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Abstract

The Bayes Factor is the Bayesian tool for hypothesis comparison. As the ra-

tio of two marginal likelihoods, it quantifies statistical evidence in favor of one

hypothesis over another. Thereby, it is sensitive to the prior distributions of

unknown parameters, contained in the respective likelihood functions.

In recent years, scientists in psychological research promoted the Bayes Factor

as an alternative to the frequentist two sample t-test, in turn being a major

case of application in that domain.

The major target of this Bachelor thesis is to generalise the Bayes Factor for

independent two-sample comparisons (BF ) in the context of Imprecise Prob-

abilities. The ensuing Imprecise Bayes Factor (IBF ) is then promoted as an

enhancement of BF in situations, where subjective prior knowledge is insuffi-

cient to meet the demand for a precise specification of the normally distributed

effect size prior representing the alternative hypothesis.

The thesis dialectically discusses the BF in the context of the effect size prior,

argumented to be BF ’s only test relevant prior. The demand for its precise

specification is herein revealed as BF ’s predominant deficiency.

The IBF approach counteracts this shortcoming through an explicit consid-

eration and modeling of partial prior knowledge. Drawing on the theory of

Imprecise Probabilities, the prior’s hyperparameters are subjectively specified

as intervals. Based thereon, a credal set is established to substitute one pre-

cise prior distribtion by a set of infinitely many, potential prior distributions.

Finally, the IBF is defined as an interval, bounded by the minimal and the

maximal resultant BF value. The latter are accomplished over an optimisation

of the conventional BF calculation in conformity with the predefined credal set.

The IBF approach increases the feasibility of BF calculations in scientific prac-

tice. It reduces error-proneness, enables for an inclusion of multiple perspectives

and encourages cautious, more realistic conclusions. Furthermore, it is likelier

to contain the prior distribution, that matches the real word situation.

To sum it: The IBF states a beneficial alternative to the BF in any situation,

where prior knowledge does not allow for a precise specification of the effect

size prior and an interval is considered a satifactory result.



1 Introduction

The evaluation of formal, specialized hypotheses is among the principal targets of ap-

plied sciences, particularly including psychological research. [Liu and Aitkin, 2008,

p. 363]

Scientific hypotheses may thereby be conceived as tentative predictions of cause and

effect in the context of a certain research question. As such, hypotheses signify a re-

searcher’s set of considerations, expectations and beliefs prior to a scientific analysis.

[Rouder et al., 2009, p. 229] In order to gain subject-related relevance, hypotheses

need to pass a formal, scientifically approved evaluation within the context of sta-

tistical inference. [see Augustin et al., 2014, p. 136]

This Bachelor thesis adresses the Bayes Factor as the tool for hypothesis comparison

within the framework of Bayesian inference. The thesis focuses on independent two-

sample comparisons as a standard, statistical problem in psychological research. In

this context, the Bayes Factor serves to quantify statistical evidence in the compar-

ison of a point null hypothesis - representing the assumption of equal group means

- and a respective, composite alternative.

Despite increasing popularity, the Bayes Factor resulting from the so-called Bayesian

two-sample t test [Gönen et al., 2005, p. 252] comprises considerable shortcomings

regarding prior sensitivity and the handling of partial prior knowledge. [Morey et al.,

2016, p. 15] Finally, the Imprecise Bayes Factor is proposed as generalisation of the

BF in the context of Imprecise Probabilities and promoted as an enhancement to

the conventional approach.

The thesis starts off, embedding the Bayes Factor into the major principles of

Bayesian inference. After that, Harold Jeffrey’s Bayes Factor is presented on a

general account. Thereby, a step-by-step description of the approach, that yields

the Bayes Factor as its final outcome, is given. The description is subdivided into

the hypothesis setup, hypothesis specifications and finally, hypothesis comparison.

Based on the latter, the Bayes Factor is presented as the ratio of the marginal like-

lihoods under both hypotheses under consideration. Finally, it’s ambition of use as

well as reasonable interpretations of, and conclusions from Bayes Factor results are

submitted.

In chapter 3, the Bayesian two-sample t-test is presented, leading to the BF as a

relevant special case application in psychological research. Lastly, a closed-form for

BF calculation, developed by Gönen et al. [2005, p. 253] is introduced and applied

thenceforward.

In chapter 4, BF is dialectically discussed in the context of its most divisive com-

ponent, the effect size prior. The discussion is threefold, adressing prior necessity,

prior sensitivity and the restrictions on prior implementation as matters of debate.
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Finally, the demand for a precise, subjective choice for the test- relevant prior is

concluded to be BF ’s predominant deficiency.

Chapter 5 eventually proposes the Imprecise Bayes Factor (IBF ) as a generalisation

and enhancement of the BF . Initially, the enhancement target is explained herein.

Then, the application of a subjective credal set is presented as main idea for BF

enhancement in the context of Imprecise Probabilities. Based thereon, the IBF is

defined and its calculation is explained. Differences in interpreting and conclusion

making are highlighted. Subsequently, a simulated application sample serves to il-

lustrate the IBF approach in scientific practice and in the end, IBF ’s advantages

over its conventional counterpart are clarified.
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2 The Bayes Factor - key figure for Bayesian hypothesis

comparison

In line with the principles of Bayesian inference, Harold Jeffreys originated a method-

ology to quantify comparative evidence in favor a scientific hypothesis. [Kass and

Raftery, 1995, p. 773; Ly et al., 2016, p. 19] The degree, to which observed data

prefer one hypothesis over another, is accounted as a real value, that was later des-

ignated as the Bayes Factor. [Kass and Raftery, 1995, p. 773]

Different from frequentist hypothesis testing, Jeffreys’ approach targets hypothesis

comparison and goes by interpreting sample data as statistical evidence in favor of

one hypothesis over another. [Morey et al., 2016, p. 16; Aitkin, 1991, p. 113] As

such, a Bayes Factor is solely not apt for decision making among two alternative

hypotheses. [Morey et al., 2016, p. 17; Augustin et al., 2014, p. 140]

2.1 The major principles of Bayesian inference

The comparative analysis of scientific hypotheses depicts an important method of

Bayesian inference and as such follows both of its major principles: [Rouder et al.,

2018, p. 105; Morey et al., 2016, p. 10]

First, Bayesian inference embraces the ”epistemic interpretation” [Etz and Vandek-

erckhove, 2018, p. 6] of probability. That is to say, a person’s incomplete state of

prior knowledge is expressible as a probability distribution or conversely, probability

is employed to quantify a person’s uncertainty or stength of belief based on subjec-

tive knowledge. [Morey et al., 2016, p. 10]

Still, Etz and Vandekerckhove [2018, p. 6] clarify:

”The fact that epistemic probabilities [...] are subjective does not mean

that they are arbitrary. Probabilities are not acts of will; they are subjec-

tive merely in the sense that they may differ from one individual to the

next. That is just to say that different people bring different information

to a given problem.”

Second, sample data serve the purpose of updating prior degrees of belief. This

updating is implemented according to Bayes Theorem or Bayes’ Rule and results in

posterior probabilities. The latter finally represent the degree of belief in a quantity

of interest, when composing prior knowledge and sample information. [Augustin

et al., 2014, p. 140; Etz and Vandekerckhove, 2018, p. 9; Raftery, 1995, p. 126;

Morey et al., 2016, p. 10; Royall, 2010, p. 128, Goldstein, 2006, p. 403]

To cite Royall [2010, p. 128] in that regard,

”the main subject matter of statistics is the study of how data sets
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change degrees of belief; from prior, by observation of A, to posterior.

They change by Bayes’ theorem.”

Due to the fact that prior beliefs are transformed into posterior beliefs solemnly

through the inclusion of observed sample data, the transformation itself is consid-

ered as statistical evidence provided by the data. [Kass and Raftery, 1995, p. 776]
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2.2 The Bayesian approach to hypothesis comparison

In the following, a detailed step-by-step description of the Bayesian approach to

hypothesis comparison shall be given. Guided by the exposition of Liu and Aitkin

[2008, p. 363], the approach shall be subdevided into three major stages. These are

the hypothesis setup, hypothesis specification and hypothesis comparison. Finally,

the Bayes Factor shall be presented as the key outcome of hypothesis comparison.

