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Abstract

This paper deals with the problem of estimation and prediction in a com-
pound Poisson ECOGARCH(1, 1) model. For this we construct a quasi
maximum likelihood estimator under the assumption that all jumps of the
log-price process are observable. Since these jumps occur at unequally spaced
time points, it is clear that the estimator has to be computed for irregularly
spaced data. Assuming normally distributed jumps and a recursion to esti-
mate the volatility allows to define and compute a quasi-likelihood function,
which is maximised numerically. The small sample behaviour of the esti-
mator is analysed in a small simulation study. Based on the recursion for
the volatility process a one-step ahead prediction of the volatility is defined
as well as a prediction interval for the log-price process. Finally the model
is fitted to tick-by-tick data of the New York Stock Exchange. (JEL: C32,
C51, C53)
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1 Introduction

Discrete time GARCH type processes have become very popular in financial economet-
rics to model returns of stocks, exchange rates and other series observed at equidistant
time points. They have been designed (see Engle (1982) and Bollerslev (1986)) to cap-
ture so-called stylised facts of such data, which are e.g. volatility clustering, dependence
without correlation and tail heaviness. A further characteristic is that stock returns are
negatively correlated with changes in the volatility, i.e. that volatility tends to increase
after negative shocks and to fall after positive ones. This effect is called leverage effect
and can not be modeled by a GARCH type process without further extensions. This
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finding led Nelson (1991) to introduce the exponential GARCH(p, q) process, which is
able to model this asymmetry in stock returns. This process X is defined as

Xi = σiǫi

log(σ2
i ) = µ+

p∑

k=1

βkf(ǫi−k) +

q∑

k=1

αk log(σ2
i−k) ,

where p, q ∈ N, µ, α1, . . . , αq, β1, . . . , βp ∈ R and αq 6= 0 , βp 6= 0. For stationarity it
is assumed that the autoregressive polynomial α(z) := 1 − α1z − · · · − αqz

q and the
moving average polynomial β(z) := β1 + β2z + · · ·+ βpz

p−1 have no common zeros and
that α(z) 6= 0 on {z ∈ C | |z| ≤ 1}. The errors (ǫi)i∈Z is an i.i.d. sequence with
E(ǫ1) = 0 and Var(ǫ1) = 1. Finally f(·) is a known function such that E(|f(ǫi)|) < ∞
and Var(f(ǫi)) < ∞. To achieve an asymmetric relation between the stock return Xi

and the future volatility σ2
i+1, f(ǫi) must be a function of the magnitude and the sign

of ǫi as noted by Nelson (1991). Therefore he proposed the following function:

f(ǫi) := θǫi + γ[|ǫi| − E(|ǫi|)] ,

with real coefficients θ and γ.
The availability of high frequency financial data and the need to analyse such irreg-

ularly measured time series calls for stochastic models in continuous time which mimic
the behaviour of financial time series models in discrete time. Different kinds of con-
tinuous time models have been proposed to model the stylised facts of financial data
and which can be extended to describe a leverage effect, as e.g. the stochastic volatility
model of Barndorff-Nielsen and Shepard (2001) or the continuous time GARCH(1, 1)
process defined in Klüppelberg, Lindner and Maller (2004). Only recently has been
defined a continuous time model by Haug and Czado (2007), the ECOGARCH(p, q)
process, which aims at being the natural continuous time analogue of the discrete time
EGARCH model. The only driving source of this process is a zero mean Lévy process,
similar to the COGARCH(1, 1) process of Klüppelberg, Lindner and Maller (2004).
Recall that any Lévy process L := (Lt)t≥0 on R has a characteristic function of the
form E(eiuLt) = exp{tψL(u)} , t ≥ 0, with

ψL(u) := iγLu−
τ 2
L

2
u2 +

∫

R

(eiux − 1 − iuxχ(−1,1)(x))νL(dx) , u ∈ R,

where τ 2
L ≥ 0, γL ∈ R, the measure νL satisfies νL({0}) = 0 and

∫
R

min(x2, 1)νL(dx) <
∞ and χA(·) denotes the indicator function of the set A ⊂ R. The measure νL is called
the Lévy measure of L. For more details on Lévy processes we refer to Sato (1999) or
Applbaum (2004).

Haug and Czado (2007) consider a zero mean Lévy processes L defined on a prob-
ability space (Ω,F , P ) with jumps ∆Lt := Lt − Lt−, which implies that the Lévy-Itô
decomposition (see e.g. Theorem 2.4.16 in Applbaum (2004)) of L is given by

Lt = Bt +

∫

R\{0}

xÑL(t, dx) , t ≥ 0,
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where B is a Brownian motion with variance τ 2
L and ÑL(t, dx) = NL(t, dx) − tνL(dx),

t ≥ 0, is the compensated random measure associated to the Poisson random measure

NL(t, A) = #{0 ≤ s < t; ∆Ls ∈ A} =
∑

0<s≤t

χA(∆Ls), A ∈ B(R \ {0}),

on R+ × R \ {0}, which is independent of B.

The exponential continuous time GARCH(1, 1) process is then defined as follows:

Let L = (Lt)t≥0 be a zero mean Lévy process with Lévy measure νL such that∫
|x|≥1

x2νL(dx) <∞. Then the exponential COGARCH(1, 1) process G, abbreviated to

ECOGARCH(1, 1), is defined as the stochastic process satisfying,

dGt := σt−dLt, t > 0, G0 = 0, (1)

where the log-volatility process log(σ2) = (log(σ2
t ))t≥0 is the CARMA(1, 0) process (see

e.g. Brockwell (2001)), with mean µ ∈ R and state space representation

log(σ2
t ) := µ+ b1Xt, t ≥ 0 ,

dXt = −a1Xtdt+ dMt , t > 0 ,

with a1 ∈ R+ and b1 ∈ R. Here X0 ∈ R is independent of the driving Lévy process L
and

Mt :=

∫

R\{0}

h(x)ÑL(t, dx) , t > 0, (2)

is a zero mean Lévy process with h(x) := θx+ γ|x| and parameters (θ, γ) ∈ R2 \ {0}.

