Aim and Scope
This journal, international in scope, is intended for pathologists, clinicians, immunologists and others concerned with all aspects of liver function and diseases.

Members of the editorial board will ensure comprehensive coverage of the many aspects of this specialty.

The general aim of LIVER is to promote and maintain contact between basic and clinically applied liver science. Thus, two main categories of contribution are especially welcomed: articles with morphological emphasis, and related to clinical aspects, as well as immunology and physiology; plus articles mainly based on clinical, immunological or physiological investigations.

Review articles and analyses of technical innovations and concepts will be published from time to time. Case reports will only be accepted if they are of sufficient interest in a wider context.

Book reviews, correspondence relating to articles appearing in previous issues, questions to the editorial board, "controversies in hepatology", "perspectives in hepatology", and announcements of forthcoming meetings will be regular features of the journal.

Within the scope of the journal, articles will be accepted purely on the basis of quality, regardless of their place of origin. The above defined aim and scope will enable LIVER to meet the requirements of all who want to be kept currently informed on recent developments in the field of hepatology.

The journal will be published bimonthly and the Editors and Publishers will endeavour to keep publication time to a minimum, so that the latest results within the field are made rapidly available.

Subscription
LIVER is published bimonthly. Subscription price 1990: DKK 846.00 including postage (GBP 83.00, DEM 231.00). USA, Canada and Japan: USD 136.00 including postage and air freight, payable in advance. Prices are subject to exchange-rate fluctuations.

Subscription orders may be placed with any bookseller or directly with the publishers: Munksgaard, International Publishers, 35 Nørre Søgade, Postbox 2148, DK-1016 Copenhagen K, Denmark. Advertising orders should be sent to the publishers.

© 1990 Munksgaard International Publishers Ltd. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by Munksgaard International Publishers, Ltd. for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of USD 2.50 per copy is paid directly to CCC, 27 Congress Street, Salem, MA 01970, 0106-9543/90/USD 02.50 + 0.00. All other rights, including microfilm, reserved.

LIVER (ISSN 0106-9543) is published bi-monthly by Munksgaard International Publishers, 35, Nørre Søgade, P. O. Box 2148, DK-1016 Copenhagen K, Denmark. USA subscription price is USD 136.00 including airspeed delivery. Second class postage paid at Jamaica, NY 11431. USA POSTMASTER: Send address changes to Publications Expediting Inc., 200 Meacham Avenue, Elmont, NY 11003. Air freight and mailing in the USA by Publications Expediting. Printed in Denmark by P. J. Schmidt, Vojens.
EDITORIAL BOARD
J.-P. Benhamou, Clichy, France
P. A. Berg, Tübingen, Germany
P. D. Berk, New York, N.Y., USA
L. Bianchi, Basel, Switzerland
H. Denk, Graz, Austria
A. Edelsten, London, UK
E. Farber, Toronto, Canada
J. Fevery, Leuven, Belgium
M. Gerber, New York, N.Y., USA
K. Ishak, Washington, D.C. USA
I. Mackay, Melbourne, Australia
G. A. Martini, Marburg, Germany
K. H. Meyer zum Büschenfelde, Mainz, West Germany
K. Okuda, Chiba, Japan
M. J. Phillips, Toronto, Canada

ASSOCIATE EDITORS
Valeer Desmet, Leuven, Belgium
Chris Gips, Groningen, The Netherlands
Jens H. Henriksen, Copenhagen, Denmark
Erik Juhl, Copenhagen, Denmark
Jens O. Nielsen, Copenhagen, Denmark

EDITORS
Hemming Poulsen, Copenhagen, Denmark
Per Christoffersen, Copenhagen, Denmark

EDITORIAL OFFICE
Department of Pathology
Hvidovre Hospital,
University of Copenhagen
DK-2650 Hvidovre
Denmark
Phone: 45 31471411
ext. 2023 or 2045

© 1990 Munksgaard International Publishers Ltd., Copenhagen, Denmark
Contents

No. 1

ORIGINAL ARTICLES

J. JAMES, K. S. BOSCH, D. C. ARONSON & J. M. HOUTKOOPER: Sirius Red histophotometry and spectrophotometry of sections in the assessment of the collagen content of liver tissue and its application in growing rat liver 1

Y. TANAKA, M. ESUMI & T. SHIKATA: Persistence of hepatitis B virus DNA after serological clearance of hepatitis B virus 6

T. KOJIMA, F. CALLEA, J. DESMYTER, I. SAKURAI & V. J. DESMET: Immuno-light and electron microscopic features of chronic hepatitis D 17

H. TSUDA, S. WADA, T. MASUI, M. INUI, N. ITO, K. KATAGIRI, M. HOSHINO, H. INAGUMA, M. MIYAJI & T. TAKEUCHI: Comparative sequential changes in serum and biliary levels of bile acid components after a single dose of D-galactosamine or partial hepatectomy in the rat 28

T. LASKUS, J. CIANCIARA & J. ŚLUSARCZYK: A follow-up study of an outbreak of non-A, non-B hepatitis in a plasmapheresis unit 49