2.2.1 Hypothesis setup

Initially, a concrete research question may have arisen in the context of scientific

research. In order to become accessible to a statistical analysis, the same need to

be transformed into a set of competing hypotheses, whereas the latter depict a sim-

plified, theoretical representation of the real-world matter of interest, it concerns.

[Morey et al., 2016, p. 16; Liseo, 2012, p. 198]

In a forward look on this thesis, the considered hypothesis set may have the structure

H0 : δ = δ0 vs. H1 : δ 6= δ0 . (2.1)

[Berger and Delampady, 1987, p. 317]

Herein, the subject of interested is represented by δ and δ0 is a precise value, that a

respective researcher assumes, could be approximately true. [Marden, 2000, p. 1316]

A suchlike point-valued conception of the null hypothesis is indeed typical. After all,

δ0 is deemed particularly plausible or of special interest for the scientific inquiry. [Etz

and Vandekerckhove, 2018, p. 21; Liu and Aitkin, 2008, p. 363; Ly et al., 2016, p. 19]

2.2.2 Hypothesis specification

In order to submit the considered hypotheses to a statistical analysis, the Bayesian

framework initially claims a subjective assignment of prior probabilities π(H0) and

π(H1) on the considered hypotheses themselves. [Aitkin, 1991, p. 112; Rouder et al.,

2018, p. 105] In the Bayesian understanding, a researcher is expected to have a cer-

tain degree of prior belief in his specified hypotheses. [Etz and Vandekerckhove,

2018, p. 10] According to the above stated, Bayesian notion of probabiliy (see sec-

tion 2.1), he may set his prior beliefs as π(H0) = P(H0). Finally, π(H0) and π(H1)

are required to add up to 1. [Gönen et al., 2005, p. 252]

Next up, Jeffreys’ Bayesian analysis compares considered hypotheses according to

their ability to predict an observed sample data set. [Vanpaemel, 2010, p. 492;
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Morey et al., 2016, p. 8; Rouder et al., 2018, p. 105]

For this reason, well defined, Bayesian hypotheses need to be represented by a

statistical model [Liu and Aitkin, 2008, p. 362, 363], that makes precise predictions

about the probability of each possible outcome x under Hj . The statistical models

are yielded over a marginalisation of unambigiously specified, posterior likelihood

functions f(x|Hj), j = 0, 1, defined below. [Aitkin, 1991, p. 111]

In this regard,

”[l]ikelihoods can be thought of as how strongly the data are implied

by a hypothesis. Conditional on the truth of an hypothesis, likelihood

functions specify the probability of a given outcome [...].”

[Etz and Vandekerckhove, 2018, p. 9]

Following Liu and Aitkin [2008, p. 363], one may postulate or at least imagine a

true probability density function f t(x|θt), from which an observed sample set x was

drawn. In it, θt denotes the true parameter (set). Apparently, no prior parameter

distributions are occur therein. After all, there is no need to specify uncertainty

about the prarmeter’s true values.

With the objective to optimally approximate the true density f t(x|θt), one specifies

two candidate likelihood functions f(x|H0) and f(x|H1) to represent the probability

of each possible outcome x under H0 and H1, respectively. [Liseo, 2012, p. 198]

Under H0, δ is stated to have the value δ0, precisely. However, the related likelihood

function generally depends on a number of other, unknown parameters. These

may be denoted jointly as the parameter set θ, hereafter. Thus, the likelihood

under H0 may be defined as f(x|θ, δ = δ0), where θ is an unknown element of the

parameter space Θ. In a Bayesian analysis, every unknown parameter is given its

own probability density distribution. [Raftery, 1995, p. 126]

As to that, πθ(θ) may denote the parameter prior distribution, that represents prior

uncertainty about the true value of θ. This πθ(θ) needs to be specified subjectively

by the respective analyst. [Liu and Aitkin, 2008, p. 363; Etz and Vandekerckhove,

2018, p. 21]

According to Bayes’ Rule, the likelihood function is then multiplied point by point

with the respective prior distribution to receive the ”posterior likelihood function”

[Gallistel, 2009, p. 441]

f(x|H0) = f(x|θ, δ = δ0)πθ(θ). (2.2)

Under H1, also the value of δ - apart from not being δ0 - is unknown. [Morey et al.,

2016, p. 16] Consequently, the likelihood function contains both θ and δ as unknown
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parameters. In this regard, H1 can be understood as an ”extension of [H0] by in-

clusion of a new parameter” [Ly et al., 2016, p. 22]. In order to yield the posterior

likelihood function under H1, an analyst needs to redefine H1 over an inclusion of

subjective prior knowledge about δ. [Royall, 2010, p. 128; Rouder et al., 2009, p. 228]

To both include available information and reveal an appropriate degree of uncer-

tainty about the value of δ under H1, a continuous prior probability distribution

πδ(δ) is specified across a range of potential parameter values, indicating that δ is

not δ0. [Rouder et al., 2009, p. 229]

In order to specify a suitable prior parameter distribution πδ(δ), data-external infor-

mation is once more put to use. Based on personal beliefs, professional expertise and

other relevant resources, the plausibility of different δ-values is assessed. The en-

suing (personal) beliefs are then transformed into a probability density distribution

πδ(δ) over the parameter space ∆, in turn containing all possible δ-values. [Rouder

et al., 2009, p.229-233]

Consequently, πδ(δ) represents a researcher’s personal state of uncertainty about δ

before data is at hand. [Kass, 1992, p. 553; Ly et al., 2016, p. 21; Gallistel, 2009,

p. 440]

The above stated hypothesis set (2.1) may hence be restated as

H0 : δ = δ0 vs. H1 : δ ∼ πδ(δ). (2.3)

As this notation reveals, the alternative hypothesis is explicitly defined over the pa-

rameter prior πδ(δ). [Liseo, 2012, p. 199; Liu and Aitkin, 2008, p. 363; Lavine and

Schervish, 1999, p. 119]

Finally, the posterior likelihood function under H1 ensues as

f(x|H1) = f(x|θ, δ)πθ(θ)πδ(δ) (2.4)

As the parameter (set) θ occurs in the posterior likelihood of both H0 and H1, the

same may be referred to as the common parameter (set). Now, as δ exclusively

enters the marginal likelihood under H1, it may be called ”test-relevant parameter”.

[Ly et al., 2016, p. 22, 23].

2.2.3 Hypothesis comparison

Up to that point, posterior likelihood functions are specified for both hypotheses

under consideration. However, the latter have not been compared as yet.
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In order to do so, both hypotheses have to undergo a confrontation with actually

observed sample data x. However, the support for their statistical models depends

on the extent, to which their predictions of x match the observed data points in x.

[Morey et al., 2016, p. 8]

For the further analysis, such an i.i.d. sample x = (x1, ..., xn) may be assumed given.

Finally, the comparison of the considered hypotheses can be undertaken through a

comparison of their respective marginal likelihoods.

Denoted as mj(x), j = 0, 1, the marginal likelihood or rather statistical model of

Hj is defined as the integral of its posterior likelihood function f(x|Hj) with respect

to its respective parameter vector. [Gallistel, 2009, p. 441; Raftery, 1995, p. 128;

Liu and Aitkin, 2008, p. 363; Etz and Vandekerckhove, 2018, p. 22] Finally, the

statistical models read as:

m0(x) =

∫
Θ
f(x|H0) dθ =

∫
Θ
f(x|θ, δ = δ0)πθ(θ) dθ (2.5)

m1(x) =

∫
Θ

∫
∆
f(x|H1) dθ dδ =

∫
Θ

∫
∆
f(x|θ, δ)πθ(θ)πδ(δ) dδ dθ. (2.6)

[Wang and Liu, 2016, p.196]

In these formulas, the parameter priors πθ(θ) and πδ(δ) are part of the hypothesis

specifications and the values of the likelihood functions are determined by the ob-

served data x. [Gallistel, 2009, p. 441; Wang and Liu, 2016, p. 196; Wasserman,

2000, p. 95]

Contentwise, the marginal likelihood can be understood as the weighted average of

the likelihood computed over all parameter values θ (and δ) according to the respec-

tive, specified parameter prior distributions. [Etz and Vandekerckhove, 2018, p.16;

Matthews, 2011, p. 844]

As such, it depicts a possible, joint consideration of a class of precise probability

density functions f(x|θ) under H0 and f(x|θ, δ) under H1.

