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Introduction

Despite the widespread availability and prevalence of addictive 
substances in most societies,1 only some drug users ultimately 
become dependent.2 Mechanisms that mediate the transition 
from occasional, controlled, drug use to the impaired control 
that characterizes severe dependence are still a matter of inves-
tigation.3 Over the past several decades, multidisciplinary direct 
evidence in humans have indicated that SUDs result from a con-
fluence of risk factors related to biology, cognition, learning, 
personality, genetics, and social environment.4 Despite present-
ing very different pharmacological properties, virtually all drugs 
are acutely rewarding because of their actions on a final com-
mon biological pathway, involving the dopaminergic system, 
and more precisely, the nucleus accumbens in the ventral stria-
tum.5 Through direct projections, dopaminergic system neurons 
distribute information about rewarding value of events to brain 
structures, mainly involving the prefrontal cortex, implicated in 
cognitive control, a mechanism by which previously rewarded 
but task- or goal-inappropriate responses are inhibited.6 In this 

view, addiction has been characterized in terms of deficient 
interaction between one system encoding the rewarding proper-
ties of an event (acting as a reinforcement learning signal, 
increasing the incentive salience of a reward), and another, 
implicated in future-oriented processes and regulating current 
actions in relation to long-term goal-directed motivations.7

The etiology of SUDs is more complex than this, and many 
other factors have been considered. For instance, in a 
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developmental perspective, the finding that individuals who 
first tried alcohol before age 15 years are approximately 4 
times more likely to be alcoholics than people whose first 
experience with alcohol came at age 20 or later, suggests that 
the origins of SUDs can be traced to childhood and early ado-
lescence.8 Also, a personality trait, such as impulsivity, has 
been suggested to lead to addiction, by contributing to a ten-
dency to act impulsively and seek immediate gratification, 
without weighing future consequences.9 Obviously, a multi-
tude of environmental factors have been associated with SUD 
risk, such as prenatal exposure to alcohol and nicotine, or his-
tory of abuse and maltreatment as children.10 In fact, a meta-
analysis of Bergen et al11 indicates that environmental factors 
shared by members of a family are relatively influential early in 
development, with genetic factors later becoming more influ-
ential. Many genetic studies in SUD research have aimed to 
reveal the susceptibility genes underlying the disorder. 
However, despite well-established evidence that a large part of 
the variance for the etiology of SUD is explained by genetic 
factors,12 the precise nature of the genetic basis of SUD still 
remains unclear,13 mainly because of the many intervening 
variables between genetic transcription and its behavioral con-
sequences on clinical phenotypes.14 It is in this context of 
genetic and phenotypic complexity that the concept of “endo-
phenotype” has gained extensive popularity in recent years.15

As defined by Gottesman and Gould,16 an endophenotype 
should be heritable, be present in patients displaying the pathol-
ogy, manifest in an individual whether or not illness is active, 
and be found in unaffected biological relatives of those who 
have the disorder at a higher rate than in the general popula-
tion.13 The main aim of endophenotypes is to provide a simpler, 
more proximal target to discover the biological underpinnings 
of a psychiatric syndrome.17

However, in current literature, very few putative endophe-
notypes have been proposed in SUDs. One main reason is 
surely that, unlike other areas of medicine, the imprecision of 
categorical psychiatric diagnoses can be a limiting factor in 
understanding the genetic basis of human behavioral abnor-
malities.15 But another important point is linked to the fact that 
there is not yet standardization of the methods by which candi-
date endophenotypes should be chosen and applied.15