While it is of high theoretical interest to be able to design a continuous time process
which possesses the desired stylised facts including a leverage effect, it is of paramount
practical interest to be able to fit such a model to real data and to facilitate prediction
of future volatility and log returns. To be able to perform such parameter estimation
and prediction we restrict in this paper to the case of a compound Poisson process
as driving Lévy process for a ECOGARCH(1, 1) process. We follow a quasi maximum
likelihood approach for parameter estimation. The quasi maximum likelihood estimator
(QMLE) will be derived under the assumption of full observations of the sample path,
i.e. we assume that we are able to observe every jump. Since the jump points are a
series of unequally spaced time points it is clear that the estimation can and in fact
should be done for irregularly spaced data.
The paper is now organized as follows. In Section 2 we introduce the quasi maximum
likelihood estimator for the parameters of the process. Section 3 presents a simulation
study to investigate the small sample behavior of the QMLE. In Section 4 we show how
to compute one-step ahead predictions for the volatility and a prediction interval for
the one-step ahead log-price process. An analysis of General Motors stock log-prices is
done in Section 5. Concluding remarks are made in Section 6.
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2 Quasi MLE in the compound Poisson ECOGARCH(1, 1) model

We consider an ECOGARCH(1, 1) process driven by a compound Poisson process L
with Lévy symbol

ψL(u) =

∫

R

(eiux − 1)λF0,1/λ(dx) ,

where F0,1/λ(·) is a distribution function with mean 0 and variance 1/λ. Hence the
mean and variance of L are independent of λ and given by E(Lt) = 0 and Var(Lt) = t,

respectively. This means L has representation Lt =
∑Jt

k=1 Zk, t > 0, L0 = 0, where
(Jt)t≥0 is an independent Poisson process with intensity λ > 0 and jump times (tk)k∈N.
The Poisson process J is also independent from the i.i.d. sequence of jump sizes (Zk)k∈N,
with distribution function F0,1/λ. The Lévy process M , defined in (2), is in this case
also a compound Poisson process and given by the following expression

Mt =

Jt∑

k=1

[θZk + γ|Zk|] − γλKt , t > 0,

with K =
∫

R
|x|F0,1/λ(dx) (cf. also Example 3.5 in Haug and Czado (2007)). The

log-volatility process at time t ≥ 0 is then of the form

log(σ2
t ) = µ+ b1Xt = µ+ b1e

−a1tX0 +

∫ t

0

b1e
−a1(t−s)dMs

= µ+ b1e
−a1tX0 +

Jt∑

k=1

b1e
−a1(t−tk)[θZk + γ|Zk|] − γλK

b1
a1

(1 − e−a1t)

and from (1) it follows that the log-price process is given by

Gt =

Jt∑

k=1

σtk−Zk , t > 0, G0 = 0 ,

with jump times tk, k ∈ N.

We assume now that we observe G at n consecutive jump times 0 = t0 < t1 < · · · <
tn < T , n ∈ N, over the time interval [0, T ]. The state process X has then the following
autoregressive representation

b1Xti = b1e
−a1∆tiXti−1

+

Jti∑

k=Jti−1
+1

b1e
−a1(ti−tk)[θZk + γ|Zk|]

−γλ
∫ ti

ti−1

b1e
−a1(ti−s)Kds

= b1e
−a1∆tiXti−1

+ b1θZi + b1γ

(
|Zi| −

λK

a1
(1 − e−a1∆ti)

)
, (3)
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where ∆ti := ti − ti−1, i = 1, . . . , n. Here we used Jti−1
+ 1 = Jti = i. This implies that

the left-hand limit of the log-volatility process at the jump times 0 = t0 < t1 < · · · < tn
is given by

log(σ2
ti−

) = µ+ b1e
−a1∆tiXti−1

− b1γ
λK

a1

(1 − e−a1∆ti) . (4)

Since b1 serves only as a scaling coefficient it will be set equal to one for identifiability
reasons from now on. The observations of the log-price process are given by

Gti =

Jti∑

k=1

σtk−Zk = Gti−1
+ σti−Zi . (5)

Hence the return at time ti is equal to G∆ti
ti := Gti −Gti−1

= σti−Zi .
The parameter estimation is done in two steps. The rate λ of the Poisson process

J can be estimated given only the jump times ti, therefore this is done in a first step.
Since we observe the total number n of jumps for the Poisson process J over T intervals
of length one the MLE of λ is given by

λ̂n :=
n

T
.

To estimate the remaining parameters ϑ := (a1, θ, γ, µ) we use similar ideas as in
the discrete time case to solve the parameter estimation problem. Quasi maximum
likelihood estimation in discrete time conditionally heteroscedastic time series models
is e.g. explained in Straumann (2005).

Consider the following decomposition of the conditional log-likelihood given the initial
value X0

log ρϑ(G∆t1
t1 , . . . , G∆tn

tn |X0) =
n∑

i=1

log ρϑ(G∆ti
ti |G∆ti−1

ti−1
, . . . , G∆t1

t1 , X0) ,

where we assume that G∆ti
ti given G

∆ti−1

ti−1
, . . . , G∆t1

t1 , X0 is conditionally normal dis-

tributed with mean zero and variance σ2
ti−
/λ. This implies that the conditional log-

likelihood has the representation

log ρϑ(G∆t1
t1 , . . . , G∆tn

tn |X0) = −n
2

log(2π) − 1

2

n∑

i=1

(
log(σ2

ti−
/λ) − (G∆ti

ti )2

σ2
ti−/λ

)
. (6)

Since the volatility is unobservable, (6) can not be evaluated numerically. Therefore we
need an approximation of the state process X, which together with (4) gives estimates
of σ2

t1−, . . . , σ
2
tn−. Given parameters ϑ and λ, an approximation of the recursion (3) is

used to compute estimates of the state process X by

X̂ti(ϑ, λ) = e−a1∆tiX̂ti−1
(ϑ, λ) + θ

G∆ti
ti

σ̂ti−(ϑ, λ)
+ γ

(
|G∆ti

ti |
σ̂ti−(ϑ, λ)

− λK̂∆ti

)
, (7)
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i = 1, . . . , n, where K̂ :=
√

2
πλ

= E(|W |), W ∼ N(0, 1/λ).

Here we used (1− e−z) ≈ z for z small and
G

∆ti
ti

bσti−
(ϑ,λ)

approximates the innovation Zi.

The recursion needs a starting value X̂0. We set X0 equal to the mean value of the
stationary distribution of X, which is zero. (7) can be understood as the log-volatility
description in a discrete time EGARCH(1, 1) model for irregularly spaced data. We
work with this approximation since in our numerical experiences it provided better
results than (3). This is due to the independence of a1 from the part compensating the
absolute jumps, which is approximated by the Gaussianity assumption. If we would use
(3) the optimisation with respect to a1 tries to account for the approximation, which
results in convergence problems and biased estimates of the autoregressive parameter
e−a1 .

Recursion (7) together with expression (4) provides then estimates of the volatility
given by

σ̂2
ti−

(ϑ, λ) := exp(µ+ e−a1∆tiX̂ti−1
(ϑ, λ) − γλK̂∆ti) , i = 1, . . . , n.

Based on the approximation of the volatility we define the quasi log-likelihood func-

tion for ϑ given the data G
∆ := (G∆t1

t1 , . . . , G∆tn
tn ) and the MLE λ̂n by

L(ϑ|G∆, λ̂n) := −1

2

n∑

i=1

log(σ̂2
ti−

(ϑ, λ̂n)) −
1

2

n∑

i=1

(G∆ti
ti )2

σ̂2
ti−(ϑ, λ̂n)/λ̂n

. (8)

Observe that L(ϑ|G∆, λ̂n) does not contain the constant n
2

log(λ̂n/2π), since it does
not affect the optimisation with respect to ϑ.