Now, that mj(x) and π(Hj), j = 0, 1, are given, this

”turns the problem of statistical inference into a problem of probabilistic

deduction, where the posterior distribution [...] can be calculated by

Bayes rule.”

[Augustin et al., 2014, p. 140]

The same applies as

π(Hj |x) =
π(Hj)mj(x)

π(H0)m0(x) + π(H1)m1(x)
, (2.7)
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which provides the researcher with the posterior probability of either hypothesis.

[Liseo, 2012, p. 199; Ly et al., 2016, p. 20; Gönen et al., 2005, p. 252; Wang and Liu,

2016, p. 196]

Yet, the primary concern of hypothesis comparison is to gain insights about which of

the competing hypotheses the data support more strongly. One wishes to quantify

the degree, to which the data are indicative of one hypothesis over another. [Rouder

et al., 2018, p. 105]

Hence, the comparison of H0 and H1 is implemented as a ”posterior odds ratio” [Liu

and Aitkin, 2008, p. 363]:

π(H0|x)

π(H1|x)︸ ︷︷ ︸
Posterior Odds

=
m0(x)

m1(x)︸ ︷︷ ︸
Bayes Factor

× π(H0)

π(H1)︸ ︷︷ ︸
Prior Odds

(2.8)

[Ly et al., 2016, p. 20]

Herein, the Prior Odds states the degree, to which a person’s prior beliefs favor H0

over H1 beforehand a data analysis. [Matthews, 2011, p. 848; Morey et al., 2016,

p. 12] As such, the prior probabilities π(H0) and π(H1)

”[...] reflect our prior beliefs/knowledge, and have no effect on the bal-

ance of evidence from data - rather, they shape how this evidence is used

to arrive at a new belief state.”

[Matthews, 2011, p. 848]

By contrast, the Posterior Odds denote the relative plausibility of H0 over H1, tak-

ing account of the data. [Rouder et al., 2009, p. 228; Morey et al., 2016, p. 12]

Apparently, they are dependent on the Prior Odds. As the latter is a purely subjec-

tive quantity, the Posterior Odds is usually considered unfit for an exclusive quan-

tification of evidence in the data. [Kass and Raftery, 1995, p. 773]

Instead, Harold Jeffreys promoted the Bayes Factor as the central measure for hy-

pothesis comparison. [Gönen et al., 2005, p. 252]

2.3 The Bayes Factor

The Bayes Factor is sometimes referred to as the ”centerpiece” [Kass and Raftery,

1995, p. 773] or ”corner-stone” [Johnson, 2005, p. 689] of the Bayesian approach to

hypothesis comparison, as it pools most of the analysis within one value.

It is the final result of hypothesis comparison, based on previous hypothesis speci-
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fications and may among others affect a subsequent hypothesis selection. [Sinharay

and Stern, 2002, p.196]

2.3.1 Definition

While retaining to the above stated hypothesis set (2.3), the Bayes Factor BF01(x)

takes values in (0,∞) and is defined as

BF01(x) =
m0(x)

m1(x)
=

∫
Θ f(x|θ, δ = δ0)πθ(θ) dθ∫

Θ

∫
∆ f(x|θ, δ)πθ(θ)πδ(δ) dδ dθ

. (2.9)

[Marden, 2000, p. 1318; Wang and Liu, 2016, p. 196]

Verbalized, the Bayes Factor - comparing the null hypothesis H0 to the the alterna-

tive hypothesis H1 - is the ratio of two marginal likelihoods mj(x), j = 0, 1.

In the words of Liu and Aitkin [2008, p. 363],

”[t]he Bayes Factor is an extension of the standard likelihood ratio, where

the likelihood is defined as the probability of the observed data, given

a model with specified parameter values. Whereas the likelihood ratio

compares two models by their respective likelihoods, the Bayes factor

compares two model classes by their respective marginal likelihoods. [...]

In brief, a Bayes factor is a likelihood ratio for two model classes.”

The subscripts within BF01 state the order, in which the competing hypotheses are

compared to each other. In definition 2.9, m0(x) is in the numerator, compared to

m1(x) in the denominator. [Etz and Vandekerckhove, 2018, p.22]

As such, high values above 1 suggest a high plausibility of H0 compared to H1. The

closer the Bayes Factor is to 0, the more strongly do the data favour H1 over H0.

Finally, a Bayes Factor of value 1 states that the data are just as much evidence for

H0 as for H1. [Augustin et al., 2014, p. 152; Raftery, 1995, p. 129; Ly et al., 2016,

p. 22]

10



The order, according to which the hypotheses are compared, is freely exchangable

under the relation

BF01(x) =
1

BF10(x)
. (2.10)

[Wang and Liu, 2016, p. 196]

2.3.2 Ambition of use

The use of Bayes Factors rests on the general ambition to compare scientific hy-

potheses - an endeavour, that is scientifically met by a confrontation of the latter

with an observed sample x under the primary question:

Which of the two competing hypotheses do the data favor and how strongly do they

favor it?, or similarly:What evidence do the data hold about the two hypotheses com-

paratively? The answer, however, shall be provided by the Bayes Factor.

Finally, one calculates a Bayes Factor under the ambition to quantify the extent,

to which observed data endorse or negate one considered hypothesis over another.

[Lavine and Schervish, 1999, p. 119; Gallistel, 2009, p. 441; Kass, 1992, p. 551]

2.3.3 Interpretation

Now, that the ambition behind the use of Bayes Factors is posed, a precise inter-

pretion of the Bayes Factor shall be given. This shall serve to compare the Bayes

Factor’s actual meaningfulness with the above stated, desired manner of use.

As a direct component of the odds notation for model comparison (2.8), the Bayes

Factor is the multiplier, transforming Prior Odds into Posterior Odds. [Johnson,

2005, p. 689; Liu and Aitkin, 2008, p. 363]

π(H0)

π(H1)
×BF01(x) =

π(H0|x)

π(H1|x)
(2.11)

In other words, it expresses the data induced change of belief when going from the

former to the latter. [Rouder et al., 2018, p. 105; Rouder et al., 2009, p. 228; Ly

et al., 2016, p. 19]
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Transposing the equation for the Bayes Factor, the same may as well be defined as

the ratio of the Posterior Odds to the Prior Odds:

BF01(x) =
π(H0|x)

π(H1|x)
×
[
π(H0)

π(H1)

]−1

(2.12)

[Morey et al., 2016, p. 12]

In this sense, it measures the degree, to which the observed data x prompt a revi-

sion of the odds in favor of a hypothesis when going from the prior to the posterior.

[Rouder et al., 2009, p. 105; Matthews, 2011, p. 851]

From a mathematical point of view, the Bayes Factor simply denotes the ratio

of two marginal likelihoods mj(x), j = 0,1. Denoted as statistical models, these

respectively measure the degree, to which model-based predictions of x match the

observed sample x. As to that, the Bayes Factor quantifies the relative predictive

accuracy of one model over the other, whereby it applies that

”[i]f the probability of observed data is high, then the model predicted

the observed data to be where they were observed. If the probability of

data is low, then the model did not predict the observations well.”

[Rouder et al., 2018, p. 105]

Nevertheless, Bayes Factor’s mathematical structure is compatible with its common

interpretation as statistical evidence on account of the likelihood principle and the

law of likelihood. [Royall, 2010, p. 122, 123]

The former states that the entire evidence from a dataset x - so far as relevant for

the evaluation of the considered hypotheses - is comprised in the likelihood.

The latter says, if an observation x is more plausible under one hypothesis than un-

der another - in a sense of providing higher predictive accuracy - then x is evidence

in support of that hyphothesis. The degree, to which x supports H0 over H1 or vice

versa, is then defined as the ratio of their respective model’s likelihoods.

When extending the scope of these two precepts from likelihoods to marginal like-

lihoods, they are argued to be applicable to the Bayes Factor and thus faciliate its

interpretation as strength of statistical ecidence in favor of one out of two compet-

ing hypotheses. [Etz and Vandekerckhove, 2018, p. 24; Rouder et al., 2018, p. 105;

Rouder et al., 2009, p. 228]

2.3.4 Arguable conclusions

While clearing away typical misconceptions about the Bayes Factor’s explanatory

power, the following section shall reveal, what may arguably be concluded from a
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Bayes Factor result.