In past years, neurocognitive and neurophysiological 
impairments that suggest functional impairments associated 
with SUDs have been proposed as endophenotypes. Because of 
their high sensitivity, ERPs have the potential to monitor brain 
electrical activity with a high temporal resolution (on the order 
of milliseconds). Therefore, it is possible, during a cognitive 
task, to observe in healthy subjects the different electrophysi-
ological components, representing the different cognitive 
stages needed to reach a “normal” performance.18 Conversely, 
a highly valuable interest in cognitive ERPs is that it is also 
possible in people presenting cognitive deficits to identify the 
electrophysiological component(s) representing the onset of a 
dysfunction, and then to infer the impaired cognitive stages.18 
On this basis, because of its large amplitude and relatively easy 
elicitation, the most studied of the cognitive ERPs, the P300 

component, has been proposed as one possible candidate.17 
However, some investigators have proposed that the utility of a 
particular endophenotype depends on the specificity it has for a 
particular disorder.19 If findings seem to suggest the potential 
validity of P300 amplitude as an endophenotype in SUDs, sim-
ilar results have also been displayed in schizophrenia, outlining 
the necessity to carry out studies in different disorders to find 
out whether the associations found are “disease-specific” or 
just reflect a common measure of brain dysfunction.17 
Therefore, it has been suggested that a multivariate endopheno-
type, based on a weighted combination of electrophysiological 
features, may provide greater diagnostic classification power 
than any single endophenotype.20 With this in mind, Price  
et al21 compared and contrasted 4 electrophysiological endo-
phenotypes—mismatch negativity (MMN), P50, P300, and 
antisaccades—and analyzed their covariance on the basis of a 
single cohort of schizophrenic patients, family members and 
controls, tested with all paradigms. Data showed that the use of 
an electrophysiological battery provided novel information on 
the characteristics of these features in schizophrenia and family 
member groups. In particular, it has highlighted the heteroge-
neity of electrophysiological features within these groups, and 
how a combination of features could serve to minimize the 
impact of such heterogeneity.21

The aim of the present article was to outline the potential 
usefulness of this kind of “combined electrophysiological pro-
cedure” applied to SUDs. We focused on four major cognitive 
ERPs with established clinical utility in psychiatric popula-
tions, MMN, P50, P300, and N400: Each of these ERP compo-
nents has been well characterized in terms of eliciting stimuli, 
technical recording methods and quantification, as well as 
operationally related to the neurocognitive process it reflects.22 
In the present article, we sought to furnish a review of ERP 
studies comparing and combining data from people with SUD, 
family members, and normal control subjects, who were 
assessed on at least one of these 4 electrophysiological fea-
tures. Indeed, because of the specific neuropharmacological 
action of different addictive substances (such as alcohol vs 
cocaine vs heroin vs marijuana), the combined observation of 
these 4 electrophysiological features for each type of SUD may 
lead to heterogeneous results, indicating the existence of differ-
ent profiles of cortical anomalies linked to different cognitive 
disturbances. The rationale for investigating multiple features 
is to show that the combination of features provides extra use-
ful information that is not available in the individual features, 
leading ultimately to a multivariate phenotype.23

Method

Literature Search Strategy

The search engine PubMed, which comprises more than 22 
million citations for biomedical literature from MEDLINE and 
life science journals, was used to track available articles (http://
www.ncbi.nlm.nih.gov/pubmed/). A simple search, performed 
in December 2012, using the general keywords “ERP and 
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Substance Abuse,” disclosed the existence of 1416 available 
articles.

