be applied on each subsample, yielding partial
scores \AUMV C(I,k). The mean of the partial scores is the new performance criterion

\AUMV ChdI
. A pseudocode based on Goix [2016, p.3] is displayes in Algorithm 3.

Drawback of Goix [2016] approach is, that the provided algorithm doesn’t evaluate

Algorithm 3: Evaluate AUMVC algorithm on high-dimensional data

Require: Same input as Algorithm 1, with X = (xj
i )1ÆuÆn, 1ÆjÆd

dÕ œ (1, d) and dÕ Æ 8 feature sub-sampling size
m number of draws
for k = 1, ..., m do

randomly select subgroup Fk of dÕ features
the reduced data set is: XdÕ

= (xl
i)1ÆiÆn, lœFk

the reduced data train and test sets are: XdÕ

train and XdÕ

test

compute the associated scoring function: ŝ
XdÕ

train
,θ

compute the partial score \AUMV C
test

(I,k)(ŝXdÕ
train

,θ
) on the test set according to

Algorithm 1
end for
return aggregated performance criterion: \AUMV ChdI

= 1
m

qm
k=1

\AUMV C(I,k)

combinations of more than dÕ features Goix [2016]. However, experiments in Goix [2016]
has shown that it is enough in most of the cases.

3.2.2.4 Choosing the Interval I for AUMV C and AUMV Chd

For calculating \AUMV CI and \AUMV C(I,k) we need to take the integral of the em-
pirical MV curve over the interval I = [–1, –2] ™ [0, 1). The upper bound is excluded,
as the MV curve diverges in 1, if the support of the underlying distribution F is finite
[Goix, 2016, p.2]. Furthermore, in anomaly detection, one is only interested in outliers
(the extreme values) and assumes that it is a rare event. Therefore, –1 and –2 should
be large values [Clémençon and Jakubowicz, 2013, p.4], e.g. [0.9, 0.99] [Thomas et al.,
2016, p.2]. Because choosing e.g. – = 0.9 means that we want to estimtate the MV
curve, where the mass of normal classified data is 90%, in classical anomaly detection it
is not reasonable to assume to have more than 10% anomalies.

In Thomas et al. [2016] and Goix [2016] it is shown that the AUMV CI and AUMV ChdI

do not require labeled data to evaluate an anomaly detection algorithm. Thomas et al.
[2016] compare performance of anomaly detection algorithms with fixed hyper parame-
ters (set accordingly based on theoretical results or results of the the original authors) to
performance of anomaly detection algorithms with tuned parameters based on Algorithm
1. The performance of both settings is assessed with AUMV C and tuning the anomaly
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detection algorithm with AUMV C always performs better than using prior fixed hyper
parameters according to [Thomas et al., 2016, p.4]. In our experiments (Section 9.2) the
results do not alway support that statement. Goix [2016, p.2] also compares anomaly
detection algorithms using the ROC, PR and AUMV C or AUMV Chd as performance
measures. His experiments show that in 72% to 76% of his examples the AUMV C or
AUMV Chd recovers the order of ranking [Goix, 2016, p.24].

Note: The default predicted probability in mlR is of the anomaly class, anonamous
observations should have high probabilities. Therefore the probability of the normal
class is used to calculate the AUMVC(hd).

4 Unsupervised Anomaly Detection Methods

A variety of anomaly detection methods exists for unsupervised learning, for example,
based on support vector machines (e.g. one-class classification SVMs in Section 4.1),
based on density (e.g. LOF in Section 4.2) or neural networks (autoencoder in Section
4.3). Furthermore, there are more method types and methods, such as cluster-based
methods or k-nearest neighbors to name a few, which are not part of this work. Anomaly
detection methods can differ in their requirement of data labels as mentioned in Section 2.
For instance, one-class SVMs (OC-SVMs) and autoencoders requires a semi-supervised
setting (one class in training), whereas LOF is defined for the unsupervised setting.
Within this work, we will focus on the three previously mentioned methods, which
are introduced in more detail in the following section and OC-SVM and LOF are also
benchmarked in Section 8.

4.1 Support Vector Machine (SVM)

This section provides a brief concept of SVM and the separating hyperplanes [James
et al., 2013, p.343], a very popular machine learning method [James et al., 2013, p.360].
SVMs were originally developed for binary classification problems [James et al., 2013,
p.341]. However, SVMs can be extended to the case with more than two classes or to
the case of regression, which is not in the scope of this work (for more details see [James
et al., 2013, chapter 9.4]). SVMs can also be used for anomaly detection or also called
one-class classification, which will be explained in more details in Section 4.1.2.
The development of SVMs is quite intuitive explainable on the example of binary clas-
sification. A first overview and summary of [James et al., 2013, chapter 9] is displayed
in Figure 7 and Table 1. Figure 8 explains visually the main terminology. In this sec-
tion, we quickly step through each method in the knots of Figure 7, giving a more but
short explanation about usages and limitations. For more details and derivation of used
equations see [James et al., 2013] and [Friedman et al., 2001]. For all equations in this
section following notation holds:

• xi œ R, i = 1, ..., n and n œ N are elements of the data D.
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• yi œ ≠1, 1, i = 1, ..., n are the binary class labels for xi. In an unsupervised setting
there are no class labels available.

• „ : D æ F is the feature map, which maps into the product space F

• Ê œ F element of the product space F

• k(·, ·) = È·, ·Í : D2 æ R is a kernel function. For a linear kernel, it equals the inner
product

• › œ R
n is the slack variable (one for each observation)

• ‹ œ (0, 1) controls the number or fraction of anomalies to be found

• p œ R is the offset

If you already familiar with the general motivation of SVMs, you can proceed with
Section 4.1.1 about the kernel trick or Section 4.1.2 about one-class SVMs.

Separating	Hyperplane	(SHP)

Maximal	Margin	Classifier	

(Optimal	Separating	Hyperplane)

Support	Vector	Classifier	

(Support	Vector	Machines	with	Linear	Kernel)

Support	Vector	Classifier	

(with	Enlarge	Feature	Space)
Support	Vector	Machines

g choose	separate	hyperplane	which	has	the	largest	margin

g allow	observations	on	the	wrong	side	of	margin/hyperplane

7 to	many	possibilities

7 extremely	sensitive	to	single	observations

7 data	not	always	strict	separable	by	a	hyperplane	

(linear	boundary)

7 data	not	always	separable	by	a	linear	boundary

g enlarging	feature	space	using	

higher	order	polynomial

g enlarging	feature	space	using

kernel	functions	(≠linear	kernel)

7 computational	inefficient

g enlarging	feature	space	using	kernel	functions	

(≠linear	kernel)	

Figure 7: Several possible classification approaches based on concept of separating hyper-
planes and motivation for introducing Support Vector Machines. Extraction
based on [James et al., 2013, chapter 9].

Separating Hyperplane: Basically, the idea is to separate two classes by drawing
a linear border between them. In a two-dimensional space the border would be a line
(see Figure 8), in a three-dimensional space the border would be a plane and in any
dimension, the border is, in general, called a separating hyperplane, which is linear in
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Table 1: Overview of applicability of methods based on the concept of separating hyper-
planes for different type of data sets. Extraction based on [James et al., 2013,
chapter 9].

Data Set Strict Separable by

Linear Boundary

(Strict Separating

Hyperplane Exists)

Data Set Separable by

Linear Boundary,

But Not Strict

(Hyperplane Exists)

data sets with Non-Linear

Class Boundaries

Maximal Margin Classifier
Ô

x x

Support Vector Classifier
Ô Ô Ô

Support Vector Machine
Ô Ô Ô

the corresponding space. But in Figure 8 one can easily see, that there are several
options to set the separating hyperplane w, any w which hold following equation

yi(ÈÊ
T , xiÍ + fl) Ø 0 (21)

with È·, ·Í the inner product.
At first sight, it seems like it doesn’t matter, as it separates the two classes in the right
way, but if we want to classify new instances, which additionally gather near the sepa-
rating hyperplane, the exact position of the separating hyperplane does matter.

Maximal Margin Classifier: To set the optimal separating hyperplane, one wants
to yield maximal margin. In other words, we want to choose the separating hyperplane,
which has a maximal distance to the nearest observations or "that has the farthest
minimum distance to the training observations" [James et al., 2013, p.345]. The equation
(21) is extended to

min
ω,ρ

1

2
ÊT Ê (22)

subject to yi(ÈÊ
T , xiÍ + fl) Ø 1 (23)

The separating hyperplane is then called the maximal margin hyperplane, which is also
known as the maximal margin classifier because the observation can be classified de-
pending on which side of the hyperplane the observation lies. The observations, which
determine the margin, are called support vectors. But there is a limitation of this ap-
proach: a slight change of the support vectors leads to a change of the position of the
separating hyperplane and in many cases no separating hyperplane exists.

Support Vector Classifier: To fix the limitation of the maximal margin classifier
we allow the separating hyperplane to only almost separate the classes. Which basically
means, that we allow observations to be on the wrong side of the hyperplane or even
wrong side of the margin, by using a soft margin and introducing the slack variable ›.
› penalizes if the observation i lies on wrong side of decision boundary. This leads to a
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Figure 8: Visual definition of main terminology used for explaining SVM. (Später aus-
tauschen mit eigener grafik)

more robust behaviour to change in individual observations:

min
ω,ξρ

1

2
ÊT Ê + C

n
ÿ

i=1

›i (24)

subject to yi(ÈÊ
T , xiÍ + fl) Ø 1 ≠ ›i (25)

›i Ø 0, i = 1, ..., n (26)

where C is a trade-off variable, controlling the relative importance between the two
objectives in (24).
The maximal margin classifier in the combination of the soft margin is called the support
vector classifier. However, until now we assume that the data is linearly separable by a
hyperplane in the space in which the instances are observed, which is not always possible.
But the instances are separable in a higher dimension, so a solution would be to enlarge
the feature space by using higher order polynomial terms for the predictor’s functions.
The fitted support vector classifier would be linear in the enlarged feature space, but
non-linear in the original feature space. There are many possibilities to enlarge the
feature space, but this comes at the price of computability.
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Support Vector Machines In the case of non-linear class boundaries the support
vector classifier is not sufficient unless we enlarge the feature space by using e.g. poly-
nomials for the predictor’s functions, which also increases the computational costs. As
the support vector classifier only uses the inner products of the observations to find a
solution, we replace this calculation (of enlarging the feature space) with a generalization
of the inner product, which is referred to as kernel function. Thus inner product È·, ·Í in
(25) is replaced by the the kernel function, hence the support vector classifier becomes
the support vector machine.

min
ω,ξρ

1

2
ÊT Ê + C

n
ÿ

i=1

›i (27)

subject to yi(ÈÊ
T , „(xi)Í + fl) Ø 1 ≠ ›i (28)

›i Ø 0, i = 1, ..., n (29)

È·, ·Í is a kernel function chosen by the user (see kernels in Section 4.1.1) and xi is a map
into the dot product space F using the feature map „(). The dot products in F can be
calculated by using kernels.
The SVM is about efficient computation of learning a linear decision boundary in a
higher-dimensional space and finally projecting the learned linear decision boundary
back to the original feature space, which then becomes non-linear.
There are different types of kernel functions, linear kernels and non-linear kernels, such
as the radial basis kernel or polynomial kernel (for more details see Section 4.1.1). When
combining the support vector classifier with a non-linear kernel, the resulting classifier is
called the support vector machine (SVM) [James et al., 2013, chapter 9]. When using the
linear kernel instead, the SVM is reduced to the support vector classifier. In summary,
with SVM one can yield computationally efficient non-linear class boundaries.

4.1.1 Kernels and The Kernel-trick

Most of the time it is difficult to extract structure from data in the space in which the
observations have been made. To overcome this, a kernel-based SVM maps the data
into a high dimensional feature space using kernel functions, in which the model is then
trained [Karatzoglou et al., 2004, p.1]. Formally, the input data X are mapped into a
high dimensional feature space F using a function „ : X æ F, x æ „(x). Then the
inner product of the modified input is calculated. Every kernel can be reformulated as
a dot product, which means, the modified input can be compared using a dot product
k : X2 æ R [Jordan, p.3].

k(xi, xj) = È„(xi), „(xj)Í (30)

Technically, the mapping „ is implicitly done, it is not even necessary to know „. We
only need the kernel k(), that does the mapping and the inner product in one operation.
The kernel trick is to compute the dot products in the higher dimensional feature space
F but with vectors from the input space and a function that also worked in the input
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space [Jordan, p.3]
Table 2 gives an overview and provides definitions of common kernels used in SVM.
Note that the definitions differ between publications; the definitions here are from the
R packages e1071 Meyer et al. [2015] and kernlab Karatzoglou et al. [2004].

Table 2: Common Kernels, which are used for SVMs. In some definition “ is used instead
of ‡.

Kernel Equation k(xi, xj) = Parameters

Linear xxxT
i xxxj none

Polynomial ‡(xxxT
i xxxj + c0)d ‡, d, c0, for some Definition ‡ = 1

Gaussian Radial Basis Fct. exp{≠‡|xxxi ≠ xxxj |2} ‡

Sigmoid or Hyperbolic Tangent Kernel
Besseln

(
ν+1)({σ|xxxi≠xxxT

j
|)

|xi≠xj |≠n(ν+1) ‡, c0

Bessel tanh{‡xxxT
i xxxj + c0} ‡, c0

Laplace Radial Basis Fct. exp{≠‡|xxxi ≠ xxxj |} ‡

Anova Radial Basis Fct.
1

qn
k=1 exp ≠ ‡(xxxk

i ≠ xxxk
j )2

22
‡

The listed kernels also satisfy the requirements for kernel functions, that are

• k() is a symmetric function

• k() satisfies the inequalities (follows from the Cauchy-Schwarz inequality)

• k() is a inner product kernel (follows from Mercer’s Theorem)

For more details, see Scholkopf [2001].

4.1.2 Support Vector Machines for Anomaly Detection

Until now the SVM was introduced for supervised learning. For one-class classification,
there are two types of OC-SVMs applicable to anomaly detection problems: one from
Schölkopf et al. [2000] and one from Tax and Duin [2004]. The latter detects anomalies
by creating a decision boundary, that encloses a set of data points like a sphere [Karat-
zoglou et al., 2004, p.9] and minimizes volume of the hypersphere to minimize the chance
of accepting outliers [Tax and Duin, 2004, p.47]. This spherical decision boundary is de-
scribed by a set of support vectors [Tax and Duin, 2004, p.59] [Karatzoglou et al., 2004,
p.9]. Within this work, we will focus on the definition of Schölkopf et al. [2000] that uses
a planar instead of a spherical approach. For the Gaussian kernel (see 4.1.1), the two
definitions are equal [Tong and Svetnik, 2002, p.2].
The difference between binary classification with SVM and OC-SVM is that SVM sep-
arates two classes while having examples of both classes in the training data, therefore
the classical SVM can find a line, plane or hyperplane to best separate the data (often
using the kernel trick to find linear separation in a higher feature space). The OC-SVM,
however, only has examples of one class, thus the OC-SVM tries to find a line, plane or
hyperplane to separate all the observations of one class from the origin. For the bench-
mark analysis in this work, we focus on the Gaussian kernel like [Tong and Svetnik,
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2002, p.4].
For the primal problem formulating of detecting anomalies according to Schölkopf et al.
[2000] and [Chang and Lin, 2011, p.5] is

min
ω,ξρ

1

2
ÊT Ê ≠ fl +

1

‹n

n
ÿ

i=1

›i (31)

subject to ÈÊT , „(xi)Í Ø fl ≠ ›i (32)

›i Ø 0, i = 1, ..., n (33)

with ‹ œ (0, 1) controlling the number or fraction of anomalies that is expected in
training. › is the slack variable, that penalized the objective function if it’s positive. In
other words it penalizes if an observation lies on the wrong side of the decision boundary.
Reformulation leads to the dual problem

min
β

1

2
—T Q– (34)

subject to 0 Æ —i Æ 1/‹n, i = 1, ..., n (35)
ÿ

i

—i = 1, (36)

where Qij = K(xi, xj) = È„(xi)
T „(xj)Í. An observation xi for which —i is nonzero is

called support vector (SV) [Schölkopf et al., 2001, p.583]. The decision function for
detecting an observation as anomaly

sgn(
n

ÿ

i=1

—iK(xi, x) ≠ fl) (37)

Equation (37) is a function that returns +1 if it is a normal observation and ≠1 if it is
an anomaly [Schölkopf et al., 2000, p.1].
Advantages of the one-class SVMs are

• SVMs have convex optimization objectives ensuring that the global optimum will
be reached [Amer et al., 2013, p.2]

• SVMs have sparse solutions, therefore they are efficient in comparison to other
kernel-based approaches [Amer et al., 2013, p.2]

• SVMs for anomaly detection contains a decision function, therefore the method
both returns an anomaly score and a binary decision for the normal and anomaly
class

• SVMs consider the fact that data can be noisy, thus the algorithm allows observa-
tions to be on the wrong side of the margin [Bischl, 2016]
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• Infinitely many kernels exist, and many of them are efficiently computable [Bischl,
2016]

There are also a view disadvantages such as

• The method is not applicable for all data sets as it is requires that the classes are
separable by a linear boundary [James et al., 2013, p.341]

• SVMs scale not well to increasing data sizes, because of the kernel transformation
and the quadratic optimization algorithm [Meyer et al., 2015, p.8]

• The results of SVM models highly depend on the choice of the kernels, therefore
an extensive parameter search is required [Meyer et al., 2015, p.8]

• The choice of a good kernel and its parameters is the responsibility of the user and
takes a lot of effort to determine those [Bischl, 2016]

4.1.3 Tuning

For the OC-SVM, there is also a set of hyperparameters that needs to be defined before
applying the method. However, it is not obvious to choose a hyper parameter setting
and it highly depends on the data and the domain of the problem. One way to find this
optimal set is to tune the hyperparameters.
There are parameters that are part of the definition of the method, and parameters
that control computation time. Both have an impact on the result. The former for
obvious reason, the latter in the sense that if, e.g., the number of iterations is limited,
the algorithm might stop before it converged and therefore differs from the results that
it would have yielded if it wouldn’t stop prematurely. For OC-SVMs the parameter of
the methods which can be tuned or set by the user according to the use case, are as
follows:

• kernel type: To define the parameter space it is necessary to set a projection
function that can be any kernel. The common kernels are listed in Table 2. In
our benchmark analysis it is set to the Gaussian Kernel, therefore in the following
only relevant parameters are listed.