A Bayes Factor may be conceived as a statement about the evidence, an observation

x delivered about the odds on H0 relative to H1. Within the odds notation of Bayes’

Rule, it causes a redistribution of probability between two competing hypotheses.

However, a Bayes Factor makes no actual belief statement about the probability of

either hypothesis. In that regard, it differs from the Posterior Odds. Other than the

latter, a Bayes Factor does not indicate one’s final belief about H0 relative to H1.

Instead, it should be conceived as a learning factor, that different researchers may

adapt to their initially held Prior Odds. In other words, a Bayes Factor, that favors

H0 over H1, does not imply that a researcher’s final belief in the null hypothesis

will top that in the alternative. It can merely raise his degree of belief compared to

that, he held a priori. [Etz and Vandekerckhove, 2018, p. 10; Lavine and Schervish,

1999, p. 121]

Furthermore, nothing about the adequacy of a hypothesis may be concluded from

a Bayes Factor alone. That is because of two major properies, the latter holds as a

measure of statistical evidence:

First, evidence provided by a Bayes Factor is ”relational” [Morey et al., 2016, p. 8].

That is to say, a sample x alone - in a sense of being isolated from the considered

hypotheses - does not hold any evidence. x function as evidence only through their

impact on the probabilities of the stated hypotheses. In fine, a Bayes Factor’s

evidential content lies solely in the relation between data and hypotheses.

By implication, a Bayes Factor, stating that the model under H0 matches the data

x better than that under H1, does not rule out, that both models might fit the data

poorly. [Morey et al., 2016, p. 17] Hence, the substantial worth of a Bayes Factor

presumes a meaningful choice of the candidate hypotheses. Derived conclusions

must be assessed relational to the models, it concerns.

Second, evidence provided by a Bayes Factor is relative. All support from data can

do is to make one hypothesis more plausible than one other. However, it cannot

expose a hypothesis well-suited all by itself. To quote Lavine and Schervish [1999,

p. 121], a Bayes Factor may be the answer to:

”How well, relative to each other, do the hypotheses explain the data?”

It cannot give information about how well the hypotheses explain the data overall.

Finally, valid conclusions from a Bayes Factor remain comparative. Under no cir-

cumstances are they absolute. [Morey et al., 2016, p. 8]

Summing up, the Bayes Factor is suited for hypothesis comparison under the as-

sumption of an adequate hypothesis set and the consideration of the internal prior
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distributions. It makes a comparative evidence statement, applicable for data-

induced belief updating.

Yet, a Bayes Factor alone is inapt for hypothesis selection. Deciding for one hypoth-

esis implies, that its underlying model is considered ”good enough in some way”

[Morey et al., 2016, p. 8]. However, the comparative character of a Bayes Factor

bans suchlike, absolute statements.

Rather, it is up to the researcher concerned to reflect about the meaning of a Bayes

Factor within the context of the underlying research question. [Etz and Vandeker-

ckhove, 2018, p. 5]
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3 The Bayes Factor for independent two-sample com-

parisons in psychological research

Up to that point, Bayesian hypothesis comparison - as being centered around the

Bayes Factor - was given a general account. Going forward, it shall be applied to a

special case, commonly referred to as the Bayesian two-sample t test. [Gönen et al.,

2005, p. 252; Rouder et al., 2009, p. 225, Fox and Dimmic, 2006, n.p.]

Finally, this application will yield an easily calculable, closed-form Bayes Factor

(BF herafter). [Gönen et al., 2005, p. 253]

3.1 The scientific initial situation

Initially, the circumstances of the considered application case shall be described,

whereby the considered research discipline will be psychological research.

The research question may concern the presence or absence of an effect, indicated

by the difference between two independent groups. [Rouder et al., 2018, p. 102]

Consider for instance a gender or skin colour effect being at question.

The corresponding research setting consists of the two independent groups. Their

experimental conditions differ according to the question of interest. The consequent

research question reads as: Do the groups differ?, together with: Is the resulting

in-sample difference big enough infer an effect? [Fox and Dimmic, 2006, n.p.]

3.2 The experimental setup

The proposed experimental setup corresponds to that of a classical two-sample t

test. In order to examine a potential group difference, independent samples need

to be drawn from the two considered groups. Consequently, there may be a sample

data set x = {x1, x2} of size n = n1 + n2, composed of two independent random

samples

x1 = {x11, ..., x1n1} and x2 = {x21, ..., x2n2}. (3.1)

Both are assumed to be drawn from normally distributed populations. The corre-

sponding population means may be µ and µ + ∆µ, respectively. Thereby, ∆µ may

be referred to as the total effect. [Rouder et al., 2009, p. 234] The normal variance,

denoted as σ2, is assumed to be identical within both groups. [Wang and Liu, 2016,

p. 195] Under the assumption of conditional independence, the sample x is modeled

as
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x11, ..., x1n1

iid.∼ N(µ, σ2) and x21, ..., x2n2

iid.∼ N(µ+ ∆µ, σ2), (3.2)

respectively. [Gönen et al., 2005, p. 253; Wang and Liu, 2016, p. 195; Ly et al., 2016,

p. 23]

Within the frequentist framework, one would hereafter proceed with a calculation

of the t-statistic

t =
x̄1 − x̄2

sp /
√
nδ

. (3.3)

Thereby, x̄i = 1
ni

∑ni
j=1 xij is the sample mean of group i, i = 1, 2.

Furthermore,

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(3.4)

depicts the pooled variance estimate with s2
i being the sample variance of group i.

Finally, nδ = ( 1
n1

+ 1
n2

)−1 is commonly called the effective sample size. [Gönen et al.,

2005, p. 252]

The according p-value is then defined as p = 2P (Tν > |t|), whereby Tν follows the

T - distribution with ν = n1 + n2 − 2 degrees of freedom.

At it, H0 is rejected in favor of H1, if p is less than a prespecified significance level

α. [Wang and Liu, 2016, p. 195]

However, the follwing chapter will be dedicated to the presentation of the Bayesian

approach, yielding a special Bayes Factor.
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3.3 The ”Bayesian two-sample t test”

In the following, the Bayesian approach to hypothesis comparison shall be applied

to the above stated case of an independent two-sample comparison. Thereby, con-

formity to the general depiction in chapter 2.2 shall be preserved.

3.3.1 Hypotheses setup

Still in conformity with the classical two-sample t test, the question of interest (see

section 3.1) may be transferred into the hypothesis set

H0 : ∆µ = 0 vs. H1 : ∆µ 6= 0. (3.5)

[Wang and Liu, 2016, p. 195; Rouder et al., 2018, p. 105]

Generally, it is helpful to reparameterise the total effect ∆µ into the so-called stan-

dardized effect size δ = ∆µ
σ and concurrently revise the hypothesis set to

H0 : δ = 0 vs. H1 : δ 6= 0. (3.6)

[Killeen, 2005, p. 346; Rouder et al., 2009, p. 230; Ly et al., 2016, p. 22]

As a ”dimensionless quantity” [Gönen et al., 2005, p. 253], δ follows a scale, based

on which researchers may set generally applicable benchmarks for small, medium or

large effects within psychological research. [Cohen, 1988, n.p.]

The reparameterisation eases both the assessment and the comparison of effects,

without changing the basic nature of the hypothesis set.

Verbalised, one compares a precise null hypothesis H0 against a composite alterna-

tive H1 with respect to δ. As δ is representative of the considered group difference,

H0 implies equal group means and H1 assumes a group difference of a yet unspecific

extent.

Finally, this is where the Bayesian and the frequentist approach part company.

3.3.2 Hypothesis specification

The natural, Bayesian approach to compare the considered hypotheses it to calcu-

late a Bayes Factor. This initially presumes a specification of respective marginal

likelihoods.

H0 assignes δ the precise point value 0. By implication, the entire sample x =
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{x11, ..., x1n1 , x21, ..., x2n2} is assumed to be drawn from a population X ∼ N(µ, σ2).

Consequently, likelihood function is defined as f(x|µ, σ2, δ = 0). At it, µ and σ2

depict unknown parameters for whom prior densities πµ(µ) and πσ2(σ2) need to be

specified. Finally, the posterior likelihood function under H0 ensues as

f(x|H0) = f(x|µ, σ2)πµ(µ)πσ2(σ2) . (3.7)

H1 implies that the population means are not equal. As the disparity’s degree is

not regarded in δ 6= 0, Ly et al. [2016, p. 23] claim that H1 primarily loosens H0’s

restriction on δ. In fact, H1 an unspecific amount of uncertainty about the extent,

to which the group means are assumed to differ.

