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GDM Alters Expression of Placental
Estrogen Receptor a in a Cell Type
and Gender-Specific Manner
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Abstract
Objective: The nuclear receptor estrogen receptor a (ERa) is one of the key players in energy balance, insulin resistance, and
trophoblast differentiation. We tested the hypothesis that gestational diabetes mellitus (GDM) alters expression of placental ERa
in a cell type-specific manner and that this regulation may involve epigenetic changes. Study Design: Expression of ERa was
analyzed by immunohistochemistry using the semiquantitative immunoreactive score in 80 placentas (40 GDM/40 controls).
Quantitative real-time polymerase chain reaction (PCR) measured ERa messenger RNA (mRNA) in decidual tissue. Methylation-
specific PCR was performed to analyze cytosine-phosphatidyl-guanine-island methylation of the ERa promoter. Results:
Expression of ERa protein is upregulated (P ¼ .011) in GDM in extravillous trophoblasts but not in syncytiotrophoblast.
Gestational diabetes mellitus downregulated ERa in decidual vessels only in pregnancies with male but not female fetuses.
Furthermore, mRNA of the ERa encoding gene estrogen receptor gene 1 (ESR1) was increased (þ1.77 fold) in GDM decidua
when compared to controls (P ¼ .024). In parallel, the promoter of ESR1 was methylated only in decidua of healthy control
individuals but not in GDM. Conclusion: Gestational diabetes mellitus affects expression of placental ERa in a cell type-
dependent way, on epigenetic level. These data link GDM with epigenetic deregulations of ERa expression and open new
insights into the intrauterine programming hypothesis of GDM.
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Introduction

Estrogens exert a great variety of actions in almost every cell

type and through diverse cellular and molecular pathways.

Activation of intracellular estrogen receptors (ERs) induces

their translocation into the nucleus where they act as transcrip-

tion factors by binding to the estrogen response element, thus

regulating gene transcription.1

The ERs, ERa and ERb, encoded by the ESR1 and estrogen

receptor gene 2 (ESR2) gene, have been both involved in

energy balance,2 although evidence indicates ERa as the main

mediator: Knockout of ERa as well as of the estrogen-

synthesizing enzyme aromatase in mice results in obesity and

insulin resistance.3,4 Especially, ERa is related to glucose

uptake and metabolism in different tissues including skeletal

muscle, adipose tissue, liver, brain, and endocrine pancreas.5

Besides these classical insulin target tissues, ERa is expressed

also in maternal and fetal parts of the placenta. However, the

exact function of ERa in this organ is yet to be identified. Tran-

scriptional regulation of the leptin gene by ERa in the placental

syncytiotrophoblast (SCT)6 suggests a role of ERa in hormonal

regulation of metabolism.

Gestational diabetes mellitus (GDM) is defined as glucose

intolerance first diagnosed during pregnancy. It is character-

ized by insulin resistance with insulin levels insufficient to

compensate the increased demand.7 Between 5% and 15% of
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all pregnancies are currently affected by GDM.8 As a conse-

quence of the worldwide obesity epidemic, GDM prevalence is

further rising.9 Gestational diabetes mellitus is associated with

short- and long-term complications for the offspring: Short-

term consequences include perinatal complications due to high

birth weight and fetal hyperinsulinemia.10,11 Long-term conse-

quences include a higher risk to develop obesity, metabolic

syndrome, and type 2 diabetes in later life.12 Epidemiologic

studies and animal experiments link the susceptibility for these

metabolic diseases in the offspring to epigenetic changes by the

diabetic environment in utero.13,14 Chromatin modifications due

to DNA methylation are one of the underlying mechanisms for

intrauterine programming by causing persistent changes in gene

expression.15 Methylation of cytosine-phosphatidyl-guanine

(CpG) sites within the promoter region of certain genes can

reduce gene expression16-19 and, vice versa, hypomethylation of

promoter regions allows increased gene expression.20

The placenta is a fetal organ and exposed to the same intrau-

terine environment as the fetus. In a pregnancy complicated by

GDM, the placenta is affected by maternal metabolic derange-

ments. Due to its critical role in fetal growth and nutrient

exchange, the placenta is a great model to study epigenetic

changes in metabolic programming in fetal life.15 Gestational

diabetes mellitus has epigenetic effects on genes preferentially

involved in metabolic disease pathways, supporting the notion

that DNA methylation is involved in fetal metabolic program-

ming.9,21-24 The placenta is one of the tissues in which GDM

alters methylation.25,26

The known regulation of the leptin gene by ERa in the pla-

cental SCT in parallel with increased leptin levels in GDM

prompted us to hypothesize changes in placental expression

of ERa in GDM and that these changes may result from methy-

lation changes of the ESR1 promoter region.