Selection of Studies for Inclusion

Among these 1416 articles, we chose to focus our review on 4 
main ERP components (P50, MMN, P300, N400) and 4 main 
substances (alcohol, cocaine, heroin, cannabis). Excluded arti-
cles mainly concerned with researches on other drugs (eg, 
amphetamines, nicotine) or on addictions without any sub-
stance (eg, Internet addiction, gambling), researching drug use 
in other disorders such as Parkinson or Huntington, researches 
examining the toxic effects of solvents and organophosphorous 
compounds, animal studies, and non-English articles. 
Therefore, to select appropriate articles, each ERP component 
of interest (P50, MMN, P300, N400) and each substance (alco-
hol, cocaine, heroin, cannabis [or marijuana]) were succes-
sively used in keywords sequence. For example, the keywords 
sequence: “ERP and P50 and alcohol” was used to tag articles 
relating to the investigation of the P50 component in alcoholic 
participants. Similarly, a sequence using “ERP and N400 and 
cannabis or marijuana” is supposed to tag articles investigating 
the N400 components in people consuming cannabis (or mari-
juana). By using such a method, 319 available and appropriate 
studies, including articles dealing with chronic abuse and/or 
abstinence and/or family history of SUD, were defined. Table 1 
summarizes the number of articles reported by ERP compo-
nents for each substance. Please note that among these, only 
articles (n = 128) fully read by the author, but including the 
most recent reviews and meta-analyses, are cited and reported 
in the reference section.

Electrophysiological Endophenotypes and 
SUDs: A Review

The P50 Amplitude and Its Sensory Gating

Sensory gating is an important feature of the normally func-
tioning brain. When not operating correctly, it can contribute to 
different kinds of psychiatric illnesses by flooding the higher 
brain functions with useless information.24 The auditory P50 
component is the earliest (around 50 ms) and the smallest in 

amplitude of the auditory ERPs.25 When normal controls are 
confronted by repetitive auditory stimuli, an inhibitory mecha-
nism is activated to block out irrelevant, meaningless or redun-
dant stimuli. The inhibition of responsiveness to the repeated 
stimuli is neurophysiologically indexed by a reduced P50.26 
The P50 sensory gating effect refers to this amplitude diminu-
tion of the P50 to the second stimulus of a pair of identical 
stimuli presented with a short interstimulus interval.27 P50 gat-
ing is one of the early brain sensory processing stages linked to 
screening out and filtering mechanisms of redundant incoming 
information that can be measured, and it reflects a neuronal 
inhibitory process28 that has been proposed to represent an 
endophenotype of schizophrenia, which could ultimately con-
tribute to our understanding of the genetic basis of the 
illness.29

P50 sensory gating is a heritable neurobiological trait that 
has shown strong potential to serve as an endophenotype for 
schizophrenia. Several studies have also investigated this ERP 
component in SUDs. Reduced P50 suppression, suggesting an 
inhibitory deficit in early preattentive sensory processing, has 
been observed for acute and long-term exposure to alcohol,31 
cannabis,32 heroin,33 and cocaine,34 and seems to be highly 
heritable.31,35 However, apart from this general affliction of 
P50 amplitude suppression due to acute or long-term substance 
abuse, some differential effects have also been reported. 
Cocaine addicts markedly show P50 reduced suppression com-
pared with alcoholics, suggesting that decrement in P50 ampli-
tude differentiates cocaine abuse from alcohol abuse.36 
Moreover, although a reduced P50 suppression is still observ-
able in at least 4 weeks abstinent alcoholics,37 some amplitude 
recovery seems to occur with at least 3 weeks of cocaine 
abstinence.38

Mismatch Negativity

Mismatch negativity (also called N2a) is an ERP component, 
with a peak latency around 150 ms after stimulus onset and a 
maximal amplitude at frontal scalp locations, which is usually 
evoked by a physically deviant auditory stimulus that occurs in 
a series of frequent standard stimuli.39 This sensory-specific 
mechanism is related to preconscious detection of stimulus 
deviation that activates frontal mechanisms associated with 
conscious discrimination of stimulus deviation and with the 
orienting response.40 MMN reflects a change-detection 
response of the brain elicited even in the absence of attention or 
behavioural task, which occurs in early sensory stages of the 
information-processing stream (around 150 msec). However, 
recent findings also suggest that the transient auditory sensory 
memory representation underlying the MMN is facilitated by a 
long-term memory representation of the corresponding 
stimulus.41

The diminished amplitude/prolonged peak latency observed 
in SUD patients usually indexes decreased auditory discrimi-
nation.42 This pattern was observed in acute alcohol intoxica-
tion,43-46 in long-term alcohol abusers,47-50 as well as in opioid 
dependence51,52and long-term heavy use of cannabis.53 Deficits 

Table 1. Number of Articles Found on PubMed Web Site by 
Using Keywords Related to the Cognitive ERP of Interest (P50, 
MMN, P300, or N400) and the Considered Drug (Alcohol, Cocaine, 
Cannabis, or Heroin).

