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Progress in Automatic Structure Refinement with LEED

W. Moritz!, H. Over2, G. Kleinle2?, and G. Ertl2

Unstitut fiir Kristallographie und Mineralogie, Universitit Miinchen,
Theresienstr. 41, W-8000 Miinchen 2, Fed. Rep. of Germany
2Fritz-Haber-Institut der Max-Planck-Gesellschaft,
Faradayweg 4-6, W-1000 Berlin 33, Fed. Rep. of Germany

It is demonstrated that conventional least squares opti-
misation techniques can be successfully used for automa-
tic structure refinement with LEED. Examples are given
for two adsorbate systems, H/Ni(110)-(1x2) and
0/Ni(110)-(2x1) where rapid convergence is reached in a
simultaneous optimisation of all structural parameters
within the top three layers.

1l.Introduction

The application of LEED as a standard technique for
surface structure determination relies critically on its
convenient use and its capability to solve complex struc-
tures. An automatic structure refinement technique, a
clear recipe to localise the best fit model and a standa-
rdised criterion to judge the quality of the result
would be most useful to make the method applicable by
the non-specialist. Clearly, this situation has not yet
been reached and, compared to X-ray diffraction, the
method is still limited. Recent developments, however,
show that considerable improvements are possible. The
computational effort, which is still a limiting factor,
can be reduced to a large extent [1-3]. Further improvem-
ents can be made introducing optimisation techniques
into the structure analysis.

Several procedures have been proposed for an automa-
tic structure refinement in which a minimisation of the
conventionally used R-factors is obtained by gradient
methods or search procedures [4-6]. The first approach

had been proposed by Powell and de Carvalho [4], who
applied a search procedure with an independent optimisa-
tion of each parameter. The method is generally applica-
ble and does not require the calculation of derivatives.
A more sophisticated method which allows the simulta-
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neous refinement of all parameters has been recently
proposed by Rous, Van Hove and Somorjai [6]. This method
is a gradient method which, in the formulation used
there, also requires R-factor calculations only and no
derivatives. A different approach, somewhat related to
optimisation methods is the direct method proposed by
Pendry, Heinz and Oed [5] in which the deviation from a
reference structure is determined in one step. The pro-
cedure can be iterated if the linear expansion from the
reference structure is not sufficient. The combination
with Tensor LEED techniques [l] makes this method very
efficient.

We propose here an alternative approach which closely
resembles the methods conventionally applied in x-ray
crystallography (7,8]. Both methods are diffraction
techniques and the structure is usually determined by
fitting model calculations to experimental data. The
only difference in the two techniques is given by the
way the experimental and theoretical data are compared,
and, of course, in X-ray diffraction, further methods
are applicable which cannot be applied with LEED. Using
X-rays a set of diffracted intensities is measured at
constant wavelength, while with LEED full spectra are
measured and fitted to theoretical curves. The fit is
usually done by adjusting the position of maxima and
minima in the spectra.

There is a-priori no obvious reason why the simple
comparison of relative intensities, which works well in
the case of X-rays, should not work in the case of LEED.
It should be noted that the position of maxima and mini-
ma in the spectra is not directly used. Measuring the
distance between experimental and calculated spectra by
the linear or quadratic deviation has the advantage that
well developed optimisation techniques can be used. With
the conventional R-factors, such as defined by Zanazzi
and Jona [9] and Pendry [10] the fit-function becomes
fairly complicated. A simpler R-factor therefore seems
to be advantageous and it has indeed been shown that an
R-factor based on the mean square deviation is well ap-
plicable and leads to reliable results. A full descrip-
tion of this method and the optimisation procedure has
been published recently [7,8]. We therefore give here a
short review of the novel structure refinement technique
and discuss some calculational improvements in detail.
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2. Optimisation procedure

The R-factors used in X-ray crystallography are either
the linear or the mean square deviation between observed
and calculated intensities at a fixed energy. The analo-
gous approach in LEED has been proposed previously as
the I(g) method [11]. The shortcomings of that method
are that a superstructure producing only weak extra
spots, such as a hydrogen superstructure, cannot be well
determined because the I(E) spectrum of the superstructu-
re spot is not properly weighted. This problem can be
overcome by evaluating each beam with a separate weight
factor. The R-factor is defined for discrete energies
and is given by

§IJixg ] cgJEhgl
R_.=2ZW : ’ ; (1)
DE g 8 g5 g oX
i i,g
ex th
c = 2 J; z J, ; W =n Zn . 2
g 1 1,8 / 1,8 g g / g8 2)

n, is the number of points per beam g. This R-factor can
be compared with the usual R-factor in x-ray diffrac-
tion. The quantity which is actually minimised in the
optimisation procedure is, however, the mean square
deviation Rp. Rpg is used for comparison with x-ray
diffraction where the unweighted linear deviation is a
standard R-factor.