At this point, the Bayesian framework demands a specification of this uncertainty

in form of a parameter prior distribution πδ(δ). [De Santis and Spezzaferri, 1997,

p. 503] The same shall spread probability mass over a range of potential δ-values

according to their (subjectively ascribed) plausibility under H1. [Morey et al., 2016,

p. 11,14]

Accordingly, the Bayesian hypothesis set ensues as

H0 : δ = 0 vs. H1 : δ ∼ πδ(δ) . (3.8)

[Rouder et al., 2009, p. 230]

Now, indicating that δ is distributed precisely according to πδ(δ), H1 turns from a

general hypothesis into a specific one. This allows for the attribution of a posterior

likelihood function as

f(x|H1) = f(x|µ, σ2, δ)πµ(µ)πσ2(σ2)πδ(δ) . (3.9)

In order to become definite, πµ, πσ2 and πδ need to be specified by the analyst

according to his prior information and respective beliefs.

The specification of the prior on δ is given an emphasized position within this eval-

uation process. This is because πδ - other than πµ and πσ2 - will later on enter the

BF only through the marginal likelihood under H1. As such, it considerably affects

on it’s outcome. πδ may thus be stated the (only) test-relevant prior. [Ly et al.,

2016, p. 23]

In this context, a normal distribution shall be chosen to represent prior knowledge

about the value of δ. The choice of a normal distribution for the effect size prior is

chiefly promoted in psychological research. [Berger and Sellke, 1987, p. 112; Gönen
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et al., 2005, p. 253]

On the one hand, its shape is most often reasonable to describe prior assumptions

regarding an yet unknown effect size. After all, probability mass is hereby spread

symmetrically around a certain mean µδ, that is deemed plausible and this prob-

ability mass evenly declines as the distance to the mean increases. [Rouder et al.,

2009, p. 232; Matthews, 2011, p. 844]

On the other hand, mean and variance are quite intuitive measures to be specified

subjectively. Their respective effect on the shape of the prior are easy to imagine,

also for non-statisticians. This faciliates reasonable hyperparameter choices and in

turn an alternative hypothesis that has a reasonable counterpart in the real-world.

[Rouder et al., 2009, p. 229-233]

Consequently, πδ(δ) is specified as N(µδ, σ
2
δ ) and with it

H1 : δ ∼ N(µδ, σ
2
δ ). (3.10)

Therein, µδ and σ2
δ are commonly referred to as hyperparameters. [Gönen et al.,

2005, p. 254] Under the categorical assumption of a normal distribution, these are

the only variables to be chosen (subectively) by the respective analyst. [ Berger and

Sellke, 1987, p. 112]

After that, prior distributions need to be posed on the remaining model parameters

µ and σ2.

Denoted as πµ(µ) and πσ2(σ2), they enter the posterior likelihood functions under

both hypotheses. It is commonly argued, that this largely depletes their effect on the

BF outcome and in turn makes their specificaion less critical. [Rouder et al., 2009,

p. 231] Hence, Jeffreys proposed non-informative priors, that have quite evolved into

standard and shall herein be adopted as

µ ∝ const. and σ2 ∝ 1

σ2
. (3.11)

[Wang and Liu, 2016, p. 196; Gönen et al., 2005, p. 253]

3.3.3 Hypothesis comparison

In the following, steps are taken towards the actual hypothesis comparison.

Within the Bayesian framework, hypotheses are compared by how well they rela-

tively predict observed sample data. In other words, support for a scientific hy-

pothesis depends on how its marginal likelihood is geared to an observed sample in

comparison to that of the other hypothesis under consideration. [Morey et al., 2016,
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S.8]

This initially demands the incorporation of x = {x11, ..., x1n1 , x21, ...x2n2} into the

ongoing analysis. Given x, the calculation of the marginal likelihoods under either

hypothesis may follow. By analogy with the equations 2.6, the marginal densities

m0(x) and m0(x) are composed as

m0(x) =

∫∫
f(x|µ, σ2, δ = 0)πσ2(σ2)πµ(µ) dµ dσ2 (3.12)

and

m1(x) =

∫∫∫
f(x|µ, σ2, δ)πσ2(σ2)πµ(µ)πδ(δ) dδ dµ dσ

2 (3.13)

in this very case.

Within the Bayesian concept, m0(x) represents the model under the assumption

of equal group means. In reverse, m1(x) signifies that under the assumption of a

N(µδ, σ
2
δ ) - distributed, non-zero effect size δ. Within both marginal likelihoods, the

so-called ”nuisance” parameters [Gönen et al., 2005, p. 254] µ and σ2 are assigned

the improper priors πµ(µ) ∝ const. and πσ2(σ2) ∝ 1
σ2 , respectively.

Finally, the actual hypothesis comparison is accomplished by the ratio of m0(x) and

m1(x), which is in turn amounts to the subsequent definition of the BF .
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3.4 The Bayes Factor for independent two-sample comparisons

3.4.1 Definition

Finally, m0(x) and m1(x) are compared to yield the relative strength of evidence,

the data x hold for one of the considered hypothesis over the other.

According to definition 2.9, this is done by a calculation of the respective BF .

BF01(x) =
m0(x)

m1(x)
=

∫∫
f(x|µ, σ2, δ = 0)πσ2(σ2)πµ(µ) dµ dσ2∫∫∫
f(x|µ, σ2, δ)πσ2(σ2)πµ(µ)πδ(δ) dδ dµ dσ2

(3.14)

The numerator measures the marginal likelihood of x under the scientific assumption

of equal group means. The denominator depicts the equivalent under the assump-

tion that δ ∼ N(µδ, σ
2
δ ). As such, the above stated BF is treated as the statistical

evidence, the data x hold for the absence of an effect in comparison to a πδ(θδ) -

distributed effect size.

3.4.2 Special implementation

For precisely the above stated case, Gönen et al. [2005, p. 253] devised a closed-form

implementation, which allows for a BF formula solely dependent on the pooled-

variance two-sample t-statistic under H0 and H1, each.

The concrete implementation applies as

BF01(x, µδ, σ
2
δ ) =

Tν(t | 0, 1)

Tν(t |n1/2
δ µδ, 1 + nδσ

2
δ )
. (3.15)

Herein, t stands for the pooled variance two-sample t-statistic (see equation 3.3).

µδ and σ2
δ are the hyperparameters of the normally distributed effect size prior πδ

under H1 (see definition 3.10).

Finally, Tν(.|a, b) depicts the probability density function of a random variable

Y/
√
U/ν, where Y ∼ N(a, b) and U ∼ χ2(ν) independent of Y . [Gönen et al.,

2005, p. 253]

It is withal not unusual to set µδ = 0 in practical applications to reflect uncertainty

about the direction of the effect being at question. [Wang and Liu, 2016, p. 196;

Rouder et al., 2009, p. 229; Rouder et al., 2018, p. 104]

In this case, the special implementation stated above, can further be simplified to

BF01(x, σ2
δ ) =

[
1 + t2/ν

1 + t2/{ν(1 + nδσ
2
δ )}

](ν+1)/2

× (1 + nδσ
2
δ )
−1/2 (3.16)
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Herein, πδ(θδ) is specified as N(0, σ2
δ ), which makes σ2

δ the only parameter to be

chosen by the analyst. [Gönen et al., 2005, p. 253; Wang and Liu, 2016, p. 195, 196]

Irrespective of the choice of µδ, the following shall be pointed out on the whole:

For the above stated special case of an independent two-sample comparison, the

Bayes Factor depends on observed data only through their corresponding t-statistic.

This enables for a facile calculation and standardized software implementations -

pleasant features, that are otherwise unusual in the context of Bayesian analysis.

To obtain a BF , all the user has to do, is insert the respective sample data and

specify the test relevant prior πδ by means of the hyperparameters σ2
δ and µδ ac-

cording to his prior knowledge and skilled beliefs. Finally, this affords him an easy

opportunity for an eventual sensitivity analysis.
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4 A dialectical discussion of the Bayes Factor in the

context of the test relevant prior

The BF approach for independent two-sample comparisons has become quite popu-

lar in psychological research and a number of other research domains. [Van De Schoot

et al., 2017, p. 218-221; Rouder et al., 2018, p. 102

According to Wang and Liu [2016, p. 195]

”[t]he Bayesian approach to statistical design and analysis is emerging

as an increasingly effective and practical alternative to the frequentist

one.”

