Surface X-Ray and Neutron Scattering

With 120 Figures
Contents

Conference Summary
By S.K. Sinha .. 1

Part I Surface Crystallography and Phase Transitions

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface X-Ray Crystallography and STM Images</td>
<td>5</td>
</tr>
<tr>
<td>By R. Feidenhans'l (With 3 Figures)</td>
<td></td>
</tr>
<tr>
<td>Determination of Metal Adsorbed Surfaces by X-Ray Diffraction</td>
<td>11</td>
</tr>
<tr>
<td>By T. Takahashi (With 5 Figures)</td>
<td></td>
</tr>
<tr>
<td>Au Adsorption on Si(111) Studied by Grazing Incidence X-Ray Diffraction</td>
<td>17</td>
</tr>
<tr>
<td>By C. Schamper, D. Dornisch, W. Moritz, H. Schulz, R. Feidenhans'l,</td>
<td></td>
</tr>
<tr>
<td>M. Nielsen, F. Grey, and R.L. Johnson (With 3 Figures)</td>
<td></td>
</tr>
<tr>
<td>Grazing Incidence X-Ray Scattering Study of Staircases of Steps on Si(001) Surfaces</td>
<td>21</td>
</tr>
<tr>
<td>By G. Renaud, P.H. Fuoss, J. Bevk, and B.S. Freer (With 2 Figures)</td>
<td></td>
</tr>
<tr>
<td>Structure and Phase Transitions of Ge(111) and Si(111) Surfaces at High Temperatures</td>
<td>27</td>
</tr>
<tr>
<td>By K.I. Blum, D.Y. Noh, A. Mak, K.W. Evans-Lutterodt, J.D. Brock,</td>
<td></td>
</tr>
<tr>
<td>G.A. Held, and R.J. Birgeneau (With 3 Figures)</td>
<td></td>
</tr>
<tr>
<td>Anomalous Scattering Applied to Co/Si(111) Interface Structure</td>
<td>33</td>
</tr>
<tr>
<td>By N. Jedrecy, A. Waldhauer, M. Sauvage-Simkin, R. Pinchaux,</td>
<td></td>
</tr>
<tr>
<td>and V.H. Etgens (With 2 Figures)</td>
<td></td>
</tr>
<tr>
<td>X-Ray Reflectivity Studies of Au Surfaces</td>
<td>37</td>
</tr>
<tr>
<td>By D.L. Abernathy, D. Gibbs, G. Grübel, K.G. Huang, S.G.J. Mochrie,</td>
<td></td>
</tr>
<tr>
<td>B.M. Ocko, A.R. Sandy, and D.M. Zehner (With 5 Figures)</td>
<td></td>
</tr>
<tr>
<td>Crystal Truncation Rod as a Convolution of Three-Dimensional Bravais Lattice with X-Ray</td>
<td>47</td>
</tr>
<tr>
<td>Reflectivity</td>
<td></td>
</tr>
<tr>
<td>By Hoydoo You</td>
<td></td>
</tr>
<tr>
<td>Extended X-Ray Reflectivity Analysis of Si(111)7×7</td>
<td>51</td>
</tr>
<tr>
<td>By I.K. Robinson and E. Vlieg (With 3 Figures)</td>
<td></td>
</tr>
</tbody>
</table>
Critical Phenomena at Surfaces and Interfaces
By R. Lipowsky ... 57

Surface-Induced Order Observed on a Cu₃Au(001) Surface
By K.S. Liang, H.H. Hung, S.L. Chang, Z. Fu, S.C. Moss,
and K. Oshima (With 2 Figures) 65

Thermal Dynamics of (110) fcc Metal Surfaces
By K. Kern ... 69

Facet Coexistence in the Roughening Transition of Ag(110)
(With 5 Figures) ... 73

Kinetics of Ordering with Random Impurities: Pb on Ni(001)
By P.W. Stephens, P.J. Eng, and T. Tse (With 3 Figures) 79

Part II Reflectivity

Anomalous Reflectivity:
A New Method for Determining Density Profiles of Thin Films
By S.K. Sinha, M.K. Sanyal, K.G. Huang, A. Gibaud, M. Rafailovich,
J. Sokolov, X. Zhao, and W. Zhao (With 3 Figures) 85