Materials and Methods

The study was approved by the ethics committee of the Ludwig-

Maximilian-University (LMU) Munich, Germany, and written

informed consent was obtained from the patients. Placental

tissue was obtained from 80 women. All women underwent an

oral glucose tolerance test27 at weeks 24 to 28 of gestation.

According to the criteria of the German Diabetes Society (capil-

lary whole blood; fasting glucose >90 mg/dL, 1 hour > 180 mg/

dL, 2 hours > 155 mg/dL; GDM was defined with 2 values above

this limits), 40 women were diagnosed with GDM. Immediately

after delivery, the samples were taken from the central part of the

placenta. In addition, a cotyledon structure showing sufficient

blood supply was chosen. Calcified, necrotic, and visually

ischemic areas were excluded from collection. Two pieces (2

� 2 � 2 centimeter) were dissected, containing decidua, extra-

villous, and villous trophoblasts. Each sample was divided in 2

parts. One part was further separated into decidual and villous

tissue, frozen separately, and stored at �80�C. A second part

of placental tissue was fixed in 4% buffered formalin for 24

hours and thereafter embedded in paraffin. Thus, immunohisto-

chemistry, gene expression, and DNA methylation analysis

were performed with tissues from the same sampling site.

All patients in the GDM group were treated with insulin.

The patients were monitored at least once a week at the Dia-

betes Center of the Department of Internal Medicine, LMU;

75% of patients were under good glycemic control according

to their mean blood glucose. Demographic and clinical data

of the study population are summarized in Table 1. Perinatal

and clinical data of the study group were published recently.28

Immunohistochemistry

Sections were dewaxed in xylol (20 minutes) ,and endogenous

peroxidase was quenched with 3% hydrogen peroxide (Merck,

Darmstadt, Germany) in methanol (20 minutes). Following

rehydration in a descending series of alcohol, epitope retrieval

was performed in a pressure cooker (5 minutes) using sodium

citrate buffer (0.1 mol/L citric acid/0.1 mol/L sodium citrate

pH 6.0). Slides were then cooled to room temperature and

washed in distilled water followed by phosphate-buffered

saline. Then, specimens were blocked (3 minutes at room tem-

perature) with Power Block Universal Blocking Reagent (Bio-

Genex, Fremont, California). Slides were incubated with the

Table 1. Clinical Details of the Patients With Gestational Diabetes Mellitus (GDM) and of the Normal Control Group (Mean + SD).a

GDM Controls

Fetal gender Male Female Male Female

Maternal age, years 31.46 + 4.12 33.21 + 5.33 30.30 + 6.11 32.00 + 6.13 ns
BMI (prepregnancy) 29.38 + 8.03 26.96 + 4.73 21.92 + 3.97 25.04 + 7.90 P < .0001b

Gravidity 2.5 + 1.2 2.0 + 1.2 1.7 + 0.7 2.2 + 1.4 ns
Parity 2.0 + 1.0 1.4 + 0.7 1.6 + 0.7 1.8 + 1.2 ns
Gestational age at delivery 39.67 + 1.30 39.83 + 1.40 39.80 + 1.54 39.75 + 1.16 ns
Birthweight, g 3662.1 + 562 3635.9 + 661 3339.8 + 568 3294 + 440 P < .01b

APGAR 9.9 + 0.2 9.7 + 0.5 9.8 + 0.5 9.8 + 0.6 ns
Umbilical artery pH 7.30 + 0.07 7.30 + 0.1 7.29 + 0.07 7.30 + 0.1 ns
Percentage who underwent labor 80 85 85 85 ns

