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Preface 

This book collects together selected papers presented at the Second Interna
tional Conference on the Structure of Surfaces (ICSOS-II). The Conference 
was held at the Royal Tropical Institute in Amsterdam, The Netherlands, 
June 22—25, 1987. It was held in part to celebrate the 25th anniversary of 
the N E V A C (Netherlands Vacuum Society). The International Organizing 
Committee members were: 

M.A. Van Hove ( C h a i r m a n ) 
W.F. van der Weg ( T r e a s u r e r ) 
A M . Bradshaw 
D J . Chadi 
J. Eckert 
S. Ino 
B.I. Lundqvist 
Y . Petroff 
G.A. Somorjai 
S.Y. Tong 

J.F. van der Veen ( V i c e - C h a i r m a n ) 
D.L. Adams 
M.J . Cardillo 
J.E. Demuth 
G. Ertl 
D A . King 
J.B. Pendry 
J.R. Smith 
J. Stöhr 
X.D. Xie 

The ICSOS meetings serve to assess the status of surface structure 
determination and the relationship between surface or interface structures 
and physical or chemical properties of interest. The papers in this book 
cover: theoretical and experimental structural techniques; structural aspects 
of metal and semiconductor surfaces, including relaxations and reconstruc-
tions, as well as adsorbates and epitaxial layers; phase transitions in two 
dimensions, roughening and surface melting; defects, disorder and surface 
morphology. 

Amsterdam, Berkeley J . F . v a n der Veen 
October 1987 M . A . Van H o v e 
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Relaxation and Reconstruction on 
Ni(llO) and Pd(llO) Induced by Adsorbed Hydrogen 

W. M o r i t z * , R . J . B e h m 2 , G. E r t l 2 , G. K l e i n l e 2 , V. P e n k a 2 , W. Reimer2, 
and M. Skottke2 

1 Institut für Kristallographie, Universität München, 
D-8000 München, Fed. Rep. of Germany 

2Fritz-Haber-Institut der Max-Planck-Gesellschaft, 
Faradayweg 4-6, D-1000 Berlin 33, Germany 

T h e i n f l u e n c e of adsorbed hydrogen on the structure of the surface regions of N i 
( 1 1 0 ) and Pd ( 1 1 0 ) was derived f r o m dynamical L E E D I i V-analyses of the clean, 
( 2 x 1 ) H covered and ( 1 x 2 ) "row p a i r i n g " reconstructed surfaces as reported i n e a r l i e r 
publications (see references). I n this a r t i c l e the resulting modification of the 
oscillatory contraction I r e l a x a t i o n of the topmost interlayer spacings of the clean 
surfaces is discussed i n terms of the electrostatic forces acting between these layers. 
T h e extension of the reconstruction into deeper layers is related to the r e l i e f of lattice 
strain which is shown to be a general phenomenon for reconstructed surfaces. 

The three-dimensional structure of solids results from a delicate 
balance of different interactions and represents the minimum in free 
enthalpy integrated over all of these interactions. The truncation of the 
bulk at the surface causes the cessation of part of these interactions in 
the surface region which subsequently also necessitates a structural 
rearrangement of that region in order to again achieve the most stable 
configuration. This can lead either to a collective (vertical) motion of 
entire layers, i.e. a change in interlayer spacing (relaxation) or to 
nonuniform vertical and/or lateral displacements of atoms in the topmost 
layer(s) (reconstruction) [1], The latter also results in a larger unit 
cell at the surface. Clearly also the presence of an adsorbate can likewise 
affect these interactions and thus also the resulting Substrate structure. 

Such effects were investigated in a systematic study of the structure 
of the clean and hydrogen covered Ni(110)- and Pd(110)-surfaces. ßoth of 
these surfaces exhibit ordered superstructures upon hydrogen adsorption at 
T<180K, namely a (2x1) structure at a coverage of 0=1.0 and a (1x2) 
structure at 6=1.5 monolayers [2,3]. The structural arrangement of the 
Substrate atoms for the clean and adsorbate covered surfaces - and of the 
adsorbate atoms in the case of the (2x1) structure- was determined by 
analysis of Low Energy Electron Diffraction (LEED) intensities [4-8], 
Mechanistic details on the formation and stability especially of the high 
coverage (1x2) structure were reported in a foregoing paper [9]. 