Specular and Diffuse Scattering Studies of Multilayer Interfaces
By M.K. Sanyal, S.K. Sinha, A. Gibaud, S.K. Satija, C.F. Majkrzak,
and H. Homa (With 3 Figures) 91

Scattering Cross-Section of X-Rays and Neutrons
for Grazing Incidence onto Thin Films
By A. Haase and S. Dietrich 95

Total Neutron Reflection: Experiments and Analysis
By G.P. Felcher, W.D. Dozier, Y.Y. Huang, and X.L. Zhou
(With 3 Figures) .. 99

Profile Refinement in Neutron Reflectivity
and Grazing Angle Diffraction
By J.F. Ankner (With 1 Figure) 105

Part III Surface X-Ray Standing Waves

X-Ray Standing Wave Studies of the Liquid/Solid Interface
and Ultrathin Organic Films
By M.J. Bedzyk (With 3 Figures) 113

Glancing-Incidence X-Ray Analysis of Layered Materials
By D.K.G. de Boer and W.W. van den Hoogenhof
(With 4 Figures) ... 119
Investigation of the Heavy-Atom Distribution in a Langmuir–Blodgett Film by an X-Ray Total External Reflection and Fluorescence Study
By S.I. Zheludeva, M.V. Kovalchuk, N.N. Novikova, I.V. Bashelhanov, T. Ishikawa, and K. Izumi (With 2 Figures) 125

A Structural Investigation of an Ultra-Thin Langmuir–Blodgett Film by an X-Ray Standing Wave Excited in a LSM Substrate Under the Bragg Diffraction Condition
By M.V. Kovalchuk, S.I. Zheludeva, N.N. Novikova, I.V. Bashelhanov, M.J. Bedzyk, and G.M. Bommarito (With 1 Figure) 129

Part IV Liquid Surfaces

The Structure of Self-Assembled Monolayers
By P. Eisenberger, P. Fenter, and K.S. Liang (With 1 Figure) 135

Behenic Acid as a Structural Model for Fatty Acid Monolayers at the Air/Water Interface: An X-Ray Diffraction Study
By R.M. Kenn, C. Böhm, H. Möhwald, K. Kjaer, and J. Als-Nielsen (With 3 Figures) 139

X-Ray Scattering Studies of Organic Monolayers on Electrolytic Solutions: Arachidic Acid on CdCl₂

The Phases of Phosphatidyl Ethanolamine Monolayers

X-Ray Diffraction Studies of Fatty Acid Monolayers on the Surface of Water
By M.C. Shih, T.M. Bohanon, J.M. Mikrut, P. Zschack, and P. Dutta (With 2 Figures) 151

Protein Recognition Processes at Functionalized Lipid Surfaces: A Neutron Reflectivity Study
By D. Vaknin, J. Als-Nielsen, M. Piepenstock, and M. Lösche (With 1 Figure) 155

Neutron Reflection from Liquid/Liquid Interfaces
By T. Cosgrove, A. Eaglesham, D. Horne, J.S. Phipps, and R.M. Richardson (With 5 Figures) 159

Polymer Interfaces Analysed on a Nanometer Scale: X-Ray and Neutron Reflectometry
By M. Stamm .. 167
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron Reflection from Polymers Adsorbed at the Solid/Liquid Interface</td>
<td>T. Cosgrove, J.S. Phipps, and R.M. Richardson</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(With 1 Figure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part VI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thin Films and Multilayers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflectivity Studies of Thin Au Films and Au Bicrystals with Grain Boundaries</td>
<td>E. Burkel, M. Fitzsimmons, and M. Müller-Stach</td>
<td>181</td>
</tr>
<tr>
<td>(With 3 Figures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(With 2 Figures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glancing Angle X-Ray Techniques for the Analysis of Ion Beam Modified Surfaces</td>
<td>T.A. Crabb and P.N. Gibson (With 3 Figures)</td>
<td>191</td>
</tr>
<tr>
<td>(With 3 Figures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-Ray Bragg Reflectivity of ErAs Epitaxial Films</td>
<td>P.F. Miceli, C.J. Palmstrøm, and K.W. Moyers</td>
<td>203</td>
</tr>
<tr>
<td>(With 4 Figures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron Reflectivity Studies on Superconducting, Magnetic and Absorbing Thin Films on the Polarized Neutron Spectrometer at the Pulsed Reactor IBR-2</td>
<td>D.A. Korneev, V.V. Pasyuk, A.V. Petrenko, and E.B. Dokukin</td>
<td>213</td>
</tr>
</tbody>
</table>
Magnetic Properties of Ultrathin Co/Ag Films Investigated by Polarised Neutron Reflection
By H.J. Lauter, J.A.C. Bland, R.D. Bateson, and A.D. Johnson (With 3 Figures) 219