To save computing time it is advantageous to choose a
step width on the energy scale which is as large as
possible. We have extensively tested which step width
can be chosen without losing precision of the result. A
step width up to 15 - 20 eV corresponding to about 10
-15 data points per spectrum seems to be completely

sufficient [9,10]. The upper limit of the step width
appears to be set by the requirement that enough points
per beam remain.

Having defined the fit-function an automatic minimi-
sation procedure can be introduced. A very efficient met-
hod has been developed by Marquardt [12]. His method
combines the advantages of the gradient method and of
the expansion method. In the gradient method the stee-
pest decent of the R-factor in the parameter space is
determined from its partial derivatives with respect to
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all variable parameters. The method works well far away
from the mimimum but  converges only slowly near the
minimum where the derivatives become very small. The
expansion method, on the other hand, works well near the
minimum and may lead to serious errors far away from the
minimum.

In the expansion method a linear approximation of the
intensity function is used

k
th
(po+ap) = (pa) + Z (————£B£>) ap. + ... (3)
=1 °Pj ]
where p, = (p1,-. pﬁ? denotes the set of structural para-
meters and I1€X, are the normalized intensities.

Eq. (3) is inserted into the minimum condition
BR/apj =0, (j=1,...k) (4)

leading to a set of linear equations

n ka1 (p) a1 ™p )
= {Ii (go)- 5 Ap.}o——g———— =0 (5
i=1 J=1 pJ J pm
which is solved by matrix inversion
ap =8 - b, (6)
o ex ( )
B o= = (1% - 1)) SRy, (7)
: ap
i=1 m
n th
dI
a.m =3 ( 3 (po) . (Po)) (8)
Mo Pj
The method of Marquardt replaces i by
Vo= a,  (1+5. - X) ¢))

jm jm jm

6jm is the Kronecker symbol. If X is large then the dia-
gonal terms dominate and the result is similiar to the
gradient method, if X\ is small the expansion method is
recovered. A is dynamically adjusted by
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kK By o1

A=c 32 (=—) () (10)
. a. . R
i=1 7ii 2

The speed of the optimisation can be influenced by the
parameter c.

3. Calculation of derivatives

The calculational effort in the procedure described
above increases linearly with the number of free para-
meters because the numerical calculation of each deriva-
tive requires an additional full dynamical calculation
per parameter at all energies. This calculation could be
done very efficiently by applying the Tensor LEED techni-
que [1]. However, an approximate calculation of derivati-
ves seemed to be easier to implement in the existing
program and turns out to be quite efficient. A linear ap-
proximation in calculating derivatives can be used.
The layer scattering matrices are approximated by:

gg
, =M, +3—85  Ap. + ... 11)
- (R,) 2 P (

where 6Mgg'/6pj can be obtained from a linear expansion
of the inverse of the propagator matrix. The definition
of the propagator matrix and the layer scattering
matrices is given in ref. 13. In a linear expansion

(1-X(po+op)) *= (1-X(2o)) ' + (1-X(pg)) L
(X(po+op) -X()) - (1-X(2)) * (12)

and only matrix multiplications are required. The inver-
se of (l-X(po)) has been already calculated for the
reference structure and can be reused again. Next an
approximate calculation of the lattice sum is desirable.
The sum over scattered waves from all atoms in the layer
within a limiting radius of about 10 - 15 interatomic
distances requires a good part of the computing time and
it is worth while considering simplifications. The latti-
ce sum of scattering paths between planes v and v’ is
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given by [13]
vv' iy
Fopom =3 Fhy(lkl-[P+p-p . [)-

Y, (9 ye TR(E+ Pypy,) (13)
Am P+pv- P,

The sperical harmonics Yy,(Qp+py-py!) do not change much

by increasing p, by Ap, and for the Hankel functions the
asymptotic behaviour at large P can be used to calculate
the derivatives for values P > Ppip. Ppipn can be set to
3-4 interatomic distances without losing precision.

dh. (z) . T bis
1 s i(z-£5 + - )
e = 1h£(z) + e

2 4

The lattice sum is therefore split up into two parts
where only one part containing the near neighborhood of
an atom needs to be recalculated. The minimum distance
Pnin can be chosen to about three interatomic distances.
The calculational effort for the lattice sum is reduced
by a factor of 15 by this approximation. The comparison
of an approximate calculation of derivatives with the
full dynamic calculation is shown in fig. 1.

The approximate calculation of derivatives turns out
to be completely sufficient for all types of parameters.

(10} beam
\ Nil10) (2x1)0
A\ ~\

N\ y }
ad / \ BU

I~

B A e
-wv‘/{kfﬁ\—\\//v\v/j\
!

(14)

INTENSITY DERIVATIVE [ arb. units]

ENERGY [eV]

Fig.l. Comparison of approximate (dashed line) and
full dynamical (solid line) calculation of derivatives.
The structure parameters are displayed in fig. 2.
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The increase of the speed of the calculation depends,
however, on the number of variable parameters and the
number of phase shifts used. In the examples shown below
with 6 and 8 variable parameters a factor of 2.5 for the
whole calculation 1is gained. Further improvements are
possible. A linear expansion similar to that described

in eq. (12) can be used for the matrices to be inverted
in the layer doubling method.