K. KROGSGAARD, J. ALDERSHVILE, P. KRYGER, C. PEDERSEN, P. ANDERSSON, H. DALBOGE, J. O. NIELSEN & B. G. HANSSON: Reactivation of viral replication in anti-HBe positive chronic HBsAg carriers 54

P. STOSIEK, M. KASPER & U. KARSTEN: Expression of cytokeratin 19 during human liver organogenesis 59

MEETINGS 64

No. 2

ORIGINAL ARTICLES

G. MARCHESINI, A. FABBRI, E. BUGIANESI, G. P. BIANCHI, E. MARCHI, M. ZOLI & E. PISI: Analysis of the deterioration rates of liver function in cirrhosis, based on galactose elimination capacity 65

C. PARK, S. I. CHOI, H. KIM, H. S. YOO & Y. B. LEE: Distribution of Lipiodol in hepatocellular carcinoma 72

I. CASTILLO, J. BARTOLOME, J. A. QUIROGA, J. C. PORRES & V. CARRENO: Detection of HBeAg/anti-HBe immune complexes in the reactivation of hepatitis B virus replication among anti-HBe chronic carriers 79

S. DIONNE, P. RUSSO, B. TUCHWEBER, G. L. PLAA & I. M. YOUSEF: Role of acinar zone 3 hepatocytes in bile formation: influence of bromobenzene treatment on bile formation in the rat 85
D. MEYER, T. ZIMMERMANN, D. MÜLLER, H. FRANKE, R. DARGEL & A. M. GRESSNER: The synthesis of glycosaminoglycans in isolated hepatocytes during experimental liver fibrogenesis

J. A. M. GALL & P. S. BHATHAL: Origin and involution of hyperplastic bile ductules following total biliary obstruction

J. A. M. GALL & P. S. BHATHAL: A quantitative analysis of the liver following ligation of the common bile duct

BOOK REVIEWS

MEETINGS

No. 3

ORIGINAL ARTICLES

S. YAMADA, K. TEKEHARA, T. ARAI, J. TAKEZAWA, S. KOBAYASHI, Y. MIZOGUCHI, S. MORISAWA, S. YAMAMOTO & H. NAGURA: Immunocytochemical studies on cholestatic factor in human liver with or without cholestasis

G. ZAJICEK & D. SCHWARTZ-ARAD: Streaming liver VII: DNA turnover in acinus zone-3

G. FATTOVICH, L. BROLLO, A. ALBERTI, G. REALDI, P. PONTISSO, G. GIUSTINA & A. RUOL: Spontaneous reactivation of hepatitis B virus infection in patients with chronic type B hepatitis

A. HADENGUE, N. N'DRI & J.-P. BENHAMOU: Relative risk of hepatocellular carcinoma in HBsAg positive vs alcoholic cirrhosis. A cross-sectional study

A. L. GERBES, Y. XIE, J. MEZGER & D. JÜNGST: Ascitic fluid concentrations of fibronectin and cholesterol: comparison of differential diagnostic value with the conventional protein determination

W. M. FREDERIKS, C. J. F. VAN NOORDEN, D. C. ARONSON, F. MARX, K. S. BOSCH, G. N. JONGES, I. M. C. VOGELS & J. JAMES: Quantitative changes in acid phosphatase, alkaline phosphatase and 5'-nucleotidase activity in rat liver after experimentally induced cholestasis

Y-F. LIAW, J-J. CHEN & T-J. CHEN: Acute exacerbation in patients with liver cirrhosis: a clinicopathological study

E. CAMPO, M. BRUGUERA & J. RODES: Are there diagnostic histologic features of porphyria cutanea tarda in liver biopsy specimens?

BOOK REVIEW
ORIGINAL ARTICLES

P. S. BHATHAL, T. W. JORDAN & I. R. MACKAY: Mouse strain differences in susceptibility to sporidesmin-induced biliary tract injury 193

N. ARBER & G. ZAJICEK: Streaming liver VI: Streaming intra-hepatic bile ducts 205

M. KAGE, M. ARAKAWA, K. FUKUDA & M. KOJIRI: Pathomorphologic study on the extrahepatic portal vein in idiopathic portal hypertension 209

S. TORP-PEDERSEN, M. VYBERG, E. SMITH, L. L. HØJGAARD, U. HANSEN, C. STADEAGER, P. SCHLICHTING, N. JUUL & C. GLUUD: Surecut® 0.6 mm liver biopsy in the diagnosis of cirrhosis 217

T. LASKUS, J. SLUSARCZYK, E. LUPA & J. CIANCIARA: Liver disease among Polish alcoholics. Contribution of chronic active hepatitis to liver pathology 221

A. NONOMURA, Y. MIZUKAMI, F. MATSUBARA & Y. NAKANUMA: Identification of nucleolar organizer regions in non-neoplastic and neoplastic hepatocytes by the silver-staining technique 229

A. NEMETH, J. EJDERHAMN, H. GLAUMANN & B. STRANDVIK: Liver damage in juvenile inflammatory bowel disease 239

S. WATANABE, M. HIROSE, T. UENO, E. KOMINAMI & T. NAMIHISA: Integrity of the cytoskeletal system is important for phagocytosis by Kupffer cells 249