More than few scientists have even promoted the BF as a superior measure for re-

spective theory evaluations. [Rouder et al., 2009; Vanpaemel, 2010; Gallistel, 2009;

Rouder et al., 2018]

As this braces the question on BF ’s effective qualities, the following chapter shall

give a detailed overview of the advantages of and the current controversy around

the BF .

First, some chief arguments for BF -approval shall be submitted in this regard.

After that, the BF shall dialectically be discussed over its most critical component,

the test-relevant prior πδ. The discussion shall be threefold, respectively approach-

ing one concrete matter of debate around πδ. Whereas the first matter refers to

the general necessity of πδ, the second attaches the sensitivity of BF to varying

πδ-choices and the last is about the standards of πδ- implementation. Every matter

is first given a neutral description and then critical arguments are opposed to ap-

proving counterarguments.

At last, the contrasting notions shall be balanced for the purpose of drawing a con-

clusion about BF ’s particular strengths and weaknesses in the light of πδ.
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4.1 Arguments for Bayes Factor - approval

First of all, scientists approve the BF for its logically sound, philosophical under-

pinning through Bayes Rule. They support the Bayesian notion of probability as a

statement of personal knowledge and point out, how the focus of Bayesian analyses

lies on the rational updating of the Prior Odds in the light of empirical data. A

scientist may take BF as guidance from data, telling him how to rationally revise

his pre-existing information. [Rouder et al., 2018, p. 102] Thus, BF is said to match

the basic idea of scientific research work. [Kass and Raftery, 1995, p. 792; Rouder

et al., 2009, p. 228]

Furthermore, advocats point out the Bayes Factor’s clear interpretative framework.

[Matthews, 2011, p. 846]

A BF01 of value 2 for example, reveals that the data x provide twice as much sta-

tistical evidence for H0 than for H1. This provides the analyst with a clear evidence

statement.

Even more, the calculation of a BF allows the analyst to define the alternative hy-

pothesis specifically in accord with his research interest. [Berger and Delampady,

1987, p. 319]

This is valuable, because it can often be irrelevant that δ is not exactly 0, as long

as the difference remains too small to be meaningful in the research context.

Moreover, the BF is liable to the likelihood principle. [Rouder et al., 2018, p. 105]

It is commonly argued that its valid conclusions thus depend only on observed sample

data and not on theoretically assumed, but practically unobserved data. [Matthews,

2011, p. 846]

Finally, BF allows a researcher to gain relative evidence in favor of H0. Other than

in frequentist hypothesis tests, the analyst may thereby also gain relative support

the invariance of a certain variable. [Rouder et al., 2018, p. 105]

Advocats of the Bayes Factor commonly point out, how the demonstration of same-

ness or invariance constitutes a major part of scientific findings. [Rouder et al., 2009,

p. 225, 228, 233; Kass and Raftery, 1995, p. 791; Gallistel, 2009, p. 439]

Respecting the above stated, favourable votes, BF nevertheless remains controver-

sial. It’s validity underlies a critical debate, largely confined to the specification of

the test-relevant prior πδ. [Kass and Raftery, 1995, p. 792; Sinharay and Stern,

2002, p. 196; Morey et al., 2016, p. 16] Within the whole BF -approach, the same is

being criticised most often and for a variety of reasons. [Vanpaemel, 2010, p. 491;

Liseo, 2012, p. 197]
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4.2 Discussion of prior necessity

The first matter of debate affects the categorical necessity to specify proper prior

distributions on all unknown parameters implicit to H0 and H1. [Johnson, 2005,

p. 689; Morey et al., 2016, p. 15, 16; Kass and Raftery, 1995, p. 781; Vanpaemel,

2010, p. 492; Rouder et al., 2009, p. 229] As Morey et al. [2016, p. 16] formulates it

aptly,

” the prior distribution [...] ensures that the model has a definite marginal

likelihood, and thus establishes a bridge between the hypothesis and the

data.”

This particularly requires the analyst to set the test-relevant prior πδ within H1. As

the same is assumed to be a normal distribution, it is up to the respective analyst

to specify precise values for the mean µδ and the variance σ2
δ in order to yield a BF .

Respective of his paricular choice, probability mass is spread on a series of δ-values

according to N(µδ, σδ). [Liseo, 2012, p. 197; Rouder et al., 2009, p. 230]

In short, BF (see equation 3.15) cannot possibly be calculated without a precise

specification of the hyperparameters µδ and σ2
δ .

4.2.1 Reproving argumets on prior necessity

(a) Excessiveness of practical efforts

Critics commonly oppose the necessity for πδ by itself. They deem the implied

specification of µδ and σ2
δ an additional burden on the analyst, making theory

evaluation needlessly complex. [Goldstein, 2006, p. 417]

Especially, when prior knowledge is vague, the selection of precise values for

µδ and σ2
δ strikes them as a disproportionate practical effort. [Goldstein, 2006,

p. 413; Kass and Raftery, 1995, p. 776, 781]

Finally, the specification of πδ deters the user and thus prevents him from rou-

tined BF applications. [Liseo, 2012, p. 205]

(b) Proneness to misspecifications

Moreover, πδ is prone to missspecification in several points. The case of suffi-

cient prior knowledge or profound prior information from alike data sets is rare.

In fact, only fewest researchers would be safe to say, their prior choice for µδ and

σδ was beyond dispute. Not only are subjective beliefs typically too rough to

define abstract parameter values, it is also a simplistic approximation to assume

that πδ is normally distributed.

Summing it, the specification of πδ comes along with a considerable amount of

uncertainty and that implies error-proneness. Based on the typical extent of
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initial information on δ, it is likely to set unfit hyperparameters.

The bottom line is: The BF approach imposes great importance on a dis-

tribution that is highly error-prone, likely to be incorrect and can at best be

approximate.

(c) Dependence on model accuracy

In order to be useful to a certain research question, BF is predicated on a mean-

ingful set of hypotheses. [Liu and Aitkin, 2008, p. 367; Morey et al., 2016, p. 16,

17]

After all, πδ co-specifies the marginal likelihood that enters the BF under H1.

[Liu and Aitkin, 2008, p. 363; Liseo, 2012, p. 199]

As so, explicitly H1 and implicitly BF imply a fine choice of πδ. However, an

implausible choice of πδ locate BF somewhere between meaningless and wrong.

[Morey et al., 2016, p. 16; Liseo, 2012, p. 213]

(d) Implausibility of prior precision

The next point of criticism hits the necessity of a precise prior πδ and can aptly

be summed, quoting Joyce [2010, p. 281]:

”Belief is not all-or-nothing. Opinions come in varying gradations of

strength which can range from full certainty of truth, through equal

confidence in truth and falsehood, to complete certainty of falsehood.”

For the considered special case, this criticises to the demand imposed on ana-

lysts to have precise credences on µδ and σδ in order to assign them precise,

numerical values. In fact, a whole series of scientific work has been devoted to

the psychological absurdity of numerically sharp degrees of belief. It is hereby

argued that human knowledge can at best be represented through a value range.

[Joyce, 2010, p. 282, 283]

Clearly, this viewpoint particularly applies to prior knowledge of the unknown

effect size parameter δ. To put it in the accusing words of Goldstein [2006,

p. 414],

”[A] true subjective formulation should start by recognising the lim-

ited abilities of the individual to make large collections.”

Consequently, critics allege the choice of πδ arbitrariness and unjust make-belief

of precision. [Goldstein, 2006, p. 411; Kass and Raftery, 1995, p. 781]
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4.2.2 Approving counterarguments

(a) Incorporation of data-external information

Proponents challenge the first two points of criticism. They regard the need to

specify πδ less as an effort or burden, but more as a chance to incorporate valu-

able, data-external information into the analysis. [Gelman and Hennig, 2017, p.

207; Matthews, 2011, p. 848, 852; Vanpaemel, 2010, p. 491; Kass and Raftery,

1995, p. 776]

With the specification of πδ, analysts are given the opportunity to make use of

their relevant prior knowledge. Most often, they are professionals with long-term

experience in their respective research field. More than likely can they draw on

related studies, similar test results or simply worth-while working experience.