Maximising the log-likelihood function (8) with respect to ϑ over the parameter space
Θ := R × R+ × R2 yields QML estimates

ϑ̂n := arg max
ϑ∈Θ

L(ϑ|G∆, λ̂n) (9)

of ϑ. As a byproduct we get a parametric estimator of the volatility. If we first

determine the QMLE ϑ̂n in (9) then we can substitute ϑ̂n into (7) and get estimates

σ̂2
ti−

(ϑ̂n, λ̂n) := exp(µ̂n + e−ban
1 ∆tiX̂ti−1

(ϑ̂n, λ̂n) − γ̂nλ̂nK̂∆ti) (10)

of the volatility at the jump times t1, . . . , tn based on ϑ̂n = (ân
1 , θ̂n, γ̂n, µ̂n).

3 Simulation study

The performance of the QMLE for small samples will be investigated in a simulation
study. In all of the following simulation cases we will consider a compound Poisson
ECOGARCH(1, 1) observed at all jump times ti over the time interval [0, 1 500]. The
estimates will be computed for 1 000 independent replications in each case.
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In all of the following cases we have taken the parameter a1 equal to 0.1, the intensity
λ equal to 2 and the mean µ of the log-volatility process will be equal to −3. This
implies that we expect per replication 3 000 observations. The leverage parameter θ and
γ will vary over the examples. In most of the cases θ will be negative and γ positive,
i.e. we model the leverage effect as observed in stock price data. If −γ < θ < 0,
this corresponds to the case where a positive shock in the return data increases the
log-volatility process less than a negative one of the same magnitude. For θ < −γ < 0
a positive shock decreases the log-volatility, whereas a negative one increases it. The
last example will illustrate the case where a positive shock in the log-price process
increases the log-volatility process more than a negative one of the same size and we
denote it as non leverage case. For a more detailed discussion of the leverage effect see
also Section 3.1 in Haug and Czado (2007). For the distribution of the innovations Zi

we will consider two different cases.

3.1 Leverage case with Gaussian jump distribution

First the innovations Zi are normally distributed with mean 0 and variance 1/λ. We

computed the empirical mean (m̂ean), relative bias (r̂bias), and mean squared error

(M̂SE) for all parameter estimates based on 1 000 independent replications. The cor-
responding results are summarised in Table 1.

In the leverage case we observe a satisfying performance of the QMLE. The relative

bias of â1, θ̂ and γ̂ varies between −0.0361 and 0.0211 over the different parameter
sets. For the mean µ̂ of the log-volatility process a larger relative bias is observed. It
also increases for larger values of γ. Moreover we seem to underestimate µ consistently,

shown by a negative bias in each case. The quality of the separately estimated λ̂
remains of course unchanged over all parameter settings.

The goodness of fit of our estimation method is further investigated by an analysis of
the fitted innovations for the case, where θ = −0.3, γ = 0.4 and the other parameters

remain fixed. The fitted innovations are given by Ẑi := G∆ti
ti /σ̂ti−, i = 1, . . . , n.

Since our innovations were normally distributed with mean zero and standard deviation

equal to 1/
√

2, we expect the average Z := 1
n

∑n
i=1 Ẑi of the fitted innovations for one

replication close to zero, their empirical standard deviation
(

1
n−1

∑n
i=1(Ẑi − Z)2

)1/2

close to 1/
√

2 ≈ 0.70711 and their empirical skewness close to zero. For all three

quantities we computed m̂ean and M̂SE over all 1 000 replications. The results are
reported in Table 2 and indicate a good fit.

Under the assumption of a correctly estimated volatility the fitted innovations are a
white noise series, in particular the innovations and also the squared innovations should
be uncorrelated. The correlation of the squared innovations was checked by performing
a Ljung-Box test (cf. Ljung and Box (1978)). The test statistic is given by

Q = n(n + 2)
m∑

k=1

ρ̂ bZ2(k)2

n− k
,

where ρ̂ bZ2(k) is the empirical autocorrelation function of the the squared fitted innova-

7
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Gaussian â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 -0.1000 0.2000 -3.0000 2.0000
m̂ean 0.1021 -0.1007 0.1927 -2.9058 2.0008

(5·10−4) (5·10−4) (6·10−4) (3·10−3) (1·10−3)

r̂bias 0.0211 0.0077 -0.0361 -0.0313 0.0004

M̂SE 0.0003 0.0003 0.0004 0.0161 0.0014
(1·10−5) (1·10−5) (2·10−5) (6·10−4) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.2000 -3.0000 2.0000
m̂ean 0.0979 -0.1797 0.1938 -2.8980 2.0001

(7·10−4) (1·10−3) (6·10−4) (4·10−3) (1·10−3)

r̂bias -0.0202 -0.0016 -0.0310 -0.0339 2·10−5

M̂SE 0.0005 0.0014 0.0004 0.0274 0.0012
(6·10−5) (4·10−4) (2·10−5) (4·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.2000 -3.0000 2.0000
m̂ean 0.1004 -0.3027 0.1930 -2.8982 2.0000

(3·10−4) (1·10−3) (6·10−4) (4·10−3) (1·10−3)

r̂bias 0.0038 0.0091 -0.0349 -0.0339 1·10−5

M̂SE 0.0001 0.0013 0.0004 0.0290 0.0012
(1·10−5) (5·10−4) (5·10−4) (1·10−2) (6·10−5)

ϑ, λ 0.1000 -0.1000 0.4000 -3.0000 2.0000
m̂ean 0.1017 -0.0996 0.3877 -2.8028 2.0001

(4·10−4) (6·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0170 -0.0037 -0.0307 -0.0657 0.0005

M̂SE 0.0001 0.0004 0.0006 0.0562 0.0013
(7·10−6) (2·10−5) (3·10−5) (2·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.4000 -3.0000 2.0000
m̂ean 0.1007 -0.1792 0.3864 -2.8122 1.9985

(4·10−4) (7·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0071 -0.0044 -0.0338 -0.0625 -0.0007

M̂SE 0.0001 0.0005 0.0007 0.0526 0.0013
(6·10−6) (2·10−5) (3·10−5) (2·10−3) (5·10−5)

ϑ, λ 0.1000 -0.3000 0.4000 -3.0000 2.0000
m̂ean 0.1010 -0.3004 0.3880 -2.7998 2.0023

(3·10−4) (7·10−4) (7·10−4) (4·10−3) (1·10−3)

r̂bias 0.0102 0.0014 -0.0298 -0.0667 0.0011

M̂SE 0.0001 0.0005 0.0006 0.0595 0.0014
(4·10−6) (2·10−5) (2·10−5) (2·10−3) (6·10−5)

Table 1: Estimated mean and MSE for â1, θ̂, γ̂, µ̂ and λ̂ with corresponding estimated stan-
dard deviations in brackets based on 1 000 replications with normally distributed
jump sizes. In the third row of each case the relative bias is shown.