MEETINGS 255

No. 5

ORIGINAL ARTICLES

L. MATTSSON, O. WEILAND & H. GLAUMANN: Application of a numerical scoring system for assessment of histological outcome in patients with chronic posttransfusion non-A, non-B hepatitis with or without antibodies to hepatitis C 253

M. HOSO & Y. NAKANUMA: Clinicopathological characteristics of hepatocellular carcinoma bearing Mallory bodies: an autopsy study 259

A. NONOMURA, F. MATSUBARA, Y. MIZUKAMI, R. IZUMI, Y. NAKANUMA, H. KURUMAYA, K. WATANABE & N. TAKAYANAGI: Demonstration of nucleolar organizer regions in intrahepatic bile duct carcinoma by the silver-staining technique 269

A. J. STRAIN & D. J. HILL: Changes in sensitivity of hepatocytes isolated from regenerating rat liver to the growth inhibitory action of transforming growth factor beta 289

U. SCHLIPKÖTER, A. PONZETTO, K. FUCHS, R. RASSHOFER, S. S. CHOI, S. ROOS, M. RAPICETTA & M. ROGGENDORF: Different outcomes of chronic hepatitis delta virus infection in woodchucks 299

M. SHIRAI, S. WATANABE & M. NISHIKA: Inhibitory effects of hepatitis B virus antigen on induction of lymphokine-activated killer cell activity 309

MEETINGS
ORIGINAL ARTICLES

Y. Matsunaga, T. Saibara, S. Onishi, Y. Yamamoto & H. Enzan: Liver-derived high density lymphocytes as a new member of resident cells in mouse liver 325

S. Dionne, P. Russo, B. Tuchweber, G. L. Plaa & I. M. Yousef: Cholic acid and chenodeoxycholic acid transport in the hepatic acinus in rats. Effect of necrosis of zone 3 induced by bromobenzene 336

O. Juul Nielsen, M. Egfjord & P. Hirth: The metabolism of recombinant erythropoietin in the isolated perfused rat liver 343

K. Suzuki, T. Uchida, T. Shikata, M. Moriyama, Y. Arakawa, M. Mizokami & F. Mima: Expression of Pre-S1, Pre-S2, S and X peptides in relation to viral replication in livers with chronic hepatitis B 355

S. Itoh, S. Gohara, R. Inomata, Y. Matsuyama & F. Yamagishi: Calcium staining by the glyoxal-bis-(2-hydroxyanil)-method in the livers of rats treated with CCl₄, diltiazem, and with both agents together 365

R. Lenzi, G. Alpini, M. H. Liu, J. H. Rand & N. Tavoloni: Von Willebrand factor antigen is not an accurate marker of rat and guinea pig liver endothelial cells 372

MEETINGS 380
Author index

Alberti, A. 141
Aldershvile, J. 54
Alpini, G. 372
Andersson, P. 54
Arai, T. 129
Arakawa, M. 209
Arakawa, Y. 355
Arber, N. 205
Aronson, D. C. 1, 158

Bartolome, J. 79
Benedetti, A. 278
Benhamou, J.-R 147
Bianchi, G. P. 65
Bosch, K. S. 1, 158
Brollo, L. 141
Bruguera, M. 185
Bugianesi, E. 65

Callea, F. 17
Campo, E. 185
Carreno, V. 79
Castillo, I. 79
Chen, G.-L. 313
Chen, J-J. 177
Chen, J-J. 177, 313
Cho, N. 167
Cho, S. I. 72
Choi, S. S. 291
Cianciara, J. 49, 221

Dalbøge, H. 54
Dargel, R. 94
Desmet, V. J. 17
Desmyter, J. 17
Dionne, S. 85, 336

Egfjord, M. 343
Ejderhamn, J. 239
Elsafi, M. E. 350
Enzan, H. 325
Esumi, M. 6

Fabbri, A. 65
Fattovich, G. 141
Franke, H. 94
Frederiks, W. M. 158
Fuchs, K. 291
Fukuda, K. 209

Gall, J. A. M. 106, 116
Gerbes, A. L. 152
Gilat, T. 173
Giustina, G. 141
Glaumann, H. 239, 257
Gluud, C. 217
Gohara, S. 365
Goldman, G. 173
Gressner, A. M. 94

Hadengue, A. 147
Hägerstrand, I., 350
Halpern, Z. 173
Hansen, U. 217
Hansson, B. G. 54
Hewitt, L. A. 35
Hill, D. J. 282
Hirose, M. 249
Hirth, P. 343
Hejgaard, L. L. 217
Hoshino, M. 28
Hoso, M. 264
Houtkooper, J. M. 1
Hultberg, B. 350

Inaguma, H. 28
Inomata, R. 365
Inui, M. 28
Isaksson, A. 350
Ito, N. 28
Itoh, S. 365
Iwai, M. 167
Izumi, R. 269

James, J. 1, 158
Jan, K. M. 11
Jezequel, A. M. 278
Jonges, G. N. 158
Jordan, T. W. 193
Jüngst, D. 152
Juul, N. 217

Kagawa, K. 167
Kage, M. 209
Karsten, U. 59
Kashima, K. 167
Kasper, M. 59
Katagiri, K. 28
Kim, H. 72
Kobayashi, S. 129
Koijima, T. 17
Kojiro, M. 209
Kominami, E. 249
Konikoff, F. 173
Krag, E. 321