Depth Selective Real Structure Analysis of Semiconductor Superlattices Using Grazing Incidence X-Ray Diffraction
By U. Pietsch (With 2 Figures) 223

Investigation of Interfaces with Grazing Incidence Neutron Radiation
By V.I. Mikerov, A.V. Vinogradov, I.V. Kozhevnikov, F.A. Pudonin, V.A. Tukarev, and M.P. Yakovlev (With 5 Figures) 227

Roughness Characterization of the Surface and Interface of MBE-Grown Thin Films
By A. Stierle, A. Abromeit, K. Bröhl, N. Metoki, and H. Zabel (With 3 Figures) 233

Part VII Instrumentation and Methods

Neutron Diffraction Under Grazing Incidence: Recent Results from the Evanescent Wave Diffractometer
By K. Al Usta, H. Dosch, A. Lied, and J. Peisl (With 5 Figures) 239

Analytical Calculation of the Resolution Correction Function for X-Ray Surface Structure Analysis at High Exit Angles
By C. Schamper, H.L. Meyerheim, W. Moritz, and H. Schulz (With 2 Figures) 247

Neutron Double Crystal Diffractometry – A Precise Method for Surface Investigations
By F. Eichhorn, K.M. Podurets, S.Sh. Shilstein, and Z.N. Soroko (With 4 Figures) 251

Index of Contributors 255
Au Adsorption on Si(111)
Studied by Grazing Incidence X-Ray Diffraction

C. Schamper¹, D. Dornisch¹, W. Moritz¹, H. Schulz¹, R. Feidenhans'², M. Nielsen², F. Grey³, and R.L. Johnson⁴

¹Institute of Crystallography and Mineralogy, University of Munich, Theresienstr. 41, W-8000 München 2, Fed.Rep.of Germany
²Risø National Laboratory, DK-4000 Roskilde, Denmark

Abstract. The atomic arrangement in the three ordered structures of Au on Si(111) has been studied by in plane x-ray diffraction. The common feature in all three structures is the formation of small Au clusters and substantial distortions of the substrate. The (5x1) structure consists of a disordered (5x2) structure with partially occupied rows of Au clusters in low symmetry adsorption sites. For the (sqrt(3)xsqrt(3))R30° structure the trimer model could be confirmed. The (6x6) structure consists of trimer triplets located at different adsorption sites and is probably connected with a reconstruction of the top substrate layer.

In the range of monolayer coverages Au forms three ordered structures on Si(111). Between 0.2 and 0.8 monolayers (ML) a (5x1) structure is observed [1]. In agreement with the common usage in the literature the notation (5x1) is used here though this structure is in fact a disordered (5x2) structure as has been noticed already in earlier LEED studies [2]. Above 0.5 ML the (sqrt(3)xsqrt(3))R30° structure occurs and above 1.5 ML the (6x6) structure exists [1]. 1 ML refers to one Au atom per (1x1) substrate unit cell. These structures have been subject of a number of studies with a variety of methods but the atomic arrangement has not become clear until now. Particularly, for the (sqrt(3)xsqrt(3)) structure two different structure models have been proposed. A honeycomb structure of Au occupying high symmetry adsorption sites at a coverage of 2/3 [3] and trimer model corresponding to 1 ML coverage [4]. The (sqrt(3)xsqrt(3))R30° structure is also found in the related systems Ag/Si(111) [5] and Ag/Ge(111) [6] and the structure model presented here is closely related to these structures.