4. Application to H/Ni(110)-(1x2) and O/Ni(110)-(2x1)

To illustrate the capability of the method the results
of two adsorbate systems will be presented. Full structu-
ral results have been published recently [7,14,15], we
present here only the results of the fit-procedure using
the bulk values of Ni with a slight buckling in the
third layer as start parameters.

The structure of the H/Ni(11l0)-(1x2) 1is shown in
fig. 2; the hydrogen atoms are ignored in the calcula-
tion. The final structural parameters as well as the
result of two calculations with different start para-

meters are given in table 1. The choice of the bulk
structure as start parameter is mnot possible in this
case. The bulk structure does not produce superstructure
beams and the derivatives with respect to the superstruc-
ture parameters LS and BU vanish. The derivative vanis-
hes because at a highly symmetry point two choices of
the derivative are symmetrically equivalent. It is there-
fore necessary to shift at least one atom off its bulk
lattice position.

A second example is O/Ni(110)-(2x1l). The structural
model is shown in fig. 3. Here 6 independent parameters
within the top three layers had to be refined, assuming

LSy LS
—p—
Dy AN VA0 A A
Das T - 7~ = a 2BU,
Dy
2BV,
Dys - — — — ‘
J |
(S; LS,

Fig. 2. Model of the (1x2) structure of H/Ni(110).
Hydrogen atoms are not shown.
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Table 1. Result of a simultaneous fit of 8 structural

parameters.

The final structure was reached after
10 iterations, Rpg = 0.3

Parameter Start Value Final Value [A]
D192 1.246 1.223
Dj3 1.246 1.331
D34 1.246 1.272
D4s 1.246 1.220
LSq 0 0.30
LS3 0 0.12
BUy 0.1 0.25
BU, 0 0.02

Table 2.

parameters,

Result
the minimum R-factor was reached after 7

iterations, Rpg = 0.24

. 2BU,

a simultaneous

Fig. 3 Model of O/Ni(110)-(2x1)

fit of 6

Parameter Start Value Final Value [A]
Zox 0.3 0.224
D19 1.246 1.293
D3 1.246 1.246
LSy 0 0.011
BU, 0 0.052

that oxygen sits in the symmetric position.

shown in table 2.

points in 8 I/V spectra.

Results are

15 eV steps were used in the energy
range between 40 and 340 eV, corresponding to 106 data

In the above calculations oxygen was fixed in the sym-
metric site. A detailed study showed that a slight prefe-
rence was found for an asysmmetric site [1l4]. The search
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for an asymmetric site was stimulated by a HREELS study
[16] which showed an additional oxygen mode not compati-
ble with the assumption of a symmetric oxygen position.
This asymmetry has been neglected here, because it is
felt that from the LEED data at normal incidence alone
this asymmetry cannot be definitely concluded [14]. The
influence of a lateral shift of the oxygen atom on the
other structural parameters can be neglected.

5. Discussion

A central point in any optimisation scheme is of course
the radius of convergence within which a minimum will be
localised. That the minimum may be a local mimimum has
been already pointed out. Local minima can be avoided
only by choosing start structures on a wide grid in the
parameter space. The radius of convergence therefore
determines the grid size which must be applied to exclu-
de local minima. This same problem occurs, by the way,
in the conventional R-factor analysis. The average dis-
tance between local minima in the R-factor hyperface may
be estimated to be about 0.5 A. This results from the
simple consideration that with an average wavelength of
1.0 A an interference maximum of backward and forward
scattering between two atoms occurs again after a shift
of 0.5 A. It follows that roughly a deviation of 0.2 -
0.3 A can be tolerated in the start parameters. This is
a rough estimate, of course, and applies to parameters
parallel to Ak. Smaller distances between local minima
may also occur due to domain averaging [6].

To check the radius of convergence we performed sever-
al runs with different start values for two parameters
in the O/Ni(110)-(2x1) structure, Zgyx and Djo, keeping
all other parameters at their optimum value. The results
are shown in table 3.

It may be concluded that the radius of convergence is
about 0.2 A in agreement with the estimate considered
above. In test runs with a simultaneous fit of all para-
meters the same radius of convergence was found which
indicates that the parameters are only weakly correla-
ted.

The convergence depends also on the parameter c in
eq. 10, this has been chosen as 0.2 in the above exam-
ples. A larger value decreases the speed of the calcula-
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Table 3 Check of the radius of convergence for two
parameters.

start final Rpg No. of iteratioms
Zox 0.5 0.83 0.43 6
Zox 0.4 0.22 0.243 4
D19 1.5 1.58 0.73 1
D19 1.4 1.31 0.242 3

tion and has been found sometimes to increase the radius
of convergence because the large steps in the beginning
of the iteration process are damped.
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