The case of sheer ignorance, however, may be dismissed as very unlikely in the

considered context. This makes an absurd choice πδ at least unlikely. From this

perspective, πδ enhances the evaluation process, rather than impeding it.

(b) Endorsement of a reasonable alternative hypothesis

The importance of a well-specified πδ in view of reasonable BF outcomes can

not be opposed. Still, advocats claim the contribution of πδ to yield a reasonable

alternative hypothesis. [Vanpaemel, 2010, p. 491; Matthews, 2011, p. 848]

Within the Bayesian framework, Vanpaemel [2010, p. 491] declares the con-

sidered hypotheses as ”quantitatively instantiated theories”, that stem from

rational beliefs. On that note, an accurate hypothesis specification requires an

accurate exposition of beliefs and for this purpose, the analyst may at will draw

on πδ. Finally, one may also call πδ co-reponsible for a meaningful alternative

hypothesis.
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4.3 Discussion of prior sensitivity

The second matter of debate concerns the sensitivity of BF to varying choices of its

hyperparameters µδ and σ2
δ . [Johnson, 2005, p. 689; Ŕıos Insua and Ruggeri, 2012,

p. 197]

In order to comprehend the effect of πδ on the BF , one should recall the same as a

ratio of marginal likelihoods (see equation 3.14).

To quote Rouder et al. [2009, p. 229], the marginal likelihood is

”[...] the weighted avergage of the likelihood over all constituent point

hypotheses, where priors serve as the weight.”

BF ’s particular prior densities - in question to have the effect of suchlike weights -

are πµ, πσ2 and πδ. However, πµ and πσ2 occur both in both marginal likelihoods

under consideration. As such, their weighing effect is argued to largely diminish.

[Rouder et al., 2009, p. 231] Finally, BF ’s dependence on prior densities is predom-

inantly down to the - as the name implies - test-relevant prior πδ.

One may conclude: The value of BF depends on the prior density πδ inherent to

H1. As such, BF is sensitive to changes of the hyperparameters µδ and σ2
δ building

up πδ. [Rouder et al., 2009, p. 229]

BF ’s prior sensitivity may best be explained by a concrete, numerical example:

Let x1 and x2 be simulated sample sets drawn from N(0, 1) and N(0.5, 1), respec-

tively. Let the sample sizes be n1 = n2 = 10. The hyperparameter µδ may be set

to 0. Finally, σ2
δ may vary between 0 and 3 to demonstrate, how the value of BF10

changes due to different (subjective) σ2
δ - choices.

Figure 1 clearly illustrates, what is meant by prior sensitivity . For σ2
δ = 0, H0

is equal to H1. Clearly, BF attains the value 1 in this case. As σ2
δ is increased,

greater relative weight is placed on certain effect sizes under H1. As x1 and x2 in

fact stem from normal distributions with different population means, BF desirably

prefers H1 over H0 from then on. In this graphic, the maximal BF value is attained

under σ2
δ = 1.1. In other words, H1 : δ ∼ N(0, 1.1) is the most preferable alternative

hypothesis compared to H0 : δ = 0. Further increases of σ2
δ presume ever-growing,

observed effect sizes. In this example, σ2
δ - increases beyond 1.1 constantly lower the

comparative statistical evidence for H1. Finally, one can see that BF is particularly

sensitive to σ2
δ - changes between 0 and 0.5. Within this range, the value of BF

increases fourfold.

Generally speaking, one may add the following: Once the chosen hyperparameter

pair implies unreasonably large effects, this penalizes the marginal likelihood under

H1 and conversely lifts the relative support for H0 within BF . [Rouder et al., 2009,
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Figure 1: Plot of BF10 against σ2
δ

p. 229] Finally, unrealistic choices for H1 yield a BF , that provides unbounded sup-

port for H0 over H1. [Rouder et al., 2018, p. 105]

To sum it: The less realistic one chooses µδ and σ2
δ , the farther will model-generated

data under H1 be apart from the empirical data and the more will BF compara-

tively favor H0.

4.3.1 Reproving arguments on prior sensitivity

Oversensitivity to varying hyperparameter choices

In that regard, the major point of criticism is apparent: BF is declared criti-

cally sensitive to varying hyperparameter choices. [see Morey et al., 2016, p. 15;

see Vanpaemel, 2010, p. 491; Kass and Raftery, 1995, p. 792] In reference to

the above stated example, one might criticise that a change of σ2
δ by only 0.5

quadruples the value of BF . Especially in combination with prior uncertainty

regarding the specification of πδ, insufficient robustness is commonly deemed

problematic. [Berger et al., 2012, p. 2]

4.3.2 Approving counterarguments

Adaptability to the reseach question

The counterargument thereon may be put straight, quoting Etz and Vandeker-

ckhove [2018, p. 24]:

”[T]he answer we get naturally depends on the question we ask.”
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That is to say: Yes, different priors entail different BF , but this is just in line

with its Bayesian conception. [Morey et al., 2016, p. 15]

BF employs data to compare two contrasting beliefs, formalised as hypotheses,

whereby πδ co-specifies the belief under H1. Contentwise, this makes πδ part

of establishing an alternative hypothesis with a precise marginal likelihood. Fi-

nally, BF responds to exactly that research question, stating that:

The sample x is BF times more likely to have been generated under H0 than

under H1, taking into account the prior πδ. [Liu and Aitkin, 2008, p. 363]

In this sense, different priors respond to (at least slightly) different research

questions.[Morey et al., 2016, p. 15; Matthews, 2011, p. 848]

Accordingly, BF ’s sensitivity to πδ equals sensitivity to the question asked -

in turn being a favourable feature, not a weakness. Vanpaemel [2010, p. 491]

even goes so far as to call the marginal likelihood an apt measure to compare

scientific hypotheses precisely because of its sensitivity to the prior.
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4.4 Discussion of prior implementation

The third matter of debate treats the actual implementation of πδ and the con-

straints an analyst underlies at it.

As explained above, the specification of πδ is rather crucial within the BF approach.

Yet, a proper choice of πδ demands for profound prior information and even then,

the resulting BF would remain at risk of being neglected by others on the ground

of subjectivity. To get around this, Bayesian analysts typically put noninformative

prior densities to use. In several applications, this depicts a seemingly attractive way

to state indifference and ignorance about unknown parameter values whilst lowering

the influence of the prior on the sought outcome. However, this does not apply for

the choice of πδ. [Liseo, 2012, p. 202]

First of all, noninformative priors are usually improper, meaning they are defined

merely up to an arbitrary constant. Employing an improper prior for πδ would cause

BF itself to be indeterminate. [Johnson and Rossell, 2010, p. 144]

However, as the multiple of an arbitrary constant, BF is no longer of any worth for

hypothesis comparison. [De Santis and Spezzaferri, 1997, p. 504]

This categorically rules out improper priors for the specification of πδ.

Above that mathematical concern, (very) diffuse prior distribtions are most often

unfit to represent πδ. [Aitkin, 1991, p. 113]

Per definition, the same spread probability mass over a large range of values, re-

sulting in flat probability distributions. Recalling that πδ represents an analyst’s

initial beliefs and uncertainty about the values of δ, a flat prior is unintuitive. Yet,

one would thereby place almost equal weights on wholly unrealistic effect sizes as on

small, plausible ones. [De Santis and Spezzaferri, 1997, p. 504; Morey et al., 2016,

p. 16]

Finally, the heavy weighing of devious δ-values completely lowers the marginal like-

lihood under H1 and in turn leads BF to an overstated support of H0. [De Santis

and Spezzaferri, 1997, p. 510]

Putting it drastically: Even if the data indicated a just meaningful effect, this might

not become apparent from a BF comprising a noninformative πδ. As the latter

would pose H1 that unrealistic, BF tends to prefer H0, comparatively.

