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THEORY OF ELECTRON SCATTERING FROM DEFECT: STEPS

ON SURFACES WITH NON-EQUIVALENT TERRACES

W. Moritz

Institut f. Kristallographie und
Mineralogie Universitaet Muenchen
Theresienstr. 41, 8000 Muenchen 2, FRG

INTRODUCTION

One important parameter for the characterization of surfaces is the
surface roughness. The density and distribution of steps influences most
of the physical and chemical properties of surfaces. It is found, for
example, that a number of catalytic reactions at surfaces actually take
place at edge or kink sites. In the production of semiconductor devices
the flatness of surfaces or interfaces plays an essential role. Therefore
a number of techniques have been developed to investigate the topography
of surfaces either by direct imaging or by diffraction using both, X-rays
and electrons. The diffraction method is the most convenient method to
obtain information about the surface roughness on an atomic scale.

The quantities which are easily obtained form a diffraction
experiment are average quantities like terrace widths, island size
distribution functions, mean roughness depths etc., because usually a
large area of the surface is probed. The determination of the details of
the atomic geometry at and around a defect or a step usually requires a
large experimental and theoretical effort because of lack of sensitivity
to such details, and in the case of electron diffraction, because multiple
scattering effects become important.

Surface roughness, domain or island distributions cause broadening of
the diffracted beams, in general depending on the diffraction conditions
and the beam indices. In many cases only the width of the beam (full
width at half maximum) is measured as an estimate of the average island or
terrace size. However, from an analysis of the angular beam profiles the
size distribution can be obtained. This is usually done in the kinematic
approximation (single scattering) where the calculation of beam profiles
becomes especially easy. The kinematical theory is used for low energy
electron diffraction (LEED) as well as for reflection high energy electron
diffraction (RHEED). Although multiple scattering effects are in general
strong for electron diffraction, for the calculation of angular beam
profiles the kinematical theory is in many cases sufficient. The question
arises whether multiple scattering can always be neglected in evaluating
beam profiles and what effects occur. In the case of LEED with its back
scattering geometry, multiple scattering effects are short ranged and the
kinematic evaluation of angular beam profiles is usually based on that
argument. For RHEED with its high electron energies and the occurrence of
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forward scattering this argument should be less applicable. On the other
hand, large terrace sizes can be measured with a RHEED instrument using
the low index beams where the resolution is high. In such cases multiple
scattering effects should again be negligible. In general, for RHEED
multiple scattering effects are more disturbing in the beam profile
analysis than for LEED and in addition, shadowing effects occur.

Multiple scattering effects can be divided into two parts, one where
the multiple scattering path crosses a domain boundary or a step and
another part where this is not the case and multiple scattering occurs
only within one domain and within the bulk. The latter effect is in
general strong and cannot be neglected, neither for LEED nor for RHEED,
but is not relevant for the angular beam profiles if only antiphase
domains exist at the surface. Therefore it is usually not considered in
the analysis of beam profiles from stepped surfaces where all terraces are
equivalent. At surfaces with non-equivalent terraces it can be treated in
a simple quasi-kinematical approximation as will be discussed below. The
other contribution to the multiple scattering effect, where subsequent
scattering in different terraces is involved, is certainly important for
RHEED but requires a more sophisticated treatment than that given here and
is not considered in this article.

Diffraction from stepped surfaces has been described in a number of
studies dealing with one dimensional distributions [1-8]. The reference
list is not intended to be complete, an extensive list of references can
be found in the review article by Lagally et al. [9]. It is usually
assumed that the surface consist of terraces of identical scattering
properties but separated by a shift vector with vertical and lateral
components., This is in general the case for all unreconstructed surfaces
of the monoatomic lattices including the fcc and bcc metals. The (111)
surface of the diamond lattice also exhibits only one type of terrace,
whereas the (100) surface similar to the basal plane of the hcp lattice,
consists of two different terminations. Non-equivalent terraces may be
the inherent property of the lattice or the result of reconstruction. The
$i(100) surface, for example, has two rotational domains due to the four-
fold screw axis of the bulk lattice which reduces to a two-fold axis at
the surface. These two different domains exist even without a
reconstruction. Another example is the W(100) surface where the reduction
of the symmetry in a single domain is due to the reconstruction. The
four-fold symmetry of the unreconstructed surface is destroyed by atomic
displacements and two rotational domains occur in addition to the
antiphase domains. It is in such cases that the effect of multiple
scattering within one terrace cannot be neglected for the calculation of
beam profiles even for the specular beam. In a kinematic calculation,
where only single scattering is considered, the structure factor of the
specular beam would be the same for all domains. Therefore a distribution
of rotational domains would not cause a broadening of the specular beam.
This is not so in case of multiple scattering. Here the structure factors
for rotational domains can be very different. Neglecting different
structure factors at the domain boundaries (and shadowing effects etc.)
the surface can be approximately described by domains with different
structure factors. That means the surface consists of domains, or in the
case of Si(100) of terraces, which for electrons differ in the effective
scattering properties. These terraces are therefore denoted in the
following as non-equivalent terraces, though the actual structures may be
symmetrically equivalent. That the diffraction from rotational domains or
terraces has to be described by different structure factors is clearly a
multiple scattering effect and would not occur, for example, in the
specular beam with X-ray diffraction. This effect is large and depends
strongly on the diffraction conditions as can be easily seen from the
experimental rotational diagrams where large intensity variations occur.
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In the case of LEED, rotational diagrams could even be used for structure
analysis. Azimuthal dependencies of intensities and beam profiles have
also been reported in RHEED studies [10-13].