8



QMLE and prediction in the compound Poisson ECOGARCH(1, 1) model

Gaussian mean(Ẑi) std(Ẑi) skewness(Ẑi)

m̂ean -0.00004 (4·10−4) 0.70743 (2·10−4) 0.00062 (1·10−3)

M̂SE 0.00017 (8·10−6) 0.00004 (2·10−6) 0.00209 (9·10−5)

Table 2: Estimated mean and MSE for the mean, standard deviation and skewness of the
fitted innovations with corresponding estimated standard deviations in brackets for
normally distributed jumps based on 1 000 replications.

tions for one replication, and asymptotically χ2-distributed with m degrees of freedom
under the null hypothesis of no correlation. The number of lags m taken into account
to compute the statistic was set equal to

√
n (cf. Section 9.4 in Brockwell and Davis

(1987)). The null hypothesis of no correlation was rejected 49 times out of 1 000 sim-
ulations at the 0.05 level. The empirical mean of the 1 000 p-values was equal to 0.52,
which shows that a majority of the test statistics has a rather large p-value confirming
the hypothesis of no correlation.

3.2 Leverage case with student-t jump distribution

In all the previous examples the jump distribution was Gaussian. Now we want to
compute the QMLE under the assumption of sampling innovations from a student-
t distribution. We will consider a t-distribution with 6 degrees of freedom. Since
we assume E(Z1) = 0 and Var(Z1) = 1/λ, we have to scale the innovations in an
appropriate way. The intensity λ will again be equal to 2 and µ remains at −3. The
parameters a1, θ and γ taken on the same values as in the Gaussian case. The results
are reported in Table 3.

The quality of the estimators for a1, θ, γ and µ is reduced due to the model misspec-
ification. The relative bias and MSE have increased for almost all parameter settings.
Concerning µ the relative bias for example has doubled compared to results for nor-
mally distributed jumps. But overall the results are still satisfying. Indicating that the
QMLE provides reasonable values even if the true distribution of the returns is much
heavier tailed than the assumed one.

Analogously to the Gaussian case we investigated the goodness of fit by an analysis
of the fitted innovations for the case, where θ = −0.3 and γ = 0.4. Since we scaled the
innovations such that they have mean zero and a standard deviation equal to 1/

√
2, we

expect the empirical mean of the estimated innovations close to zero, their empirical
standard deviation close to 0.70711 and their empirical skewness close to zero. For all

three quantities we computed m̂ean and M̂SE over all 1 000 replications. The results
are reported in Table 4 and indicate a reasonable fit. The null hypothesis of the Ljung-
Box test was rejected 84 times out of 1 000 simulations at the 0.05 level. The empirical
mean of the 1 000 p-values was 0.59.
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student-t â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 -0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0978 -0.0995 0.1917 -2.7748 2.0020

(1·10−3) (1·10−3) (9·10−4) (6·10−3) (1·10−3)

r̂bias -0.0213 -0.0046 -0.0415 -0.0750 0.0010

M̂SE 0.0012 0.0017 0.0010 0.0873 0.0014
(8·10−5) (6·10−4) (5·10−5) (9·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.2000 -3.0000 2.0000
m̂ean 0.1007 -0.1829 0.1934 -2.7776 2.0001

(8·10−4) (1·10−3) (9·10−4) (5·10−4) (1·10−3)

r̂bias 0.0077 0.0165 -0.0331 -0.0741 4·10−5

M̂SE 0.0007 0.0020 0.0008 0.0757 0.0013
(6·10−5) (6·10−4) (5·10−5) (5·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.2000 -3.0000 2.0000
m̂ean 0.1013 -0.3034 0.1926 2.0012 -2.7738

(5·10−4) (1·10−3) (9·10−4) (1·10−3) (4·10−4)

r̂bias 0.0131 0.0115 -0.0369 0.0006 -0.0754

M̂SE 0.0002 0.0015 0.0008 0.0014 0.0668
(2·10−5) (5·10−4) (6·10−5) (6·10−5) (3·10−3)

ϑ, λ 0.1000 -0.1000 0.4000 -3.0000 2.0000
m̂ean 0.1022 -0.1010 0.3884 -2.5405 2.0025

(5·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0221 0.0101 -0.0290 -0.1531 0.0012

M̂SE 0.0003 0.0009 0.0012 0.2441 0.0014
(2·10−5) (4·10−5) (6·10−5) (6·10−3) (6·10−5)

ϑ, λ 0.1000 -0.1800 0.4000 -3.0000 2.0000
m̂ean 0.1015 -0.1819 0.3861 -2.5518 2.0004

(5·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0151 0.0109 -0.0347 -0.1493 0.0002

M̂SE 0.0003 0.0011 0.0013 0.2346 0.0013
(1·10−5) (2·10−4) (5·10−5) (5·10−3) (6·10−5)

ϑ, λ 0.1000 -0.3000 0.4000 -3.0000 2.0000
m̂ean 0.1020 -0.3030 0.3876 -2.5481 1.9997

(4·10−4) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias 0.0199 0.0099 -0.0309 -0.1506 -0.0002

M̂SE 0.0013 0.0009 0.0010 0.0789 0.0014
(8·10−5) (4·10−4) (5·10−5) (4·10−3) (6·10−5)

Table 3: Estimated mean and MSE for â1, θ̂, γ̂, µ̂ and λ̂ with corresponding estimated stan-
dard deviations in brackets based on 1 000 replications with t-distributed jump sizes.
In the third row of each case the relative bias is shown.

10



QMLE and prediction in the compound Poisson ECOGARCH(1, 1) model

m̂ean -0.00007 (4·10−4) 0.70763 (2·10−4) -0.00295 (6·10−3)

M̂SE 0.00016 (7·10−6) 0.00006 (7·10−6) 0.03846 (5·10−3)

Table 4: Estimated mean and MSE for the mean, standard deviation and skewness of the
fitted innovations with corresponding estimated standard deviations in brackets for
student-t distributed jumps based on 1 000 replications.

3.3 Non-leverage case

So far we have only considered the leverage case. In this last example we will have the
following relation: 0 < θ < γ. This means that a positive shock in the return data
increases the log-volatility process more than a negative one. For normally distributed
jumps the results in the non-leverage case are shown in the upper section of Table 5.
One can observe an increased relative bias for a1, θ and γ compared to the leverage case.
But the results are still acceptable. For t-distributed innovations the results are shown
in the lower section of Table 5. The conclusions which can be made are similarly to
the Gaussian case. It is interesting however that the leverage parameter θ is estimated
more accurately for t-distributed jumps. It can be concluded that the influence of the
sign of the leverage parameter θ is not important for the performance of the QMLE.