Alcohol Cocaine
Cannabis or  
Marijuana Heroin

P50 40 12 6 1
MMN 19 0 4 0
P300 183 25 20 10
N400 5 1 2 1
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in MMN parameters in subjects at high risk for alcoholism 
could index increased genetic risk for alcoholism. However, at 
this stage, conflicting results have been obtained. For instance, 
whereas Rodriguez et al54 showed no group differences in peak 
latency, peak amplitude, and mean amplitude of the MMN 
from a group of young children of alcoholics with a high- 
density family history of alcoholism and a control group in a 
dichotic listening task, Zhang et al55 showed that offspring of 
alcohol-dependent fathers manifested larger amplitudes of the 
MMN than low-risk control individuals, suggesting a deficit in 
inhibition (excessive neural excitation). Also, it should be 
noted that MMN data suggest some recovery for chronic alco-
holism, as no difference in amplitude and latency between a 
control group and a group of alcoholics displaying a minimum 
of 6 months of abstinence has been evidenced.56-58

The P300

P300 (or P3) is a long-lasting positive component that occurs 
between 300 and 700 ms after the stimulation onset.59 The P3 is 
thought to reflect premotor decisional processes, such as mem-
ory updating60 or cognitive closure61 and to involve the activa-
tion of inhibitory processes over widespread cortical areas.62 The 
amplitude of P3 is associated with stimulus probability, stimulus 
significance, task difficulty, motivation, and vigilance.63

Two ERP tasks are usually used to elicit the P300: the “odd-
ball” and the “Go-Nogo” tasks. In the oddball task, 2 different type 
of stimuli are delivered: rare oddball stimuli and frequent stimuli, 
and the subject is asked to monitor and identify infrequent “target” 
stimuli implanted within a series of rapidly presented frequent 
“standard” stimuli. This response may take the form of a verbal 
report (silent-counting task) or of an overt signal as typically but-
ton pressing. In normal individuals, the P300 occurs following the 
presentation of the target stimulus. It is a large positive response 
that is of maximum amplitude over the parietal area with a peak 
latency of about 300 to 350 ms for auditory and 350 to 450 ms for 
visual stimuli. The P300 is then produced by brain processes 
related to attention and memory operations, as it occurs from the 
initial necessity to increase focal attention during stimulus detec-
tion relative to the contents of working memory.64 An alternative 
to the oddball task to obtain the P300 is the “Go-NoGo” task, 
requiring participants to respond to one type of frequent stimulus 
(Go), but to not to another rare one (NoGo). In the NoGo task, the 
“NoGo P3” has been identified as one of the markers for response 
inhibition.65 Response inhibition involves activation of the execu-
tive system of the frontal lobes,66 and the neural basis for this 
executive system is believed to be a distributed circuitry that 
involves the prefrontal areas and anterior cingulated gyrus,67 the 
orbitofrontal cortex,68 the ventral frontal regions,69 the parietal, 
dorsal, and ventral prefrontal regions,70 and the premotor and sup-
plementary motor areas.71