The diffraction from stepped surfaces with non-equivalent terraces.
can be easily described by a quasi-kinematic approximation by assuming
different structure factors for each kind of terrace and using the
kinematic formalism otherwise. Multiple scattering effects arising from
scattering paths within one terrace and within the bulk are included in
this way. Those multiple scattering paths crossing a step are neglected
here., This is of course an approximation but it is well applicable for
LEED at surface with large terraces and elucidates also some of the
effects observed with RHEED.

In the next chapter the diffraction from stepped surfaces will be
discussed from the very general consideration that the diffracted intensity
can be divided into two parts, one arising from long range order and the
other from short range order. The influence of the existence of two
different terraces on the intensity oscillations during layer by layer
growth is discussed briefly and a detailed calculation of beam profiles
which would be expected from a Si(100) surface with single and double
steps and a geometric distribution of terrace widths is given.

GENERAL ASPECTS OF DIFFUSE SCATTERING

The intensity scattered from a disordered structure can be divided
into two terms, a sharp reflection and a diffuse intensity. The sharp
reflection is due to the ordered lattice and exists as long range order
exists. The range is given by the resolution limit of the instrument.
The diffuse intensity arises from the fluctuation of the scattering
amplitudes along the surface,

N _ i(k-k")R
I(k,k") = | L F(k,ke 7 T2+
=1
N N _ . x
) ) [(Fn(hsk_') _F(_yk_'))(F l(l(__’k') -F (k,k'))] x (n
n=1 n'=] o= -
i(k-k")R_-R,)
% el - —"'"-n =

where R, is a two dimensional lattice vector, N is the number of unit
cells, k and k' are the wave vectors of the incoming and outgoing waves
and F(k,k') are structure amplitudes to unit cell column vaiues. F(k,k')
is the spatial average of structure amplitudes. To simplify the above
expression we assume that the structure amplitudes are slowly varying
functions of the diffraction angle. It may be further assumed that the
density of defects or steps is low so that multiple scattering effects at
the edges can be neglected. The diffracted intensity can then be
approximately written in the convenient form

I,k = [FI26m)6k) +N(TF[2- |F|2)P(k-k")
(2)
sinlewx
G(x) =
sin?nx

where P(k - k') is the Fourier transform of the pair-correlation functions
and describes the angular beam profile, h and k are the beam indices. N
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is the total number of unit cells. Eqs. 1 or 2 describe that the intensity
in the sharp reflections is due to the mean value of the scattering
amplitudes and that the integrated diffuse intensity is proportional to

the mean square deviation of scattering amplitudes.

A comment has to be made on multiple scattering effects. It should
be noted that Eq. 1 is in general valid, also for the multiple scattering
case, when for each unit cell at the lattice point R, an individual
structure factor is taken according to the individual surroundings of the
unit cell. Eq. 2 is in general not valid because it neglects all multiple
scattering effects between different terraces or islands if P(k - k') is
the Fourier-transform of the pair-correlation functions. It corresponds
to the column approximation used in high energy electron diffraction [14].
A general multiple scattering formulation has to include multi-site
correlations. The applicability of Eq. 2 is justified by the fact that
for an exponential decay of pair correlation functions, all multi-site
correlation functions will also exhibit the same exponential decay. As
long as no sharp interferences in the scattering factors occur, the beam
profiles will therefore keep the Lorentzian form as in the kinematic case.
This has also been shown analytically for one dimension [3,15]. It has to
be kept in mind further that in the kinematic limit the total integrated
intensity remains constant independent of the state of order while in the
multiple scattering theory this is in general not the case. Interference
in the multiple scattering paths can drastically enhance the intensity of
a certain beam. The intensity, of course, is then missing in other beams.
Conservation of the total diffracted intensity cannot be observed,
however, because only the backscattering part can be measured. Further-
more, strong absorptive effects depending on the diffraction conditionms
destroy the conservation of the integrated intensity.

It is often convenient to start with Eq. 2 for a qualitative
discussion of the characteristic features of the diffraction pattern. If
uncorrelated defects exist at the surface the diffuse intensity will be
uniformly distributed over the reciprocal unit cell, the angular
distribution being determined only by the angular dependence of the atomic
cross section. If the defect atoms form clusters or terraces, the diffuse
intensity will be concentrated around certain points in the reciprocal
unit cell., The intensity of the sharp reflection as well as the diffuse
intensity may vanish at certain points, i.,e., the mean value of the
scattering amplitudes vanishes for a surface with an equal distribution of
terraces at the "out of phase" condition. The mean square deviation may
also vanish, e.g., at in phase scattering from two different terraces, and
usually has its maximum when the mean value has its minimum. The
qualitative features of the diffraction patterns for the two simple cases
as shown in the Figures 1-4 follows directly from the interpretation of
Eq. 2.

The intensity and angular profile of the specular beam for a two
level system as a function of coverage and momentum transfer perpendicular
to the surface is displayed in Figures 1 and 2. It is assumed here that
the two terraces are equivalent. This case has been described in detail
and has been frequently verified experimentally [4-9] but will be shortly
repeated here for the sake of completeness. Thus the two levels have
scattering factors FI(E,E‘) and FZ(E,E') differing by a phase factor

H - 1
P (oK) = Fy (ke BTEDS
3)
[P, Gk | = [F, GokD|

where d is the shift vector between terraces. The mean value of the
scattering factor at coverage O is defined as
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Fig. 1. Model of a surface with identical terraces in two
levels and the corresponding angular profile of the
specular beam. The beam profile consists in general
of two components, a central peak and a diffuse part.
The width of the diffuse intensity corresponds roughly
to the mean terrace size.