Gaussian â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0938 0.0980 0.1911 -2.8977 2.0024

(1·10−3) (1·10−3) (8·10−4) (7·10−3) (1·10−3)

r̂bias -0.0614 -0.0201 -0.0447 -0.0341 0.0012

M̂SE 0.0012 0.0015 0.0007 0.0595 0.0014
(9·10−5) (5·10−4) (1·10−4) (1·10−2) (6·10−5)

student-t â1 θ̂ γ̂ µ̂ λ̂

ϑ, λ 0.1000 0.1000 0.2000 -3.0000 2.0000
m̂ean 0.0976 0.0988 0.1913 -2.7873 2.0031

(1·10−3) (1·10−3) (1·10−3) (6·10−3) (1·10−3)

r̂bias -0.0235 -0.0117 -0.0432 -0.0709 0.0015

M̂SE 0.0013 0.0009 0.0009 0.0789 0.0013
(8·10−5) (4·10−5) (5·10−5) (4·10−3) (6·10−5)

Table 5: Estimated mean and MSE for â1, θ̂, γ̂, λ̂ and µ̂ with corresponding estimated stan-
dard deviations in brackets based on 1 000 replications with normally distributed
(top) and t-distributed (bottom) jump sizes. In the third row of each case the rela-
tive bias is shown.
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3.4 Empirical characteristics

Finally some empirical characteristics of the volatility process will be presented. In
particular we computed for each set of parameters the empirical mean σ2, variance
s2(σ2) and 99% quantile of the volatility process. Further we estimated the correlation
Corr(∆Gti , σ

2
ti
) , which should be negative in the leverage case (see also Section 3.1 in

Haug and Czado (2007) for details). This is done for Gaussian as well as t-distributed
jumps. The results are shown in Table 6.

Gaussian θ, γ σ2 s2(σ2) q̂0.99 Ĉorr(∆Gti , σ
2
ti)

-0.10, 0.2 0.0633 0.0015 0.2084 -0.1441
-0.18, 0.2 0.0680 0.0031 0.2822 -0.2085
-0.30, 0.2 0.0815 0.0116 0.4952 -0.2597
-0.10, 0.4 0.0999 0.0244 0.7055 -0.0902
-0.18, 0.4 0.1083 0.0433 0.8415 -0.1459
-0.30, 0.4 0.1368 0.2569 1.3444 -0.2073
0.10, 0.2 0.0633 0.0015 0.2076 0.1449

student-t θ, γ σ2 s2(σ2) q̂0.99 Ĉorr(∆Gti , σ
2
ti)

-0.10, 0.2 0.0636 0.0163 0.2193 -0.1485
-0.18, 0.2 0.0681 0.0044 0.3005 -0.2120
-0.30, 0.2 0.0831 0.1933 0.5338 -0.2615
-0.10, 0.4 0.1022 0.0594 0.7977 -0.0937
-0.18, 0.4 0.1109 0.0849 0.9216 -0.1569
-0.30, 0.4 0.1442 0.9888 1.5152 -0.2151
0.10, 0.2 0.0632 0.0017 0.2157 0.1476

Table 6: Empirical mean, variance and 99% quantile of the volatility process with parameters
a1 = 0.1, µ = −3 and λ = 2. The empirical correlation between the current jump in
the log-price process and future volatility.

The estimated correlation is negative in all of the leverage cases and positive for the
non-leverage case (θ = 0.1, γ = 0.2). We further observe a slightly increased variance
and greater quantiles for t-distributed jumps, which seems reasonable.

4 Prediction

The aim of this section is to show how prediction can be done in this framework. In
particular we will construct a one-step ahead prediction of the volatility process and
also derive the prediction density in that case. Since future innovations of the log-
price process are positive or negative with probability 0.5, it is not possible to define a
sensible one-step ahead point-prediction of the log-price process. But we can construct
a prediction interval for the next observation of the log price, thus taking care about
the size of the innovation.

12
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4.1 One-step ahead prediction of the volatility

In this section we want to show how to compute a prediction Pr(σ
2
tn+1

) of the volatility

σ2
tn+1

, which means the volatility right after the next jump, conditional on the infor-

mation X̂tn , ϑ̂n, λ̂n and ∆tn+1. Recall that the parameters ϑ̂n = (ân
1 , θ̂n, γ̂n, µ̂n) and

λ̂n are estimated based on the observations Gt1 , . . . , Gtn . As a first step we will need a
prediction of the log-volatility process at time tn+1, which is the n+ 1-th jumptime of
the log-volatility process. Since we estimated the parameters by maximising a Gaus-

sian likelihood it seems reasonable to simulate the future jump Ẑn+1 as a normally

distributed random variable with mean 0 and variance 1/λ̂n. If we substitute in the

recursion (7) for i = n+ 1 the quantity G
∆tn+1

tn+1
/σ̂tn+1−(ϑ, λ) by Ẑn+1, we get

X̂tn+1
(ϑ, λ) = e−a1∆tn+1X̂tn(ϑ, λ) + θẐn+1 + γ

(
|Ẑn+1| − λK̂∆tn+1

)
.

Hence we will get a prediction of log(σ2
tn+1

) the log-volatility process at time tn+1, which

is denoted by Pr(log(σ2
tn+1

)), by the following equation

Pr(log(σ2
tn+1

)) := µ̂n + e−ban
1 ∆tn+1X̂tn(ϑ̂n, λ̂n) + θ̂nẐn+1 + γ̂n

(
|Ẑn+1| − λ̂nK̂∆tn+1

)
.

The one-step ahead prediction of σ2
tn+1

the volatility process at time tn+1, which is

denoted by Pr(σ
2
tn+1

), is then defined by applying the exponential function to the pre-

diction Pr(log(σ2
tn+1

)), i.e.

Pr(σ
2
tn+1

) := exp(Pr(log(σ2
tn+1

))) . (11)

For ease of notation we will omit in the following the dependence of X̂tn on ϑ̂n and

λ̂n. Given X̂tn , ϑ̂n, λ̂n and ∆tn+1 Pr(σ
2
tn+1

) is a monotone function of Ẑn+1. Hence

we can in addition easily derive a prediction density of σ2
tn+1

, which is denoted by

p(s|X̂tn , ϑ̂n, λ̂n,∆tn+1). The form of the density depends on the sign and size of θ̂n and

γ̂n. If e.g. θ̂n < −γ̂n < 0, then the prediction density for σ2
tn+1

is given by

p(s|X̂tn, ϑ̂n, λ̂n,∆tn+1) =

1

s

[
χ(−∞,ϕ( bXtn ,∆tn+1)](log(s) − µ̂n)

∣∣∣∣
1

θ̂n + γ̂n

∣∣∣∣

×

√
λ̂n

2π
exp




− λ̂n

2

(
log(s) − µ̂n − ϕ(X̂tn ,∆tn+1)

θ̂n + γ̂n

)2





+χ(ϕ( bXtn ,∆tn+1),∞)(log(s) − µ̂n)

∣∣∣∣
1

θ̂n − γ̂n

∣∣∣∣

×

√
λ̂n

2π
exp




− λ̂n

2

(
log(s) − µ̂n − ϕ(X̂tn ,∆tn+1)

θ̂n − γ̂n

)2







 , (12)
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for each s > 0, where ϕ(X̂tn ,∆tn+1) := e−ban
1 ∆tn+1X̂tn − γ̂nλ̂nK̂∆tn+1 .