• σ: A parameter which needs to be set for the kernels (except linear kernels) is the
‡ parameter. It controls the degree of influence of the observations in the training
set. The lower ‡ the stronger is the influence of each observation. The higher ‡

the weaker is the influence of each observation, thus it increase the smoothness or
generalizability of the model.

• ν: ‹ œ (0, 1). For fl ”= 0 in formula (33), ‹ can be seen as upper bound on
the fraction of outliers and as a lower bound on the fraction of support vectors
[Schölkopf et al., 2000, p.584]. The tuning parameter C, which determines the
softness of the margin in the classification SVM is replaced by 1

νl
in the OC-SVM.
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– ‹ æ 0: upper boundaries on the Lagrange multipliers in formula (36) 1
νl

æ Œ.
Therefore the constraint

q

i –i becomes void [Schölkopf et al., 2000, p.584].
The penalization of errors in formula (32) becomes infinite, therefore Equation
(32) can only be solved if the slack variable ›i is 0. For all i or in other words
if the data is strictly linearly separable.

– ‹ æ 1: upper boundaries on the Lagrange multipliers 1
νl

æ 1
l
. In order to

meet the constraint
q

i –i = 1, all errors need to be on the upper bound
1
l

> 0, which means that all xi are support vectors.

Due to limitation of time and computational power, in our experiments we only use
the Gaussian Kernel and tune two parameters (‹ and ‡) with a random search for the
OC-SVM.

4.2 Local Outlier Factor (LOF)

The local outlier factor (LOF) is an unsupervised anomaly detection method that as-
signs to each observation a degree of being a local outlier [Breunig et al., 2000, p.1]. The
degrees depend on the density of the neighborhood of each observation [Breunig et al.,
2000, p.1]. Only a restricted number k of neighbors is taken into account for calculating
the LOF value, which is why the method is local. The more isolated the observation is
from its surrounding neighbors, the more likely it is to be an outlier. Therefore a high
LOF indicates a high degree of outlier-ness Breunig et al. [2000, p.1].
The LOF method is related to density-based methods [Breunig et al., 2000, p.2] that
typically have two hyperparameters: The number of neighbors k and the volume of the
neighborhood ‘. In the LOF method, k will be kept as a parameter, ‘ will be replaced
dynamically (by reach≠distk(p), see defintion (41)), as the aim is to compare the densi-
ties of different sets of objects [Breunig et al., 2000, p.4]. Furthermore, in density-based
methods the distance function can be chosen by the user, in LOF it is usually set to the
Euclidean distance (like in [Breunig et al., 2000] or the R package dbscan), but the user
could and should replace the distance function according to the use case.
[Breunig et al., 2000] introduces LOFk(p) in order to avoid only detecting global outliers
as in other known outlier detection methods (e.g. DB-Outlier, see example in [Breunig
et al., 2000, p.2]). For LOF several preceding definitions are needed:

k-Distance of an Object p k-distance of an object p œ D is the distance d(p, o) with
o œ D, for which following requirements hold:

(i) for at least k objects oÕ œ D \ {p} it holds that d(p, oÕ) Æ d(p, o) (38)

(ii) for at least k ≠ 1 objects oÕ œ D \ {p} it holds that d(p, oÕ) Æ d(p, o) (39)

for k œ N+ and d(p, o) the minimum distance between p and o, with both elements of the
set D [Breunig et al., 2000, p.3]. The example in Figure 9 fulfills both requirements. The
distances d(p, o1), d(p, o2), d(p, o3) are smaller or equal the distance d(p, o) (requirement
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(38)), the distances d(p, o1), d(p, o2) are strictly smaller than d(p, o) (requirement (39)),
therefore d(p, o) is the k-distance

k-Distance Neighbourhood of an Object p The k-distance neighbourhood of an
object p for k œ N+ is defined as

Nk≠distance(p)(p) = {q œ D \ {p}|d(p, q) Æ k ≠ distance(p)} (40)

Nk≠distance(p)(p) contains all the objects q, which are not further away from p than the
k ≠ distance(p) and is also called the k-nearest neighbors of p. It should be emphasized
that the set of k-nearest neighbors of p can have more than k elements when several
objects have the same distance to p. [Breunig et al., 2000, p.3]

Figure 9: Two-dimensional, visual example of k-distance(p) and Nk≠distance(p)(p). Given
k = 3, the 3 ≠ distance(p), that holds (38) and (39) is 1.5. The 3-distance
neighborhood or so called 3 nearest neighbors N3≠distance(p)(p) = N1.5(p) =
{o, o1, o2, o3}.

Reachability Distance of an Object o w.r.t. object p The reachability distance
of an object o w.r.t. object p for k in N+ is

reach ≠ distk(o, p) = max{k ≠ distance(p), d(p, o)} (41)

The reachability distance of o to p is the true distance d(p, o), but at least the k-distance
of p. In other words, if o is far from p than the reachability distance is the true distance,
and if o and p are “sufficiently” close, the reachability distance equals the k-distance of
p. In the example in Figure 9 o1 is too "close" to p, the distance d(p, o1) is less than the
3 ≠ distance(p), therefore 3 ≠ distance(p) = 1.5 = reach ≠ dist3(o1, p) is the reachability
distance of o1 w.r.t. p.
The intention behind this definition is to reduce the statistical fluctuation of d(p, o) for
all objects o, that are close to p. k is a tuning parameter: The higher the value of k, the
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more similar are the reachability distances of objects in the same neighborhood [Breunig
et al., 2000, p.3].

Local Reachability Density of an Object p

lrdk(p) =
1

I

q

oœNk(p)
reach≠distk(p,o)

|Nk(p)|

J
(42)

The equation returns the local reachability density of an object p. First all possible
reachable distances of p to each of its k-neighbors are calculated, then averaged and
inversed.
If the datasets have duplicates the nominator can be 0 and therefore lrdk(p) can be Œ.
We follow the approach of [Breunig et al., 2000, p.4] and assume that there are no dupli-
cates or, if duplicates are present, delete duplicates in the data. [Breunig et al., 2000, p.4]

Local Outlier Dactor of an Object p

LOFk(p) =

q

oœNk(p)
lrdk(o)
lrdk(p)

|Nk(p)|
(43)

LOFk(p) returns the degree to which extent p is an outlier. First, the ratio of the local
reachability of p and those of p’s k-nearest neighbors (in Nk(p)) are calculated and then
averaged. So the local reachability is compared between the object p (denominator) and
o (numerator). A higher numerator in comparison to the denominator indicates that p
lies in a sparser region than its k-neighbors. The higher LOFk(p), the more likely is p
to be an outlier.
A LOF value close to one is a sure normal observation [Breunig et al., 2000, p.4], but it
doesn’t mean that a LOF-value above one is a sure outlier. [Breunig et al., 2000, p.4]

Advantages:

• LOF is well applicable on linearly separable distributions with stable densities
[Lyudchik, 2016]

• Although LOF is related to density-based clustering, it does not require any explicit
or implicit notion of clusters [Breunig et al., 2000, p.1]

• No information about the underlying distribution is necessary [Breunig et al., 2000,
p.2]

Disadvantages:
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• There are no rules for an outlier threshold for the LOF-values [Breunig et al., 2000,
p.6]

• LOF only works with numeric data [Zhao, 2012, p.66]

• LOF tend to underperform on data with underlying nonlinear structures and vari-
ation in densities [Lyudchik, 2016]

4.2.1 Tuning

As previously explained, the only hyperparameter in the LOF method is the number
of neighbors k. There is neither a rule of thumb how to choose k nor could it be done
intuitively. [Breunig et al., 2000, p.7] show in their paper that there is no monotonic
decrease or increase in LOF when varying k, instead it changes non-monotonically. [Bre-
unig et al., 2000, p.2] also suggest to set k at least to ten in order do to remove statistical
fluctuation that is unwanted [Breunig et al., 2000, p.8]. All in all, in their experiment
a k between 10 and 20 works well in general as a lower bound. A further limitation
on how to choose an upper or lower bound of k is described in [Breunig et al., 2000,
p.8], which requires some information about the data. In this work we will focus on the
general application of LOF on a variety of data, therefore we will tune the k parameter,
without setting data-specific lower and upper bounds of k.

4.3 Neural Network (NN)

Neural networks (NN) are another class of learning methods for non-linear statistical
models for regression and classification [Friedman et al., 2001, p.389]. First, the basic
structure of a neural network is explained, followed by the introduction of a special neu-
ral network for anomaly detection.
A NN can be represented by a network diagram as shown in Figure 10. The features
X1, X2, ..., XP are the P -input variables (input layer) and Y1, Y2, ..., YK are the output
variables (output layer). In classification, K indicates the number of classes and in
regression, K is a scalar. The variables inbetween are called hidden neurons (in the
hidden layers) of the neural network. The number of neurons and hidden layers can vary
[Friedman et al., 2001, p.392]. The displayed network starts from left and runs to the
right, without going back, feeding the input forward to the next layer, that is why it
is called feed-forward neural network. Other architectures can be found in [Priddy and
Keller, 2005]. Once the user has chosen an architecture of the NN, the network can start
learning to map the input layer to the output layer.
The explanation of the structure of a NN is based on the exemplary neural network in

Figure 10 and is a modification of [Friedman et al., 2001, p.389] explanations. To keep it
simple, here we assume that every layer can only receive input from the closest previous
layer and feed forward to the closest next layer. However, it should be noted that more
complex architectures are possible.

In the following, the notation relevant to this this chapter is summarised:
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Figure 10: Schematic of a feed-forward neural network with at least three hidden layers,
N input variables and a bias terms 1 in each layer and K output units in the
output layer.

• {X1, X2, ..., XP } are the input in the input-layer. P defines the number of features.
The layers each also has a bias term 1. Each Xp is a vector of N observations.

• Output Y = {Y1, Y2, ..., YK} are output units in the output layer. In classification
K > 1 defines the number of classes, in regression K = 1

• D is a NxP dimensional data set containg the input and output units.

• l œ {1, ..., L}, L œ N+ indicates the hidden layer.

• Hidden Neurons are denoted by Zl,1, Zl,2, ...Zl,Ml
, with Ml the number of hidden

neurons in the l-th hidden layer.

• wjl,ml
, j œ {0, 1, ..., Ml≠1}, l œ {1, ..., L}, ml œ {1, ..., Ml} indicates the weight of

the jth node from the previous layer (l ≠ 1) for the ml-th node of the lth layer.
The weight for j = 0 belongs to the bias term, the weight for l = o belongs to the
output layer.

• ‡() is the activation function, that can be used for non-linear transformation

• g() is the output transformation function

• S = {s1, s2, ..., sN } anomaly score values for each instance {1, ..., N} in the data
set
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• t is the threshold of the anomaly scores

First Step: Input Layer to First Hidden Layer The second layer (first hidden
layer) with hidden neurons Z1,1, Z1,2, ...Z1,M1 is created from linear combinations of the
input variables (input layer) X1, X2, ..., XP , such that

Z1,m1 = ‡(w01,m1
+

P
ÿ

i=1

wi1,m1
Xi), m1 = 1, ..., M1, (44)

where ‡() is an activation function applied on each linear combination. The activation
function is often chosen to be the sigmoid function ‡(‹) = 1/(1 + e≠ν), defining which
hidden neuron is "active" (> 0) or "inactive" (= 0).
Other most popular activation functions are the tanh function, rectified linear function
and maxout function (see Table 3).
The first hidden layer passes the received and modified input variables forward to the
next hidden layer.

Table 3: Activation functions [Candel et al., 2015, p.12].

Function Equation Range

Sigmoid ‡(‹) = 1/(1 + e≠ν) ‡(·) œ [0, 1]

Tanh ‡(‹) = eν≠e≠ν

eν+e≠ν ‡(·) œ [≠1, 1]

Rectified Linear ‡(‹) = max(0, ‹) ‡(·) œ R+

Maxout ‡(‹1, ‹2) = max(‹1, ‹2) ‡(·) œ R

Second to Second Last Step: (First) Hidden Layer to next (Second) Hidden
Layer The feed-forward steps within the hidden layers are analogue to the above first
step. The hidden neurons Zl+1,1, Zl+1,2, ...Zl+1,Ml

are created from linear combinations
of the neurons from the preceding hidden layer Zl,1, Zl,2, ...Zl,Ml+1

, such as

Zl+1,ml+1
= ‡(w0l+1,ml+1

+
Ml
ÿ

i=1

wil+1,ml+1
Zl,i), ml+1 = 1, ..., Ml+1 (45)

with the same activation function as previously.
The last hidden layer passes the received and modified input variables forward to the
output layer.

Last Step: Last Hidden Layer to Output Layer The target variable Yk is modeled
as a function of the derived features ZL,1, ..., ZL,ML

of the last hidden layer.
The relations can be stated similarly to previous definition, but with o stands for output
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layer:

Yk = g(w0o,k
+

ML
ÿ

i=1

wio,k
ZL,i), k = 1, ..., K (46)

where g() is the output function for final transformation of the hidden nodes of the last
hidden layer. It can be the identity function or other functions, see e.g. in [Friedman
et al., 2001, p.393]).

The Learning Process of a Neural Network The mathematic description of the
learning process can be found in [Friedman et al., 2001, p. 395]. The basic idea is to
take the data and pass it through the neural network with some weights wjl,ml

(starting
weights can be random or chosen by the user) to get an estimated output layer. This
estimated output layer is then compared to the known target values. Deviation from the
known target values are errors, that can be measured e.g. with the MSE in regression or
cross entropy for classification [Friedman et al., 2001, p. 395]. To minimize this error and
to fit the model well to the data, the data is passed through the network again but with
adjusted weights wjl,ml

. This step is repeated several times to update the weights until a
stopping criterion (that can be set by the user [Friedman et al., 2001, p. 395]) is reached.

Some advantages of the Neural Network are as follows:

• Neural network are very flexibel models, they can handle misclassified training
examples as well as arbitrarily complex and non-linear problems [Bischl, 2016]

• Neural network are can handle noise data

• Neural networks are a useful tool for nonlinear statistical modelling [Dau et al.,
2014, p.314]

• The method doesn’t need any "assumptions about the data distribution" [Dau
et al., 2014, p.313]

• The method can handle high dimensional data well [Dau et al., 2014, p.314]

Neural Networks also have some disadvantages such as:

• The neural network model is generally overparametrized [Friedman et al., 2001,
p.397]

• The optimization problem is nonconvex and unsTable [Friedman et al., 2001, p.397]

• The method tends to overfit the data at the global minimum of R [Friedman et al.,
2001, p.397]

• The solution depends on the choice of starting weights [Friedman et al., 2001,
p.400]
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• It is difficult to analyze the network and there is no guarantees for good statistical
performance [Bischl, 2016]

• For the application the input and output vectors needed to be passed as real
vectors, which might be inconvenient in some examples [Bischl, 2016]

4.3.1 Neural Network for Anomaly Detection: Deep Autoencoders

A method to detect anomalies using the feed-forward neural network is called deep
autoencoder [Candel et al., 2017], which is also a one-class classification method. The
autoencoder consist of encoder, decoder layers, and a latent space, the latter should
have a substantially lower dimension than the input layer [Goodfellow et al., 2016, p.
499]. The main difference to the classical feed-forward neural network is that the output
data is set identical to the input data. The aim of training the model is to reconstruct
the input (see Figure 11) with the objective to minimize the reconstruction error of the
model [Dau et al., 2014, p. 314].

Figure 11: An exemplary autoencoder with one encoder layer, one latent space, and one
decoder layer. The number of input units is equal to the number of output
units.

The reconstruction error of the model is the deviation of the reconstructed input X̂
(=output) to the true input X̂ and is described by a loss function

L(X, X̂) (47)
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which can be defined for example as the mean squared error (MSE). The whole process
is basically to compress and decompress the data, expecting to reconstruct the normal
observations well, while anomalies are poorly reconstructed [Dau et al., 2014, p. 312].
However, this approach requires to only use data of the normal class in training. The
reason behind it is to make sure the network learns the pattern of the normal class. Thus
the procedure classifies previously unseen observations which match the normal pattern
as normal otherwise as anomalies [Dau et al., 2014, p. 311], since anomalies were not
seen in training.
Furthermore, to prevent the neural network from learning the identity function, the
number of neurons in at least one hidden layer needs to be of lower dimension than the
input dimension. This approach forces the autoencoder to learn by non-linearly reducing
the representation of the input data, which means that it learns the underlying pattern of
the input data. A normal test point would match the pattern and therefore yield a rather
low reconstruction error, an anomalous test point doesn’t match the pattern well and
therefore will likely generate a high reconstruction error [Candel et al., 2017, p. 44]. The
reconstruction error of an observation should be the same as the reconstruction error of
the model. For better distinction the former is called anomaly score S = {s1, s2, ..., sN }
(score values for each observation in the data set). The anomaly score of an observation
indicates for each instance how likely it is to be an anomaly under the learned model
[Hawkins et al., 2002, p. 2]. The higher the score the more likely it is from an anomalous
observation. In order to use the scores to classify the instances, the user needs to set a
threshold t, which should be chosen domain specifically, i.e.