Abbreviations: SD, standard deviation; BMI, body mass index.
aThe Kruskal-wallis test was applied to compare clinical outcome data of the groups.
bP values which are statistically significant.
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primary antibody (anti-ERa antibody, Immunotech, Marseille,

France) for 1 hour at room temperature. The Vectastain Elite

Mouse IgG ABC-Kit (Vector Laboratories, Burlingame, Cali-

fornia) was used for visualization. Sections were stained with

3, 30-diaminobenzidine (Dako, Glostrup, Denmark) and coun-

terstained with hemalaun. Sections were dehydrated and

cover-slipped with Shandon Consul Mount Medium (Thermo

Fisher Scientific, Waltham). For the negative control, the pri-

mary antibody was replaced by species-specific isotype control

antibody. All placentas (40 GDM and 40 controls) were exam-

ined. Five representative images per placenta were taken with a

digital camera system (JVC, Victor Company of Japan, Yoko-

hama, Japan), and cells were analyzed with a Leitz Diaplan

light microscope (Leitz, Wetzlar, Germany). Staining intensity

was investigated semiquantitatively by an immune-reactivity

score (IRS). This was calculated by multiplying the percentage

of stained cells (0 ¼ no staining, 1 ¼ � 10% of the cells, 2 ¼
11% to 50% of the cells, 3 ¼ 51%-80% of the cells, and 4 ¼ �
81% of the cells) and the different staining intensities (graded

as no staining ¼ 0 [negative], weak staining ¼ 1, moderate

staining ¼ 2, and strong staining ¼ 3). The intensity and distri-

bution pattern of the immunochemical staining reaction were

evaluated by 2 independent blinded observers.29,30 In 2 cases

(n ¼ 2.5%), the evaluation of the 2 observers differed. These

cases was reevaluated by both observers together. After the ree-

valuation, both observers came to the same result. The concor-

dance before the reevaluation was 97.5%.

RNA Isolation, Processing, and Real-Time Polymerase
Chain Reaction

Total RNA was extracted from the decidual tissue using the

RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s protocol. Quantification and

evaluation of the purity of the isolated RNA were carried out

with a NanoPhotometer (Implen, Munich, Germany). A ratio

of absorbance at 260 nm/280 nm~2.0 was accepted as pure. The

reverse transcription was performed with the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Wei-

terstadt, Germany) according to the manufacturer’s protocol

in a mastercycler gradient (Eppendorf, Hamburg, Germany) for

10 minutes at 25�C, 2 hours at 37�C, 5 seconds at 85�C, and

4�C on hold. The real-time polymerase chain reactions (PCRs)

were accomplished in optical 96-well reaction microtiter plates

covered with optical caps in a volume of 20 mL, containing

1 mL TaqMan Gene Expression Assay 20� (Hs01045840_m1

for VDR, Applied Biosystems), 10 mL TaqMan Univeral PCR

Master Mix 2x (Applied Biosystems), 8 mL H2O (DEPC treated

DI water, Sigma, Taufkirchen, Germany), and 1 mL template.

For thermal cycling, an ABI PRISM 7500 Fast (Applied Bio-

systems) was used for 20 seconds at 95�C, followed by 40

cycles of amplification for 3 seconds at 95�C, and 30 seconds

at 60�C. Quantification was performed using the 2�DDCT

method with b-actin (Hs99999903_m1) as housekeeping gene.

b-Actin was chosen as it revealed a stable expression in pla-

centa and decidua in normal versus GDM pregnancies.

DNA Extraction and Bisulfite Conversion

For the extraction of the genomic DNA, 25 mg placental tissues

were cut into small pieces and incubated with lysis buffer and

proteinase K (both Macherey-Nagel, Düren, Germany) at 56�C
overnight. Further steps of DNA isolation were carried out

using the NucleoSpin Tissue Kit (Macherey-Nagel) according

to the manufacture’s protocol. DNA concentrations were mea-

sured (Nanodrop; PeqLab, Erlangen, Germany) and 2 mg of

each DNA sample were treated with the EpiTect Bisulfite Kit

(Qiagen, Hilden, Germany) according to the manufacture’s

protocol. Bisulfite treatment of DNA leads to a conversion of

unmethylated cytosine to uracil while leaving methylated cyto-

sine intact.