F(k,k') = (1-0)F (k,k') +©F, (k,k") (%)
and the intensity of the central peak is

Ip = |F1|2[I—26(1—0)(1-c0521rs)] (5)

where s = (k - k')d/27 is the momentum transfer in reciprocal lattice
units. The arguments k and k' have been dropped for convenience. The
integral diffuse intensity is given by

I = 20(1-9)|F1|2(1—c0521rs). 6)
The peak intensity becomes an oscillating function in reciprocal space as
well as being a function of coverage as illustrated in Figure 2a-c. The
minimum of the peak intensity of the specular beam corresponds to half
coverage. Because at this point the diffraction from all layers should be
out of phase, the intensity of the sharp reflection has to vanish. The
remaining intensity at s = 1/2 is therefore entirely due to the maximum of
the diffuse term and corresponds roughly to the square of the average
island diameter. The width of the diffuse intensity in reciprocal units
is approximately the inverse of the island diameter, the exact value
depends on the island size distribution function. How the maximum of the
diffuse intensity behaves as a function of coverage cannot be generally
given in this qualitative discussion since this depends on the specific
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Fig. 2. Intensity oscillations as a function of
coverage and momentum transfer. Intensity of
the central peak (a) and diffuse part (b) at
different coverages. c¢: Intensity of the
central peak as a function of coverage at the
"out of phase" condition, s = 1/2, where
(k - k')d = 27s.

growth model. At each maximum of the central peak one layer is completed.
The layer growth mechanism is obviously best studied at the '"out of phase™
condition where the maximum effect on the peak intensity and diffuse
intensity is observed. From the slope of the peak intensity at full
coverage (Figure 2¢) the number of layers involved in the growth process
can be determined [16].

We consider next a surface with non-equivalent terraces and assume
also layer by layer growth. We assume further that the surface with a
complete layer consists of one terrace only, see Figure 3a. The structure
amplitudes for both terraces differ now in modulus and phase in additionm
to the geometric phase

16 (k") i¢2<5,5'>
2 2 (7)
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Fig. 3. a. Model of a surface with two non-equivalent
terraces in two levels. b. Intensity oscil-
lations of the central peak as a function of
coverage. Solid line: "out of phase" condition,
broken line: "in phase'" condition. A relation of
JF1|2 = O.S!le2 has been assumed. A phase factor
between the complex structure amplitudes F; and
F, influences only the "in phase' and "out of
phase" conditions but not the positions of maxima
and minima on the coverage scale.

The mean value of scattering amplitudes does not vanish any more at the
out of phase condition (s = 1/2) and at half coverage. Also the maxima and
minima may be shifted due to the phase difference. The peak intensity is
now given by

1= (1 —O)2|F1|2+®2IF2|2+ 20(1 - 0) |F F,|cos(2ms + A¢) (8)

and shows now a double periodicity as a function of coverage, Figure 3b.
The integral diffuse intensity is

I, = e( -l |2+ lelz-Z‘Flelcos(Zns+A¢)] 9)
and cannot show a double periodicity as a function of coverage as it
results from the mean square deviation in structure amplitudes. This case
is illustrated in Figure 4a and b. The phase difference A¢(k,k') between
the structure factors shifts the maxima and minima of the intensity of the
central peak away from the points s = 0 and s = 1/2. The same occurs for
the maxima and minima of the diffuse intensity in reciprocal space
according to Eqs. 8 and 9. It should be noted that a double periodicity
in reciprocal space for the peak intensity or angular width, which has
been observed for 8i(100) at incidence in [011] directiom [17], is due to
the existence of four levels with two rotational domains and two antiphase
domains. The simpler system which is illustrated in Figures 3 and 4
consists of only two levels.

The intensity oscillations as observed with RHEED or LEED during

layer by layer growth (see Figure 3b) exhibit a double periodicity but
still have a maximum and minimum at full coverage because the diffuse term
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Fig. 4. Intensity oscillations of the peak intensity
and the diffuse intensity for two different
terraces and half coverage as a function of
momentum transfer. |Fi|? = 0.5|F,[2. The
phase difference A¢(k,k') shifts the position
of maxima and minima in reciprocal space.

always vanishes at full coverage. The intensity oscillations as a
function of momentum transfer s and coverage O are now different. It is
interesting to note that double periodicities and azimuthal dependencies
of intensity oscillations during MBE growth of $i(100) [11,12,18] and
GaAs(100) [10,13] have been observed. From the above discussion follows
that the shift of maxima and minima in the intensity oscillations as
observed during MBE growth of Si(100) and GaAs(100) cannot be explained
only with a sequence of two different layers. The occurrence of two
maxima during the completion of only one layer has obviously to be
explained by a strongly peaked diffuse scattering at half coverage [10].
On the other hand, the fact that at certain diffraction conditions, the
intensity initially increases with increasing coverage,. as has been
observed for GaAs(100) [10], follows directly from the assumption of a
phase difference between the two scattering factors. For the $i(100)
surface the azimuthal dependence of the intensity oscillations has been
explained by multiple scattering effects involving the form of the growing
terraces [19].

At special diffraction conditions the structure factors of the two
terraces can become equal, that is when the plane of incidence coincides
with a symmetry plane transforming one terrace to the other. For the
81(100) surface this occurs for incidence in the [010)] direction. The two
terraces have then identical scattering factors for the specular beam.
This is not so at incidence in the [011] direction, for which scattering
factors are different. The dependence of the structure factor on the
azimuthal angle is specific for multiple scattering. From the above
discussion, it follows that the S$i(100) surface looks like a two level
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surface with equivalent terraces at observation in [010] and with non-
equivalent terraces in the [011] direction. The double and single
periodicities in reciprocal space at different azimuths have indeed been
observed experimentally [17,20]. Double periodicity in the oscillation of
beam widths has also been observed for 0s(0001) [21] and has been
interpreted by the existence of double steps.