I

si > t observation i is an anomaly

si Æ t normal observation .
(48)

As an alternative one can set the threshold equal to the maximal reconstruction error in
the training data, on the basis that it only contains normal data. Another idea is to use a
specific percentile or the mean+sd of the training error. Advantages of the autoencoder
are the same as listed previously for neural networks in general. The disadvantages of
the autoencoder are that

• there are no rules for setting the threshold for the outlier score

• it is a method for data of the semi-supervised setting, therefore it requires ideally
only normal, which is not always provided data in training [Dau et al., 2014, p.4].
In real life this requirement is often not met

5 Resampling Strategies for One-Class Classification

As described in the previous sections, one-class SVM and the autoencoder are developed
for the one-class classification case, which means training on data that only contains one
class (the normal class), while the test set contains observations from both classes (the
normal and anomaly class). The focus of this work is to assess the performance of a
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learning algorithm, which is usually done with resampling strategies like cross-validation.
However, the common resampling strategies like cross-validation, leave-one-out cross-
validation, repeated cross-validation, out-of-bag bootstrap, subsampling or holdout (see
7.4) do not consider training only on one class but generally allowing observations of
both classes in the training set. In order to perform a benchmark analysis, the above-
mentioned resampling strategies need to be modified. The modified strategies are called:
one-class holdout, one-class subsample, one-class bootstrap, one-class CV, one-class re-
peated CV.

The first three listed strategies basically sample only normal observations for the
training data set and the remaining observations, including all anomalies, are used for
testing. The last two strategies split the anomalous observations in k folds; every time
a fold is used for training, the anomalies in this fold are dropped. https://0xdata.

atlassian.net/browse/TN-4

6 Converting Anomaly Score Outputs into Probabilistic

Outputs

Most of the current anomaly detection, algorithms return anomaly score values, such as
one-class SVM, autoencoder or LOF in the previous Section 4. The scores indicate to
which degree the observation is an anomaly [Gao and Tan, 2006, p.1]. For some meth-
ods, high scores are indication anomalies (e.g. LOF), for some methods low scores (e.g.
OC-SVM). The scores don’t have a lower nor an upper bound and vary depending on
the data and the applied method (see example Figure 12), therefore it is favorable to
convert these scores into probabilities [Gao and Tan, 2006, p.1].
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Figure 12: Sorted score values resulting from applying the OC-SVM (kernlab package)
and the LOF (dbscan package) on the perc5 and penlocal data sets (see
Section 8.1 for data description). For LOF high scores indicate a increased
likelihood of the observation beeing an anomaly, in OC-SVM low scores. The
true labels of the observations are depicted by different colours.

There are advantages of having probabilities instead of scores. According to Gao and
Tan [2006, p.1] those are

• It is possible to select a appropriate threshold using a Bayesian risk model.

• The interpretation of the degree of certainty is possible.

• Having the same range of [0, 1] enables a comparison of methods.

• Having the same range of [0, 1] it is possible to combine outputs to create an
ensemble model.

Additionally, Gao and Tan [2006] show in their paper that probability scores have its
advantages, for example more accurate calibration, which can be used more effectively for
threshold selection and outlier detection ensemble [Gao and Tan, 2006, p.10]. Ensambles
are not part of this work, however in order to use the architecture of mlR probability
outputs are required.
The idea of converting output scores into probability scores was first introduced by Platt
et al. [1999]. In their paper, Niculescu-Mizil and Caruana [2005] extend this approach
to other classification methods, including neural networks.
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We first introduce the basic concept of converting scores to probabilities for supervised
classification. Afterwards, the unsupervised classification case is discussed.
An overview of the notation used in this chapter is given below:

• Y = {y1, y2, ..., yn} and yi œ {0, 1} indicating the class labels {normal, anomaly}

• X = {x1, x2, ..., xn} set of n observations drawn R
nxd

• S = {s1, s2, ..., sn} anomaly scores for each observation in X. In this section high
scores are considered to be an indicator for an anomalous observation.

• class-conditional densities: p(s|y = 1) density of the scores conditional on the
anomaly class and p(s|y = 0) density of the score function conditional on the
normal class

• P (y = 1|s) posterior probability that x is an anomaly given the score value s

• P (y = 0|s) = 1 ≠ P (y = 1|s) posterior probability that x is a normal observation
given score value s

• ◊ = (A, B) parameter of the logistic regression for calculating the probability
distribution

6.1 Probabilistic Output for Supervised Classification

The basic idea of how to convert scores to probability in the supervised setting is to
take the binary labels Y and the output scores S from a binary classification algorithm
and fit a logistic regression to get the probability distribution of the classes P (Y = 1|S)
[Platt et al., 1999, p.2].
The requirements for applying logistic regression are

• Y is binary

• Observations x1, x2, ..., xn are i.i.d.

Then the predictor of the logistic regression is

÷θ,i = Asi + B (49)

with ◊ = (A, B). The probability distribution is then defined as a sigmoid function

P (Y = 1|si) =
1

1 + exp(≠÷θ,i)
= pi (50)

for which we need to estimate the parameters ◊ = (A, B) [Fahrmeir et al., 2007, p.189ff].
With the maximum likelihood method the parameter ◊ can be estimated. The underlying
probability of observing yi is a Bernoulli experiment

P (Y = yi|si) = pyi

i (1 ≠ pi)
1≠yi (51)
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pi depends on si via (50) and (49). The resulting likelihood for independently drawn
observations is

L(◊|Y, S) =
N
Ÿ

i=1

pyi

i (1 ≠ pi)
1≠yi (52)

and the corresponding log-likelihood-function is

lnL(◊|Y, S) =
N

ÿ

i=1

yiln(pi) + (1 ≠ yi)ln(1 ≠ pi) (53)

The optimal parameter ◊ is defined as the parameter for which the probability P (Y |S)
is maximized for the given observations set, where pi depends on si via (50) and (49).
Therefore, we maximize the Likelihood function or alternatively minimize the negative
Log-likelihood

◊̂ = arg max
θ

L(◊|Y, S) = arg max
θ

lnL(◊|Y, S) = arg min
θ

≠ L(◊|Y, S) = arg min
θ

≠ lnL(◊|Y, S)

(54)

Substituting (49),(50) into the negative Log-likelihood yields

◊̂ = arg min
θ

N
ÿ

i=1

(1 ≠ yi)(Asi + B) + ln(1 + exp(≠Asi ≠ B)) (55)

To solve (55) one usually sets the derivative of the likelihood function to zero. But as
pi is a nonlinear function of ◊, the solution can only be found with a numeric maximiza-
tion/minimization method like the Fisher-Scoring optimization or the Iterative Weighted
Least Squares Algorithm [Fahrmeir et al., 2007, p.189ff].
This calibration function (called Platt Scoring) is commonly used in converting scores
output from classification algorithms with known labels into probabilitie [Platt et al.,
1999], [Niculescu-Mizil and Caruana, 2005].
An alternative approach to derive equation (50) through the Bayes’ theorem can be
found in Gao and Tan [2006]

6.2 Probabilistic Output for Unsupervised Anomaly Detection

In this work, we focus on Gao and Tan [2006] approach to convert anomaly scores into
probabilities, even though different approaches are available; Gao and Tan [2006] propose
two methods: method using mixture model and method using sigmoid function. The
latter is implemented here and is based on Section 6.1.
One key element for converting the scores as outlined in Section 6.1 is the availability
of labels. Therefore the main challenge in converting scores in the anomaly detection
setting is to handle the missing of labels [Gao and Tan, 2006, p.1], which are needed in
(55) to optimize the Log-likelihood. The solution proposed by Gao and Tan [2006] is to
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apply the expectation-maximization algorithm, where the missing label is treated as the
hidden variable.

Expectation Maximization Algorithm (EM-Algorithm) The first implementa-
tion of the EM-Algorithm was defined by Dempster et al. [1977], the following notation
briefly follows his implementation but is adapted to this work.
The goal of the expectation maximization algorithm is to find the maximum likelihood
estimates of parameters ◊ in statistical models or in other words to find the unknown
probability of Y . These models usually can’t be solved directly with equation (55) as
described in Section 6.1, as they depend on latent variables (or hidden variables) Y ,
unknown parameters in ◊ and the observed data, which in this use case are the score
values S. In equation (55) it is obvious that in order to solve the optimization problem
we need the parameters ◊ and the latent variables Y . However, in unsupervised anomaly
detection, Y is not given. Therefore, the EM algorithm can be used to split equation
(53) in two interlocking equations, which means each equation needs the solution of the
other equation, respectively. Following this strategy, one equation is the objective of the
expectation step (E-step) and one equation will be the objective of the maximization
step (M-Step). Thus each step uses the solution from the previous iteration of the re-
spective other step. As in standard EM-Algorithm, for unsupervised case it repeatedly
iterates over E and M step.

The algorithm of finding a calibration function (50), that converts scores to probabilities
needs additionally following notations:

• Ŷ is the estimation of Y , which is a probability, and not binary like Y anymore

• ◊̂ is the estimation of ◊, containing the estimated parameters for the probability
distribution (50)

• l, l œ N indicates the iteration step

The two steps in this scenario for finding ◊ values for a calibration function are

• E-Step: (Updated) estimation of the latent variable Y is based on the known data
S and ◊̂ which is estimated in the previous M-step (iteration step l). The estima-
tion Ŷ in this step is equivalent to the temporary expectation of the probability of
interest Y :

ŷ(l+1) = E[y|S, ◊̂(l)] (56)

• M-Step: (Updated) estimation of ◊. After having an estimated Ŷ from the pre-
ceding E-step, one can apply the ML-method as described in Section 6.1.

◊̂(l+1) = arg min
θ

LL(◊̂(l)|ŷ(l+1), S) (57)
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[Gao and Tan, 2006, 3]
Some additional comments on the algorithm stated in [Gao and Tan, 2006]:

• In the first iteration of the EM loop we need to initialize the parameter ◊(0). The
value can be chosen based on experience or randomly [Aggarwal, 2017]. Within
this work we choose the initial parameter as ◊(0) = (A, B) = (1, 0), which is a
common choice.

• Iterate the EM loop until convergence, i.e. until the objective function in the
M-Step ceases to change, which means ◊(l+1) ≠ ◊(l) Æ ‘ with ‘ some tolerance
parameter.

• It is proven that the EM-Algorithm always converges, but it only finds local optima,
which doesn’t change the optimal solution in this case as the likelihood function
is concave and therefore only has one unique solution.

• The calibration function is monotonously increasing, thus it doesn’t change the
ordering of the original score values. In mlR however, the score outputs of some
methods (e.g. ksvm in the kernlab package) are reversed to yield an uniform
interpretation, i.e., high probabilities indicate that the observation is likely to be
an anomaly.

Note: Unlike in theory, in practice the models do not converge, when applying this
method. In mlR we therefore fix the parameters to (A, B) = (1, 0). Figure 13 displays
the converted score values from Figure 12.
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Figure 13: Sorted score values converted to probabilities, resulting from applying the
OC-SVM (kernlab package) and the LOF (dbscan package) on the perc5
and penlocal data sets (see Section 8.1 for data description). The parameter of
(50) is set to (A, B) = (1, 0). For LOF, high probabilities scores indicate that
the observation is rather an anomaly, in OC-SVM low scores probabilities.
The true labels of the observations are depicted by different colours.

Note: The interpretation of the probabilities converted from scores is that high prob-
abilities indicate that the observation is anomalous, therefore the original score values
need to have the same direction of the interpretation. However, if the score values have
an inversed direction of interpretation, the resulting probability after converting the
scores will be inversed (e.g. when implementing OC.SVM in mlR).

7 Open Source R Package: mlR

7.1 What is mlR

mlR is short for Machine Learning in R. It provides an interface to a large number of
machine learning techniques in R. The main goal is to provide a unified interface for
machine learning tasks [Bischl et al., 2016]. Implemented are supervised methods such
as regression and classification tasks and unsupervised methods such as cluster analysis,
but also survival analysis and general, example-specific cost-sensitive learning.
When using machine learning methods to solve a task, it is mostly not obvious which
method and method setting is suitable to do so. Therefore, it is often necessary to carry
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out standard methods like resampling and hyperparameter tuning to find the optimal
learner and parameter setting of the learner. But there is a lack of common interfaces
to execute the work stages conveniently. [Bischl et al., 2016] introduce mlR to solves this
problem.
A benefit in mlR is, that it provides a uniform framework to handle machine learning
tasks, it basically offers a framework which can be connected with already established
packages in R. mlR covers techniques from generic resampling to cross-validation, boot-
strapping, subsampling, tuning, feature selection, and model comparison. All imple-
mented in generic building blocks, which simplifies the use of machine learning methods
and makes their use more intuitive. Additionally, mlR offers easy parallelization for most
of the methods. Due to the general structure of the package, more advanced users are
enabled to extend available algorithms or embed their own methods, while still using
the mlR infrastructure. The user can also connect the OpenML R Package [Bischl et al.,
2016] to use open source data.
A list of features offers in mlR:

• Possibility to fit, predict, evaluate and resample data

• Easy extension mechanism through S3 inheritance

• Abstract description of learners and tasks by properties

• Parameter system for learners to encode data types and constraints

• Many convenience methods and generic building blocks for machine learning ex-
periments

• Resampling like bootstrapping, cross-validation and subsampling

• Different visualizations of predictions ,e.g., ROC curves

• Benchmarking of learners for multiple data sets

• Easy hyperparameter tuning using different optimization strategies

• Variable selection with filters and wrappers

• Nested resampling of models with tuning and feature selection

• Cost-sensitive learning, threshold tuning and imbalance correction

• Wrapper mechanism to extend learner functionality and complex and custom ways

• Combine different processing steps to a complex data mining chain that can be
jointly optimized

• Extension points to integrate own methods

• Parallelization is built-in

The mlR tutorial website ([mlr]) provides detailed examples and explanation on how
to use those features.
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7.2 General Structure of mlR

First, we want to provide an overview of the very basic structure of how to conduct a
machine learning analysis with mlR. Later options are described to extend the analysis
e.g. tuning of the hyperparameters. To show that the generic building blocks of mlR is
quite intuitive to apply, we will explain the application with a question-answer style.

1. Define the task:

• What is the problem/task you want to solve?
( Classif =classification, Regr =regression, Cluster clustering, CostSens =

cost sensitive learning, Multilabel = multilabel classification, Surv = sur-
vival learning, OneClass = one-class)

• What data do you use?

• Do you have a target variable (supervised) or not (unsupervised)? If former,
what is the name of your target variable?

# load package and data

library(mlr)

data(iris)

# make<Task type>Task(id = <set an ID name>,

# data = <used data set>,

# target = <target variable name>), e.g.

task = makeClassifTask(id = "tutorial", data = iris,

target = "Species")

2. Define the learner:

• What learner do you want to use? (random forests, boosting, SVM, etc.)

• Assume you want to model a SVM. Do you already have a prefered package in
R, which can model a SVMs? e.g. e1071? Check http://mlr-org.github.

io/mlr-tutorial/devel/html/integrated_learners/index.html for the
learners name in mlR.
If you don’t have a preferred package, check what learners are available at
the same URL.

# makeLearner("<learner name>")

lrn = makeLearner("classif.svm")

3. Create train and test data:

• If you have pre-settings about which instances are in the test or train data,
assign the indices accordingly, otherwise sample the indices randomly.
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n = nrow(iris)

train.set = 1:100

test.set = 101:150

4. Fit the model:

• Train the learner on the task and the specified training data

model = train(lrn, task, subset = train.set)

5. Make predictions:

• After training the model, you want to know what the predicted values are for
new observations, therefore pass indices of the test set.

pred = predict(lrn, model, subset = train.set)

6. Evaluate the learner:

• You can choose a performance measure to evaluate how well your learner
performed. If you didn’t decide on the performance measurement yet, you
can use the default performance measure, which is in this case the mean
classification error (mmce),

getDefaultMeasure(task)

# mmce

alternatively mlR can show you suitable possibilities for your task with

listMeasures("classif")

If you can’t decide, compare more than one performance measure, e.g. mean
classification error ( mmce ) and accuracy ( acc )

performance(pred, measures = list(mmce, acc))

For more examples of the basic structure visit http://mlr-org.github.io/mlr-tutorial/

release/html/ and for more details about possible modifications of the used functions
read the mlR help pages of each function. This example is only a small part of what mlR

is capable of.

7.3 Anomaly Detection in mlR

Within the scope of this work methods for anomaly detection were embedded into the
mlR package. The methods include support vector machines for one-class classification
(anomaly detection) from the e1071 package [Meyer et al., 2015] and from the kernlab

package [Karatzoglou et al., 2004], an autoencoder from the h2o.deeplearning package
[Candel et al., 2017], the local outlier factor method from the DMwR package [Torgo, 2010]
as well as from the dbscan package [Hahsler and Piekenbrock, 2017]. If you prefer other
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techniques for anomaly detection, which are already implemented in R but not in mlR,
you can follow the instructions on http://mlr-org.github.io/mlr-tutorial/devel/

html/create_learner/index.html to implement your own learner.