Krogsgaard, K. 54
Kryger, P. 54
Kuo, J. S. 11
Kurumaya, H. 269

Laskus, T. 49, 221
Lay, C. S. 11
Lee, Y. B. 72
Lenzi, R. 372
Liaw, Y.-F. 177, 313
Lin, H.-H. 313
Lin, Y.-H. 313
Liu, M. H. 372
Lupa, E. 221

Mackay, I. R. 193
Mancini, R. 278
Marchesini, G. 65
Marchi, E. 65
Marucci, L. 278
Marx, F. 158
Masson, S. 35
Masui, T. 28
Matisse, L. 257
Matsubara, F. 229, 269
Matsunaga, Y. 325
Matsuyama, Y. 365
Matzen, P. 321
Meyer, D. 94
Mezger, J. 152
Mima, F. 355
Miyagi, M. 28
Mizoguchi, Y. 129
Mizokami, M. 355
Morisawa, S. 129
Moriyama, M. 355
Müller, D. 94

Nagura, H. 129
Nakajima, T. 167
Nakanuma, Y. 229, 264, 269
Nakashima, T. 167
Namihisa, T. 249
N'dri, N. 147
Nemeth, A. 239
Naggar, E. 321
Nielsen, J. O. 54
Nielsen, Juul O. 343
Nishioka, M. 302
Nonomura, A. 229, 269

Okanoue, T. 167
Subject index

A
Acinar zone 3 137–140
DNA turnover 137–140
AgNOR 229–238, 269–277
in hepatocellular carcinoma 229–238
in intrahepatic bile duct carcinoma 269–277
Alcohol consumption 65–71
Alcoholic cirrhosis 65–71
Alcoholic liver disease 221–228
in Poland 221–228
Anti-HBe 54–58, 79–84, 141–146
seroconversion 141–146

B
Beta-hexosaminidase 350–354
in cholestasis 350–354
in cirrhosis 350–354
in normal liver 350–354
Bile acid level 28–34
after liver cell damage 28–34
Bile formation 85–93, 336–342
flow 85–93
influence of bromobenzene 85–93
salt pool 85–93
Bile duct 106–115, 116–125, 205–208
epithelium 205–208
kinetic 205–208
involution 106–115
obstruction 116–125
morphometric analysis 116–125
quantitative analysis 116–125
origin 106–115
proliferation 106–115
in biliary obstruction 106–115
Biliary lipids 85–93
Biliary obstruction 106–115
bile duct proliferation 106–115
Biliary tract injury 193–204
in mouse 193–204
sporidesmin induced 193–204
Bromobenzene 336–342
and zone 3 necrosis 336–342

C
C hepatitis 257–263
Calcium paradox 167–172
in isolated rat hepatocytes 167–172
Calcium staining 365–371
with glyoxal-bis-(2-hydroxyanil) 365–371
Chenodeoxycholic acid 336–342
Chloroform 35–48
hepatotoxicity 35–48
organelle modifications 35–48
Cholangitis 193–204
sporidesmin induced 193–204
enzyme histochemistry 152–157
experimental 152–157
intrahepatic 129–136
lysosomal enzymes 350–354
palliative treatment 321–324
Cholestatic factor 129–136
immunocytochemical study 129–136
Cholesterol 152–157
in ascites fluid 152–157
Cholic acid 336–342
Chronic alcoholics 147–151
and hepatocellular carcinoma 147–151
Chronic hepatitis 141–146, 147–151, 177–184, 221–228, 291–301
and hepatocellular carcinoma 147–151
in chronic alcoholics 221–228
in woodchucks 291–301
significance of HBV infection 221–228
type B 141–146
Chronic liver disease 313–318
DNA content 313–318
alcoholic 65–71
and hepatocellular carcinoma 147–151
diagnosis 217–220
with Menghini needle 217–220
with Surecut 0.6 needle 217–220
DNA content 313–318
exacerbation 177–184
in non-A, non-B hepatitis 257–263
lysosomal enzymes 350–354
Collagen content in growing rat liver 1–5
quantitated by histophotometry 1–5
quantitated by spectrophotometry 1–5
Crohns disease 239–248
and liver damage 239–248
Cytokeratin 59–63
Cytoskeleton 249–254
and phagocytosis 249–254
in Kupffer cells 249–254

D
Delta hepatitis 17–27
electronmicroscopic features 17–27
immunohistochemical features 17–27
Dimethylnitrosamine 278–281
DNA 137–140, 282–290, 313–318
content 313–318
in chronic liver disease 313–318
in cirrhosis 313–318
in hepatocellular carcinoma 313–318
synthesis 282–290
turnover 137–140
in acinar zone 3 137–140

E
Electronmicroscopic features 17–27
of delta hepatitis 17–27
Endoporesis 321–324
in biliary tract neoplasms 321–324
in pancreatic neoplasms 321–324
Endothelial cells 372–379
and vimentin 372–379
and von Willebrand factor 372–379
Enzyme histochemistry 152–157
in experimental cholestasis 152–157
Erythropoietin 343–349
metabolism in liver cells 343–349