It is highly unrealistic to assume that the area of the surface
illuminated by the primary beam consists of only one or two terraces,
unless the beam is very well focused. Usually a superposition of all
possible domains corresponding to the point symmetry of the crystal is
observed in the diffraction pattern. For GaAs(100) or Si(100), for
example, the two orientations of the (4 x 2) and (2 x 1) structures
respectively, are always observed unless one orientation is suppressed at
vicinal faces. For the above mentioned case of a two layer sequence this
means that the scattering amplitudes from two regions of the surface have
to be summed up with alternate layer sequences. This superposition can be
done coherently or incoherently. The latter implies that large areas
exist where one layer is completed before the next begins to grow. The
doubling of the period of the peak intensity with increasing coverage
(Figure 3b) is then removed. If a double periodicity is observed,
however, it can be concluded that only one domain is present within the
area of the incident beam. Experimentally this has been observed for
Si(100), see the article by Horn et al. in this volume, Figure 1.

The other case, coherent superposition, corresponds to the
simultaneous growth of four layers which may not be realized at steady
state conditions but may occur for the initial growth conditions. This
will not be discussed here because it depends too much on the specific
model for the initial terrace width distribution and the specific growth
model that general conclusions can be drawn from the qualitative picture
used above. The coherent superposition of the scattering amplitudes from
four levels, however, and the consequences for the beam widths in
reciprocal space will be discussed for the S$i(100) surface in some detail
in the next section.

It has been assumed up to now that the surface is flat and consists
of only two levels at least within the coherence length of the electrons
which may be as large as several u. It has been shown experimentally that
these assumptions are justified for many cases of molecular beam epitaxy
including the case of $i(100) [18]. However, the situation where the
surface is rough on an atomic scale, which means that many levels exist
within the coherence length of the beam, is also quite frequently
realized, and the consequences for the beam profiles can be shortly
mentioned. For a two level system, see Figure 1, the beam profile
consists of two components, a central peak and a diffuse part. The
intensity of the central peak vanishes only at certain points in
reciprocal space and at certain coverages. The width of the diffuse part
remains independent of the diffraction conditions and depends only on the
island distribution. As the number of different levels increases, the
intensity of the central peak decreases rapidly as a function of momentum
transfer and additional narrow diffuse features occur [4]. 1In the
limiting case of an infinite number of levels, a surface which is rough on
an atomic scale, the central peak vanishes at all diffraction conditions
except at the Bragg-condition where all levels scatter "in phase". The
width of the peak then broadens continuously. This has been shown
previously in an analysis of the beam profiles of the disordered Au(110)
surface [3). The influence of the number of levels on the beam profiles
has also been investigated in detail recently [6-8].
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ONE DIMENSIONAL MODEL WITH SINGLE AND DOUBLE STEPS

The calculation of beam profiles from one-dimensional disordered
surfaces with a geometric distribution of steps follows the methods
developed for the analysis of stacking faults in crystals [22-24] and the
application to steps on surfaces has been described in detail previously
[3-8]. Therefore the formalism will be only shortly repeated here as far
as it is necessary to include double steps. So far most calculations of
beam profiles from stepped surfaces have assumed single steps occurring at
the surface with a given probability a. That model includes the
occurrence of double steps with the probability 02 and assumes that there
is no correlation between steps. A slightly modified model where the
occurrence of a double step is given a different probability B and how
this will become visible in the beam profiles will be investigated here.
To assume a different probability for the occurrence of double steps
within the formal frame of a geometric distribution of terrace sizes is
possible because four different terraces, or four levels, are assumed.

The $1(100) surface has been found to show a preference for double
steps. Vicinal surfaces form double steps as has been concluded from the
fact that only one orientation of the reconstructed (2 x 1) unit cell
occurs [25,26]. The existence of double steps has been observed recently
in the direct image with Reflection Electron Microscopy (REM) [27] and
Transmission Electron Microscopy (TEM) [28]. The formation of double
steps has also been predicted theoretically [24]. It is therefore
interesting to investigate how double steps can be observed in the beam
profiles. The 1-D model with a geometric distribution of steps will be
applied here because of its simplicity. The Lorentzian shape of the beam
profile resulting from the exponential decay of correlations has been
found often to fit the experimental profiles sufficiently well [4]. The
exponential decay of correlations corresponds in 1-D to the geometric
distribution of terrace widths. The 1-D model has the advantage that the
beam profiles can be calculated analytically and the influence of
different parameters can be easily seen. The 1-D model is also useful for
the description of vicinal faces. It is not expected that the general
features of the diffraction patterns and beam profiles differ
substantially from the exact calculation for the 2-D model. For a
quantitative evaluation of terrace size distributions, however, a two-
dimensional calculation may be necessary.

Two limiting cases can be distinguished. First the case of a four
level surface, corresponding to the four layer sequence in the bulk of
Si(100) with two different probabilities for single and double steps.

This is the limiting case of a flat surface showing all four types of
domains. The other limiting case is a rough surface with an infinite
number of layers (at a laterally infinite surface) and continuously
broadened beams. At special diffraction conditions, that is at "in phase"
and "out of phase" scattering from single step height terraces, both cases
result in the same beam profiles. In the model discussed below a rough
surface is assumed by allowing the occurrence of up and down steps in each
level.