Estrogen Receptor Promoter Analysis With Real-Time
Methylation-Specific PCR

Promoter analysis was performed on a promoter region

according to former investigation by our group.31,32 In brief,

Lapidus et al33 divided the CpG island of the ER promoter

into 6 regions (ER1-ER6) and tested them for methylation

and functional relevance in gene expression. The loci ER3,

ER4, and ER5 (�310 and �375 bp upstream of the transcrip-

tion start site) showed the highest negative correlation

between methylation status and ER expression. Comparison

of the different primer sets showed the region ER4 of the

CpG island to be most specific for gene expression.31,33 The

primers and probe used here were published recently34 and

given in Table 2.

Real-time methylation specific PCR (rt-MSP) was per-

formed to distinguish between methylated and unmethylated

promoters: In optical 96-well plates covered with optical caps,

the rt-MSP was accomplished in a volume of 25 mL, containing

2.5 mL forward primer (Applied Biosystems), 2.5 mL reverse

primer (Applied Biosystems), 3 mL TaqMan probe (Applied

Biosystems), 12.5 mL TaqMan Univeral PCR Master Mix 2x

(Applied Biosystems), 3 mL H2O (DEPC treated DI water,

Sigma, Taufkirchen, Germany), and 2 mL bisulphite-treated

DNA. Thermal cycling conditions were 20 seconds at 95�C,

followed by 40 cycles of amplification for 3 seconds at 95�C,

and 30 seconds at 60�C. Each plate contained patient samples

and water blanks as well as positive (MDA-MB-231) and neg-

ative controls (Michigan Cancer Foundation-7 [MCF-7] cell

line). The ABI PRISM 7500 Fast (Applied Biosystems) was

used for the PCR.

Table 2. Sequences and Concentrations of Primer and Probes Used
for rt-MSP.

Forward Primer 50-ggcgttcgttttgggattg-30 9 mmol/L
Reverse Primer 50-gccgacacgcgaactctaa-30 3 mmol/L
TaqMan probe FAM 50-cgataaaaccgaacgacccgacga-30

TAMRA
2.5 mmol/L

Abbreviations: rt-MSP, real-time methylation specific polymerase chain reaction;
FAM, 6-carboxyfluorescein; TAMRA, carboxy-tetramethyl-rhodamine.
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Statistical Analysis

Statistical analysis was performed using the nonparametrical

Mann-Whitney U signed rank tests and the t-test for compari-

son of the means. Univariate and multiple linear regression

models were used to analyze the associations of clinical out-

come data with IRS. The models were adjusted for potential

and known confounders (maternal age, parity, maternal

body mass index (BMI), fetal sex, gestational age, and umbi-

lical artery pH).35 Statistical significance was assumed at

P values <.05.

Results

Immunoreactivity of ERa in Normal and GDM Placenta

Immunohistochemistry identified ERa in maternal decidual

endothelium, in the SCT, and in the extravillous trophoblasts

(EVTs) that invaded into the decidua. In ERa expressing cells,

ERa was located in the nucleus and in the cytoplasm. Neither

villous macrophage nor feto–placental endothelium was stained

for ERa.

When immunoreactivies were compared semiquantitatively

between normal and GDM placentas using the IRS, SCT (mean

IRS 1 vs 1, P ¼ .66, Figure 1A-C) showed no expression dif-

ferences between both the groups. However, in the maternal

endothelium, GDM downregulated ERa in decidual vessels,

but this GDM effect was only found in pregnancies with male

(control IRS 3.5 vs GDM IRS 1, P¼ .01) but not female fetuses

(Figure 1D-F). The ERa protein signal was lower in the EVT

(mean control IRS 2 vs GDM IRS 4, P ¼ .011) in GDM when

compared to normal pregnancy (Figure 2A-C). In both EVT

and SCT, ERa immunoreactivity was not different between

fetal sexes.