7.3.1 New and modified Functions for Anomaly Detection in mlR

In order to make anomaly detection work in mlR a series of R files in the mlR repository
needed to be modified or added. There are R files, that contain new and modified func-
tions (Table 27) and test-files to test these (Table 29). For the testing a new synthethic
data set oneclass2d.task.Rdata, with two features, 1000 normal an 50 anomalous obser-
vation is created (see ?oneclass2d.task.Rdata in R for more details).
The main functions added to mlR are the unsupervised anomaly detection learners:

• makeRLearner.oneclass.svm() based on the e1071 package

• makeRLearner.oneclass.ksvm() based on the kernlab package

• makeRLearner.oneclass.lofactor() based on the DMwR package

• makeRLearner.oneclass.lof() based on the dbscan package

• makeRLearner.oneclass.h2o.autoencoder() based on the h2o package

These learners can be applied to one-class tasks, created with the new makeOneClassTask()-
function. Although the training is unsupervised, the task is implemented with the option
to add a target column for supervised evaluation of the test set (if labels are available).
One-class Resampling strategies (more on one-class resampling in Section 5) can be used
to assess the performance of anomaly detection methods, e.g. with following measures:

• makeAMVMeasure to create AUMVC (Section 3.2.2)

• makeAMVhdMeasure and makeAMVhdWrapper to create AUMVChd (Section
3.2.2.3)

• makeWACMeasure to create WAC (Section 3.1)

• makePrecisionMeasure to create different precision measures (Section 3.1)

The respective help pages provide more description and details on application. A more
compact and quick explanation on how to apply mlR for anomaly detection is provided
in Section 7.4.
Every added learner is based on an already well-established R package. The following
subsection gives a short description of those packages.
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7.3.2 Package e1071

The package e1071 provides an interface in R to C++ libary libsvm [Meyer et al., 2015,
vignettes p.2]. Besides of classification (C- and ‹-classification) and regression (‘- and
‹-regression), it also covers anomaly detection (one-class-classification). As described
in chapter 4.1, SVMs use kernels to expand to nonlinear class boundaries according to
Schölkopf et al. [2000], Chang and Lin [2011]. In e1071 the linear, polynomial, radial
basis function and sigmoidal kernels are included and their formula are described in
Table 2.
For more details see the help page of Meyer et al. [2015, vignettes p.7]. A drawback of
SVM in e1071 is that the current implementation is only optimized for the radial basis
kernel function [Meyer et al., 2015, vignettes p.8].

7.3.3 Package kernlab

The package kernlab contains kernel-based machine learning methods for R. It provides
an implementation of the SVM method. It enables the user to extend the code e.g.
add new kernels or different optimizers [Karatzoglou et al., 2004, p.2]. kernlab already
includes some basic kernel functions implementation see Table 2 and additionally Table
4

Table 4: Addtional kernel functions available in package kernlab [Karatzoglou et al.,
2004]

Kernel Formula Parameters

Bessel
Besselnν+1(σ||x≠xÕ||)

(||x≠xÕ||)≠n(ν+1) ‡, ‹

Laplace Radial Basis Fct. exp{≠‡|uuu ≠ vvv|} ‡

ANOVA radial basis fct.
1

qn
k=1 exp{≠‡|uuuk ≠ vvvk|2}

2d
‡, d

7.3.4 Package DMwR

The package DMwR is one of the first packages in R containing LOF, it is used in Zhao
[2012] and in Torgo [2010] to demonstrate data mining in R, including outlier detection.
Besides outlier detection, it also contains functions used in the book Torgo [2010], such
as kNN, SVMs, random forests and more.

7.3.5 Package dbscan

The package dbscan provides a fast C++ implementation of several density-based al-
gorithms, such as the DBSACN, OPTICS, HDBSCAN as well as the LOF method.
According to Hahsler and Piekenbrock [2017] faster than native R implementations as
well as WEKA ([Frank et al., 2009]), ELKI ([Achtert et al., 2008]) and Python’s scikit-learn
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([Pedregosa et al., 2011]). When calculating the LOF of each data point, dbscan uses a
kd-tree ( space-partitioning data structure) for faster k-nearest neighbor search instead
of a linear search [Hahsler et al., p.10], that approach avoids to calculate the complete
distance matrix, and therefore save computational time.

7.3.6 Package h2o.deeplearning

H2o is a machine learning platform, that can be used with the web browser, but also
with Python, Apache Hadoop, Spark and R with the R package H2o. It is convenient
as analyzing the data sets are held in cloud computing systems [Candel et al., 2015].
Currently different algorithms are included, ranging from classical statistical analysis
methods (e.g. GLM) to Clustering (k-means), ensembles (e.g. random forest) and deep
neural networks, including the autoencoder [h2o], which is implemented as a one-class
learner within this work.

7.4 Application of Anomaly Detection in mlR

An extensive explanation of how to apply anomaly detection methods from mlR can
be found on the mlR tutorial website [mlr] or under this link https://github.com/

mlr-org/mlr-tutorial/blob/gh-pages_oneclass/src/oneclass_classification.Rmd.

8 Benchmark Setup

8.1 Data Sets

There is no typical, established benchmark data set for anomaly detection yet, and there
is also a lack of open-source data available for anomaly detection. Therefore, we apply
our methods to several data sets used in other papers as well as on simulated anomaly
data sets (see simulation structure below). All data sets used were modified to have a
target column called "Target" containing class labels "Anomaly" and "Normal". Those
data sets will be publicly available at openml.org [Vanschoren et al., 2013]. An overview
of the data is provided in Table 5.
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Name of Data Set Number of Observation Number of Features Share of Anomalies Synthetic Data

banana 5300 2 45% no

artificial.unsup 3000 2 1.2% yes

perc5 1050 4 4.7% yes

perc10 1100 4 9% yes

annthyroid 7299 6 8% no

mammography 11183 6 2.3% no

perc5hd 1050 10 4.7% yes

perc10hd 1100 10 9% yes

penlocal 6724 16 0.15% no

penglobal 809 16 11% no

letter 1600 32 6.25% no

satellite 5100 36 1.5% no

Table 5: Overview of data sets (synthethic and open source) used in the benchmark
experiments within this work. All data sets were modified to have a target
column called "Target" containing class labels "Anomaly" and "Normal".

8.1.1 Synthetic Data Sets

perc5(.hd), perc10(.hd) (low/high dimensional) To create synthetic anomaly
data, 1000 uncorrelated observations were drawn from a multivariate normal distribution
and sample variance between 1 and 9, and 4 (perc5, perc10 ) or 10 feature variables
(perc5.hd, perc10.hd). Data with ten features will be considered as high dimensional
data. Samples of 5% or 10% anomalous observations were drawn randomly of discrete
numbers between 2 and 100, with replacement.

artificial.unsup The artificial.unsup data set is based on four normal distributions
(one of which with low density), a micro cluster and local anomalies. Currently, the data
set is available from the authors, but it is available at http://www.madm.eu/downloads.

8.1.2 Open Source Data Sets

banana The banana data set is used in [Thomas et al., 2016]. It will be available on
openML [Vanschoren et al., 2013].

annthyroid The annthyroid data set is a modified version of the "Thyroid Disease"
data set from the UCI machine learning repository. It is available at http://archive.

ics.uci.edu/ml/datasets/mammographic+mass.

mammography The mammography data set is used in [Root et al., 2015] and is a
modified version of the openly available data set in the UCI machine learning reposi-
tory. The modified version is available at https://www.cs.sfu.ca/~gza11/personal/

research/mass/.
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penglobal The pen.global data set is a modified version of the "Pen-Based Recognition
of Handwritten Digits" data set, available in UCI machine learning repository and is
used in [Goldstein and Uchida, 2016, p.18]. It is available at http://www.madm.eu/

downloads.

penlocal The pen.local data set is a modified version of the "Pen-Based Recognition of
Handwritten Digits" data set, available in UCI machine learning repository and is used in
[Goldstein and Uchida, 2016, p.18]. It is available at http://www.madm.eu/downloads.

letter The letter data set is used in [Goldstein and Uchida, 2016, p.18]. It origi-
nally contains 16 features from the English alphabet and was modified for unsupervised
anomaly detection. It is available at https://dataverse.harvard.edu/file.xhtml?

fileId=2711926&version=RELEASED&version=.0

satellite The satellite data set is a modified version of the "Statlog (Landsat Satel-
lite)" data set, available in UCI machine learning repository. It is available at http:

//www.madm.eu/downloads.

For further and more detailed information, the reader should follow the links and
references provided for the respective data sets.

8.2 Method and AUMVC(hd) Settings

The frameworks used in the experiments are provided in Table 6. We compare the OC-
SVM (Section 4.1) to the LOF method (Section 4.2) from the kernlab package and
the dbscan package, respectively. The OC-SVM is designed for training on one class,
therefore we use OC-CV as resampling method. However, in real life it is not always
guaranteed that we only have normal observations in the training data. To test the
OC-SVM method under real life circumstances we also execute the experiment with CV.
The LOF method is an unsupervised anomaly detection method with no restriction on
the training data, hence only resampling method CV is used.
Every experiment will be tuned and evaluated with both the AUC and the AUMVC(hd)
(Section 3.2). We also compare them to experiments where we don’t tune the hyper
parameters at all. If we tune and evaluate with the AUC, we will assume to have labels
for testing, if we evaluate with AUMVC we don’t use labels at all. The results from not
tuning are the lower bound, the results from AUC the upper bound, both are benchmark
values to evaluate whether AUMVC is a useful tuning measurement. Although it should
be noted that in some examples tuning with AUC (and labels) is outperformed by no
tuning or tuning with AUMVC(hd).
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Methods
Resampling Strategy

(Inner and Outer)
Tuning Search Space Search Type Rest Parameter

Tuning and

Evaluation

Measurement

Data Set

OC-SVM
3-fold CV and

3-fold OC-CV

‹
Lower Bound = 0.01

Upper Bound = 0.99
Random

Search

Default of ksvm()

from the kernlab

R package

No Tuning, AUC,

AUMVC(hd)

All 12

Data Sets‡
Lower Bound = -12

Upper Bound = +12

with Transformation

Function for ‡:

f(‡) = ‡2

LOF 3-fold CV k
Lower Bound = 10

Upper Bound = 150
No other Parameter

Table 6: Setting of the benchmark experiments.

We choose LOF from the dbscan package, as the implementation based on C++ is
much faster than in the DMwR package. The OC-SVM in e1071 and kernlab are similar
in terms of computational time [Karatzoglou et al., 2005], the kernlab package is chosen
by personal preference.
The default setup of the new introduced measurement AUMVC and AUMVChd needs
to be determined too. After conducting performance and runtime analysis in Section
9.1, the measures’ settings are set to the final values (in times of our conducted anal-
ysis) in Table 7 for the final evaluation. The – interval was set to [0.9, 0.99] due to
recommendation in [Goix, 2016, p.2].

Measurement Parameter Description (see Section 3.2.2.4)

AUMVC

and AUMCVhd

alpha = [0.9, 0.99] The interval to take the integral of the MV curve [–1, –2]

n.alpha = 50 Number of splits of the alpha interval nα

n.sim = 103 Number of Monte-Carlo samples nsim

AUMVChd
amv.iters = 20 Number of internal subsamples m

amv.feats = 5 Number of feature sub-sampling dÕ

Table 7: Settings of the tuning and evaluation of measurements AUMVC and
AUMVChd. The AUMVChd has two additional parameters.

9 Benchmark Results

As described in Table 6, there are many different experiment settings. In order to keep
the description of the results as clear as possible, the abbreviations used in this section
are introduced in the following table.
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Abbreviation Description

OC-SV Mcv OC-SVM with 3-fold CV in the outer and inner resampling loop

OC-SV Moccv OC-SVM with 3-fold OCCV in the outer and inner resampling loop

LOFcv LOF with 3-fold CV in the outer and inner resampling loop

AEcv Autoencoder with 3-fold CV in the outer and inner resampling loop

AEoccv Autoencoder with 3-fold OCCV in the outer and inner resampling loop

Rcv Resampling with 3-fold CV

Roccv Resampling with 3-fold OCCV

T0 No tuning

TAUC Tuning with AUC

TAUMV C Tuning with AUMVC

TAUMV Chd Tuning with AUMVChd

Table 8: Abbreviations for different settings.

9.1 Performance and Runtime Analysis of AUMVC(hd)

In Section 3.2, the theory of AUMVC and AUMVC (hd) was introduced, one of the very
few performance measurements for unsupervised methods. The aim of this benchmark
analysis is to find the optimal parameter settings for those measurements and to com-
pare the AUMVC (hd) to the supervised measurement AUC in terms of runtime and
performance depending on different parameter settings.

9.1.1 Runtime Analysis

The two objectives of the following runtime analysis are to understand

1. How computationally expensive is the AUMVC(hd) in comparison to the AUC?

2. How do the parameters of AUMVC(hd) and the size of the data set impact the
runtime of the measurements?

For the analysis, synthetic data sets were simulated according to Section 8.1.1 with 5%
anomalies, and different data set sizes, the true column is additionally saved for evalua-
tion. The predicted response was calculated by using a OC-SVM with default settings.
The experiments are only based on the calculation of the performance measurement,
excluding the runtime for executing the anomaly method, since we are only interested
in the computational cost of the measurement itself in this section.
The tested parameters of the AUMVC(hd) measurement are listed in Table 9.
The analysis was run twice. For the first iteration a higher number of different parame-
ter settings were tested. In order to keep the tables and figures simple, parameters that
appeared to not have a noteworthy impact on the runtime were reduced to less examples.
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Varaible Value Default Measure

Number of Monte-Carlo Samples (n.sim) {10, 102, 103, 104} default:103 AUMVC/AUMVChd

Number of splits of the alpha interval (n.alpha) {10, 20, 30, 40, 50} default: 50 AUMVC/AUMVChd

Number of observations in data n (n) {1050, 10500} default: 1050 AUC/AUMVC/AUMVChd

Number of features in data d for AUMVC (d) {2, 4, 6} default: 2 AUC/AUMVC

Number of features in data d for AUMVChd (d) {8, 15, 20} default: 8 AUC/AUMVChd

Number of internal features in subsamples in AUMVChd (amv.feats) {2, 5} default: 5 AUMVChd

Number of internal subsamples in AUMVChd (amv.iters) {5, 20, 50} default: 50 AUMVChd

Table 9: Overview of settings for the runtime analysis of AUMVC and AUMVChd.

The violin plot in Figure 14 shows the runtime results (in seconds) of the AUMVC
performance in comparison to AUC as well as different settings of AUMVC. Table 11
summarises the numerical effects (Appendix Table 30) on runtime and is displayed in
Figure 14. Each experiment is evaluated 100 times and visualsed as one violin, repre-
senting the distribution (in seconds) of the runtime of the experiments.
The names on the y-axes indicate the deviation from the default setting, examples on
how to read the axis are stated in Table 10.

The experiment was based on a synthetic data set with 6 features, and 1050 obser-
vations, evaluated with default AUMVC. All other settings are according to the default
values in Table 9

Name of y-axis Description

dim6.n1050.aumvc

The experiment was based on a synthetic data set with 6 features,

and 1050 observations, evaluated with default AUMVC.

All other settings are according to the default values in Table 9

alpha10.aumvc
The experiment was executed with default AUMVC, but with n.alpha = 10.

All other settings are according to default value in Table 9.

Table 10: Example of how to read the y-axis from Figure 14 and Figure 15. The labels
on the y-axis indicate the deviation from the default setting in Table 9.

The default AUMVC (dim2.1050.aumvc) is ~30 times slower than AUC (for data size
1050), which is expected as AUMVC uses Monte-Carlo integration. When increasing
the data size to 10500 observations, the runtime of using AUMVC (dim2.10500 ) is ~112
times slower than with AUC. Increasing the number of Monte-Carlo samples from 10 to
100 (from 100 to 100000) increases the runtime by factor ~1.2 (~9.7). The runtime effect
seems to increase over-proportional by increasing the number of Monte-Carlo samples.
However, the number of alpha splits seems to have no major affect on runtime. The
number of features in the data also has little effect. By contrast, increasing the number
of observation by a factor of 10 leads to a ~6 times slower runtime.
In summary, the runtime bottleneck of AUMVC is the number of Monte-Carlo samples.

54



Figure 14: Comparison of runtime (in seconds) for different settings for AUC and
AUMVC, each experiment was repeated 100 times. The labels on the y-
axes state the values of the parameters that is the focus of the experiment
or deviates from the default setting (one or more parameter possible) (see
examples how to read the y-axis in Table 10). The corresponding numeric
values are in Appendix 30.