More than a hundred articles on P300 amplitude and SUD 
have been published in the past decade. In alcoholics, a reduced 
amplitude and a delayed latency of P3 to task-relevant target 
stimuli has been widely observed, particularly over the parietal 
regions.72 This deficit appears in both auditory and visual tasks 

but is more pronounced in visual tasks.73,74 Although not as sig-
nificant as in males, smaller P3 amplitudes have also been 
observed in female alcoholics.75 Other studies documented not 
only low amplitude P3b components to target (Go) stimuli but 
also reduced frontally distributed P3 amplitudes to NoGo stim-
uli. These deficits observed in both Go and NoGo conditions 
suggest that both response activation and response inhibition 
are dysfunctional in alcoholic individuals.76,77 Similarly, reduced 
P3 and NoGo P3 amplitudes have been displayed in cocaine 
users,78,79 in heavy cannabis users,80 as well as in current or even 
long-term abstinent heroin addicts,81,82 whereas brothers of  
heroin-dependent males displayed an intermediate position as 
compared with matched controls, suggesting a common genetic 
subtsrate.83 Interestingly, despite this hypothesized common 
substrate, it has been shown that buprenorphine treatment (an 
alternative to methadone for maintenance treatment of opioid 
dependence, especially for patients with concurrent cocaine 
dependence or abuse) significantly reversed P3 amplitude dec-
rement after detoxification in cocaine and heroin users, whereas 
placebo-treated patients continued to show decreased P3 ampli-
tudes.84 This prompts the question of medical treatments. Some 
efficacy of medications for alcoholism and opiate addiction has 
been documented and supports the feasibility of addiction phar-
macotherapy. However, with the exception of methadone or 
buprenorphine maintenance therapy counteracting with the trait 
effect on P300 amplitudes, the effect sizes of these treatments 
are small. This emphasized the heterogeneity of addicted people 
and the need for personalized treatment approaches.85

In a multigroup study, Bauer86 used a visual oddball task to 
compare P300 amplitude among individuals characterized by 
histories of cocaine, or cocaine and alcohol, opioid dependence 
or no previous drug or alcohol dependence, and they found a 
similar amplitude decrement in all patient groups. In a recent 
meta-analysis, Euseret al13 investigated whether P300 ampli-
tude fulfills fundamental criteria to be an endophenotype for 
SUDs. Results indicated that, even if some conflicting results 
have been reported, SUDs in general are significantly associ-
ated with reduced P300 amplitudes, with a medium effect size 
of d = 0.51, suggesting that P300 amplitude reduction is strongly 
associated with SUD, and appears in those with the disorder 
(SUD+) more often than it appears in the general population 
(SUD−). Interestingly, this effect was strongly moderated by 
substance use status, as abstinent SUD patients displayed sig-
nificantly reduced P300 amplitude as compared to current sub-
stance users, suggesting that there is no spontaneous recovery of 
the neurobiological abnormalities associated with detoxifica-
tion. Some authors have proposed that as the P300 amplitude 
does not recover with abstinence for at least 32 days,87 it seems 
unlikely to be related to drinking behavior, but rather seems 
genetically influenced,72 by being present prior to the onset of 
the disease. This assumption is supported by the metal-analysis 
by Euser et al,13 as unaffected individuals with a family history 
(FH+) of SUD in general (not just for alcoholism) demonstrated 
significantly smaller P300 amplitudes than individuals without 
a FH of substance use (d = 0.28). Hence, as P300 decrements 
are strongly associated with SUD, are state-independent and can 
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be seen at rates above chance in the population in unaffected 
first-degree biologic relatives of those who have a SUD, P300 
amplitude reduction is a useful disease marker and a vulnerabil-
ity marker for SUD, but the latter only in males.13,17

However, if, independently of the kind of substance, SUDs 
are associated with decreased P3 and NoGo P3 amplitudes, 
suggesting that higher level attentional, memory, and executive 
(inhibitory) functions are hypoactive in these patients, it is 
important to outline that several studies have also disclosed 
higher P3 amplitudes as compared with controls when drug-
related cues were used (see for instance, for alcohol88-90; for 
heroin91,92; for cocaine93-95; for heavy cannabis use96,97). These 
data are highly important, as they pointed to 2 main processes 
associated with addicted behavior: (a) an automatic process 
characterized by an increase in the salience of alcohol-related 
cues, which tend to “grab the attention” of experienced drug 
users and (b) a lack of executive resources needed to inhibit the 
salient and dominant response, that is, to consume, because of 
the neurotoxic effects of repeated drug consumption and/or a 
state of vulnerability.98 As such, the imbalance of these 2 sys-
tems is believed to play a central role in the emergence and the 
maintenance of drugs consumption disorders99 and relapse.100