A different shape of the prediction density we get for −γ̂n < θ̂n < 0:

p(s|X̂tn, ϑ̂n, λ̂n,∆tn+1) =
1

s
χ(ϕ( bXtn ,∆tn+1),∞)(log(s) − µ̂n)

∣∣∣∣
1

θ̂n − γ̂n

∣∣∣∣

×

√
λ̂n

2π
exp




− λ̂n

2

(
log(s) − µ̂n − ϕ(X̂tn ,∆tn+1)

θ̂n − γ̂n

)2



 ,

for each s > 0.
Next we illustrate how the shape of the prediction density for σ2

tn+1
depends on

the estimated parameters. Therefore we consider again 1 000 samples of a compound
Poisson ECOGARCH(1, 1) process with parameters µ = 0, a1 = 0.1, θ = −0.3, γ = 0.2
and λ = 2. The sample paths are over the time interval [0, 1 000] yielding on average
2 000 observations. First we estimate the parameters, as explained in Section 2, based
on the first n = 1900 observations. To compute a prediction density for σ2

tn+1
by (12) we

will further need X̂tn and ∆tn+1. Since both of them will be different for each sample,
we set them equal to 1 and 0.5, respectively, to make prediction densities comparable.
For each sample the prediction density was then computed over the same grid on the
interval [1.5, 4.7]. Everything was done for two different jump distributions. In the first
case the jumps Zi were normally distributed with mean 0 and variance 1/λ, whereas in
the second example scaled t-distributed with 6 degrees of freedom and same mean and
variance as in the normal case. In the first row of Figure 1 one can see on the left hand

side six replications of prediction densities p(·|1, ϑ̂n, λ̂n, 0.5) for normally distributed
jumps and on the right hand side for the t-distributed ones. In both cases we also
computed a mean prediction density

p(s|1, ϑ̂, λ̂n, 0.5) :=
1

N

N∑

i=1

pi(s|1, ϑ̂i
n, λ̂

i
n, 0.5) ,

for s lying on the grid and N = 1 000. The results are shown in the second row of
Figure 1 together with true prediction density p(·|1,ϑ, λ, 0.5). One can observe that

despite the fact that we have a larger bias in the estimates ϑ̂n for t-distributed jumps
compared to normally distributed ones, the prediction densities show similar behaviour.

For assessing the quality of the forecasts we will consider a scoring rule, which assigns
a numerical score based on the prediction density and the value actually observed. We
will work with the logarithmic score, for other scoring rules see Gneiting and Raftery
(2007). Assume we have N observations of the volatility σ2

t1n+1

, . . . , σ2
tNn+1

. For each of

them we compute a prediction density pi(·|X̂tin
, ϑ̂i

n, λ̂
i
n,∆t

i
n+1) , i = 1, . . . , N , which

will be evaluated at the observation point. The logarithmic score for the i-th sample is
then defined as

LSi := log
(
pi(σ2

tin+1
|X̂tin

, ϑ̂i
n, λ̂

i
n,∆t

i
n+1)

)
.
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Figure 1: Prediction densities pi(·|1, ϑ̂i
n, λ̂i

n, 0.5), i − 1, . . . , 6, for the first 6 replication (top
row), the mean prediction density p(s|1, ϑ̂, λ̂n, 0.5) over the 1 000 replications and
true (solid line) prediction density p(·|1,ϑn, λn, 0.5)(bottom row) for normally (left)
and t-distributed (right) jumps.

Observe that the higher LS is, the better the prediction will be. Note that this evalua-
tion is only feasible in a simulation set up since we do not observe the volatility process
in real data. To associate a numerical score to the all N samples we further calculate
the mean logarithmic score MLS defined as

MLS :=
1

N

N∑

i=1

LSi.

For our previous considered simulation examples, where we had µ = 0, a1 = 0.1, θ =
−0.3, γ = 0.2 and N = 1 000 replications, we get MLS’s of −0.0716 and −0.8285 for
Gaussian and t-distributed jumps, respectively. This result is not surprising, since
we assumed normally distributed jumps to compute the prediction density. Thus we
would expect a better performance of the prediction, if the jumps are really normally
distributed. One also has to mention that the logarithmic score is rather sensitive to
outliers which produce large negative values.

Given the prediction density we are able to define a second one-step ahead prediction
of the volatility. More precisely we take the mode of the corresponding prediction
distribution as prediction of σ2

tn+1
, defined by

Pm(σ2
tn+1

) := arg max
s>0

p(s|X̂tn, ϑ̂n, λ̂n,∆tn+1) .

Both predictions Pr and Pm are compared for the two simulation cases by computing the

empirical relative bias r̂bias(Pk) := 1
N

∑N
i=1

(
Pk(σ2

ti
n+1

+
)

σ2

ti
n+1

+

− 1

)
and the empirical relative
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mean squared error R̂MSE(Pk) := 1
N

∑N
i=1

(
Pk(σ2

ti
n+1

+
)

σ2

ti
n+1

+

− 1

)2

for k = r,m. Remember

that we have N = 1 000 replications in each case. The results are reported in Table 7.

r̂bias(Pr) R̂MSE(Pr) r̂bias(Pm) R̂MSE(Pm)

Gaussian 0.0364 0.1301 -0.0895 0.0428
student-t 0.0399 0.1383 -0.0974 0.0517

Table 7: Relative bias and MSE for the recursive and mode prediction in case Gaussian and
student-t distributed jumps.

Concluding one can say that despite the reduced performance of the QMLE in the
non-normal case, the one-step ahead prediction ability is acceptable compared to the
normal case. The results for the recursive prediction Pr are actually very similar. For
the mode prediction greater differences can be observed. This is also rather obvious,
since it predicts the mode of a distribution, which is more suitable if the innovations Z
are not so heavy tailed. Concerning the RMSE the mode prediction Pm is preferable
compared to Pr in both cases, but one has to deal with a larger relative bias of Pm.

Finally we want to analyse how the accuracy of the prediction density depends on
the number of observations. For the 1 000 sample paths in each case, we estimated the
parameters based on all observations Gt1 , . . . , Gtn , the last 1 500 Gtn−1499

, . . . , Gtn , the
last 1 000 Gtn−999

, . . . , Gtn and finally the last 500 Gtn−499
, . . . , Gtn . For all four scenarios

we computed the prediction density and logarithmic score, which was then averaged
over all 1 000 samples. The resulting MLS’s are summarised in Table 8.