Tested Data Size /

and Parameter

of AUMVC

Factor of Increasing

the Tested Value

Experiment Comparison

(y-lab names)

Factor of Mean Effect

on Performance

AUMVC (AUC)

Direction

of Effect

n 10

dim2.10500.aumvc to dim2.1050.aumvc

(analog for dim4. and dim6.,

and for .auc)

~6 (~1.5) increasing

d 2 (3)

dim2.1050.aumvc to dim4.1050.aumvc

and to dim6.1050.aumvc

and also for n = 10500)

~1 steady

n.sim
10 to 100

(10000 to 100000)

nsim10.aumvc to nsim100.aumvc

(analog for n = 10500)
~1.2 (~9.7) increasing

n.alpha 5 (10)
nalpha10.aumvc to nalpha50.aumvc

and to nalpha100.aumvc
~1 steady

AUC to AUMVC

n = 1050 (n = 10500)

dim2.1050.aumvc to dim2.1050.auc

(analog for dim4 and dim6,

and for n=10500)

~30 (~112) increasing

Table 11: Compact summary of the numerical effects in Figure 14.
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An equivalent runtime analysis is also executed for AUMVChd on high-dimensional
data (see results in Figure 15, Table 12 and Table 31). Since the number of alpha splits
doesn’t have an affect on the runtime of AUMVChd (similar to the runtime of AUMVC
as the former is a repetition of the latter), it is excluded from Figure 15. The number of
features in the data also doesn’t have an affect on the runtime of AUMVChd, as internally
the AUMVC is evaluated on a subsample with fewer features (d’ = amv.feats), which is
the reason why it is also excluded in Figure 15 for a better overview.
The results show, that the default AUMVChd (n.1050.aumvc and n.10500.aumvc) is
~4497 times slower than AUC (n.1050.auc) in the smaller data set and ~122021 times
slower than AUC in the bigger data set. Increasing the number of Monte-Carlo samples
from 10 up to 100 seems to have nearly no effect, but increasing the number from 1000 to
10000 (from 10000 to 100000) leads to a higher (over-proportional) effect on runtime by
factor ~3 (~9.7). Increasing the number of internal subsamples of AUMVChd increases
the time, but the effect is not increasing linearly, as increasing amv.iters by 5 increases
the time by ~1.9 and increasing amv.iters by 10 increases the time by ~3.3. The effect
on runtime when increasing the number of observations in the data set by factor 10 is
~40, which is a stronger gradient than when using AUMVC.
In summary, the bottleneck of the runtime of AUMVChd is the size of the data and
additionally the number of Monte-Carlo samples (same as for AUMVC) and the number
of internal subsamples.
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Figure 15: Comparison of runtime (in seconds) for different settings for AUC and
AUMVChd, each experiment was repeated 100 times. The labels on the
y-axes state the values of the parameters that deviates from the default set-
ting (see examples how to read the y-axis in Table 10). The corresponding
numeric values are in Appendix 31.

Tested Data Size /

and Parameter

of AUMVC

Factor of Increasing

the Tested Value

Experiment Comparison

(y-lab names)

Factor of Mean Effect

on Performance

AUMVChd (AUC)

Direction

of Effect

n 10
n10500.aumvchd to n1050.aumvchd

(analogue and for .auc)
~40 (~1.5) increasing

n.sim
10 to 100

(10000 to 100000)

nsim10.aumvchd to nsim100.aumvchd

(analogue for n = 10500)
~1.2 (~9.7) increasing

amv.feats 2.5 subfeat2.aumvchd to subfeat5.aumvchd ~1.1 increasing

amv.iters 5 (10)
amviters5.aumvchd to amviters20.aumvchd

and to amviters50.aumvchd
~1.7 (~3.3) increasing

AUC to AUMVChd

n = 1050 (n = 10500)

n1050.auc to n1050.aumvc

(analogue for n=10500)
~4497 (~122021) increasing

Table 12: Summary of the numerical effects in Figure 15.

In both evaluation methods AUMVC and AUMVChd the number of Monte-Carlo
samples has a strong effect in comparison to other settings, therefore the performance of
this parameter for AUMVC will be further investigated in Section 9.1.3. The parameters
n.alpha and amv.iters were also investigated due to theory based reasons (see Section
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9.1.4 and 9.1.5).

9.1.2 Fluctuation of the AUMVC(hd)

As the AUMVC and AUMVC(hd) sample observations from the hypercube of the data
to calculate the performance values, the measures value might fluctuate depending on
the subsamples. For the analysis of this behaviour we only look at the performance
evaluation of a predicted response. In order to achieve this, we take the same synthetic
data as in the previous Section 9.1.1 with 6 and 20 dimension to evaluate 100 times the
default AUMVC and default AUMVChd, respectively.
As a reminder: Default AUMVChd evaluates the default AUMVC on 50 feature sub-
samples, each with 5 features. The default AUMVC uses 1000 Monte-Carlo samples to
estimate the area under the mass volume curve. The AUC does not depend on a random
component, thus its standard deviation is 0.
Figure 16 shows that the AUMVC and AUMChd values do fluctuate and the interquar-
tile range of AUMVC is similar, but a little bit larger than that of AUMVChd. The
effect of AUMVChd’s lower fluctuation might occur due to the 50 internal repetitions
of the AUMVC measure within AUMVChd. In other words, AUMVChd is already an
average value of AUMVC, therefore AUMVChd might be more stable. On the other
hand AUMChd has one more random component, namely the drawing of subfeatures.
It is recommended to made more investigation to yield a clear statement, which is not
done within this work.
Another analysis regarding the fluctuation of AUMVC is shown in Figure 17, that is
based on the evaluation of AUMVC and AUC using a Rcv for six low dimensional data
sets (described in Section 8.1). The y-axis value shows the standard deviation of the
AUMVC and AUC over 3 resamples. It should be noticed that the scale of AUMVC
differs from that of AUC and that AUMVCs standard deviation (in this benchmark ex-
periment) lies between 0 and 2.7e+05, while the AUCs lies between 0 and 0.1. However,
the AUC has an upper bound of 1, while AUMVC doesn’t have an upper bound.
In conclusion the only fact is, that AUMVC(hd) does fluctuate even when evaluated on
the same data, which doesn’t have to be a disadvantage if using AUMVC(hd) for tuning
improves the performance of used methods (see analysis in Section 9.2), as that’s the
main purpose of this measure.
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Figure 16: Boxplot displaying the fluctuation of the AUMVC value and AUMVChd
value, when evaluating the performance on the same predicted response 100
times. The data set for evaluating AUMVC (AUMVC(hd)) is a synthetic data
set with 6 (10) features, 1050 observations and 5% anomalies. The predicted
response was calculated by a OC-SVM with default setting.
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Figure 17: Standard deviation of the AUMVC and AUC measure over three folds of Rcv

for 6 different anomaly data, grouped by methods (OC-SV Mcv and LOFcv).
Two standard deviation values were deleted to make the figure visible (stan-
dard deviation of LOFcv on annthyroid data (2.718459e+05) and on mam-
mography data (3.340673e+04))

9.1.3 AUMVC(hd) Performance w.r.t. Number of Monte-Carlo Samples

This subsection investigates the performance of AUMVC in dependence of the number
of Monte-Carlo samples since the previous section identified that parameter as the bot-
tleneck of the runtime.
AUMVC lies in [0, Œ], where 0 is the best case. This analysis includes calculations with
OC-SV Mcv and LOFcv on three different data sets: perc5, mammography, and the an-
nthyroid data set (see Section 8.1 for details). Each combination of data set and method
was repeated 6 times, each time with another tuning measurement: T0, TAUC as well
as TAUMV C with 10, 100, 1000, 10000 number of Monte-Carlo samples. Additionally,
all measurement were evaluated for each experiment. As the AUMVC value depends on
random draws, each experiment was repeated 3 times with different seeds (see settings
in Table 13).
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Data Set perc5, mammography, annthyroid

Methods OC- SVM, LOF

Resampling CV

Tuning Measurement
T0, TAUC , TAUMV C with Monte-Carlo samples

n.sim œ {10, 100, 1000, 10000, 10000}

Number of Experiment Repetition 3 times with different seeds

Table 13: Overview of the experiment settings for analysing the effect of the Monte-Carlo
sample size in AUMVC(hd).

The default setting for OC-SVM is a Gaussian kernel with ‹ = 0.2 and ‡ = 0 and the
default setting for LOF is that the variable k (indicating the number of neighbors) is set
to 20.
Table 32 and Table 33 in the Appendix show the results for applying OC-SV Mcv and
LOFcv respectively for every repetition, whereas Table 14 and Table 15 display the mean
of the repetitions. The repetition number of 3 is rather low, but due to time and com-
putational constraints we were not able to increase the experiment size, therefore the
interpretation should be treated with caution.

Performance Analysis of AUMVC with OC-SVM Table 14 shows, that for the
perc5 data it seems like using the default setting of OC-SV Mcv already yields high AUC,
and applying TAUMV C is worse than using the default method with respect to the AUC.
The same applies for the mammography data, although one experiment yields the opti-
mal value of 0 for tuning measure AUMVC. However, when executing the experiment
with the annthyroid data, using TAUMV C leads to an improvement of the AUC value in
comparison to using the default setting of OC-SV Mcv.
Regarding the performing behaviour with respect to the number of Monte-Carlo sam-
ples, it seems like there is no pattern. When increasing the Monte-Carlo samples for
TAUMV C , the AUC performance tends to decrease (in the mean) when applying on the
mammography data and to increase (in the mean) on the annthyroid data. In this ex-
periment, it doesn’t seem like the tuning performance with TAUMV C depends on the
ratio between the number of Monte-Carlo Sample size and data size. The goodness of
AUMVC appears to depend on internal characteristics of the underlying data or other
factors.
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Table 14: Table of the mean performance results generated by OC-SV Mcv (mean over 3
repetitions from Table 32). Each block contains the results from one data set
(perc5, mammography, annthyroid) and shows the runtime as well as the value
of the tuning measurement and additional measurements. The abbreviation
10 n.sim stands for AUMVC with 10 Monte-Carlo samples.

Performance Analysis of AUMVC with LOF For the experiments with LOFcv,
we can only use AUMCV with 1000 and 10000 Monte-Carlo samples. The reason is that
the parameter k, which indicates the number of neighbors in the LOF method, has to
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be smaller than the data size. When calculating the AUMVC, LOFcv is applied to a
subsample of size n.sim (number of Monte-Carlo samples) drawn from a hypercube (see
Section 3.2 for more details), therefore n.sim Ø k is required.
Table 15 shows that using LOF on the perc5 data leads to a mean AUC of value 1
when using TAUMV C instead of T0, which is as good as TAUC . Using LOF on the
mammography data with TAUMV C leads to worse mean AUC (0.69 (for TAUMV C with
1000 Monte-Carlo samples) 0.68 (for TAUMV C with 10000 Monte-Carlo samples)) values
than using the default setting of LOF (AUC = 0.72). Applying TAUC on annthyroid
data seems to be as good as T0 (AUC = 0.73), therefore the potential to improve when
using TAUMV C is already rather small. Nevertheless, in one experiment the AUC value
for TAUMV C with Monte-Carlo sample size of 1000 (1000 n.sim) is higher (AUC = 0.74)
than the AUC value when applying TAUC . This might be a coincidence and can be
subject for further research.

Table 15: Table of the mean performance results generated by LOFcv (mean over 3
repetitions from Table 33). Each block contains the results from one data set
(perc5, mammography, annthyroid) and shows the runtime as well as the value
of the tuning measurement and additional measurements. The abbreviation
10 n.sim stands for AUMVC with 10 Monte-Carlo samples.

Runtime Analysis with Tuning Using TAUC takes time due to threshold tuning,
which is done after each hyper parameter evaluation. The AUMVC doesn’t need to tune
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the threshold as it doesn’t use the confusion matrix or any labels, therefore tuning with
a number of Monte-Carlo samples up to 1000 is faster than AUC, but tuning with 10000
or higher is slower (see Tables 32, 33, 14 and 15). However, the runtime highly depends
on the data set and the method as well.

As there is no obvious best choice for the number of Monte-Carlo samples in terms
of performance, we will use n.sim = 1000 to reduce computational time for further
experiments.

9.1.4 AUMVC(hd) Performance w.r.t. Number of Splits of the Alpha Interval

The same analysis as for the number of Monte-Carlo samples is executed for the number
of alpha splits. The AUMVC approximates the area under the mass volume curve by
dividing the area into trapezes. The number of trapezes under the curve is set by the
number of alpha splits, which is the hyper parameter n.alpha. It is to be expected that
with an increasing number of alpha splits (the more trapeze were used to approximate
the area), the more accurate the curve is approximated and therefore the better is the
performance measurement.
In contrast to this expectation, when executing the analysis with n.alpha œ {50, 100, 150},
the results in Table 34 and Table 35 and the mean results in Table 16 and Table 17 show,
that there is no pattern of improvement or worsening when increasing the number of
alpha splits.
For n.alpha = 50, 12 experiments out of 18 yield the best or at least equal AUC value
in comparison to other n.alpha settings (compare Tables 34 and 35), for n.alpha = 100,
9 experiments and 6 experiments for n.alpha = 150. Although 18 experiments is not a
sufficient number and there is no clear best n.alpha value, future experiments are using
n.alpha = 50.
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Table 16: Table of the mean performance results generated by OC-SVM (mean over three
repetitions from Table 34). Each block contains the results from one data set
(perc5, mammography, annthyroid) and shows the runtime as well as the value
of the tuning measurement and additional measurements. The abbreviation
50 n.alpha stands for AUMVChd with 50 internal subsamples evaluated with
AUMVC.
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Table 17: Table of the mean performance results generated by LOF (mean over three
repetitions from Table 35). Each block contains the results from one data set
(perc5, mammography, annthyroid) and shows the runtime as well as the value
of the tuning measurement and additional measurements. The abbreviation
50 n.alpha stands for AUMVChd with 50 internal subsamples evaluated with
AUMVC.

9.1.5 AUMVChd Performance w.r.t. to Number of Internal Subsamples

The aim of this analysis is to investigate if the quality of the performance measurement
AUMVChd improves with increasing internal feature subsamples (amv.iters).
For using the MV curve to evaluate the performance of methods applied to high di-
mensional data (d > 8) (perc5.hd and penlocal), we need to use AUMVChd instead of
AUMVC. As described in Section 3.2, AUMVChd repeats AUMVC on amv.iters sub-
samples of the data. The subsamples have smaller dimensions of size amv.feats (Æ 5)
and less observations of size n.sim than the passed data.
In this subanalysis we set amv.feats = 5 as a fixed hyper parameter and only vary the
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number of internal subsamples amv.iters. The larger amv.iters, the larger is the prob-
ability that every feature from the original passed data set is contained in at least one
subsample.
The results in Table 18 and 19 don’t show a pattern for increasing tuning performance
when increasing the number of internal subsamples. When having a closer look at the
detailed Tables 36 and Table 37, it can be derived that 20 amv.iters yields the best or
at least equal AUC value in comparison to other amv.iters settings in 9 from 12 experi-
ments. 50 amv.iters only yields as best performance in 2 examples, and 5 amv.iters in
6 examples.
Based on these results, we will use amv.iters = 20 for further experiments.

Table 18: Table of the mean performance results generated by OC-SVM (mean over
three repetitions in Table 36). Each block contains the results from one data
set (perc5.hd, penlocal) and shows the runtime as well as the value of the tun-
ing measurement and additional measurements. The abbreviation 5 amv.iters
stands for AUMVChd with 5 internal iterations of applying AUMVC on sub-
samples.
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Table 19: Table of the mean performance results generated by OC-SVM (mean over
three repetitions from Table 37). Each block contains the results from one
data set (perc5.hd, penlocal) and shows the runtime as well as the value of
the tuning measurement and additional measurements. The abbreviation 5
amv.iters stands for AUMVChd with 5 internal iterations of applying AUMVC
on subsamples.

9.2 Performance Analysis under Different Experiments Setups

After conducting an extensive analysis of the settings for the unsupervised measurements
AUMVC and AUMVChd, this section will further investigate the OC-SVM and LOF
methods, the two different resampling types Rcv n and Roccv as well as the performance
of AUMVC and AUMVChd on different low- and high dimensional data sets.
The analysis of the AEcv and AEoccv is done separately in Section 9.2.4. , due to
computational challaenges.
The parameter settings for the AUMVC(hd) are stated in Table 7 and the tuning settings
for the benchmark experiments are in Table 6. As mentioned in Section 8.2, we always
train on data without labels (unsupervised setting), but test on data with labels when
using TAUC and test on data without labels when using TAUMV C or TAUMV Chd

. For the
final evaluation, we calculate the AUC and AUMVC(hd) values.
There are 18 experiments for each AUMVC on low dimensional data, and AUMVChd
on high dimensional data. The Tables 38 to 49 in the Appendix are the numerical
results tables for all following sections. The Figures 19 and 18 visualise the results
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using AUMVC on low dimensional data sets, Figure 21 and 20 visualise the results using
AUMVChd on high dimensional data sets. Three aspects of these figures are analysed:

1. Comparing T0, TAUC and TAUMV C/TAUMV Chd (Section 9.2.1).

2. Comparing the effect of using Rcv and Roccv on OC-SVM and of using TAUC ,
TAUMV C , TAUMV Chd (Section 9.2.2).

3. Comparing the methods LOF with OC-SVM (Section 9.2.3).
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Figure 18: Aggregated AUC performance of the nested resampling results on low di-
mensional dats sets, when using OC-SV Mcv, OC-SV Moccv, LOFcv combined
with TAUC and TAUMV C as well as T0. The figure is grouped by resampling-
method combination, the left panel shows the results calculated with LOFcv,
the middle panel with OC-SV Mcv, the right with OC-SV Moccv.
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Figure 19: Aggregated AUC performance of the nested resampling results on low dimen-
sional data sets, when using OC-SV Mcv, OC-SV Moccv, LOFcv combined
with TAUC and TAUMV C as well as T0. The figure is grouped by tuning
types, the left panel shows the results for T0, the middle panel shows results
for TAUMV C , on the right panel shows the results for TAUC .
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Figure 20: Aggregated AUC performance of the nested resampling results on high di-
mensional dats sets, when using OC-SV Mcv, OC-SV Moccv, LOFcv combined
with TAUC and TAUMV Chd as well as T0. The figure is grouped by resampling-
method combination, the left panel shows the results calculated with LOFcv,
the middle panel with OC-SV Mcv, the right with OC-SV Moccv.
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Figure 21: Aggregated AUC performance of the nested resampling results on high dimen-
sional data sets, when using OC-SV Mcv, OC-SV Moccv, LOFcv combined with
TAUC and TAUMV Chd as well as T0. The figure is grouped by tuning cases,
the left panel shows the results for T0, the middle panel shows results for
TAUMV Chd, the right panel shows the results for TAUC .