A model of the S8i(100) surface with the four different terraces is
shown in Figure 5. The direction of the edges is assumed to be along the
densely packed atomic rows in [011]. There are two antiphase domains and
two rotational domains in the four terraces having structure factors

L= k') &2 24 )

F (kK" F(,k') = F (kk"e ‘
i(c-kd G-k G243 )
F,(k,k')e . F (k") = F(kk'e ,
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[100]

{o1]

Fig. 5. Model of the Si(100) surface with four different terraces. The
reconstruction of the surface is neglected here. The assignment
of different structure amplitudes to the different atomic columns
as used in the text is indicated in the Figure.

a and b are the lattice vectors of the primitive planar unit cell and d,
is the layer spacing. The reconstruction of the surface is neglected here
because it is not relevant for the beam profiles of the specular beam.
Multiple scattering events involving the edge atoms as well details of the
atomic geometry near an edge are also not considered here. As mentioned
above, at incidence in [011} direction the structure factors F; and F, are
different in modulus and phase even for the specular beam as the result of
multiple scattering, while at incidence in [010] this is not the case.

The phase factors due to the antiphase relation between terrace 1 and
3, and 2 and 4 respectively, as well as the phase factors due to the
height differences are attributed here to the structure factors F, to Fy.
This is in general possible for a surface having only these four levels.
For a rough surface with-more levels this definition of the structure
factors can be also used as long as only special diffraction conditions
are considered. It is in general convenient to include the phase factors
in the correlation matrix for the description of a rough surface [3].
However, the analytical evaluation of the eigenvalues for the general case
becomes inconvenient here and the beam profiles may be calculated only for
the special diffraction conditions of '"in phase" and "out of phase"
scattering from single and double steps.

There exists two different monoatomic steps at this surface. The
atomic geometry at the edge from terrace 1 to terrace 2 differs from the
step from terrace 2 to 3. Both steps are assumed here to occur with the
same probability, for the sake of simplicity. To allow different
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coverages for the terraces 1 and 2, and 3 and 4, respectively, the step
down from terrace land 2 may occur with probability o; and the step up
from terrace 2 to 1 with probability 0. The assumption of different
probabilities for these steps up and down enables the description of a
surface with a preference for one kind of terraces. This is not
unrealistic, because it has been experimentally observed that at vicinal
faces one kind of terraces dominates [25-28]. The occurrence of double
steps is given by the probability B. The edge of double steps is normal to
the dimer rows in the (2 x 1) reconstructed surface, as it becomes visible
in the splitting of superstructure spots at vicinal surfaces [25,26].
Therefore it may be assumed for simplicity that double steps occur only
between the terraces 1 and 3. Double steps between terraces 2 and 4 would
occur in the other direction and cannot be considered in the one-
dimensional model. It is further assumed that double steps up and down
occur with equal probability which ensures that the average orientation of
the surface is in [100]. Because the probability for the occurrence of a
single step has to be divided into two contributions, the probability for
a single step downward from terrace 1 to 2, or upward from terrace 1 to 4,
is a/2. For double steps this distinction needs not to be made because
the step from terrace 1 to 3 may be upward or downward. To use the same
definition for the probabilities for single and double steps the double
step gets the probability B and not B/2. More sophisticated models of the
topography of the surface are possible, but then the evaluation of the
correlation matrix has to be done numerically. It .is further doubtful
that a more detailed picture is useful within the limits of a model of a
geometric distribution of terrace sizes.

The correlation matrix for the above described model is given by

~1 ce - o 4 ]
&y 2 8 7
(¢ [+1
72_ -0 2—2 0
P(1) = o o (10)
1 1
8 2 L -o -8 2
(¢4 o
2 2
7 0 7 I - %2
With
iPiPik(J) = P> (11)

the total area of different terraces is obtained from the left eigenvector
of the correlation matrix to the eigenvalue 1. The probabilities p being
the coverages of the corresponding terraces, are

) ) a, ) ) o "
Pl_pB—Z(a1+a2)’pZ—p‘-l_Z(otl+a2)' (12)

In this model the difference in the coverage between the two rotational
domains depends solely on the relation between the probabilities a; and a,
for the steps up and down. The double step probability only influences
the size distribution for the different terraces.

In the 1-D case the pair-correlation for all distances are easily
calculated by powers of the matrix P(1). (See also a recent review
article by H. Jagodzinski [30].) The beam profile as the Fourier
transform of the pair correlations is given by
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L “ik-k")ja

" = j . 13
I(k,k") G(k)ipipik(J)Fier (13)
With
= ] 14
Py = P(DY (14)
and
pj = u" ]y, (15)

the diffracted intensity can be written in the form

v 4 oy “N,N . -i(k-k")ia
I(k,k') =G(k)Z I I IF, Fk‘U Tlu_ e . (16)
- . . rk

i=1 k=1 r=1 ]

Defining quantities B,(k,k') and D.(k,k')

: ZUllukF(kk)F(kk)—Br(EE)+1D(kk) (17)
i=1 k=1

the beam profile is finally given by

1,4 1‘|xr|2
I(,k") = % B (k,k") 2
—"— —— _ R
r 1-2]2 feos((k-KkDa+é )+ [A ]
18
]Xr’sin((E-E')g'ﬂbr) (8
- 2Dr(k,k') 2
- - - 1
1 2])\r|cos((h §)3+¢r)+l>\r|
The eigenvalues of the matrix P(l) are in general complex
i¢
r
I le " (19)

The phase ¢, of an eigenvalue describes the position of the maximum of the
beam profile and the modulus flrl the width.

The first term in Eq. 18 describes a symmetric profile (in general
the main contribution) and the second term describes an asymmetric
correction., The origin of the asymmetric correction may be two-fold. For
a symmetric distribution of up and down steps the kinematic beam profile
is always symmetric and the quantities D,(k,k') vanish. This has been
denoted also by the term "reversible" surface [7,8]. For a vicinal plane
the probabilities of up and down steps are not equal in both directions
("irreversible surface'") and the beam profiles become asymmetric. The
second origin for an asymmetry of beam profiles is multiple scattering at
the edges. Asymmetric profiles will not be discussed here.