Recall that the average number of observations over the 1 000 samples is 2 000. Com-
paring the MLS’s one can recognise that at least 1 500 observations should be taken into
account to estimate the parameters. If not, the prediction quality will reduced consid-
erably. In our real data example considered in Section 5, 1 500 observations correspond
to roughly three quarters of a trading day.

4.2 Prediction interval for the log-price

If we consider again the log-price process G defined in (5) one observes that the future

return G
∆ti+1

ti+1
has variance σ2

ti+1−
/λ under the assumption Zi+1 ∼ N(0, 1/λ). From (4)

it follows that given Xti and ∆ti+1 the volatility σ2
ti+1−

is known up to parameters ϑ

and λ and can be calculated by (10) given θ̂ and λ̂. This enables us to construct a 95%
prediction interval for the one-step ahead log-price Gti+1

. It is given by the following

Number of observations n 1 500 1 000 500

MLS (Gaussian) -0.0716 -0.1426 -0.8002 -3.5185
MLS (student-t) -0.8285 -0.5776 -3.5121 -5.1267

Table 8: MLS for varying numbers of observations in case Gaussian and student-t distributed
jumps.
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expression

PI(Gti+1
) :=

(
Gti − 1.96 ·

√
σ̂2

ti+1−(ϑ̂i, λ̂i)/λ̂i, Gti + 1.96 ·
√
σ̂2

ti+1−(ϑ̂i, λ̂i)/λ̂i

)
.

For a simulated log-price process G, with observation times t1, . . . , tn+1 and normally
distributed jumps, the empirical quality of the prediction interval was tested. As pa-
rameter values we chose ϑ = (α, θ, γ, µ) = (0.1,−0.3, 0.4,−3) and λ = 2. Starting

with 100 observations, we reestimated the model for each new observation to get ϑ̂i, λ̂i

and computed in each step the volatility σ2
ti+1−

(ϑ̂i, λ̂i), i = 100, . . . , n. Then we calcu-
lated the prediction interval PI(Gti+1

) and counted over three time intervals (t100, tk1
],

(tk1
, tk2

] and (tk2
, tn+1], for 100 < k1 < k2 < n + 1, containing the same number of

observations Gti how many of them are observed within PI(Gti).
We repeated the whole procedure 100 times. The average percentages of observations
lying in the prediction intervals over the three time intervals were 94.04%, 94.47% and
94.55%, respectively. The results for all three intervals are close to the expected value
of 95%. An increase in the prediction accuracy with the numbers of observations avail-
able to estimate the parameters can be observed. On the left hand side of Figure 2
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Figure 2: Simulated compound Poisson ECOGARCH(1, 1) observations with prediction in-
tervals (dotted line) for ti ∈ [87.9, 141.6], i = 201, . . . , 300 (left) and ti ∈
[947.9, 999], i = n − 99, . . . , n (right) .

we plotted the observations Gt201 , . . . , Gt300 over the time interval [87.9, 141.6] and on
the right hand side the last 100 observations Gtn−99

, . . . , Gtn over the interval [947.4, 999]
together with the corresponding prediction interval for one simulation. More sophisti-
cated evaluation methods of the quality of interval forecasts can be found in Clements
and Taylor (2003).
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5 Analysis of General Motors stock prices

In this section we will fit the compound Poisson ECOGARCH(1, 1) model to tick-by-
tick data for the General Motors (GM) stock. The data spans four weeks starting form
6th of May 2002 until the 31st of May. Due to the Memorial Day there was no trading
on the 27th at the NYSE. The data will be analysed on a daily basis. Therefore no
strong seasonality effect will be present. On the other hand we have to take into account
a market microstructure noise on this fine level. This will be done by considering mid
quotes, which are the average of the last bid and ask quote just before the trade, as
our price data. In particular this means, if we have observation points t1, . . . , tn, then
the log-price Gti is given by

Gti =
1

2
(log(bti−) + log(ati−)) · 1000 , i = 1, . . . , n,

where bti− (ati−) denotes the last bid (ask) quote just before time ti. This will reduce
the effect of bid-ask bounces. We also multiplied the log-price by 1 000 not to run
into numerical difficulties due very small values of the volatility process. If equal
transaction times occurred, the corresponding trades are combined to a single trade.
Further we have omitted the first and last 5 minutes on each trading data due to
possible irregularities during that time. Hence we only consider the trading between
9.35 and 15.55. The resulting log-price series together with the corresponding returns
are given in Figure 3.
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Figure 3: Tick-by-tick log-prices Gti (left) together with the corresponding returns G∆ti
ti

(right) of GM over the time span 06.05.02-10.05.02.

Observe that we have transformed the observation time such that one unit corre-

18



QMLE and prediction in the compound Poisson ECOGARCH(1, 1) model

sponds to 30 seconds in calendar time.
The parameters are then estimated as explained in Section 2. The results are reported

in Table 9. The parameter values suggest that we have a leverage effect, which is

the case if θ̂ < 0, on eleven of the nineteen days. For these dates we have that a
positive jump to the log-price will increase the log-volatility less than a negative one

(−γ̂ < θ̂ < 0) as well as a positive positive jump decreasing the log-volatility while

a negative one increases it (θ̂ < −|γ̂|). The estimated a1 and γ for May 7, 2002 are
significantly smaller than on the other days. Therefore we will expect rather strong
dependence and no large jumps in the estimated volatility on this day.

Date â1 θ̂ γ̂ µ̂ λ̂

06.05.02 0.1720 -0.1435 0.2000 -1.8020 2.4757
07.05.02 0.0009 0.0273 0.0064 -1.4852 2.3579
08.05.02 0.2450 0.0837 0.1029 -1.6034 2.7004
09.05.02 0.1650 -0.0581 0.1754 -1.8155 2.4484
10.05.02 0.1369 -0.0160 0.1195 -2.0677 2.5888
13.05.02 0.0545 0.0327 0.0326 -2.3718 2.7663
14.05.02 0.1184 -0.0700 0.0866 -3.4486 2.5053
15.05.02 0.0645 0.0503 0.1129 -1.8520 2.4314
16.05.02 0.1329 0.0366 0.1817 -1.6567 2.5540
17.05.02 0.0406 -0.0496 0.0401 -2.0270 2.3457
20.05.02 0.0190 -0.0180 0.0549 -1.1827 2.1675
21.05.02 0.0353 -0.0474 0.0337 -2.0020 2.4313
22.05.02 0.0045 -0.0293 0.0142 -1.8056 2.0969
23.05.02 0.2314 -0.0257 0.2379 -1.7436 2.3559
24.05.02 0.1367 -0.0539 0.1666 -2.2541 1.9666
28.05.02 0.0053 0.0153 0.0107 -1.5602 2.4600
29.05.02 0.6487 -0.1167 0.0412 -2.5678 2.4108
30.05.02 0.3248 0.0794 0.2521 -1.6922 2.9888
31.05.02 0.0360 0.0451 0.1189 -0.9330 2.5922

Table 9: Estimated parameters for the GM data over the time span 06.05.02-31.05.02.