We present the structure models as determined from in-plane x-ray diffraction data. The details of the analysis are described in ref. [7,8]. All structure models are in agreement with recent scanning tunneling microscopy (STM) topographs [9-11]. Au was deposited on the clean Si(111)(7x7) surface at a rate of 0.3 ML/min and at a substrate temperature of 400° C. After preparation the sample was transferred under UHV conditions to a small x-ray diffraction chamber. X-ray diffraction data were measured at the wiggler beam line at the HASYLAB [12].

For the (5x1) structure 52 fractional order in plane structure factors were measured. Since the maxima of the Patterson function do not agree with Si-Si distances Au atoms adsorb in low symmetric positions [7,12]. The Au sites 1-5 (fig. 1) follow directly from a Patterson map however, elongations of the Patterson...
maxima indicate a disorder in the [110] direction, which can be described by split positions corresponding to a statistical occupation of two different sites. Assuming the symmetry c1/m1 the refinement of 25 free parameters, including 6 Au- and 10 Si positions, 5 occupation factors and an overall temperature factor gives a X^2 of 1.7 [7].

The distance of 2.9 Å between the Au sites 1 and 2 agrees with the nearest neighbour distance in the bulk Au. The split positions correspond to the superposition of the (5x2) unit cells into a single (5x1) unit cell. Two distances between Au atoms occur along the rows 1 and 2: 3.10 Å and 4.58 Å. The smaller value comes close to the bulk value of Au. In agreement with STM topographs [9] we find an irregular sequence of small Au clusters along the [110] direction (fig. 1).

14 fractional order structure intensities are used to elaborate the $(\sqrt{3x}/3)$ structure including a substrate distortion (fig. 2). Only the trimer model [4] is consistent with the Patterson map as has been reported earlier [8]. The interatomic Au-Au distance of 2.7 Å is slightly smaller than the bulk value. Au Atoms are located near H3 sites, assuming that Si atoms of the top layer are shifted. The registry with the bulk remains uncertain because only superstructure reflections were evaluated. The deviation between the coverage for the $(\sqrt{3x}/3)$-structure found in experiments [1] and the coverage for the trimer model (1 ML) probably results from missing trimers.

The Patterson function for the (6x6) structure was calculated from 139 fractional order intensities (fig. 3). Two main features of the Patterson function have to be discussed. First, it is evident that all interatomic vectors of the $(\sqrt{3x}/3)$ structure appear again in the (6x6) structure (peaks 1-3 in fig. 3). Consequently Au trimers remain the structural element of the (6x6) reconstruction. Secondly no peaks in the middle of the unit cell are observed (indicated by A and B in fig. 3). Therefore the double of a translation vector of the $(\sqrt{3x}/3)$ unit cell in all directions is missing. This means that the (6x6) structure cannot be explained by a simple superstructure of the $(\sqrt{3x}/3)$ reconstruction. Only an arrangement of trimers where the occurrence of three Au atoms in a row is avoided can explain the Patterson function. The structure (fig. 3) has a low symmetry leading necessarily to the existence of 6 twin domains [8]. The coverage of 0.75 ML is well below the experimentally observed coverage of 1.
Fig. 2: Patterson function of the \((\sqrt{3} \times \sqrt{3}) \) structure (left panel). The irreducible unit cell is marked by dashed lines. In the right panel the trimer model with the 1st distorted Si layer is outlined. H3-like adsorption sites for the Au atoms are assumed.

Fig. 3: Patterson function for the (6x6) superstructure (left panel). The shaded area corresponds to a \((\sqrt{3} \times \sqrt{3}) \) unit cell. The right panel illustrates a single twin domain of the (6x6) structure.

ML or above. We explain the discrepancy by additional Au atoms either adsorbed in sites between the trimers or diffused into subsurface sites. These Au sites could not be identified in the patterson map and have therefore been left out in the analysis.

Acknowledgement. This work was supported by the Bundesminister für Forschung und Technologie Grant No. 05390CAB and No. 05464IAB8 and the Danish National Research Council. We thank Prof. D. Wolf and Dr. H.L. Meyerheim for useful discussions and the staff of HASYLAB for their help.
References