The quantities B.(k,k') and D.(k,k') are linear combinations of the
scattering amplltudes and may be also denoted as structure factors in the
following. It is in general convenient to calculate the structure factors
numerically by the eigenvectors of the matrix P(l) according to Eq. 17.

In simple cases, such as the two-level system discussed above, an analytic
expression showing the relation to the coverage © is useful [4-8] but for
the special case discussed here with four eigenvalues and four different
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structure factors the expression of the structure factors in terms of the
coverages becomes unhandy. However, the approximate analytic expression
of the structure factors and the eigenvalues of the matrix P(1l) can be
found for special diffraction conditions. Inspection of the eigenvalues
Xr and structure factors Br(k k') at the "in phase" (cos(k - k‘)d 1) and
"out of phase" (cos(k - k')d = " -1) diffraction condition for single steps
shows the variation of beam intensities and profiles in reciprocal space.
The four eigenvalues of the (4 x 4) matrix are:

Xk =1

Az =] - a - a,

A, =1 - =28 (20)
k“ =1-a,

The structure factors to the first two eigenvalues at in phase diffraction
from all levels are

" = 1y |2
B, (k,k') = IipiFi(g,E ) |

1 f - ' 2
B,(k,k') v p p,IF (k") -F,(kk y|2.

The other two structure factors turn out to be very small, because |F;|
|F3| and |Fy| = |F,|. Therefore the contributions from A3 and A, become
very weak and the beam profile consists of two parts, a central spike and
a broad profile. The intensity of the central spike is proportional to
the average structure factor and the diffuse part is due to the mean
square deviations, as discussed above. At the out of phase condition for
single steps the beam profile consists also of two parts with the reverse
relation between the intensities. At the out of phase condition for
double steps, cos(k - k')d = 0, the central spike and the broad profile
for A, vanish and the two broadened profiles from the two eigenvalues A3
and )\, become intensive. The relative intensities can be calculated from
Eq. 17, the analytic expression being not very instructive is not given here

The qualitative picture for incidence along [011] is given in Figure
6. The beam profiles show a double periodicity in reciprocal space
corresponding to the double step height. At the "in phase" condition for
a single step all terraces scatter in phase and the width of the diffuse
intensity shows the single terrace width. The diffuse intensity arises
from the different scattering factors of the two rotational domains. The
same occurs for the '"out of phase" condition for a single step. The
terraces 1 and 3, or 2 and 4 respectively, are then in phase and the
diffuse intensity again shows the average terrace width. In between the
diffuse intensity consists of a superposition of two Lorentzian profiles,
the narrower one showing the average width of the two terraces, and the
other one showing an additional broadening from which the probability 8
for double steps can be obtained.

The beam profiles for a surface having only single steps is shown for
comparison in Figure 7. Assuming only the one probability a for a single
step, all terraces occur with equal probability. The width of the diffuse
intensity shows also a double periodicity in reciprocal space, that is
because there are four different terraces at the surface. The double
periodicity of the beam widths has been experimentally observed at a
surface where single steps were obviously predominant [17]. The central
spike does not vanish at the "out of phase' condition for single steps
because of the different structure factors for the two rotational domains,
At (001), (003) etc. (s = 1/4, 3/4 etc.) the diffuse intensity becomes
narrower because then the average repeat distance is twice the average
terrace size. The central spike vanishes at all diffraction conditions
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Fig. 6. Schematic drawing of the variation of the angular
profiles of the specular beam for a Si(100) surface
exhibiting single and double steps. A geometrical
distribution of terrace sizes has been assumed with
equal probability a for single steps up or down, and B
for double steps. The "in phase" condition for double
steps is at (002), (004), while (002) is the "out of
phase" condition for single steps. The eigenvalue A
of the correlation matrix indicated in the Figure
determines the widths of the diffuse intensities.

The incident beam has been assumed along the [011]
direction.

except at the "in phase" and '"out of phase' condition for single steps
because a multi-level system has been assumed by allowing up and down
steps at all levels.

CONCLUSIONS

It has been shown that at surfaces with non-equivalent terraces the
intensity oscillations in reciprocal space and as a function of coverage
may differ substantially from the simple case where only antiphase domains
exist. For a quantitative evaluation of beam profiles multiple scattering
effects cannot be neglected and also the orientation of the incident beam
has to be considered. For a Si(100) surface with four different terraces
and a certain model for double steps the beam profiles have been
theoretically described. The beam profile exhibits at the "in phase' and
"out of phase" condition for single steps a diffuse intensity with a width
according to the single step probability. If double steps are present at
the surface with a considerable probability the corresponding broadening
of the beam becomes visible at a momentum transfer normal to the surface
of s = 1/4, 3/4 in reciprocal units, which the "out of phase" condition
for double steps. The profile consists then of a superposition of two
Lorentzian profiles with different widths. The probabilities for double
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Fig. 7. Same as Figure 6 for a surface having only
single steps.

steps can be determined if both components can be separated. The
existence of two diffuse components should be indicated by deviations from
the Lorentzian shape of the profile. This should be also observable

at incidence in [010] direction where the structure factors for the two
rotational domains become equal. The beam profile would then also deviate
from the Lorentzian shape.

Acknowledgement

The author would like to thank Prof. M. G. Lagally, Dr. D. Saloner,
J. Martin and D. Savage for stimulating discussions. Part of this work was
completed at the Dept. of Metallurgical Engineering, Univ. Wisconsin-
Madison with support from ONR, Chemistry Program. Financial support of
the Deutsche Forschungsgemeinschaft (SFB 128) is also gratefully
acknowledged.