9.2.1 Tuning with Tuning Measurement AUMVC and AUMVChd

This Section is about analysing if AUMVC(hd) is a good alternative measurement for
AUC when tuning without available labels and a good alternative compared to not
tuning at all. Although in some experiments T0 performs better than TAUC , we assume
that having labels and TAUC is the best case scenario and not having labels and using
the default settings of the applied method is the worst case scenario.

9.2.1.1 AUMVC on Low Dimensional Data

If we don’t take into account that the experiments are generated by the different methods
and resampling strategies and only look at the outputs of AUC and AUMVC, we can
summarise the results as in Table 20 and visualised in Figure 22. Each row of Table 20
contains 18 comparisons of experiments. Thus the number of experiments for which the
statements in the row are true has to be interpreted relatively to the 18 comparisons.
In 10 examples TAUMV C was worse than T0, but in 8 examples there is no worsening
when using TAUMV C , as the resulting AUC value is at least as high as the AUC value
when applying TAUC (best case scenario) and in 5 examples the performance was even
better than T0. Additionally, in 8 examples TAUMV C was at least as good as TAUC , and
in 5 examples TAUMV C even outperformed TAUC . However, all in all it appears as if it
should not be recommended to tune with AUMVC.
In terms of runtime TAUMV C performance was better, as it doesn’t take as much time
as TAUC . The reason is, that AUC additionally requires threshold tuning. Taking the
mean of runtime over all experiments within the cases TAUC and TAUMV C shows that
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TAUC takes nearly twice as long as the other cases. On average, TAUC runs about 9.75
minutes (extract from Table 40) and TAUMV C about 5.26 minutes (see from Table 41).
Figure 22 reveals that tuning with TAUC does not always improve the performance in
comparison to the default settings in T0, which is also the case for tuning without labels
TAUMV C . It also provides insight on how far the AUC from TAUC and TAUMV C is away
from T0 ( Figure 22 left panel) as well as T0 and TAUC from the AUC from TAUMV C

(Figure 22 right panel). The left panel shows that if using TAUC and if the model
underperforms in comparison to T0, it underperforms more strongly than in case of
using TAUMV C , but when TAUC overperforms in comparison to T0 it outperforms using
TAUMV C more strongly. All in all, in most of the TAUMV C examples the AUC lies within
the ±0.1 range of T0.
A look at the plot on the right hand side of Figure 22 shows that the ideal case is to
have the AUC of T0 on the left of the benchmark line and the AUC of TAUC on the right
or on the benchmark line is not met, but in some examples using TAUMV C outperforms
using TAUC by over 0.2 points.
The middle panel in Figure 19 shows that in almost all cases using TAUMV C with OC-
SV Mcv yields at least an AUC value of 0.8, which reveals better results than combining
TAUMV C with OC-SV MCV or LOFcv.

Using TAUMV C yields

AUC value ...

Number of Experiments

(18 comparisons for each row)

< AUC of T0 10

= AUC of T0 3

> AUC of T0 5

< AUC of TAUC 10

= AUC of TAUC 3

> AUC of TAUC 5

Table 20: Summary of how the AUC measures perform under different tuning settings
(T0,TAUC ,TAUMV C) on low dimensional data, independent of the method used.
Note: The distribution of case T0 is equal to case TAUC in this analysis.
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Figure 22: Left panel: visualissation of the difference between the AUC resulting from
TAUC and TAUMV C and the AUC resulting from T0 (= vertical benchmark
line). Ideally, all examples lie on the right hand side of the benchmark line.
Right panel: Visualisation of the difference between the AUC resulting from
T0 and TAUC and the AUC resulting from TAUMV C (= vertical benchmark
line). Ideally, the AUC value of T0 is lower than the AUC of TAUMV C (all
red points on left side of the benchmark line), and the AUC value of TAUC is
higher or equal to the AUC of TAUMV C (all green points on the right side or
on the benchmark line).
All settings are applied on low dimensional data sets.

9.2.1.2 AUMVChd on High Dimensional Data

The same analysis as for AUMVC is conducted for AUMVChd on high dimensional
data. The results are summarised in Table 21 and Figure 23. As in the case before, 18
experiments is the reference number for each row in Table 21.
In 7 examples using TAUMV Chd performs worse than T0. In 4 examples the performance
of T0 and TAUMV C are equal. In 7 examples TAUMV Chd performed better compared to
TAUC , and in 6 examples TAUMV C outperformed TAUC .
However, when it comes to runtime, TAUMV Chd needs more time than TAUC . Taking
the runtime mean over all examples for the cases TAUC and TAUMV C shows that for the
former it takes 2.4 minutes on average and for the latter about 1h. (Note: The absolute
runtime in this section on high dimensional data can’t be compared to the runtime of
the previous section on low dimensional data, as it was executed on different machines.)
Figure 23 for high dimensional data is more scattered than the Figure 22 for low dimen-
sional data. The left panel shows that TAUMV C in comparison to T0 is better than TAUC

in comparison to T0. The right panel shows that using TAUMV C is outperformed by a
maximum of 0.2 points by TAUC or T0, but outperform TAUC or T0 up to 0.75 points .
All in all, it appears that using TAUMV Chd instead of TAUC on high dimensional data
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is a better alternative than using TAUMV C instead of TAUC on low dimensional data in
terms of performance measure AUC.
The middle panel in Figure 21 shows that combining TAUMV Chd with OC-SV Mcv yields
high AUC performance in comparison to the other combinations, as all examples have
an AUC of at least 0.9.

Using TAUMV C yields

AUC value ...

Number of Experiments

(18 comparisons for each row)

< AUC of T0 7

= AUC of T0 4

> AUC of T0 7

< AUC of TAUC 8

= AUC of TAUC 4

> AUC of TAUC 6

Table 21: Summary of how the AUC measure performs under different tuning settings
(T0,TAUC ,TAUMV C) on low dimensional data, independent of the method or
resampling strategy.
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Figure 23: Left panel: Visualisation of the difference between the AUC resulting from
TAUC , TAUMV Chd and the AUC resulting from T0 (= vertical benchmark
line). Ideally, all examples lie on the right hand side of the benchmark line.
Right panel: Visualisation of the difference between the AUC resulting from
T0, TAUC and the AUC resulting from TAUMV Chd (= vertical benchmark
line). Ideally, the AUC value of T0 is lower than the AUC of TAUMV Chd (all
red points on left side of the benchmark line), and the AUC value of TAUC is
higher or equal to the AUC of TAUMV Chd (all green points on the right side
or on the benchmark line).
All settings are applied on high dimensional data sets.

9.2.2 Training and Tuning with Cross-Validation vs. One-Class Cross-Validation for
OC-SVM

The OC-SVM method is designed to train on data containing only one class (the normal
class). Therefore, we introduced the Roccv resampling method in Section 5. Since in
most real-life data sets it is not guaranteed to only have normal data in training, the ex-
periment with OC-SV Mcv is included. The standard Rcv doesn’t take into account the
labels, thus it creates training data sets containing both classes (normal and anomaly).
We want to investigate how the violation of the one class assumptions affect the OC-
SVM method, which is why this section excludes the LOF method.

9.2.2.1 AUMVC on Low Dimensional Data

When comparing the resampling strategies Rcv and Roccv with OC-SVM on low di-
mensional data sets, Table 22, Figure 19 and Figure 24 give more insights about the
AUC performance. If we don’t take into account that the experiments are generated by
different tuning measures but only look at the outputs of AUC and AUMVC, we can
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summarise the results of how AUC performs when using Roccv instead of Rcv to the first
column in Table 22 (each row in this column contains 18 comparisons). If we do take
the different tuning measures into account, the results can be summarised to the last
three columns in Table 22 (each row in each of those columns contains 6 comparisons).
In 13 from 18 examples the OC-SVM performs with Rcv at least as good as with Roccv

(Table 22 or Figure 24), which indicates, that even if the requirement of OC-SVM to
train on only one class is not fulfilled, OC-SV Mcv still performs well or even better. The
most realistic case in Table 22 or Figure 24 is to use TAUMV C with Rcv, and in 4 out of
6 examples using Rcv performs at least as good as with Roccv, but the negative effect for
the other two examples is up to 0.3 AUC points.
In real life, the assumption of only having one class in training is often violated, this
results tend to reassure that OC-SVM can still be used for tuning in that case. How-
ever, not tuning OC-SV Mcv is not recommended, based on these examples. It should
be noticed that 6 experiments might not be representative.

Applying OC-SV Mcv yields AUC value
Over all Tuning Cases

(each row 18 comparisons)

within T0

(each row 6

comparisons)

within TAUC

(each row 6

comparisons)

within TAUMV Chd

(each row 6

comparisons)

< AUC value of OC-SV Moccv

q

5 3 0 2

= AUC value of OC-SV Moccv

q

4 3 0 1

> AUC value of OC-SV Moccv

q

9 0 6 3

Table 22: Summary of performance results when using OC-SV Mcv instead of OC-
SV Moccv based on 6 different low dimensional data sets and tuning setting
T0, TAUC and TAUMV Chd.
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Figure 24: Visualisation of the difference between the AUC resulting from OC-SV Mcv

and the AUC resulting from OC-SV Moccv (= vertical benchmark line) ap-
plied on low dimensional data sets. Examples on the right hand side of the
benchmark line indicate that using OC-SV Mcv outperforms OC-SV Moccv.
Ideally, all examples should be on the right or on the benchmark line. In that
case the requirement violation of OC-SVM training on only one-class doesn’t
matter.

9.2.2.2 AUMVChd on High Dimensional Data

When analysing the effect of resampling strategy Rcv and Roccv in combination with OC-
SVM on high dimensional data, the effects appear to be slightly contradictory to the
low dimensional analysis (Figure 21, Figure 25, Table 23). If we don’t take into account
that the experiments are generated by different tuning measures, but only look at the
outputs of AUC and AUMVChd, we can summarise the results of how AUC performs
when using Roccv instead of Rcv to the first column in Table 23 (each row in this column
contains 18 comparisons). If we do take the different tuning measures into account, the
results can be summarised to the last three columns in Table 23 (each row in each of
those columns contain 6 comparisons) or Figure 25.
Table 23 and Figure 25 show that in 9 out of 18 examples violation of training on one-
class only doesn’t matter (at least as good as OC-SV Moccv), but at the same time in 9
examples it does negatively impact the performance of OC-SVM. Especially, in the most
realistic case of TAUMV C only 1 out of 6 examples in Table 23 or Figure 25 show that
using Rcv instead of Roccv doesn’t matter. Figure 25 also shows that the requirement
violations affect the OC-SVM negatively by only up to 0.2 AUC points. When applying
on high dimensional data, the violation negatively affects the performance of OC-SVM.
The same effect applies for T0. It should be noted that 6 experiments might not be
representative.
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Applying OC-SV Mcv yields AUC value
Over all Tuning Cases

(each row 18 comparisons)

within T0

(each row 6

comparisons)

within TAUC

(each row 6

comparisons)

within TAUMV Chd

(each row 6

comparisons)

< AUC value of OC-SV Moccv

q

9 3 1 5

= AUC value of OC-SV Moccv

q

3 2 0 1

> AUC value of OC-SV Moccv

q

6 1 5 0

Table 23: Summary of performance results when using OC-SV Mcv instead of OC-
SV Moccv based on 6 different high dimensional data sets and tuning setting
T0, TAUC and TAUMV Chd.
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Figure 25: Visualisation of the difference between the AUC resulting from OC-SV Mcv

and the AUC resulting from OC-SV Moccv (= vertical benchmark line), ap-
plied on high dimensional data sets. Examples on the right hand side of the
benchmark line indicate that using OC-SV Mcv outperforms OC-SV Moccv.
Ideally, all examples should be on the right or on the benchmark line, be-
cause it would imply that violation of the requirement doesn’t affect the
performance of the method.

9.2.3 Comparison of Methods OC-SVM and LOF

In Section 9.2.2 OC-SVM was compared to the case when using Rcv or Roccv, whereas
in this section both OC-SVM cases will be compared to LOF in general and grouped
by tuning cases T0, TAUC and TAUMV C . Although LOFcv should only be compared
to OC-SV Mcv as Rcv allows mixed trainng data, this section additionally includes the
comparison of LOFcv to OC-SV Moccv.
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9.2.3.1 AUMVC on Low Dimensional Data

Comparing LOFcv to OC-SV Mcv in Table 24 and Figure 26 without considering differ-
ent tuning settings (first column) reveals that OC-SV Mcv outperforms LOFcv in 12 out
of 18 examples in the AUC performance. In 4 examples both methods perform equal
and only in 2 examples LOFcv yields a higher AUC. Figure 26 clearly shows, that almost
all examples for OC-SV Mcv are lying on the right hand side or close to the benchmark
lines (LOFcv). When differentiating between tuning settings, the real-life setting T0,
TAUMV C are most relevant. Within this tuning setting OC-SV Mcv should be preferred,
too.
Although the performance of LOFcv is higher when comparing to OC-SV Moccv instead
to OC-SV Mcv, the ultimate conclusion is still that OC-SVM should be preferred over
LOF , except for when tuning with TAUC . When using TAUC , the method LOFcv per-
forms better in 4 out of 6 examples, but this situation should be neglected, as AUC
requires labels, which is not realistic in real life situation.

Applying LOFcv yields AUC value
Over all Tuning Cases

(each row 18 comparisons)

within T0

(each row 6

comparisons)

within TAUC

(each row 6

comparisons)

within TAUMV C

(each row 6

comparisons)

< AUC value of OC-SV Mcv

q

12 5 3 4

= AUC value of OC-SV Mcv

q

4 0 3 1

> AUC value of OC-SV Mcv

q

2 1 0 1

< AUC value of OC-SV Moccv

q

11 6 2 3

= AUC value of OC-SV Moccv

q

1 0 0 1

> AUC value of OC-SV Moccv

q

6 0 4 2

Table 24: Summary of performance results when using LOFcv instead of OC-SV Mcv

or OC-SV Moccv based on 6 different low dimensional data sets and tuning
settings T0, TAUC and TAUMV C . Note: TAUC is not always better than using
T0.

79



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T0 TAUMVC TAUC

−0.8 −0.4 0.0 0.4 0.8−0.8 −0.4 0.0 0.4 0.8−0.8 −0.4 0.0 0.4 0.8

perc5

perc10

annthyroid

artificial.unsup

banana

mammography

(AUC of OC −SVMx) − (AUC of LOFcv)

Resampling

●

●

OC −SVMcv

OC −SVMoccv

Low Dimensional Data Set

Figure 26: Visualisation of the difference between the AUC resulting from OC-SV Mcv,
OC-SV Moccv and the AUC resulting from LOFcv (= vertical benchmark line),
applied on low dimensional data sets. The figure is grouped by tuning type,
the left panel shows the results for T0, the middle panel for TAUMV Chd and
the right panel shows the result for TAUC . Examples on the right hand side
of the benchmark line indicate that using OC-SVM outperforms LOFcv.

9.2.3.2 AUMVChd on High Dimensional Data

When applying the three methods LOFcv, OC-SV Mcv and OC-SV Moccv on high dimen-
sional data sets, the OC-SVM methods are not as clearly favorable as when applying
them on low dimensional data sets.
In fact, LOFcv is at least as good as OC-SV Mcv in 13 out of 18 examples, of those 8
examples outperform OC-SV Mcv.
When comparing LOFcv to OC-SV Moccv, the conclusion is not that clear either, overall
it appears like in 50% of the cases one method outperforms the other (7 to 8 examples
in Table 25). Excluding the unrealistic case of TAUC , LOFcv performs at least as good
as OC-SV Moccv in 7 out of 12 examples using T0 and TAUMV Chd.
Within the most realistic tuning cases TAUMV Chd, LOFcv seems to yield an AUC close
to both OC-SV M methods (Figure 27). Thus, LOFcv is favored over OC-SVM on high
dimensional data.
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Applying LOFcv yields AUC value
Over all Tuning Cases

(each row 18 comparisons)

within T0

(each row 6

comparisons)

within TAUC

(each row 6

comparisons)

within TAUMV Chd

(each row 6

comparisons)

< AUC value of OC-SV Mcv

q

5 2 2 1

= AUC value of OC-SV Mcv

q

5 1 3 1

> AUC value of OC-SV Mcv

q

8 3 1 4

< AUC value of OC-SV Moccv

q

7 2 2 3

= AUC value of OC-SV Moccv

q

3 1 0 2

> AUC value of OC-SV Moccv

q

8 3 4 1

Table 25: Summary of performance results when using LOFcv instead of OC-SV Mcv

or OC-SV Moccv based on six different high dimensional data sets and tuning
setting T0, TAUC and TAUMV Chd. Note: TAUC is not always better than using
T0.
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Figure 27: Visualisation of the difference between the AUC resulting from OC-
SV Mcv,OC-SV Moccv and the AUC resulting from LOFcv (= vertical bench-
mark line), applied on high dimensional data sets. The figure is grouped
by tuning case, the left panel shows the results for T0, the middle panel for
TAUMV Chd, the right panel shows the result for TAUC . Examples on the right
hand side of the benchmark line indicate that using OC-SVM outperforms
LOFcv.