The N400

The label N400 was first reported by Kutas and Hillyard101 in a 
comparison of sentence-final words that formed predictable 
completions and those that were semantically incongruent. 
Whereas predictable endings elicited a broad positive waveform 
from 200 to 600 ms, the incongruent words elicited a large neg-
ative wave in this latency range.102 Overall, the data suggest that 
N400 amplitude is a general index of the difficulty of retrieving 
semantic stored conceptual knowledge associated with a word. 
This outcome depends on both the stored representation itself 
and the retrieval cues provided by the preceding context.103

As the presence of N400 is an indicator of semantic compre-
hension, many studies have applied N400 paradigms to patients 
with a variety of developmental, neurological, and psychiatric 
disorders, as, for instance, disorganized speech is a fundamental 
clinical symptom of schizophrenia.104 In SUD patients, it has 
been described that chronic alcoholics,105-106 alcoholics being 
abstinent for at least 21 days,107-108 high-risk offspring of alco-
holics,109 and long-term heavy cannabis users110 displayed 
semantic processing deficit indexed by a decreased amplitude 
and delayed latency of the N400 component. However, opioid 
addicts only disclosed delayed N400 latencies as compared with 
controls (while amplitude is spared111), and cocaine-dependent 
individuals showed intact semantic priming effect, as the repeti-
tion of related words induced a priming effect on the N400 
amplitude similar to the one observed in healthy controls.112,113

Discussion

In the present article, our aim was to furnish a review of studies 
investigating SUDs through the use of 4 main cognitive ERPs. 
Overall, data reported in this article seem to confirm the idea 

that the combined use of different ERP components may dis-
close different effects when SUDs are envisaged, confirming 
that different drugs have different sites of action that may lead 
to different neurocognitive disorders. This statement emerged 
from 4 main empirical considerations:

1. Unlike P300 and N400, studies did not find MMN 
abnormalities in alcoholics who had maintained absti-
nence for a minimum of 6 months. Moreover, conflict-
ing results have been obtained on a possible link 
between a genetic risk to develop alcoholism and a dis-
turbed MMN component.54,55 Therefore, this compo-
nent appears more as a state marker of recent alcohol 
abuse, and less determined by factors persisting 
throughout long-term recovery.113 In this view, MMN 
appeared as an interesting parameter indexing real 
abstinence in alcoholics, whereas P50 also has an inter-
mediate position, as studies suggested a partial recov-
ery through abstinence.

2. Unlike P300, P50 appears as a state marker of cocaine 
addiction, as cocaine addicts reported a normalized P50 
suppression after a period of abstinence,38 whereas this 
is not the case for P300 alteration. In this view, as for 
the MMN in alcoholism, the P50 components appear as 
an interesting parameter indexing real abstinence in 
cocaine users.

3. Cocaine addicts markedly show P50 reduced suppres-
sion compared with alcoholics, suggesting that decre-
ment in P50 amplitude differentiates cocaine abuse 
from alcohol abuse.36

4. The N400 seems to be preserved in cocaine addiction as 
compared with other substances, suggesting that as 
compared with alcohol, heroin, and cannabis, cocaine 
abuse did not affect neural sites related to semantic pro-
cessing.112,113 However, only a few studies using N400 
are currently available, so that further studies are 
needed to confirm this point.