REFERENCES

1. M. Henzler, Surface Sci., 22:12 (1979).

2. M. Henzler, Electron diffraction and surface defect structure, in:
"Electron Spectroscopy for Surface Analysis", H. Ibach, ed.,
Springer Verlag, Berlin-Heidelberg-New York (1977).

3. H. Jagodzinski, W. Moritz and D. Wolf, Surface Sci., 77:233 (1978).

W. Moritz, H. Jagodzinski and D. Wolf, Surface Sci., 77:249 (1979).
D. Wolf, H. Jagodzinski and W. Moritz, Surface Sci., 77:265 (1979).
D. Wolf, H. Jagodzinski and W. Moritz, Surface Sci., 77:283 (1979).

4. T. M. Lu and M. G. Lagally, Surface Sci., 120:47 (1982).

5. T. M. Lu, G.-C. Wang and M. G. Lagally, Surface Sci., 108:494 (1981).

6. J. M, Pimbley and T. M. Lu, J. Appl. Phys., 55:182 (1984).

J. M. Pimbley and T. M. Lu, J. Appl. Phys., 57:1121 (1985).
J. M. Pimbley and T. M. Lu, J. Appl. Phys., 58:2184 (1985).

190



7.
8.

9.
10.

11.

12.

13.

15.
16.
17.

18.
19.
20.
21.
22.
23,
24,
25.
26.

27.

29.

30.
31.

. S. Lent and P. I. GCohen, Surface Sci., 139:121 (1984).

R. Pukite, C. S. Lent and P. I. Cohen, Surface Sci., 161:39
(1985).

G. Lagally, D. E, Savage and M. C. Tringides, this volume, p. 139.
Zhang, J. H. Neave, P. J. Dobson.and B. A. Joyce, Appl. Phys.,
A42:317-326 (1987).

Sakamoto, N. J. Kawai, N. J. Kagakawa, K. Ohta and T. Kojima,
Appl. Phys. Lett., 47:617-619 (1985).

Sakamoto, T. Kawamura and G. Hashiguchi, Appl. Phys. Lett., 48
(1986).
Aarts, W. M. Gerits and P. K. Larsen, Appl. Phys. Lett., 48:931
(1986).

. A. Joyce, J. H. Neave, J. Zhang and P. J. Dobson, this volume,

p. 397.

. M. Cowley, "Diffraction Physics', Elsevier Science Publ.,

Amsterdam-New York (1981).
Moritz, Inst. Phys. Conf. Ser., 41:261 (1978).
Henzler, this volume, p. 193.

. A. Martin, C. E. Aumann, D. E. Savage, M. C. Tringides, M. G.

Lagally, W. Moritz and F. Kretschmar, J. Vac. Sci. Technol.
(1986).

. Horn, U. Gotter and M. Henzler, this volume, p. 463.

Kawamura, T. Sakamoto and K. Ohto, Surface Sci., 171:L409-L414
(1986).

Saloner, J. A. Martin, M. C. Tringides, D. E. Savage, C. A. Aumann
and M. G. Lagally, J. Appl. Phys., 61:2884 (1987).

Saalfeld, S. Tougaard, K. Bolwin and M. Neumann, Surface Sci.
(1986).

Sakamoto, N. J. Nagakawa, K. Ohta and T. Kojima, Appl. Phys.
Lett., 47:617-619 (1985).

B. Hendricks and E. Teller, J. Chem. Phys., 10:147 (1942).
Jagodzinski, Acta Cryst., 2:201, 208 and 298 (1949).

Kakinoki and Y. Kamura, J. Phys. Soc. Japan, 9:169, 176 (1954).
Henzler and J. Clabes, Proc. 2nd Intern. Conf. on Solid Surfaces
1974, Japan. J. Appl. Phys., Suppl. 2, Pt. 2:389-396 (1974).
Kaplan, Surface Sci., 93:145-158 (1980).

Inoue, Y. Tanishiro and K. Yagi, Japan. J. Appl. Phys., 26:L293
(1987).
Nakayama, Y. Tanishiro and K. Takanayagi, Japan. J. Appl. Phys.,
26:L280 (1987).
E. Aspnes and J. Ihm, Phys. Rev. Lett., 57:3054-3057 (1986).
Jagodzinski, Prog. Crystal Growth and Charact., 14:47-102 (1987).

191



INDEX

Adatom migration during growth, 409
Aluminium arsenide
growth by MBE using phase lock
modulated beams, 419
Antimony
grown on GaAs(110), 482
Atomic steps
effect on rocking curves, 511, 516
kinematic diffraction, 428
RHEED, 427, 504
Auger electron emission, 109, 117

Beam - Specimen interaction, 325

Channelling effects, 117
in Reflection Electron Microscopy,
274
Column approximation and REM, 268
Convergent Beam Diffraction
surface characterisation, 237
surface multislice approach, 251
Copper oxidation, 320

Defects and Disorder, 139, 201, 217
multilevel systems, 157
steps, 175, 193, 217
surface roughness and 3-D
structure, 160
two level systems, 146
vicinal surfaces, 154
Depth of focus in REM, 269
Diffuse scattering, 177
thermal diffuse scattering, 211
Dislocations
contrast in REM, 329, 332
resonance condition, 338
Disorder, 33
in Si(100)(2xn), 533
Dynamical Theory in RHEED, 29, 43,
31
resonances, 100
Electron Microscopy of Surfaces
with Low Energy Electrons, 381, 385
reflection, 77, 261, 285, 303, 317,
329, 343