The sample preparation followed Standard recipes, further details 
thereupon and on the experimental setup are given elsewhere [3]. Surface 
cleanliness was controlled by means of Auger Electron Spectroscopy (AES), 
work function (A$) measurements and Thermal Desorption Spectroscopy (TDS) 
upon hydrogen adsorption. 
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On both surfaces exposure to hydrogen at T<180K leads to the appearance 
of extra beams of a (2x1) structure in the LEED pattern which reach their 
maximum intensity at e=1.0 monolayer exhibiting -1 order of magnitude less 
intensity than the integral order beams. In contrast to Pd(llO), where this 
structure forms from low coverages on, i.e. by an island growth mode, on 
Ni(110) a series of ordered structures precedes the (2x1) [1,2]. All of 
them are proposed to exhibit _zig-zag chains of H atoms along the close 
packed rows of Ni atoms in [llo] direction as a common structural element 
[2]. Upon further hydrogen adsorption these extra beams decay and instead 
beams of a (1x2) structure emerge and grow in intensity. At a coverage of 
1.5 monolayers the (2x1) related beams have completely disappeared and 
those of the (1x2) have reached their maximum intensity comparable to that 
of the integer order beams. The disordered ("streaked") (1x2) structures 
formed on either surface at T>200K, which are distinctly different in their 
structural and mechanistic properties from the low temperature (1x2) 
structure [9,10], and the population of subsurface Sites at e>1.5 on 
Pd(110) even at 120K [11] are not subject of this article. 

The I/V-analysis was based on dynamical LEED calculations. The data base 
for the different analyses is summarized in Table 1. Further details on the 
calculations, structural and nonstructural parameters can be found else-
where [5,6,8,9]. In good agreement with previous studies [4,7] for the 
clean (110) surfaces of Ni and Pd (Fig. la) an oscillatory 
contraction/relaxation is found for the topmost interlayer spacings [5,8], 
which fits well into a common trend of a variety of fcc (110) surfaces 
(Table 2). Other examples include Cu, Ag, AI and Rh [14-18]. In all of 
these cases the distortion decays rapidly for going to deeper layers. 
Contraction of the order of 5-10% in the first interlayer spacing are 
followed by an expansion of 2-5% in the subsequent one. Distortions in the 
third interlayer spacing are already that small that in most cases they are 
within the incertainty of the results. Apparently there is also a tendency 
to smaller effects in 4th row elements as compared to 3

r

d row ones. 

Table 1. Data base for LEED I/V-analyses of clean and H
a
d covered (110) 

faces of Ni and Pd and reliability factors Rzj and Rp of the resulting 
Optimum structures 

normal incidence off-normal incidence Ref. 

No. No. Energy- No. No. Energy- R 2J , R p 
inte frac- range inte frac- range 
gral tional [eV] gral tional [eV] 
order order order order 
beams beams beams beams 

Ni(110) clean 10 _ 40-390 0.04,0.20 [5] 
Ni(110)-(2x1)H 3 3 40-180 0 5 40-180 0.17,0.27 [5] 
Ni(110)-(1x2)H 6 5 40-220 - - - 0.15,0.38 [6] 
Pd(110) clean 7 - 40-240 9 - 40-240 0.14,0.22 [8] 
Pd(110)-(2x1)H 3 1 40-180 13 5 40-180 0.17, 0.23/ 

0.19, 0.37 [8] 
Pd(110)-(1x2)H 5 3 40-220 - - - 0.22, 0.50 [9] 
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Fiq> 1. Perspective view and structural parameters of the clean (lxl) (a) 
and the (1x2) "row-pairing" (c) and "missing row" (d) reconstructed 
fcc(llO) surfaces and top view of the (2x1)H structure (b). 

These effects can be understood on the basis of electrostatic forces. 
There is a net transfer of electron density from the top of the WIGNER 
SEITZ cells of the surface atoms towards their (lateral) perimeter, i.e. a 
net flow of Charge from the ridges into the troughs in [110) direction 
[20,21]. Quantum mechanical forces acting on an atomic nucleus can simply 
be described by the classical electrostatic forces resulting from the 
relaxed electron Charge distribution [20]. The depletion of negative Charge 
on the ridges consequently leads to an inward motion of the atoms in the 
topmost layer. 

HO and BOHNEN have extended this description. In their picture layers 
which consist of a lattice of positive and negative point charges 
representing the ion cores and the electron density in between are stapled 
on top of each other [21]. The vertical forces between these layers are 
determined by their vertical stacking sequence. For a fcc(llO) surface this 
can be shown to result in an inward motion of the topmost layer 
(contraction) and an outward motion of the second layer (expansion) while 
in the bulk these forces cancel because of symmetry reasons. 