In this way, it is important to outline that despite the general 
term of “addiction,” the neurocognitive disorders induced by 
different drugs are heterogeneous, and should be made precise 
to enhance our understanding of the pathophysiology of a spe-
cific drug and in this way of its treatment. However, even if 
these data seem highly relevant to understand the pathophysiol-
ogy related to a specific drug abuse, they are still at this stage 
preliminary. Indeed, to the best of our knowledge, apart from 
alcoholism which has been deeply investigated, and apart from 
the P300 component that has been the most studied ERP com-
ponent, some important data are still missing, preventing us 
from disposing of an exhaustive view of what are (a) the spe-
cific effects of a specific drug consumption after an acute ver-
sus a long-term abuse, (b) the existence of a recovery after 
abstinence, and (c) the genetic risk, that is, the positive versus 
negative family history of SUD (see Table 2). In this view, it is 
currently difficult to make a differential diagnosis for specific 
SUDs based on this approach, mainly because of the absence of 
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empirical data. Indeed, for instance, whereas the finding of 
MMN as a state marker of alcoholism was based on an avail-
able important set of researches, the N400 preserved in cocaine 
addiction is based on only one study, and clearly deserved fur-
ther investigation. Nevertheless, available current data are still 
valuable, as they indicated that different ERP measures 
reflected various brain functions that may be differently 
affected by various substances. Therefore, some ERP measures 
indexing some precise cognitive functions may, for instance, 
recover through abstinence for some substance, whereas others 
will cause permanent damage. More data are needed to clarify 
the situation, and a lot of work remains as further studies should 
consider various variables, such as “substance-related” vari-
ables, that is, quantity/frequency measures or length of use and 
abstinence, as well as “sample-related variables,” such as age, 
gender, ethnicity of participants.

Conclusions and Future Perspectives

The main aim of the present review was to illustrate how gather-
ing information from different ERPs may help differentiate 
among different SUD patients. At this stage, a main conclusion 
seems to emerge: Even if some evidence is already available, 
there is still a long way to go to obtain a global assessment of 
what are the precise neurocognitive impairments induced by the 
acute versus the long-term abuse of a specific drug on the abuser, 
of what are the genetic risks associated with this consumption for 
family members, and about the potential reversibility of these 
deficits after abstinence. As illustrated in Table 3, the main con-
clusions drawn in this article relied on a limited sample of arti-
cles mainly devoted to alcohol-related problems and P300 
component, whereas the number of studies investigating genetic 
risk and/or abstinence effect through the use of MMN, P50, and 
N400 on other substances is restricted. More precisely, main 
conclusions currently supported for alcohol were represented by 
32 articles, while conclusions currently supported for cocaine, 
heroin, and cannabis were, respectively, represented by 12, 11, 
and 7 main articles. Also, the P300 component was the most 

studied ERP component in SUDs. Indeed, among the 319 avail-
able studies, 183 articles focused on alcohol and P300 compo-
nent, so that “only” 136 articles were devoted to other substances 
and other ERP components of interest. These “alcohol” and 
“P300” data were illustrated in the present review by 27 articles, 
comprising an excellent meta-analysis conducted by Euser  
et al,13 whereas 15, 6, and 9 article were, respectively, related to 
the MMN, P50, and N400 in SUDs.