Expression of ERa Messenger RNA in Normal and
GDM Decidua

In order to determine whether increased ERa protein in GDM

EVT was a result of increased gene expression, real-time quan-

titative RT-PCR was performed. Because only EVT but no

other placental or decidual cell type showed altered ERa pro-

tein levels, decidual tissue containing EVT and decidual stro-

mal cells was separated from villous placental tissue and

qPCR was performed. Indeed, expression of ERa messenger

RNA (mRNA) was increased about 1.8-fold in decidua of

GDM women when compared to normal controls (P ¼ .024;

Figure 2D. In parallel to the low abundance of maternal

endothelial cells and the high abundance of EVT in decidual

tissue, no differences in ERa transcripts related to fetal sex

were found in the total tissue.

Methylation of ESR1 Promoter in Normal and GDM
Placenta

Altered gene expression may result from promoter methylation

changes. To determine whether higher levels of ESR1 mRNA

Figure 1. Representative slides of immunhistochemical staining for ERa expression in the SCT of GDM positive placentas (A) and controls (B),
endothelium of GDM positive decidua (D) and controls (E), both with male neonates. Pictures were taken at a magnification of 10� and 25�.
Arrowheads indicate staining of the ERa in the SCT of GDM (A) and control tissue (B). Arrowheads indicate different staining of ER in cell nuclei
of endothelial tissue in the decidua (GDM [D] and control [E]). The immune-reactivity score (IRS) in GDM and control placentas for SCT is
shown in the boxplot (C), for endothelium gender specific in boxplot (F). The boxes represent the range between the 25th and 75th percentiles
with a horizontal line at the median. The bars delineate the 5th and the 95th percentiles. Staining was performed in 40 GDM and 40 control
placenta. ERa indicates estrogen receptor a; SCT, syncytiotrophoblast; GDM, gestational diabetes mellitus. (The color version of this figure
is available in the online version at http://rs.sagepub.com/.)

Knabl et al 1491

http://rs.sagepub.com/


in GDM may result from promoter hypomethylation, we per-

formed rt-MSP for highly methylation sensitive CpG sites in

the ESR1 promoter. Decidual tissue of controls revealed ESR1

promoter methylation at this site, whereas in all GDM samples

these CpGs were unmethylated. Methylation was not different

between tissue from male versus female pregnancies.

Statistical Confounder Analysis

As the study groups differed in BMI and birth weight (see

Table 1), we analyzed the statistical associations of these

potential confounders with ERa expression. Neither birth

weight nor BMI was associated with ERa IRS univariately and

in addition not after adjusting for other confounders (maternal

age, parity, BMI, fetal sex, gestational age, and umbilical artery

pH).

Discussion

In the present study, we identified elevated levels of ERa pro-

tein and mRNA in the EVT of women with GDM. Furthermore,

this increased expression of ERa in GDM was paralleled by a

demethylation of a CpG in the ESR1 promoter, which is essen-

tial for transcriptional activity of ESR1.