9.2.4 Analysis of the Autoencoder

The autoencoder (AE) implemented in mlR is based on H2o (Section 7), that is not
compatible with the parallel mode in mlR. Moreover, when tuning the number of hid-
den units in the models, they throw errors due to the prediction of an unstable model.
As finding suitable hyperparameters to stable the model is a major issue, the AE was
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excluded from the previous benchmark analysis and is investigated subsequently in this
section.
Since the hyperparameter settings for the AE highly depends on the data set, we
choose our parameter according to the H2o help page https://0xdata.atlassian.

net/browse/TN-4, which fix some of the stability issues for our models. However, tun-
ing on high dimensional data was still not possible. After a few iterations to find suitable
hyperparameter settings we abort the experiment and analyse the autoencoder with T0,
TAUC , TAUMV C on the low dimensional data, T0 on high dimensional data and TAUC

and TAUMV C on two synthetic high dimensional data (perc5hd, perc10hd).
The autoencoder doesn’t have a default for the number of hidden layers or hidden units.
However, in the study of Dau et al. [2014, p.312], it is shown that an autoencoder with
one hidden layer performs as good as with more. Thus, we fix our experiment to one
hidden layer. There is also no rule of thumb to set the number of hidden units in the
hidden layer. We therefore chose arbitrarily the number of hidden units half the size of
the number of input units for the case T0. Furthermore, we tuned the method on 4 out of
6 low dimensional data sets with OC-CV (AEoccv). The banana and artificial.unsup

data only have two features, hence it is not reasonable to tune for the number of hidden
units. For the rest of the low dimensional data we set the tuning search space according
to Table 26 and reduce the random search size to 20 to save computational time, that
is feasible as the range of the number of units is discrete and rather small. Due to com-
putational time, the optimization algorithm for the high dimensional data sets perc5hd
and perc10hd is set to a grid search to optimize over all 8 values (see Table 26).

9.2.4.1 AUMVC on Low Dimensional Data

The results of applying AUCoccv on low dimensional data are shown in Figure 26 and
Figure 28, the numeric results are in Appendix Table 50. The results for high dimensional
data are in Figure 31 and Figure 32 and Table 51.
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Data Set
Default Value for Number of Units

#Input Units : #Hidden Units : #Output Units
Tuning Search Space Search Type

perc5 4 : 2 : 4 1 to 3 Random Search, maxit 20

perc10 4 : 2 : 4 1 to 3 Random Search, maxit 20

annthyroid 6 : 3 : 6 1 to 5 Random Search, maxit 20

artificial.nsup 2 : 1 : 2 - Random Search, maxit 20

banana 2 : 1 : 1 - Random Search, maxit 20

mammography 6 : 3 : 6 1 to 5 Random Search, maxit 20

perc5hd 10 : 5 : 10 1 to 8 Grid Search

perc10hd 10 : 5 : 10 1 to 8 Grid Search

letter 32 : 16 : 32 - -

penglobal 16 : 8 : 16 - -

penlocal 16 : 8 : 16 - -

satellite 36 : 18 : 36 - -

Table 26: Default and tuning settings of the number of hidden units for the AEoccv with
one hidden layer. The settings depends on the data set.

Figure 28 visualises the results of the experiments on low dimensional data generated
by AEoccv. It seems like tuning with TAUC or TAUMV C doesn’t improve the performance
of the AEoccv a lot. In fact in 3 out of 5 examples T0 with just arbitrary chosen number
of hidden units already yield a high AUC nearly 1, TAUC even worsen the performance
on the annthyroid data. On the mammography data, the performance improves slightly.
Comparing to the other methods in Figure 29, the conclusion is that when tuning with
TAUMV C the AEoccv yields always better or same results as the other methods. The
same conclusion applies wehen using TAUC . In case of T0, the OC-SV Moccv should be
preferred, but it should also be noted that the number of nodes in the hidden layer was
chosen arbitrarily.
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Figure 28: Aggregated AUC performance of the nested resampling results on low dimen-
sional data sets generated by an AEoccv, when using T0, TAUMV C and TAUC .
The figure is grouped by tuning type, the left panel shows the results for T0,
the middle panel for TAUMV C and the right panel shows the result for TAUC .
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Figure 29: Visualisation of the difference between the AUC resulting from OC-SV Mcv,
OC-SV Moccv LOFcv and the AUC resulting from AEoccv (= vertical bench-
mark line), applied on low dimensional data sets. The figure is grouped by
tuning type, the left panel shows the results for T0, the middle panel for
TAUMV C and the right panel shows the result for TAUC . Examples on the
right-hand side of the benchmark line indicate that using AEoccv outperforms
the other methods.

AE requires only one class in training, thus we tuned with Roccv. For testing if the
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violation of assumptions has an affect on the AE, we also tune the low dimensional data
with Rcv, Figure 30 and Table 52 provide the results. Using Rcv has a strong affect
on the annthyroid data set, unlike the other data sets. More experiments should be
conducted, but based on this example, the conclusion is that violation of the assumption
of training on one class has a minor effect.
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Figure 30: Visualisation of the difference between the AUC resulting from AEcv and
the AUC resulting from AEoccv (= vertical benchmark line) applied on low
dimensional data sets. Examples on the right hand side of the benchmark line
indicate that using AEcv outperforms AEoccv. Ideally, all examples should be
on the right or on the benchmark line. In that case the requirement violation
of OC-SVM training on only one-class doesn’t matter. Note that AE was not
tuned for banana and artifical.unsup.

9.2.4.2 AUMVChd on High Dimensional Data

On the high dimensional data sets, T0, TAUC and TAUMV Chd don’t have an affect on the
performance of the perc5hd and perc10hd data sets, in all cases, but the AUC already
yields high AUC (Figure 31). TAUC with the AEoccv yields higher AUC than with OC-
SV Moccv, but similar AUC to LOFcv and OC-SV Mcv. As for the rest of the data,
tuning was not possible, but the AUC with an arbitrarily chosen number of hidden units
outperforms both OC-SVM on the penglobal and letter data sets.

85



●

●

●

●

●

●

●

●

●

●

T0 TAUMVChd TAUC

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

perc5hd

perc10hd

letter

penlocal

penglobal

satellite

AUC

High Dimensional Data Set

Figure 31: Aggregated AUC performance of the nested resampling results on high di-
mensional data sets generated by an autoencoder, when using T0, TAUMV Chd

and TAUC . The figure is grouped by tuning type, the left panel shows the
results for T0, the middle panel for TAUMV Chd and the right panel shows the
result for TAUC .
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Figure 32: Visualisation of the difference between the AUC resulting from OC-SV Mcv,
OC-SV Moccv LOFcv and the AUC resulting from AEoccv (= vertical bench-
mark line), applied on high dimensional data sets. The figure is grouped
by tuning type, the left panel shows the results for T0, the middle panel for
TAUMV Chd and the right panel shows the result for TAUC . Examples on the
right-hand side of the benchmark line indicate that using AEoccv outperforms
the other methods.
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10 Summary

Anomaly detection is a special branch of machine learning and several anomaly detec-
tion methods exist. However, working in a semi-supervised or unsupervised settings is
a challenge. This work covers the analysis of selected unsupervised and semi-supervised
anomaly detection methods for point anomalies.
One of the challenges for successfully using anomaly detection methods is to evaluate
and tune hyperparameters without labels, thus a new measurement method for low and
high dimensional data called Area Under the Mass Volume Curve (AUMVC(hd)) is in-
troduced (Section 3.2) and investigated (Section 9).
Among the methods used are the one-class support vector machines (OC-SVM) (Sec-
tion 4.1), the local outlier factor (LOF) (Section 4.2) and the autoencoder (AE) (Section
4.3). OC-SVMs and autoencoders require training data containing only the normal class
(semi-supervised), while LOF can work in the unsupervised setting. The OC-SVM learns
a line, plane, hyperplane or sphere based on one class (the normal class) in order to sep-
arate all observations from that one class from the origin in the feature space. The
assumption is, that when passing anomalous data into the learned model, the anoma-
lous observations lie on the wrong side of that separation. The autoencoder detects
anomalies by learning a model that is able to reconstruct the normal input data, after it
compresses and decompresses them. The assumption is, that when passing anomalous
data into the learned model, it can’t be reconstructed like a normal observation, hence
returning a high reconstruction error. The LOF uses the neighbours of each input point
to determine if it is an anomalous observation by taking into account the distance and
the local densities of its neighbours. If the observation has a sufficient lower density than
its neighbors, it is considered as an anomaly.
The outputs of the introduced methods are score values that can have values on the
complete range of the real numbers, to have a standardised output, a calibration func-
tion is applied (Section 6) to convert those scores into the interval [0, 1].
As two of the used methods in this work are designed for one-class classification, addi-
tional resampling strategies are created to train only on one class in order to meet the
methods’ requirement when tuning and evaluating the respective methods (Section 5).
The introduced measurements, functions, methods and resampling strategies for anomaly
detection were implemented in mlR and can be applied following the instructions in Sec-
tion 7.4.
With these implementations, benchmark experiments were conducted on 6 low dimen-
sional and 6 high dimensional data sets (Section 8.1 on data sets) with the OC-SVMs
and LOF (Section 8). Due to computational challenges, the autoencoder was analysed
separately (Section 9.2.4).
The performance of the AUMVC(hd) and the anomaly detection methods OC-SVM and
LOF were investigated. The results show, that increasing the parameter values of the
AUMVC(hd) (e.g. number of Monte-Carlo samples) leads to a longer runtime but not
a better performance (Section 9.1.1). However, the AUMVC(hd) values highly fluctu-
ate (Section 9.1.2), therefore more experiments and parameter values should be tested
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in order to yield more robust results. It should be noted, that even by increasing the
parameter values (e.g Monte-Carlo samples, number of – splits etc.), the performance
should improve in theory, but a standard user might not be able to apply those settings
due to computational constraints. With respect to the performance (based on the ex-
amples) and the computation time, the default setting for AUMVC(hd) in mlR are set
according to Table 7. The default AUMVC needs up to 112 times longer than AUC
to evaluate on low dimensional data; on high dimensional data the time increases by a
factor up to 122021, but the time highly depends on the data size.
The runtime when using the default AUMVC for tuning (TAUMV C) on low dimensional
data takes half the time compared to using AUC for tuning (TAUC). Although TAUMV C

outperforms TAUC in a few examples, in most cases the results are similar to no tuning
(T0). Therefore, it can’t be concluded that using TAUMV C instead of T0 can always be
recommended, but if one uses TAUMV C , it works best with the OC-SVM and resampling
strategy OC-CV (Section 9.2.1).
TAUMV Chd performs on high dimensional data better than TAUMV C on low dimensional
data when comparing both to TAUC , but not in terms of runtime. TAUMV Chd needs 25
times longer to tune than TAUC . In the majority of the examples, using TAUMV Chd is
better than not tuning at all (T0), and it also works best with OC-SVM with OC-CV
(Section 9.2.1).
The requirement for OC-SVM is to train on one class only. When testing if the vio-
lation of the requirement affects the performance of OC-SVM, Section 9.2.2 indicates
that when using TAUMV C on low dimensional data the violation tends to not have a
strong negative effect, which is in contrast to T0. However, in high dimensional data,
the violation of the requirement tends to have a slightly negative effect in both T0 and
TAUMV Chd cases. Applying AE on Rcv instead of Roccv, and thus violating the training
assumptions, does not have a strong effect on the method, based on the examples on low
dimensional data sets.
For the sake of comparing both methods, OC-SVM (with CV and OCCV) was bench-
marked against the LOF method (with CV) in Section 9.2.3. The results reveal that
one should prefer both OC-SVM instead of the LOF method for low dimensional data
sets. However, the LOF method should be preferred on high dimensional data (Section
9.2.3). But when comparing the AEoccv in Section 9.2.4, AEoccv performs always at
least as good as the other methods, when using TAUC or TAUMV C , when using T0 the
OC-SV Moccv yields on average better results.
All in all, using AUMVC(hd) for tuning is in some cases useful, although it could not
be determined what characteristic of the experiment made tuning with AUMVC(hd)
successful in comparison to not tuning at all. Because of this, further experiments
and investigations about the correlation of using AUMVC(hd) and the data and ex-
periment setting should be made. Additionally, the number of experiments should be
increased to make more certain conclusions, especially due to the fact that the method
of AUMVC(hd) is highly based on randomness.
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Appendix

A Additional Measurement for Imbalanced Class Sizes

The standard unsupervised binary classification measurements (e.g. in Section 3.1)
are not all suitable for anomaly detection. Some of the measurements don’t take
into account the unbalanced class sizes. Campos et al. [2016, p.900] introduce per-
formance measurement designed for evaluating anomaly detection methods, that
have at least labels in the test data set. There are a view more measurements for
anomaly detecion with labels, in the following a view are explained in more detailed
and implemented in mlR.

R-Precision /Top p-Accuracy The R-Precision (or also called top p-accuracy)
measures the relative number of true predicted anomalies in the top p ranks of the
test set in relation to the number of anomalies on the entire test set [Dau et al.,
2014, p.316]. Ideally, p œ {1, 2, ..., |O|}.

|o œ O : rank(o) Æ p|

|O|
, (58)

Precision at p (P@p) The Precision at p measures the relative number of true
predicted anomalies in the top p ranks of the test set in relation to the number of
considered ranks p, in other words it measures the "proportion of correct results in
the top p ranks" [Campos et al., 2016, p.900]. If p = |O| the P@p results in the
R-Precision measure. Ideally, p œ {1, 2, ..., |O|}

|o œ O : rank(o) Æ p|

p
(59)

Average Precision (AP) Both P@p and adjusted P@p are sensitive to the choice
of p [Campos et al., 2016, p.901]. It is a hurdle to choose an appropriate p, where
p ideally lies in {1, 2, ..., |O|}. The average precision tackle this issue by averaging
over P@p with p œ {1, 2, ..., |O|}.

1

|O|

ÿ

oœO

P@rank(o) (60)

Adjusted P@p and Adjusted AP Both P@p and AP depends on the magni-
tude of O, therefore a comparison between different test sets is not possible. An
adjustment is necessary if one wants to compare different data sets, especially if the
number of outliers differs. Campos et al. [2016, p.900] proposes to adjust P@p and
the average precision for chances. The adjusted P@p is

adjusted P@p =
P@p ≠ |O|

N

1 ≠ |O|
N

(61)
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with the maximal value of P@p

Maximum Index of P@p =

I

|O|/p p > |O|

1 p Æ |O|
(62)

If p is a large value, the maximum is always |O|/p (note: not implemented in mlr,
maximum index of P@p is always 1) [Campos et al., 2016, p.900]. Adjusted AP is
analogous [Campos et al., 2016, p.901].

All observations can have the same score, in that case in all precision measure-
ments described above "the ties are broken arbitrarily but consistently" [Campos
et al., 2016, p.892] to evaluate the top p ranks.
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B Additional Results Tables

Filename Status

AMVhdWrapper added

FailureModel modified

Learner_properties modified

Make_measure_AMV added

Make_measure_AMVhd added

Make_measure_WAC added

Make_measure_precision added

Measure modified

OneClassTask added

Prediction modified

Prediction_operators modified

RLearner modified

RLearner_oneclass_h2oautoencoder added

RLearner_oneclass_ksvm added

RLearner_oneclass_lof added

RLearner_oneclass_lofactor added

RLearner_oneclass_svm added

ResampleDesc modified

ResampleInstance modified

ResampleInstances modified

Task modified

TaskDesc modified

Task_operators modified

analyzeFeatSelResult modified

calculateConfusionMatrix modified

Table 27: Part 1: A list of files in the R folder of the mlR-repository [Bischl et al.,
2016], which were modified or added in order to make anomaly detection
possible.
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Filename Status

calculateROCMeasures modified

checkLearnerBeforeTrain modified

checkTunerParset modified

convertScoresToProbability added

data sets modified

evalOptimizationState modified

getOOBPreds modified

helpers modified

listLearners modified

listMeasures modified

makeLearner modified

measures modified

performance modified

plotLearnerPrediction modified

plotResiduals modified

predictLearner modified

resample modified

setPredictThreshold modified

setPredictType modified

setThreshold modified

tuneThreshold modified

zzz modified

makeData modified

arg_lrncl modified

arg_task_or_type modified

Table 28: Part 2: A list of files in the R folder of the mlR-repository [Bischl et al.,
2016], which were modified or added in order to make anomaly detection
possible.
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Filename Status

run-learners-oneclass added

run-oneclass added

helper_helpers modified

helper_objects modified

test_base_AMVhdWrapper added

test_base_Learner_properties modified

test_base_checkData modified

test_base_checkTaskLearner modified

test_base_helpers modified

test_base_listLearners modified

test_base_measures modified

test_base_oneclass added

test_base_predict modified

test_base_prediction_operators modified

test_base_resample_OCbs added

test_base_resample_OCcv added

test_base_resample_OCholdout added

test_base_resample_OCrepcv added

test_base_resample_OCsubsample added

test_base_resample_repcv modified

test_learners_all_oneclass added

test_oneclass_AMV_AMVhd added

test_oneclass_h2oautoencoder added

test_oneclass_ksvm added

test_oneclass_lofactor added

test_oneclass_lof added

test_oneclass_measures added

test_oneclass_svm added

Table 29: A list of files in the test folder of the mlR-repository [Bischl et al., 2016],
which were modified or added in order to test new functions and features
of anomaly detection in mlR.
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Table 30: Comparison of runtime (in seconds) for different settings for AUC and
AUMVC, each setting was repeated 100 times. The labels in the first row
state the value of the parameter, which is the focus of the experiment or
deviates from the default setting.