F
Fibronectin 152–157
in ascites fluid 152–157

G
Galactose elimination capacity 65–71
in alcoholic cirrhosis 65–71
Gallstones 173–176
effect of polyamines 173–176
Glycosaminglycans 94–105
synthesis in hepatocytes 94–105

H
HBeAg 302–312
HBeAg 79–84
HbsAg 54–58, 177–184, 302–312, 355–364
in cirrhosis 177–184
HBV 6–10, 221–228, 302–312
DNA 6–10
infection in chronic alcoholics 221–228
B 17–27, 79–84, 141–146, 302–312
electronmicroscopical features 17–27
HBeAg/anti-HBe immune complexes 79–84
immunohistochemical features 17–27
virus reactivation 141–146
virus replication 79–84
C 257–263
delta 291–301
in woodchucks 291–301
non-A, non-B 49–53, 257–263
Hepatocarcinogenesis 6–10
Hepatocellular carcinoma 72–78, 147–151, 229–238, 264–268, 313–318
AgNOR 229–238
distribution of lipiodol 72–78
DNA content 313–318
in chronic alcoholics 147–151
in HBsAg positive patients 147–151
with Mallory bodies 264–268
Hepatocytes 85–93, 94–105, 282–290
bile formation 85–93
DNA synthesis 282–290
in culture 94–105
isolated 94–105
synthesis of glycosaminglycans 94–105

I
Idiopathic portal hypertension 209–219
Immunohistochemical features 17–27
of delta hepatitis 17–27
Interleukine 2 302–312
Intermediate filaments 264–268
and Mallory bodies 264–268
Intrahepatic bile duct carcinoma 269–277
nucleolar organizer regions 269–277

J
Juvenile inflammatory bowel disease 239–248
and liver damage 239–248

K
Kinetics 205–208
bile duct epithelium 205–208
liver cells 205–208
Kupffer cells 249–254
and phagocytosis 249–254
cytoskeleton 249–254

L
Lithogenicity 173–176
cells 205–208, 278–281, 282–290
DNA synthesis 282–290
kinetic 205–208
necrosis 278–281
after dimethylnitrosamine 278–281
proliferation 278–281
immunohistochemical identification 278–281
regeneration 278–281
damage 239–248
in Crohns disease 239–248
in juvenile inflammatory bowel disease 239–248
in ulcerative colitis 239–248
function 65–71
in alcoholic cirrhosis 65–71
organogenesis 59–63
and cytokeratin 59–63
Lymphocytes 325–335
high density 325–335
in mouse liver 325–335
Lymphokine activated killer cells 302–312
effect of HBeAg 302–312
effect of HbsAg 302–312
effect of HBV 302–312
Lysosomal enzymes 350–354
Ascitic fluid concentrations of fibronectin and cholesterol: comparison of differential diagnostic value with the conventional protein determination

ALEXANDER L. GERBES, YINING XIE, JÖRG MEZGER AND DIETER JÜNGST
Departments of Medicine II and III, Klinikum Grosshadern, University of Munich, Munich, Federal Republic of Germany

ABSTRACT - Ascitic fluid concentrations of fibronectin, cholesterol and protein were determined in 95 patients: 38 with cirrhosis of the liver, 10 with miscellaneous nonmalignant diseases, 43 with peritoneal carcinomatosis and 4 with liver metastases or hepatocellular carcinoma. Fibronectin, cholesterol and protein at discrimination values of 7.5 mg/100 ml, 45 mg/100 ml and 3.0 g/100 ml, respectively, separated patients with peritoneal carcinomatosis from patients with cirrhosis with an efficiency of 94%, 90% and 85%, respectively. Thus, ascitic fluid determinations of fibronectin and cholesterol offer good discrimination of cirrhotic ascites from ascites related to peritoneal carcinomatosis, superior to the conventional protein determination. However, the failure of all parameters to distinguish ascites caused by miscellaneous nonmalignant diseases from malignancy-related ascites underscores the importance of highly specific methods to confirm a suspected diagnosis of malignancy-related ascites.

Accepted for publication 30 October 1989

The presence of ascites can be related to malignant or nonmalignant diseases; the differentiation between these two conditions is of considerable clinical significance for further diagnostic and therapeutic procedures. Ascitic fluid itself has been examined for parameters which might allow for the differential diagnosis. Cytological examination of ascitic fluid has proven rather insensitive with detection of malignant cells in only 40% to 70% of malignancy-related ascites (1, 2). Therefore, other parameters of ascitic fluid have been investigated for their differential diagnostic value, such as the most widely used total protein concentration. In non-selected patients the diagnostic efficiency of the concentration of ascitic fluid total protein (3, 4), lactic dehydrogenase (5), carcino-embryonic antigen (6, 7) or fibrinogen degradation products (8) and of the serum-ascites albumin concentration difference (9) was found to be below 90%. Recently, an efficiency above 90% was reported for concentrations of fibronectin (10) and cholesterol (11, 12).