This is the first study to demonstrate a link between

increased ERa levels and ESR1 promoter hypomethylation in

placenta in GDM. In line with our results, a previous study

showed an upregulation in ERa in decidual GDM trophoblastic

tissue.36 A later study found no differences in the ESR1 expres-

sion in placentas of women with GDM.37 However, the absence

of difference in ESR1 expression in the latter study may be

due to tissue sampling only from the fetal side of the placenta,

as we found expression changes only at the maternal side of

the placenta. Fetal endothelium was negative for ERa immu-

nostaining, which parallels findings on absent ERa in human

umbilical vein endothelial cells.38

Previous studies already demonstrated that the proinflam-

matory environment of GDM causes promoter demethylation

including genes linked to fetal growth and nutrition.18,23,26,39

Furthermore, the link between ESR1 promoter demethylation

and upregulation of ESR1 expression was established in rat tro-

phoblast cells using 5-aza-2-deoxycytidine treatment.40

Figure 2. Representative slides of immunhistochemical staining for ERa expression in the EVT of GDM-positive placentas (A) and controls (B).
Arrowheads indicate staining of the ERa in the EVT of GDM (A) and control tissue (B). Pictures were taken at a magnification of 10� and 25�.
The immune-reactivity score (IRS) in GDM and control placentas for EVT is shown in the boxplot (C). The boxes represent the range between
the 25th and 75th percentiles with a horizontal line at the median. The bars delineate the 5th and the 95th percentiles quantitative RT-PCR:
significant (P ¼ .024) upregulation (1.77-fold) of ERa mRNA expression in GDM positive placentas compared to normal controls (D). Staining
and quantitative RT-PCR were performed in 40 GDM and 40 control placenta. ERa indicates estrogen receptor a; EVT, extravillous trophoblast;
GDM, gestational diabetes mellitus; RT-PCR, real-time quantitative polymerase chain reaction; mRNA, messenger RNA. (The color version of
this figure is available in the online version at http://rs.sagepub.com/.)
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The function of ERa in the placenta and in particular in EVT

is unknown. In the SCT, the ERa receptor mediates the estrogen-

stimulated expression of leptin41 and aromatase,42 suggesting a

role in hormone secretion. In addition, a function in glucose

metabolism may be hypothesized since ERa is a key regulator

of glucose metabolism in adipose tissue and muscle.1,38,39 Extra-

villous trophoblast is the placental cell type that invades the

maternal uterus, anchors the placenta, and remodels uterine ves-

sels to increase blood flow. Thus, the EVT is known as the site of

maternal–fetal immune interactions.43,44 The role of ERa in

EVT function remains to be established, but based on its immu-

nomodulatory function outside pregnancy,45,46 it is tempting to

hypothesize a similar role also in pregnancy. Insulin resistance

is associated with a chronic inflammatory reaction in GDM pla-

centa.47 In the light of this proinflammatory environment of

GDM and, thus, increased immune modulation, ERa upregula-

tion may be necessary to maintain immune tolerance.

We do not know why only the EVT, but not the SCT,

responds to maternal GDM with increased ERa expression.

We hypothesize that local decidual factors rather than circulat-

ing maternal factors are the underlying reason. Interestingly,

our earlier studies showed that in GDM the EVT is the site

of strongest change in nuclear receptor expression: While VDR

is upregulated in EVT of GDM placentas,48 peroxisome

proliferator-activated receptor (PPAR) g is downregulated.28

Estrogen receptor a physically binds to PPARg and inhibits its

transcriptional activity,49 which may further attenuate PPARg
in GDM.

The placenta is regarded as a model to study the effect of the

intrauterine environment on epigenetic changes. We found

demethylation of a CpG island in the ESR1 promoter. However,

we have to keep in mind that methylation changes in the pla-

centa may not necessarily reflect events in other target tissues

of metabolic programming23 as epigenomes can differ between

cells and tissues.50

Estrogen is a crucial regulator in fat metabolism: Knockout

of ERa in mice results in obesity,4 and ESR1 expression in adi-

pose tissue is inversely correlated with BMI.51 Since BMI is the

most significantly different confounder between the GDM and

the control group in our study, careful attention was paid in the

statistical analysis to identify a potential BMI effect on placen-

tal ERa protein expression. This analysis clearly showed that

BMI was not associated with placental ERa IRS in univariate

analysis (P ¼ .96) nor after adjusting for other possible con-

founders (P > .05).

A striking finding was the sex-specific effect of GDM on

ERa protein expression changes in maternal decidual endothe-

lial cells: While in controls deciduas from pregnancies with

male fetuses had higher levels of endothelial ERa expression

than deciduas from female pregnancies, this sex difference dis-

appeared in the GDM group. Estrogen was shown to downregu-

late ESR1 expression in uterine endothelium.52 This may

explain lower ERa expression in the female decidua. Interest-

ingly, gender differences were found to decline in patients with

type 2 diabetes.53 Our data reflect this clinical observation:

Metabolic deteriorations curb the gender-related differences,

since the sex-specific differences in decidual endothelium dis-

appeared in GDM.

In summary, the present study characterizes changes in

expression of ERa in the EVT in GDM. In contrast, the SCT

showed no changes. Maternal endothelial ERa is subject to

sex-specific regulation, which disappears in GDM. Estrogen

receptor a promoter hypomethylation in the GDM group may

contribute to the reduced ERa levels.
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