At the end of year 2012, around 1420 articles are available 
in the scientific literature disclosing ERP modulations in SUDs. 
Obviously, we are totally aware that, for the clarity of our mes-
sage, we restrained our analysis on a small part of these avail-
able studies (319 of 1416, ie, 22.5%). Indeed, on one hand, we 
focused our review on 4 main cognitive ERP components (P50 
gating, MMN, P300, and N400) that have been extensively 
investigated in psychiatric disorders.114-117 Besides the fact that 
technical details such as task or modality clearly influenced 
recorded amplitudes and latencies, it should be noted that other 
ERP components (such as the contingent negative variation118 
or the error-related negativity119) as well as other electrophysi-
ological tools than cognitive ERPs (such as resting EEG, ocu-
lomotor measures such as smooth pursuit and antisaccade 
paradigms), or even other brain imaging tools (eg, brain mor-
phometric measures120), have clear merits. It could be interest-
ing for other review articles to include these other points of 
view. On the other hand, we consider addiction based on the 
consumption of a substance, such as alcohol, cocaine, heroin, 
or cannabis, but other substances could also have been taken 
into account (such as,eg, ecstasy121). Recent works also showed 
clear neurocognitive disorders in addiction without substance, 
such as for instance Internet addiction122 or pathological gam-
bling.123 Moreover, besides all we have already mentioned, 
drug abusers can hardly be considered as “pure” drug abuser, as 
even tobacco and benzodiazepines have been shown to induce 
neurocognitive disorders.124,125 This relates to an important 
social problem, as polydrug use is nowadays considered as a 
peer norm: Indeed, because polysubstance abuse is rampant, 
increasingly more individuals meeting the criteria for a single 

Table 2. Summary of the Main Findings of Current Studies Having Investigated SUDs Through the Use of Cognitive ERPs, in 3 Specific 
Situations: Chronic Abuse Versus After a Period of Abstinence Versus Existence of a Genetic Risk (Positive vs Negative Family History 
[FH]).

Alcohol Cocaine Heroin Cannabis

 Abstinence: Genetic Risk: Abstinence: Genetic Risk: Abstinence: Genetic Risk: Abstinence: Genetic Risk:

ERPs Chronic Recovery? FH? Chronic Recovery? FH? Chronic Recovery? FH? Chronic Recovery? FH?

P50 ↓ Partial Positiv ↓↓ Yes Positive ↓ ? ? ↓ ? ?
Suppression  
MMN ↓ Yes Positive ? ? ? ↓ ? ? ↓ ? ?
P300 ↓ No Positive ↓ No Positive ↓ No Positive ↓ No Positive
N400 ↓ No Positive OK ? ? ↓, only latency ? ? ↓ ? ?

aBlueshaded cells outlined the main difference found between SUDs when the P50 sensory gating component is considered. Yellow shaded cells outlined 
the different effect of alcohol abstinence on these 4 ERP components. Green shaded cells outlined the different effect of cocaine abstinence on these 3 ERP 
components.Pink shaded cells outlined the main difference found between SUDs when the N400 component is considered. Please note that “?” referred to 
issues for which empirical data are still not availableat this stage.
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SUD also meet the criteria for other substances. For instance, 
there is clear evidence of widespread tobacco use (62% life-
time prevalence in 1992) and alcohol use (nearly 90%) among 
high school seniors.126 Nevertheless, it should be noted that an 
ethnographic study of the need to smoke cigarettes found that a 
major reason that adolescents smoke is not because they crave 
or desire nicotine, but rather because of their perceived need to 
use cigarettes to manage social situations and maintain their 
social connections.126Polysubstance abuse therefore clearly 
refers to a complex problem, involving both individual and 
social parameters. In this view, it is really important to mention 
that it is currently difficult to separate effects of different sub-
stances on ERP components, as for instance inclusion/exclu-
sion criteria often vary across studies, and acute effects of 
substances are not always excluded through the use of urine 
toxicology screen and breathanalyzer test. Further studies 
should clearly take these points into account. Also, drug abus-
ers often displayed psychiatric comorbidity,127 so that ERP 
modulations may be associated with the SUD and with a poten-
tial underlying personality disorder. For instance, it has been 
shown that frontal decrements of the P300 in alcohol depen-
dence are correlated with the total number of childhood con-
duct disorder and adult antisocial personality disorder 
symptoms.128In this way, and at this point, it clearly appears 
that the generalizability of results may be questioned. 
Nevertheless, we suggest that, even if preliminary, the reported 
data have the potential to highlight the pathophysiology of 
SUDs (and then to improve clinical intervention), and outline 
the urgent need in further studies to develop multisite guide-
lines to record a battery of electrophysiological measures that 
may be compared and used across studies.
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