The present study was performed to compare these two seemingly superior parameters in the differentiation of malignancy-related ascites from nonmalignant ascites and to evaluate their usefulness, compared to total protein concentration in ascitic fluid.
Patients and methods

Patients

A total of 95 patients with ascites was prospectively studied. Based on the ascites-related diseases, subjects were allocated to the following groups:

Group 1 consisted of 38 patients (23 men, 15 women) with histologically proven liver cirrhosis from various causes (alcoholic in 18, posthepatitic in 11, biliary cirrhosis in 2, mixed or cryptogenic in 7 patients). Malignancy was excluded in these patients by ultrasound, computed tomography or autopsy.

Group 2 included 10 patients (6 men, 4 women) with miscellaneous causes of ascites related to nonmalignant diseases other than liver cirrhosis: congestive heart failure (2 pts.), ovarian overstimulation by gonadotrophic hormones administered for infertility (2 pts.), portal vein thrombosis (2 pts.), pancreatitis (1 pt.), peritoneal tuberculosis (1 pt.), systemic lupus erythematosus (1 pt.) and acute alcoholic hepatitis (1 pt.).

Group 3 comprised 43 patients with ascites secondary to peritoneal carcinomatosis (10 men, 33 women). Clinical diagnosis of peritoneal carcinomatosis was confirmed by peritoneoscopy, peritoneal biopsy, computed tomography or autopsy and/or a positive cytology of ascites. The underlying malignancies were: ovarian carcinoma (16 pts.), breast cancer (6 pts.), carcinoma of the stomach (5 pts.), of the pancreas (3 pts.), of the colon (2 pts.), of the kidney (2 pts.), leukemia (2 pts.), adenocarcinoma of unknown origin (2 pts.), carcinoma of the rectum (1 pt.), of the bladder (1 pt.), Hodgkin's disease (1 pt.), hepatocellular carcinoma (1 pt.) and lymphosarcoma.

Group 4 (3 men, 1 women) consisted of patients with malignant diseases and affection of the liver, but without evidence of peritoneal carcinomatosis: 1 patient with hepatocellular carcinoma and cirrhosis of the liver, 3 patients with liver metastases and cirrhosis of the breast, of the stomach and liposarcoma, respectively, as underlying diseases.

Methods

Cholesterol concentration was determined enzymatically with a commercial test kit (Boehringer, Mannheim, Federal Republic of Germany). Fibronectin was measured by means of laser nephelometry with a specific antiserum against human fibronectin, purchased from Boehringer, Mannheim, FRG. Total protein was determined by a commercial biuret method (Merck, Darmstadt, FRG).

Results are given as mean and standard deviation as well as median and range, respectively. The Mann-Whitney test was used for comparing data between groups. Receiver-operator curves were calculated by standard procedures (13). Applying cut-off limits for the determined parameters permitted classification into four categories: true positive (a), true negative (b), false positive (c), and false negative (d). Sensitivity was calculated as \(\frac{a}{a + d} \times 100 \), specificity as \(\frac{b}{b + c} \times 100 \), positive predictive value as \(\frac{a}{a + c} \), negative predictive value as \(\frac{b}{b + d} \) and diagnostic efficiency as \(\frac{(a + b)(a + b + c + d)}{a + b + c + d} \times 100 \) (13).

Results

Ascitic fluid concentrations, range and median values, of cholesterol, fibronectin and protein are shown in Fig. 1. For all three parameters there was little overlap between patients with cirrhosis (Group 1) and patients with peritoneal carcinomatosis (Group 3). Whereas values of patients with nonmalignant diseases (Group 2) ranked between Groups 1 and 3, patients with liver metastases or hepatocellular carcinoma (Group 4) exhibited ascitic fluid concentrations in the range of patients with cirrhosis. Mean values and standard deviation as well as median values and range of the ascitic fluid concentrations of cholesterol, fibronectin and protein are displayed in Table 1. In contrast to cholesterol and fibronectin, mean ascitic fluid protein concentration in patients with miscellaneous nonmalignant diseases (Group 2) was not significantly different from that in patients with peritoneal carcinomatosis (Group 3).

When patients with malignancy-related ascites (Groups 3 and 4) and those with nonmalignant ascites (Groups 1 and 2) were considered together, the difference of ascitic fluid concentrations was more marked for cholesterol and for fibronectin than for protein (Table 1). The correlation of ascitic fluid concentrations of cholesterol and fibronectin tended to be slightly superior to those of either parameter with ascitic protein concentration (Table 2).

As illustrated by the receiver-operator curves (Fig. 2a), differential diagnostic efficiency of cholesterol and fibronectin was superior to that of protein in separating patients with cirrhosis from patients with peritoneal carcinomatosis. Inclusion of patients with miscellaneous nonmalignant diseases and of patients with liver metastases or hepatocellular carcinoma resulted in a decrease of differential diagnostic efficiency, particularly for protein concentration (Fig. 2b).