Gallium Arsenide
growth by MBE, 397
growth using phase—lock modulated
beams, 419
growth of Antimony on, 482
(00l)surface, 49, 204, 318, 508
(110)surface, 72, 276, 390, 530
reflection microscopy, 84, 318
thermal annealing, 530
Germanium
(001l)surface, 217
RHEED from growing surface, 449
Gold surfaces studied by REM, 303,
315
Growth kinetics, 163, 523
annealed GaAs(110), 530
disorder of Si(100)(2xn), 533
oxygen p(2x1l) overlayers on
w(110), 527
Growth of metals on GaAs(110), 475
Growth modes, 362, 493
Growth Processes, 407. 456, 476
effect of interruption, 414

Image formation in REM, 268, 285,
296
Indium on GaAs(110), 482
Inelastic scattering in RHEED
phonons, 38
plasmons, 39
resonance conditions, 277
Interrupted Growth, 414
Ion bombardment damage, 217

Kikuchi effects, 201, 403, 437

Low Energy Electron Diffraction,
intensity oscillations, 466
Si MBE on Si(001), 463
spot profile, 467

Low Energy Electron Reflection
Microscope, 381

Low Energy Electron Scanning

Microscope, 385

539



Metal Epitaxy, Overlayers etc..
phase transformations, 1l
superstructures, 11
Ag/Si, 15, 17
Al/Si, 351
Au/Si, 9, 11, 16, 18, 349
Cu/Nb, 489
Cu/Ni, 489
Cu/wW, 489
In/Ge, 16, 17
In/GaAs, 482
Mo/W, 489
Nb/wW, 489
Ni/Si, 17
Ni/Mo, 489
Ni/W, 489
Sb/GaAs, 482
Sn/Ge, 19, 17

Microprobe RHEED, 343

Molecular Beam Epitaxy
AlGaAs, 412, 443
GaAs, 201, 397, 419, 435
Ge, 443, 449
metals, 489
Si, 355, 449, 463

surface structures during growth,

367
Monolayer scattering, 101, 103
Multilevel systems, 157

Nickel deposited onto silicon, 373
Oxidation studies of copper, 320
Penetration depth, 80, 81
Phase—lock modulated beams in MBE,

419
Photoemission

angle resolved, of surface during

growth, 452
Platinum
(111)surface, 104, 109, 213, 281
gold deposited on Pt(11ll), 285
reflection electron microscopy,
281, 303, 312, 330

Reconstructed surfaces studied with

RHEED, 3, 43

Reflection Electron Microscopy, 77,
261, 285, 303, 317, 329, 343

column approximation, 268
contrast of steps, 329
facetting, 307

image computations, 86

image formation, 267

inelastic scattering, 277, 287
resonance effects, 274

540

specimen preparation, 279
in STEM, 261, 317

in TEM, 261

surface defects, 85

Reflection High Energy Electron

Diffraction (RHEED)
apparatus, 4
atomlc steps, effect of, 427
Bloch wave formulation, 131, 270
disorder, 32, 33, 139, 201
dynamical theory, 29, 34, 43, 63,
131
elastic scattering, 30
inelastic scattering, 38, 109
intensity oscillations, 165, 208,
356, 397
apparent phase shift, 401, 492
damping, 495
diffraction conditions 399, 453,
510
dynamical theory, 492
low growth temperature, 450
metal epitaxy, 489
phase-lock modulated beams, 419
residual gas effects, 496
theoretical modelling, 501
integral formulation, 131
invariant imbedding method, 67
kinematic theory, TDS, 212
nicroprobe, 343
multiple scattering, 506
multi-slice method, 271
novel techniques, 6
oscillation/rotation patterns, 8
patterns, interpretation, 4
reconstructed surfaces, 3, 43
resonance effects, 99
rocking curves, 52, 63, 104
streaks, 241
streak shape, 208
surface structure determination,
29
symmetry, 242
thermal diffuse scattering, 211
three level system, 517
two level system, 429
vicinal surfaces, 432
xX-ray spectroscopy, 20

Resonance conditions in RHEED, 83,

929
contrast of steps in REM, 329, 331
contrast of dislocations in REM,
339
defect images, 279
dynamical theory, 100, 109, 122
reflection electron micresopy, 274

Rough surfaces by REM, 319



Scanning microprobe for REM, 385
Scanning transmission electron
microscope for REM, 317
Scanning tunnelling microscope, 391
Secondary electron emission, 109, 118
Silicide formation observed by UHV
SEM, 371
Silicon,
growth studies by RHEED, 449, 513
by low energy electron microscopy,
381, 388
by reflection electron microscopy,
303
substrate cleaning, 354
Si(001), 185
growth, 463, 513
(2xn) phase, 533
S$i(110), 389
si(11l), 5, 12, 195, 347, 352, 374
Si(111) + Au (5x1), 9, 11
Silver,
(001) RHEED calculation, 71
surfaces by REM, 303, 315
Specimen preparation for REM, 279,
292, 303, 334
Steps,
contrast in REM, 329, 335
electron diffraction, 193
electron scattering, 175
Superlattices,
RHEED oscillations during growth
of, 496

Surface defects, 85
Surface phase transformations, 11,
225
Surface reconstruction, 3
REM of the (111)Au surface, 297

Surface roughness, 160
Surface structure determination, 3,
29, 43
Surface superstructures
metal induced on Si and Ge, 13, 18
Surface wave resonance, 99, 109, 122

Time dependent changes of RHEED, 163,
208 (see also RHEED Intensity
Oscillations)

Total Reflection Angle X-ray
Spectroscopy (TRAXS), 22

Two Level Systems, 146

Ultra high vacuum electron
microscope, 289, 371

Vicinal Surfaces, 154
diffraction from, 432
GaAs and Ge, 440

X-ray spectroscopy and RHEED, 20

Staatsbibiiothcl

Mdunchen

b

541