The rapid decay of the distortion amplitudes in deeper layers and the 
generally smaller effects in 4th

 r
ow elements (1 arger unit cell) can be 
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Table 2. Oscillatory contraction/relaxation of the topmost three inter-
layers spacings ü\2 , D23 and O34 for clean and adsorbate covered metal 
surfaces 

Surface AD 1 2 [%] AD 2 3 [%] AD 3 4 [%] Ref. 

Ni(110) -8.4+ 1.5 + 3.1 ± 1.5 [4] 
-8.5 ± 1.5 + 3.5 ± 1.5 + 1.0+ 1.5 [5] 

Ni(110) + (2x1)H -4 .5± 1.5 + 5 0 ± 1.5 0.0 ± 1.5 [5] 

Ni(110) + c(2x2)S + 10.2 -3.2 - [13] 

Cu(110) -8.2 ± 0.6 + 2.5 + 0.8 -0.9 [14] 
Cu(110) + "(1x1)" -0.8 + 2.8 [15] 

Pd(110) -6.0 + 2.0 + 1.0 + 2.0 [7] 
-6.0+1.5 + 1.0 + 1.5 0.0 ± 1.5 [8] 

Pd(110) + (2x1)H -2.2+1.5 + 2.9 ± 1.5 0.0 ± 1.5 [8] 

Ag(110) -5.7 + 2.2 - [16] 

Al(110) - 8 6 + 5.0 -1.6 ± 1.2 [17] 

Rh(110) -7.0+1.0 + 2.0 ± 1.0 [18] 
Rh(1l0) + (1x1)H -2 .0± 1.0 - [18] 

Ni(111) 0 0 [19] 
Ni(111) + (2x2)H 0 0 - [19] 

Fe(110) 0 0 [12] 
Fe(110) + (2x1)H 0 0 - [12] 
Fe(110) + (3x1)H 0 0 - [12] 

attributed to the distance dependent decrease in electrostatic forces. The 
same holds for the much smaller effects on close packed surfaces (=larger 
interlayer spacings) [12,19). A more realistic description of the lattice 
distortions would refer to the variations in atom-atom distance instead of 
those in interlayer spacing. Especially on the more open surfaces the 
former quantitiy is much smaller in numbers than the latter one (e.g. <3% 
instead of 8.5% for Ni(110)). 

For both surfaces the unreconstructed phase is most stable. Earlier 
reports in the literature on a structural transition at 220K on Pd(110) 
[22] could not be confirmed, despite of extensive experiments no indication 
of any structural transition was found between 100K and 500K. The stability 
of the clean surfaces is also evident from the high temperatures for the 
roughening transition for Ni(llO) [23]. In the case of several 5th row 
elements in contrast the symmetry break at the surface causes a (1x2) 
"missing row" reconstruction of the (110) surfaces [24-26], which is 
generally attributed to the more delocalized character of the 5d electrons 
and their consequently stronger participation in the metallic bond [27,28). 

The presence of the adlayer on the hydrogen covered surfaces - in the 
(2x1) structure at 9 = 1.0 - has a sizable effect on the distortions of the 
interlayer spacings. Most notably the contraction of the topmost interlayer 
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spacing is reduced by -40%. The next deeper spacing is hardly affected 
reflecting the rather local character of the metal-hydrogen bond. The 
adsorbate thus tends to partially offset the effect of the surface cut. 
This again can be understood in terms of electrostatic forces as described 
above. That description would also propose much weaker adsorbate effects on 
close packed surfaces, in good agreement with experimental results (Table 
2). Even a change in sign of those distortions, as observed for S/Ni(110) 
[13] appears plausible for strongly interacting Systems. 

Also in the (2x1) hydrogen covered surfaces the Substrate remains 
unreconstructed, the superstructure is created solely by the ordered 
adlayer (Fig.lb). This does not completely rule out any H induced 
distortions of the local adsorption complex, it just limits their amount to 
below the limits of detectability in the LEED analysis (~±0.03Ä). The 
adsorption site - the quasi-threefold Site aside the Short bridge in [110] 
direction - and the adsorption geometry and also the zig-zag arrangement of 
Had atoms within the (2x1) structure are identical on both surfaces. There 
are, however, subtle differences in the (indirect) adsorbate-adsorbate 
interactions mediated through the metal. The sequence of lattice gas 
structures on Ni(110) arises from repulsive interactions in [001] direction 
between adatoms on jiearest neighbor and on next-nearest neighbor close 
packed Ni-rows in [lTo] direction, while the island growth of the (2x1) on 
Pd(110) is indicative of attractive interactions between neighbored zig-zag 
rows. These interactions are, however, of the order of tenths of a 
kcal/mole, as compared to typically 65 kcal/mole for a metal-hydrogen bond. 
Even small changes in the metal-substrate interactions thus can tip the 
sign of these indirect interactions. 