This observation was confirmed by the calculation of sensitivity, specificity, positive and negative predictive values and diagnostic efficiency (Table 3). Fibronectin, cholesterol and protein at
Fig. 1 (a–c). Scattergram distribution of ascitic fluid concentrations of cholesterol (a), fibronectin (b) and total protein (c) in 38 patients with liver cirrhosis (Group 1), 10 patients with miscellaneous nonmalignant diseases (Group 2), 43 patients with peritoneal carcinomatosis (Group 3) and 4 patients with liver metastases or hepatocellular carcinoma (Group 4). Horizontal bars indicate median values within groups.
Table 1
Ascitic fluid concentrations of cholesterol, fibronectin and protein

<table>
<thead>
<tr>
<th>Group</th>
<th>1 Group</th>
<th>2 Group</th>
<th>3 Group</th>
<th>4 Group</th>
<th>Groups 1+2</th>
<th>Groups 3+4</th>
</tr>
</thead>
<tbody>
<tr>
<td>n =</td>
<td>38</td>
<td>10</td>
<td>43</td>
<td>4</td>
<td>48</td>
<td>47</td>
</tr>
</tbody>
</table>

Cholesterol (mg/100 ml)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>19.7 ± 17.2</td>
<td>16.6</td>
<td>0.9 – 64.0</td>
</tr>
<tr>
<td>Group 2</td>
<td>46.8 ± 21.3</td>
<td>44.9</td>
<td>17.1 – 82.3</td>
</tr>
<tr>
<td>Group 3</td>
<td>85.1 ± 30.1</td>
<td>80.0</td>
<td>28.2 – 157.6</td>
</tr>
<tr>
<td>Group 4</td>
<td>28.8 ± 11.4</td>
<td>33.3</td>
<td>11.9 – 36.7</td>
</tr>
<tr>
<td>Groups 1+2</td>
<td>25.4 ± 21.0</td>
<td>19.2</td>
<td>0.9 – 82.3</td>
</tr>
<tr>
<td>Groups 3+4</td>
<td>80.3 ± 33.4</td>
<td>79.8</td>
<td>11.9 – 157.6</td>
</tr>
</tbody>
</table>

Fibronectin (mg/100 ml)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>3.1 ± 2.9</td>
<td>2.0</td>
<td>0.6 – 13.4</td>
</tr>
<tr>
<td>Group 2</td>
<td>9.1 ± 4.4</td>
<td>8.9</td>
<td>2.1 – 15.6</td>
</tr>
<tr>
<td>Group 3</td>
<td>17.8 ± 8.9</td>
<td>16.4</td>
<td>2.4 – 42.7</td>
</tr>
<tr>
<td>Group 4</td>
<td>5.1 ± 2.4</td>
<td>5.3</td>
<td>2.0 – 7.7</td>
</tr>
<tr>
<td>Groups 1+2</td>
<td>4.4 ± 4.1</td>
<td>2.8</td>
<td>0.6 – 15.6</td>
</tr>
<tr>
<td>Groups 3+4</td>
<td>16.7 ± 9.3</td>
<td>16.1</td>
<td>2.0 – 42.7</td>
</tr>
</tbody>
</table>

Total protein (g/100 ml)

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>1.6 ± 1.3</td>
<td>1.1</td>
<td>0.2 – 5.4</td>
</tr>
<tr>
<td>Group 2</td>
<td>3.7 ± 0.8</td>
<td>3.5</td>
<td>2.7 – 5.4</td>
</tr>
<tr>
<td>Group 3</td>
<td>4.0 ± 0.9</td>
<td>4.0</td>
<td>1.7 – 5.6</td>
</tr>
<tr>
<td>Group 4</td>
<td>2.0 ± 0.7</td>
<td>2.2</td>
<td>1.1 – 2.6</td>
</tr>
<tr>
<td>Groups 1+2</td>
<td>2.0 ± 1.5</td>
<td>1.6</td>
<td>0.2 – 5.4</td>
</tr>
<tr>
<td>Groups 3+4</td>
<td>3.8 ± 1.1</td>
<td>4.0</td>
<td>1.1 – 5.6</td>
</tr>
</tbody>
</table>

Significant (p < 0.05) difference to a Group 1 (liver cirrhosis), b Group 2 (miscellaneous nonmalignant disease), c Group 3 (peritoneal carcinomatosis), d Group 4 (liver metastases or hepatocellular carcinoma), e Groups 1 + 2, f Groups 3 + 4.

discrimination values of 7.5 mg/100 ml, 45 mg/100 ml and 3.0 mg/100 ml, respectively, separated patients with peritoneal carcinomatosis from patients with cirrhosis with an efficiency of 94%, 90% and 85%, respectively. Inclusion of patients with miscellaneous nonmalignant diseases, liver metastases or hepatocellular carcinoma reduced differential diagnostic efficiencies of the three investigated parameters to 85%, 82% and 74%, respectively.

Discussion

Stimulated by recent observations on the excellent differential diagnostic qualities of ascitic fluid concentrations of fibronectin and cholesterol (10, 11), these parameters were prospectively evaluated in the present study in 95 patients in comparison with the routine protein determination. In 81 patients with liver cirrhosis (n = 38) or peritoneal carcinomatosis (n = 43), an excellent differential diagnostic efficiency of 94% for cholesterol and of 90% for fibronectin was found. Total protein concentration had an efficiency of 85% only. Inclusion of patients with miscellaneous nonmalignant diseases (n = 10) and with hepatic metastases or hepatocellular carcinoma without peritoneal carcinomatosis (n = 4), however, reduced diagnostic accuracy by about 10% to 85%, 82% and 74% for cholesterol, fibronectin and protein, respectively. Thus, determination of cholesterol and fibronectin offer about the same differential diagnostic power, superior to protein determination. The mechanisms behind this observation remain to be elucidated; possibly alterations of transperitoneal diffusion may play a role (12).