From now on we will just concentrate on the first week of observations, since the

analysis on the other days is rather similar. Given the parameter estimates (ϑ̂n, λ̂n)
we are able, due to equation (10), to estimate the volatility for the five days. The
results are plotted on the left hand side in Figure 4. There one can observe the above
mentioned behaviour on May 7, 2002.

Analogously to the simulation the remaining correlation in the squared fitted inno-
vations was checked by performing a Ljung-Box test. The hypothesis of no correlation
could not be rejected for the first four days, indicating a suitable fit of the data. On
May 10th we rejected the hypothesis with a p-value of 0.02. Therefore we will exclude
May 10th from the further analysis. These results are also confirmed by the empirical

autocorrelation function of the squared fitted innovations Ẑi = G∆ti
ti /σ̂ti−, which can

be seen on the right hand side of Figure 4.
As explained in Section 4.1 we are able to compute a prediction density
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Figure 4: Estimated volatility σ̂2
ti of GM tick-by-tick data (left) and estimated autocorrela-

tion function of the squared fitted innovations (right) over the time span 06.05.02-
10.05.02.

p(s|X̂tn , ϑ̂n, λ̂n,∆tn+1) for the one-step ahead volatility σ2
tn+1

. This is also done for
the volatility of the last observation on each of the remaining four days. The densities
are shown in Figure 5. One observes that the support of the density for May 7th is
smaller than for the other days, due to the fact that log-price process on that day was
not that volatile. Notice also that up to now we have seen in Figure 1 only the shape of
the prediction density in the leverage case where a negative jump in the price increases
the log-volatility process, while a positive one decreases it. Here we have for the May
8, 2002 an examples for the non-leverage case and on the other days the leverage case
where a positive shock increases the log-volatility process less than a negative one. In
the bottom panel we plotted the corresponding logarithmic prediction densities.

In Section 4.2 we introduced a prediction interval PI(Gti+1
) for the one-step ahead

log-price process Gti+1
. For each of the four days we started with two-thirds of the

observations to estimate the model. Then we calculated for each of the following time
points ti the prediction interval PI(Gti+1

) for i = 2
3
n, . . . , n. Afterwards we counted

how many observations Gti+1
were actually observed within PI(Gti+1

).

In Table 10 we report J := #{Gti ∈ PI(Gti); i >
2
3
n} the number of observations

lying in the prediction interval, the percentage J/n
3

and the average prediction interval

length P̂ I = 3
n

∑
j> 2

3
n PI(Gtj ) .

The average length of the prediction intervals varies between five and six times the
tick-size. Accepting this kind of uncertainty one has a coverage rate of roughly 95%.
Taking significantly less than two-thirds of the observations leads to bias estimates and
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Figure 5: Estimated prediction density (top) and prediction log density (bottom) of the volatil-
ity for the last trade on the days 06.05.02 to 09.05.02.

Date 06.05.02 07.05.02 08.05.02 09.05.02

J 606 586 662 598
J/n

3 0.9543 0.9686 0.9553 0.9522

P̂ I 0.0496 0.0602 0.0642 0.0474

Table 10: The number (percentage) of observations Gti lying in the prediction interval
PI(Gti) on the days 06.05.02 to 09.05.02 together with the average prediction in-
terval length.

imprecise prediction intervals. In Figure 6 we plotted the last third of the price process
with the first observation centered at zero on each of the four days together with the
corresponding prediction intervals.

If we decrease the prediction accuracy to 80%, the average length of the prediction
interval decrease to about 65% of the former length. The percentage of observations
lying in the prediction interval varies in this case between 89% and 92%.

6 Conclusions

Continuous time models are especially useful for the analysis of time series which are
observed at unequally spaced time points, such as tick-by-tick trading data. Many pa-
pers dealing with continuous time models focus on model construction and theoretical
properties. In contrast this paper deals with estimation and prediction in a continuous
time model allowing for leverage effects. In particular the estimability and prediction
capability of a compound Poisson ECOGARCH(1, 1) model included in the model class
suggested by Haug and Czado (2007) are investigated.
A quasi maximum likelihood approach is developed for parameter estimation. It is
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Figure 6: Price process centered at zero for the first observation on May 6th (top left), 7th
(top right), 8th (bottom left) and 9th (bottom left) with corresponding prediction
intervals.

based on an approximate recursion of the underlying state process of the log-volatility,
thus allowing for the estimation of the log-volatility. Using a conditional representation
and known volatilities quasi maximum likelihood estimates (QMLE) are constructed.
The performance of these QMLE are investigated in a simulation study. This study
showed that the performance is very satisfactory under normal innovations (absolute
relative bias at most 7% for all investigated scenarios). In a second part of the simula-
tions study the performance of the QMLE’s is explored under t-distributed innovations.
This misspecification results in a doubling of the relative bias, which is still acceptable.
As a side product of the simulation study we can also quantify the leverage effect of the
compound Poisson ECOGARCH(1, 1) model. The size of the leverage effect as charac-
terised by the negative correlation between the current return and the future volatility
increases as θ decreases and decreases as γ increases. We observe moderate correlation
values of −0.25 thus showing that the model is capable of modelling such effects.
Besides estimation the second focus of the paper is prediction. For this one step ahead
predictions of the volatility and the log-price are considered. For the volatility two
point predictions, one based on recursion and the other on the mode of the prediction
density, are constructed and compared in a simulation study. It shows a typical bias-
variance trade off situation, the recursive point predictions have lower bias than the
mode predictions, while the reverse is true for the mean square error. The increase in
bias and mean square error is however tolerable if data with t-distributed innovations
are usde instead of normal innovations thus indicating robustness.
Prediction densities of the volatility are constructed and evaluated using logarithmic
scores. These are more sensitive to the misspecification of the innovation distribution.
Logarithmic scores are also used to determine the number of observations necessary to
achieve a reasonable prediction quality, indicating that 1500 observations are necessary.
Finally predictions for the log-price are studied. Since sensible point predictions for
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the log-price are not available, prediction intervals are constructed. The performance
of these interval forecasts was evaluated using successively more observations for the
prediction intervals showing only a slight improvement in the empirical coverage prob-
ability as n increases.
The application to General Motors stock prices demonstrates the usefulness of these
models. They are able to identify and quantify leverage effect present in the data as
well as quantify prediction uncertainties.

We like to note that this model assumes that all jumps are observable and that the
driving Lévy process is of compound Poisson type. Although we successfully fitted the
model to tick-by-tick data these assumptions certainly will not hold for all kinds of
data. Therefore the development of estimation and prediction methods for the general
ECOGARCH model is necessary and subject of current research.
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