For both metals the (1x2) structure at 9 =1.5 monolayers was attributed 
to a reconstruction of the Substrate rather than to an ordered adsorbate 
overlayer because of the relatively strong intensity of the extra beams 
[3]. From the excellent agreement even in smaller features especially for 
Ni our LEED analysis indeed unambiguously decided in favor of a 
reconstruction of the "row pairing" type in both cases, caused by a lateral 
displacement of neighbored rows of metal atoms in [001] direction as shown 
in Fig.lc [6]. While this assignment agrees with recent ion scattering 
results [10,29] and He diffraction experiments [2,11] it is in conflict 
with results of other studies favoring a "missing row" type geometry [30]. 
Furtheron our structure analysis gave clear evidence of a vertical 
distortion also in the second layer, i.e. the reconstruction extends deeper 
into the bulk than just affecting the topmost layer [6|. This in fact 
turned out as a critical refinement of our analysis, which only allowed to 
clearly distinguish between both types of reconstructions [6]. From the 
structural Parameters of both of these structures in Table 3 it is evident 
that again the lattice distortions are less pronounced for the case of 
Pd(110) than those in the corresponding structure on Ni(110)• The general 
relaxation pattern, however, given by the alternating vertical 
displacements within the second layer and the changes in interlayer 
spacings, remains the same. An EELS study of the phonon dispersion on the 
Ni(110)-(1x2)H structure renders further support not only for the type of 
reconstruction but also to the specific relaxation pattern of the metal 
atoms [31). 

The continuation of the reconstruction into deeper layers of the surface 
region reflects the tendency of the System to minimize distortions in the 
metal-metal coordination and bond length for a given configuration of the 
surface layer itself. Instead of an abrupt change between first and second 
layer the lattice strain is gradually relieved over several layers. This 
would predict also a lateral distortion in the third layer followed by a 
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Table 3 . Structural parameters 
(±1.5 %) of the (1x2) reconstructed 
surfaces 

Ni(110)-(1x2)H 

D 1 2 = 1.27A 

D 2 3 = 1.31 Ä 

D3z, = 1.25 Ä 

BU = 0.25 Ä 

LS = 0.30 Ä 

Pd(110)-(1x2)H 

D 1 2 = 1.37 Ä 

D 2 3 = 1.47 Ä 

D 3 4 = 1.37 Ä 

BU = 0.15Ä 

LS = 0.20 Ä 

slight buckling in the fourth layer. These latter modifications were 
neglected so far since their amount should rapidly decay as compared to the 
topmost layers and because of the reduced contribution of deeper layers to 
the LEED intensity. But further LEED calculations shall be performed to 
test this. 

Recent LEED I/V analyses likewise revealed deeper layer distortions in 
the (1x2) "missing row" reconstructions of the clean (110) surfaces of Au 
[24], Ir[25] and Pt[26]. In these cases there is a strong inward motion of 
the ridge atoms, which can also be understood in terms of the above 
electrostatic description and which is partly offset by a lateral motion of 
the second layer and downward motion of the atoms directly underneath in 
the third layer (Fig.ld). Similar behavior was also predicted from a recent 
"embedded atom" calculation of the clean (1x2) reconstructed Ir(110) 
surface [28]. Also in these structures the deeper layer atoms thus make way 
in order to gradually relieve the strain introduced by the topmost atoms. 

In summary results of a LEED structure analysis of the clean and 
hydrogen covered (110) surfaces of Ni and Pd were used to elucidate the 
effect of the adsorbate on the structure of the underlying Substrate. The 
modification of the oscillatory contraction/relaxation of the clean surface 
in the (2xl)H structures and the (multilayer) "row pairing" reconstructions 
in the (lx2)H structures are discussed in comparison with corresponding 
structures of clean surfaces. It is shown that the former can be understood 
in terms of electrostatic forces, while the reconstruction of deeper layers 
too is identified as a general feature, which serves to minimize the 
lattice strain imposed by the structure of the topmost atoms. 

We gratefully acknowledge financial support by the Deutsche Forschungs
gemeinschaft via SFB 128. 
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