Table 2
Correlation of ascitic fluid concentrations of cholesterol, fibronectin and total protein

<table>
<thead>
<tr>
<th></th>
<th>Groups 1+2 n = 48</th>
<th>Groups 3+4 n = 47</th>
<th>Groups 1–4 n = 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol-fibronectin</td>
<td>r = 0.77</td>
<td>0.61</td>
<td>0.80</td>
</tr>
<tr>
<td>Cholesterol-protein</td>
<td>r = 0.72</td>
<td>0.60</td>
<td>0.76</td>
</tr>
<tr>
<td>Fibronectin-protein</td>
<td>r = 0.74</td>
<td>0.55</td>
<td>0.71</td>
</tr>
</tbody>
</table>

r: correlation coefficient. All correlations have a p-value below 0.001. Groups 1 (liver cirrhosis, n = 38) and 2 (miscellaneous nonmalignant ascites, n = 10) comprise nonmalignant ascites, Groups 3 (peritoneal carcinomatosis, n = 43) and 4 (hepatic metastases and hepatocellular carcinoma, n = 4) comprise malignancy-related ascites.
Fig. 2 (a, b). Receiver-operator characteristics (ROC), displaying sensitivity and specificity at various discrimination levels for cholesterol, fibronectin and protein. As differential diagnostic efficiency improves, the curve approaches the left upper corner (100% sensitivity and 100% specificity) of the illustration.

There were two limitations which precluded any of the investigated parameters from providing a complete separation of malignancy-related from nonmalignant ascites: malignancy-related ascites without peritoneal carcinomatosis could not be separated from nonmalignant ascites by any of the parameters in this study. This finding confirms observations by ourselves (12) as well as by others (14) and underscores that investigation of ascitic fluid cannot provide information other than the usually negative cytological examination in these patients. This may explain the rather low (<80%) differential diagnostic efficiency of fibronectin, observed in a study comparing 18 patients with malignancy-related ascites, most of them without peritoneal carcinomatosis, to 30 patients with chronic liver disease (15). Furthermore, increased ascitic fluid concentrations of protein or any other parameter are not totally specific for malignancy-related ascites (16, 17); therefore a combination

Table 3
Diagnostic value of cholesterol, fibronectin and total protein in ascitic fluid

<table>
<thead>
<tr>
<th>Discrimination value</th>
<th>Cholesterol 45 mg/100 ml</th>
<th>Fibronectin 7.5 mg/100 ml</th>
<th>Total protein 3.0 g/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>1,3</td>
<td>1-4</td>
<td>1,3</td>
</tr>
<tr>
<td>Sensitivity (%)</td>
<td>95</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>Specificity (%)</td>
<td>92</td>
<td>83</td>
<td>89</td>
</tr>
<tr>
<td>Efficiency (%)</td>
<td>94</td>
<td>85</td>
<td>89</td>
</tr>
<tr>
<td>Pos. predictivity (%)</td>
<td>93</td>
<td>84</td>
<td>91</td>
</tr>
<tr>
<td>Neg. predictivity (%)</td>
<td>95</td>
<td>87</td>
<td>89</td>
</tr>
</tbody>
</table>

Diagnostic value of ascitic fluid cholesterol, fibronectin and total protein for separating ascites related to liver cirrhosis (Group 1, n = 38) from ascites related to peritoneal carcinomatosis (Group 3, n = 43) and for separation of nonmalignant ascites (Group 1 and Group 2: n = 10, miscellaneous nonmalignant ascites) from malignancy-related ascites (Group 3 and Group 4: n = 4, hepatic metastases and hepatocellular carcinoma).
of these parameters might increase sensitivity but will invariably decrease specificity and hence will not improve diagnostic discrimination. In the present study, protein concentrations in ascites due to nonmalignant diseases other than cirrhosis were more often in the range of concentrations found in peritoneal carcinomatosis than fibronectin or cholesterol concentrations, resulting in reduced specificity, particularly of protein. The failure of all investigated parameters to distinguish ascites caused by miscellaneous nonmalignant diseases from malignancy-related ascites underscores the importance of highly specific methods to confirm a suspected diagnosis of malignancy-related ascites.

However, in patient populations with a high percentage of cirrhotic and peritoneal carcinomatosis ascites and a consequently small fraction of both noncirrhotic, nonmalignant ascites and malignancy-related ascites without peritoneal carcinomatosis, cholesterol and fibronectin determination offer useful differential diagnostic qualities, superior to those of protein determination. Since cholesterol can be determined more easily and cheaply than fibronectin, it may be recommended as a first-line routine parameter of ascitic fluid investigation.

Acknowledgements

Parts of this study were supported by the Hana-Seidel-Stiftung, Munich (Y. Xie). The statistical advice of Dr. Dirschedel is greatly appreciated. M. Bauch is thanked for technical assistance, R. Witthaut, F. Höpker and M. Hummel are thanked for preparation of the manuscript.

References

Address:
Alexander L. Gerbes, M.D.
Dept. of Medicine II, Klinikum Grosshadern
D-8000 München 70
Federal Republic of Germany