Table 31: Comparison of runtime (in seconds) for different settings for AUC and
AUMVChd, each setting was repeated 100 times. The labels in the first
row state the value of the parameter, which is the focus of the experiment
or deviates from the default setting.
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Table 32: Table of the performance results generated by SVM from the kernlab R

package for every repetition. Each block contains the results from one data
set (perc5, mammograpgy, annthyroid) and shows the runtime as well as
the value of the tuning measurement and additional measurements. The
abbreviation 10 n.iters stands for AUMVC with 10 Monte-Carlo samples.
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Table 33: Table of the performance results generated by LOF from the dbscan R

package for every repetition. Each block contains the results from one data
set (perc5, mammograpgy, annthyroid) and shows the runtime as well as
the value of the tuning measurement and additional measurements. The
abbreviation 10 n.iters stands for AUMVC with 10 Monte-Carlo samples.
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Table 34: Table of the performance results generated by SVM from the kernlab R

package for every repetition. Each block contains the results from one data
set (perc5, mammograpgy, annthyroid) and shows the runtime as well as
the value of the tuning measurement and additional measurements. The
abbreviation 50 n.alpha stands for AUMVChd with splitting the alpha
intervall into 50 subsamples.

102



Table 35: Table of the performance results generated by LOF from the dbscan R

package for every repetition. Each block contains the results from one data
set (perc5, mammograpgy, annthyroid) and shows the runtime as well as
the value of the tuning measurement and additional measurements. The
abbreviation 50 n.alpha stands for AUMVChd with splitting the alpha
intervall into 50 subsamples.
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Table 36: Table of the performance results generated by SVM from the kernlab R

package for every repetition. Each block contains the results from one
data set (perc5hd, penlocal) and shows the runtime as well as the value of
the tuning measurement and additional measurements. The abbreviation
5 amv.iters stands for AUMVChd with 5 internal subsamples evaluated
with AUMVC.
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Table 37: Table of the performance results generated by LOF from the dbscan R

package for every repetition. Each block contains the results from one
data set (perc5hd, penlocal) and shows the runtime as well as the value of
the tuning measurement and additional measurements. The abbreviation
5 amv.iters stands for AUMVChd with 5 internal subsamples evaluated
with AUMVC.
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Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm 1.00 79.62 0.30

2 perc5 oneclass.lof 0.94 446.78 0.62

3 perc10 oneclass.ksvm 1.00 51.79 0.16

4 perc10 oneclass.lof 0.64 115.77 0.61

5 annthyroid oneclass.ksvm 0.62 408.33 2.46

6 annthyroid oneclass.lof 0.73 368019.75 1.98

7 artificial.unsup oneclass.ksvm 1.00 0.09 0.67

8 artificial.unsup oneclass.lof 0.94 2.16 1.05

9 banana oneclass.ksvm 0.62 1.15 1.20

10 banana oneclass.lof 0.49 2.43 1.77

11 mammography oneclass.ksvm 0.81 24.49 5.41

12 mammography oneclass.lof 0.77 80663.16 3.56

Table 38: Benchmark results from the mlR package: Evaluation of the default SVM
and default LOF method (no tuning) with AUC, AUMVC and runtime
using 3-fold cross validation on 6 low dimensional data sets

Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm 1.00 183.18 0.05

2 perc10 oneclass.ksvm 1.00 103.87 0.04

3 annthyroid oneclass.ksvm 0.92 538.93 1.15

4 artificial.unsup oneclass.ksvm 1.00 0.09 0.22

5 banana oneclass.ksvm 0.92 1.53 0.20

6 mammography oneclass.ksvm 0.85 25.13 3.16

Table 39: Benchmark results from the mlR package: Evaluation of the default SVM
and default LOF method (no tuning) with AUC, AUMVC and runtime
using 3-fold one-class cross validation on 6 low dimensional data sets
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Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm.tuned 1.00 81.38 36.00

2 perc5 oneclass.lof.tuned 1.00 446.76 87.36

3 perc10 oneclass.ksvm.tuned 1.00 63.82 36.43

4 perc10 oneclass.lof.tuned 1.00 115.77 105.08

5 annthyroid oneclass.ksvm.tuned 0.82 11356.97 680.38

6 annthyroid oneclass.lof.tuned 0.74 368019.75 527.53

7 artificial.unsup oneclass.ksvm.tuned 1.00 0.10 75.71

8 artificial.unsup oneclass.lof.tuned 1.00 2.16 214.29

9 banana oneclass.ksvm.tuned 0.73 1.13 312.16

10 banana oneclass.lof.tuned 0.67 2.44 349.68

11 mammography oneclass.ksvm.tuned 0.89 274.83 3544.62

12 mammography oneclass.lof.tuned 0.81 80652.21 3544.89

Table 40: Benchmark results from the mlR package: Nested resampling of 6 low
dimensional data sets with the SVM and LOF method. The inner resam-
pling loop uses the 3-fold cross validation strategy for tuning, with tuning
measurement AUC. The outer resampling loop uses the 3-fold cross vali-
dation strategy to asses the performance (AUC, AUMVC and runtime) of
the learner.

Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm.tuned 0.98 71.83 27.34

2 perc5 oneclass.lof.tuned 1.00 446.64 192.95

3 perc10 oneclass.ksvm.tuned 0.98 36.78 31.69

4 perc10 oneclass.lof.tuned 0.55 115.71 196.87

5 annthyroid oneclass.ksvm.tuned 0.79 49.16 447.64

6 annthyroid oneclass.lof.tuned 0.72 368019.75 629.20

7 artificial.unsup oneclass.ksvm.tuned 1.00 0.10 76.30

8 artificial.unsup oneclass.lof.tuned 1.00 2.16 307.90

9 banana oneclass.ksvm.tuned 0.66 1.12 226.54

10 banana oneclass.lof.tuned 0.47 2.42 460.07

11 mammography oneclass.ksvm.tuned 0.79 1.83 925.65

12 mammography oneclass.lof.tuned 0.75 80633.25 727.80

Table 41: Benchmark results from the mlR package: Nested resampling of 6 low
dimensional data sets with the SVM and LOF method. The inner re-
sampling loop uses the 3-fold cross validation strategy for tuning, with
tuning measurement AUMVC. The outer resampling loop uses the 3-fold
cross validation strategy to asses the performance (AUC, AUMVC and
runtime) of the learner.
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Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm.tuned 0.67 363.06 35.05

2 perc10 oneclass.ksvm.tuned 0.76 110.16 30.29

3 annthyroid oneclass.ksvm.tuned 0.77 180597.28 424.01

4 artificial.unsup oneclass.ksvm.tuned 0.75 0.54 16.83

5 banana oneclass.ksvm.tuned 0.57 1.67 98.34

6 mammography oneclass.ksvm.tuned 0.84 34703.48 406.96

Table 42: Benchmark results from the mlR package: Nested resampling of 6 low
dimensional data sets with the SVM method. The inner resampling loop
uses the 3-fold one-class cross validation strategy for tuning, with tuning
measurement AUC. The outer resampling loop uses the 3-fold one-class
cross validation strategy to asses the performance (AUC, AUMVC and
runtime) of the learner.

Task Learner mean AUC mean AUMVC mean Runtime

1 perc5 oneclass.ksvm.tuned 0.95 139.29 28.92

2 perc10 oneclass.ksvm.tuned 0.86 77.91 28.49

3 annthyroid oneclass.ksvm.tuned 0.92 31063.86 496.49

4 artificial.unsup oneclass.ksvm.tuned 1.00 0.11 96.58

5 banana oneclass.ksvm.tuned 0.93 1.70 103.13

6 mammography oneclass.ksvm.tuned 0.73 0.86 671.77

Table 43: Benchmark results from the mlR package: Nested resampling of 6 low
dimensional data sets with the SVM method. The inner resampling loop
uses the 3-fold one-class cross validation strategy for tuning, with tuning
measurement AUMVC. The outer resampling loop uses the 3-fold one-
class cross validation strategy to asses the performance (AUC, AUMVC
and runtime) of the learner.
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Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm 1.00 754.55 0.05

2 perc5hd oneclass.lof 1.00 3152.80 0.20

3 perc10hd oneclass.ksvm 1.00 325.84 0.05

4 perc10hd oneclass.lof 0.30 730.47 0.20

5 letter oneclass.ksvm 0.55 73.83 0.16

6 letter oneclass.lof 0.82 332.76 0.53

7 penglobal oneclass.ksvm 0.83 18.55 0.12

8 penglobal oneclass.lof 0.82 42.76 0.16

9 penlocal oneclass.ksvm 0.55 19.17 1.49

10 penlocal oneclass.lof 0.98 44.91 4.17

11 satellite oneclass.ksvm 0.94 20.20 1.55

12 satellite oneclass.lof 0.97 621.15 1.37

Table 44: Benchmark results from the mlR package: Evaluation of the default SVM
and default LOF method (no tuning) with AUC, AUMVChd and runtime
using 3-fold cross validation on 6 high dimensional data sets

Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm 1.00 3153.93 0.05

2 perc10hd oneclass.ksvm 1.00 704.16 0.05

3 letter oneclass.ksvm 0.56 79.90 0.13

4 penglobal oneclass.ksvm 0.99 30.26 0.04

5 penlocal oneclass.ksvm 0.50 19.52 1.55

6 satellite oneclass.ksvm 0.95 68.21 1.42

Table 45: Benchmark results from the mlR package: Evaluation of the default SVM
and default LOF method (no tuning) with AUC, AUMVChd and runtime
using 3-fold one-class cross validation on 6 high dimenional data sets
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Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm.tuned 1.00 801.81 36.59

2 perc5hd oneclass.lof.tuned 1.00 3202.57 82.51

3 perc10hd oneclass.ksvm.tuned 1.00 329.16 35.06

4 perc10hd oneclass.lof.tuned 1.00 708.97 93.54

5 letter oneclass.ksvm.tuned 0.92 72.54 75.56

6 letter oneclass.lof.tuned 0.85 381.09 114.70

7 penglobal oneclass.ksvm.tuned 0.98 15.64 30.10

8 penglobal oneclass.lof.tuned 0.84 42.29 67.88

9 penlocal oneclass.ksvm.tuned 0.97 17.94 215.73

10 penlocal oneclass.lof.tuned 0.97 39.88 395.22

11 satellite oneclass.ksvm.tuned 0.96 19.01 240.11

12 satellite oneclass.lof.tuned 0.97 680.58 326.80

Table 46: Benchmark results from the mlR package: Nested resampling of 6 high
dimensional data sets with the SVM and LOF method. The inner resam-
pling loop uses the 3-fold cross validation strategy for tuning, with tuning
measurement AUC. The outer resampling loop uses the 3-fold cross vali-
dation strategy to asses the performance (AUC, AUMVChd and runtime)
of the learner.

Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm.tuned 1.00 733.80 677.39

2 perc5hd oneclass.lof.tuned 1.00 3211.22 3700.59

3 perc10hd oneclass.ksvm.tuned 0.98 336.42 700.61

4 perc10hd oneclass.lof.tuned 1.00 717.33 3736.68

5 letter oneclass.ksvm.tuned 0.83 72.54 993.94

6 letter oneclass.lof.tuned 0.70 349.43 4398.69

7 penglobal oneclass.ksvm.tuned 0.81 15.64 586.80

8 penglobal oneclass.lof.tuned 0.87 41.52 3277.78

9 penlocal oneclass.ksvm.tuned 0.94 17.78 7174.56

10 penlocal oneclass.lof.tuned 0.97 40.73 13089.99

11 satellite oneclass.ksvm.tuned 0.81 19.01 4899.06

12 satellite oneclass.lof.tuned 0.96 680.58 5239.89

Table 47: Benchmark results from the mlR package: Nested resampling of 6 high
dimensional data sets with the SVM and LOF method. The inner re-
sampling loop uses the 3-fold cross validation strategy for tuning, with
tuning measurement AUMVChd. The outer resampling loop uses the 3-
fold cross validation strategy to asses the performance (AUC, AUMVChd
and runtime) of the learner.
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Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm.tuned 0.56 2962.69 36.25

2 perc10hd oneclass.ksvm.tuned 0.50 692.90 36.12

3 letter oneclass.ksvm.tuned 0.53 83.05 90.15

4 penglobal oneclass.ksvm.tuned 0.97 30.36 37.51

5 penlocal oneclass.ksvm.tuned 0.99 17.59 516.04

6 satellite oneclass.ksvm.tuned 0.72 65.40 463.63

Table 48: Benchmark results from the mlR package: Nested resampling of 6 high
dimensional data sets with the SVM method. The inner resampling loop
uses the 3-fold one-class cross validation strategy for tuning, with tuning
measurement AUC. The outer resampling loop uses the 3-fold one-class
cross validation strategy to asses the performance (AUC, AUMVChd and
runtime) of the learner.

Task Learner mean AUC mean AUMVChd mean Runtime

1 perc5hd oneclass.ksvm.tuned 1.00 3020.94 733.46

2 perc10hd oneclass.ksvm.tuned 1.00 672.63 737.98

3 letter oneclass.ksvm.tuned 0.92 78.80 1083.95

4 penglobal oneclass.ksvm.tuned 0.98 29.71 660.40

5 penlocal oneclass.ksvm.tuned 0.96 19.11 8059.58

6 satellite oneclass.ksvm.tuned 0.97 64.84 6506.45

Table 49: Benchmark results from the mlR package: Nested resampling of 6 high
dimensional data sets with the SVM method. The inner resampling loop
uses the 3-fold one-class cross validation strategy for tuning, with tuning
measurement AUMVChd. The outer resampling loop uses the 3-fold one-
class cross validation strategy to asses the performance (AUC, AUMVChd
and runtime) of the learner.
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Task Learner mean AUC mean AUMVC Tuning Measure

1 perc5 oneclass.ae 1.00 87.29 OCCV no Tuning

2 perc10 oneclass.ae 1.00 66.88 OCCV no Tuning

3 annthyroid oneclass.ae 0.93 2120.14 OCCV no Tuning

4 mammography oneclass.ae 0.81 257.30 OCCV no Tuning

5 banana oneclass.ae 0.58 1.55 OCCV no Tuning

6 artificial.unsup oneclass.ae 0.74 1.49 OCCV no Tuning

7 perc5 oneclass.ae 1.00 89.94 OCCV AUC

8 perc10 oneclass.ae 1.00 66.91 OCCV AUC

9 annthyroid oneclass.ae 0.85 2426.36 OCCV AUC

10 mammography oneclass.ae 0.86 924074.37 OCCV AUC

11 perc5 oneclass.ae 1.00 92.57 OCCV AUMVC

12 perc10 oneclass.ae 1.00 92.57 OCCV AUMVC

13 annthyroid oneclass.ae 0.98 2784.11 OCCV AUMVC

14 mammography oneclass.ae 0.82 322534.12 OCCV AUMVC

Table 50: Results from the mlR package: Nested resampling of 6 low dimensional
data sets with the autoencoder. The inner resampling loop uses the 3-fold
one-class cross validation strategy for tuning, with T0, TAUC , TAUMV C .
The outer resampling loop uses the 3-fold one-class cross validation strat-
egy to asses the performance (AUC, AUMVC) of the learner.

Task Learner mean AUC mean AUMVChd Tuning Measure

1 perc5hd oneclass.ae 1.00 2100.36 OCCV no Tuning

2 perc10hd oneclass.ae 1.00 618.92 OCCV no Tuning

3 satellite oneclass.ae 0.94 160.37 OCCV o Tuning

4 penlocal oneclass.ae 0.80 28.81 OCCV no Tuning

5 res_penglobal oneclass.ae 0.80 28.81 OCCV no Tuning

6 letter oneclass.ae 0.77 93.16 OCCV no Tuning

7 perc5hd oneclass.ae 1.00 2886.55 OCCV AUC

8 perc10hd oneclass.ae 1.00 683.22 OCCV AUC

9 perc5hd oneclass.ae 1.00 2970.68 OCCV AUMVChd

10 perc10hd oneclass.ae 1.00 690.97 OCCV AUMVChd

Table 51: Results from the mlR package: Nested resampling of 6 high dimensional
data sets with the autoencoder. The inner resampling loop uses the 3-fold
one-class cross validation strategy for tuning, with T0, TAUC , TAUMV Chd.
The outer resampling loop uses the 3-fold one-class cross validation strat-
egy to asses the performance (AUC, AUMVChd) of the learner. Note:
The autoencoder could not tune on all data sets due to instability of the
model.
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Task Learner mean AUC mean AUMVChd Tuning Measure

1 5perc oneclass.ae 1.00 76.77 CV No Tuning

2 10perc oneclass.ae 1.00 43.10 CV No Tuning

3 annthyroid oneclass.ae 0.65 1043.66 CV No Tuning

4 mammography oneclass.ae 0.77 499.09 CV No Tuning

5 banana oneclass.ae 0.50 1.63 CV No Tuning

6 artificial.unsup oneclass.ae 0.72 1.36 CV No Tuning

7 5perc oneclass.ae 1.00 82.84 CV Tuning with AUC

8 10perc oneclass.ae 1.00 50.38 CV Tuning with AUC

9 annthyroid oneclass.ae 0.64 529.04 CV Tuning with AUC

10 mammography oneclass.ae 0.86 145.12 CV Tuning with AUC

11 5perc oneclass.ae 1.00 81.73 CV Tuning with AUMVC

12 10perc oneclass.ae 1.00 43.40 CV Tuning with AUMVC

13 annthyroid oneclass.ae 0.67 1388.68 CV Tuning with AUMVC

14 mammography oneclass.ae 0.77 256.87 CV Tuning with AUMVC

Table 52: Results from the mlR package: Nested resampling of 6 low dimensional
data sets with the autoencoder. The inner resampling loop uses the 3-
fold cross validation strategy for tuning, with T0, TAUC , TAUMV C . The
outer resampling loop uses the 3-fold cross validation strategy to asses
the performance (AUC, AUMVC) of the learner. Note: The autoencoder
could not tune on all data sets due to instability of the model.
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