In consequence, BF analyses are mostly bound to proper, informative prior choices,

where the respective information may stem from relevant test results, related liter-

ature and - for most parts - subjective knowledge. [Aitkin, 1991, p. 113]

In fact, not only the applied knowledge itself, but also the transformation of knowl-

edge into a probability distribution is grounded on individual assessments of the

analyst. [Kass and Raftery, 1995, p. 781; Matthews, 2011, p. 844]
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4.4.1 Reproving arguments on prior implementation

(a) The constraint to knowledgeability

In this matter, critique first of all adresses the demand for knowledgeability,

imposed on anyone, who wants to make use of a BF analysis. It condemns the

penalty, the BF forces on vague choices for πδ. In that regard, critics claim that

knowledgeability by implication is questionable. [Liu and Aitkin, 2008, p. 367]

In most practical cases, analysts simply are unsure about the value of δ, often to

a remarkable extent. The demand for an informative πδ leaves them with pretty

much two options. Either they back away from the BF approach in general or

they pretend knowledgeability, they do not actually have. In the latter case, πδ

is at risk of being arbitrary, rather than well-founded.

(b) Decline of scientific validity

Still others feel uncomfortable with the subjectivity of πδ as they worry how

it diminishes the scientific validitiy of their research results. [Goldstein, 2006,

p. 411; Matthews, 2011, p. 851; Rouder et al., 2018, p. 106]

Depending on individual knowlegde and differing information sources, researchers

may legitimately hold different subjective prior assumptions about the value of

δ. This in turn makes it fairly easy to refute another person’s BF result just

by advocating a different πδ. One might therefore put BF ’s overall evidential

worth into question.

Lastly, due to a subjectively chosen πδ, scientists may constantly be accused of

”engineer[ing] any result they wish”. [Rouder et al., 2009, p. 233] The sheer

possibility of adjusting the prior in favor of a desired finding, undermines the

integrity of BF outcomes. [Rouder et al., 2018, p. 106]

(c) Endorsement of scientific dicord

Finally, prior subjectivity is being criticised to cause a number of researcher to

draw different conclusions based on the same data.[Matthews, 2011, p. 851]

As a group of different researchers is very unlikely to advocate the exact same

prior πδ, there may co-exist a series of seemingly equally valid BF -values within

the same research context. Such unsteadiness is claimed to be adverse for sci-

entific consensus and generally approved findings. [see Goldstein, 2006, p. 407]

4.4.2 Approving counterarguments

(a) The deficiency of noninformative priors

By contrast, advocats of the subjective BF approach criticise the overall en-

deavor to use flat priors. [Matthews, 2011, p. 846; Morey et al., 2016, p. 16;

Vanpaemel, 2010, p. 494; Gelman and Hennig, 2017, p. 969, 970]
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On behalf of objectivity, many scientists try to avoid personal decisions and hide

away from statistical procedures, that cannot be received solely from the data

at hand. Flat, noninformative priors are said to tempt primarily by simplicity

of use. After all, tuning decisions can hereby be handed over to some algorithm.

[Gelman and Hennig, 2017, p. 969, 971]

However, noninformative priors pass over the theoretical meaning of πδ and its

hyperparameters. Concretely, µδ represents the mean of the standardized effect

size δ and σ2
δ indicates, which effect size values are likely, which unlikely and

which incredible under H1 before data are seen. [Vanpaemel, 2010, p. 491]

Taking this into account, vague priors are nothing but unwise. On the one hand,

they spread weight over improbable up to even impossible effect sizes. On the

other, they are not apt to represent indifference or objectivity. [Morey et al.,

2016, p. 16] With a flat prior, a scientist intends to act as if he was fully un-

suspecting of possible effect sizes and as if no study had ever been made on a

related issue. This is rather absurd. A scientist may be expected to know, which

hypotheses he wants to compare. [Matthews, 2011, p. 849] Finally, this should

at least enable him to rule out impossible δ-values. [Vanpaemel, 2010, p. 494]

Affirming this, Lindley [see critique of O’Hagan, 1995] once urged:

”[I]t is better to think about [the parameter] and what it means to

the scientist. It is his prior that is needed and not the statistician’s.

No one who does this has an improper distribution.”

(b) Reasonableness of prior knowlegdge

Especially in a context, where the hyperparameters have such a clear meaning,

scientists may be assumed to have some intuition and knowledge about them.

Mean and variance are particularly intuitive variables in psychological research.

Although prior knowledge may sometimes be not quite advanced, assuming com-

plete ignorance would anyway underrate a researcher’s ability. Finally, as prior

knowledge is reasonable, informative priors are feasible and subjectivity is down

to rational beliefs. It can primarily enrich and adjust the evalutation. [Van-

paemel, 2010, p. 493]

(c) Validity through flexibility and context awareness

Next up, proponents reverse the accusation that a subjective prior diminishes

the validity of BF results. [Matthews, 2011, p. 849; Gelman and Hennig, 2017,

p. 970, 975]

According to them, an informative prior distribution gives rise to flexibility and

context dependence and thus rather enhances the validity of scientific results.

After all, it allows a researcher to adapt the alternative hypothesis perfectly to

his research question. He may tune µδ and σ2
δ with direct regard to the research

context. [Gelman and Hennig, 2017, p. 969; Morey et al., 2016, p. 16] With σ2
δ ,
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he may for instance contour the size of δ, that he consideres (just) meaningful.

Obviously, this varies according to the respective research context. As to that,

Vanpaemel [2010, p. 494] calls on researchers to embrace the prior, rather than

treating it as a ”nuisance necassary to get the Bayesian modelling machinery

going”.

(d) Admission of multiple perspectives

It is further approved, how subjective priors πδ admit of multiple perspectives

within a scientific community. [Goldstein, 2006, p. 410; Gelman and Hennig,

2017, p. 975]

As Gelman and Hennig [2017, p.975] expounds, ”[...] reality and facts are ac-

cessible only through individual perspectives” Now, different researchers possess

different knowledge, draw on various sources of information, hold different per-

sonal beliefs and carry out research in different contexts. With a subjective

prior, different perspectives can be expressed and made transparent. Finally,

(slightly) different BF results may even endorse scientific progress, when being

composed as different perspectives on a common subject of study. [Morey et al.,

2016, p. 15]

(e) Endorsement of scientific communication

Finally, advocats of the subjective prior defend the same against the accusation

of causing discord and dismissal among researchers. In fact, they claim the

opposite to be the case. Accordingly, researchers must be aware that hypothesis

comparison is from ground up subjective. [Gelman and Hennig, 2017, p. 971]

Like Rouder et al. [2009, p. 235] put it straight: ”For any data set, the null will

be superior to some alternatives and inferior to others.” Nevertheless, specific

choices have to be made in order to conduct scientific research. Having that in

mind, researchers need to open for communication in any case. After all, the

latter is every day practice in scientific work. Thereby, it makes no difference,

whether experimental methods, valid interpretations or the appropriateness of

πδ are at issue. [Morey et al., 2016, p. 15]

Moreover, the choice of πδ is usually revealed transparently. This benefits direct

criticism.

In many cases, when individual notions do not contradict, boudaries my be set,

on which a number of researchers agrees. If the respective interval is sufficiently

narrow, this can be seen as a meaningful, scientific finding. If no consensus can

be found, however, this is an equally reasonable outcome. It shows up scientific

differences, once more endorsing scientific communication. Finally,

”the view of negotiated alternatives is vastly preferable to the cur-

rent practice, in which significance tests are mistakenly regarded as
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objective. [...] The sooner we adopt inference based on specifying

alternatives, the better.”

[Rouder et al., 2009, p. 235]
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4.5 Conclusion

Within this Bayesian framework, BF provides a logically sound evidence statement.

Both the mathematical and the conceptual setup of BF are rather consistent with

the general idea of scientific progress. Among others, the approach satisfies with a

transparent handling of subjectivity and the potential to support the null hypothesis.

The controversy around the qualification of BF is largely confined to the test-

relevant prior πδ. In fact, πδ is an integral component of BF . It imposes the

precise specification of the hyperparameters µδ and σ2
δ on any analyst, willing to

make use of BF outcomes. As default procedures are mostly ineligible, this makes

the evaluation process a bit more complex. On the other hand, πδ enables for an

inclusion of relevant, data-external information and warrants great flexibility for

context awareness.

BF is sensitive to changes of πδ through varying hyperparameter choices. This may

be seen both good and bad. Certainly, one may approve it as adaptability to fine

changes in the research context. In order to cope with prior sensitivity, hyperparam-

eter choices should nevertheless be reasoned, honestly displayed and kept open for

discussion. Additionally, many scientists advise a routine sensitivity analysis. That

is to say, BF should additionally be calculated over a range of other reasonable hy-

perparameter choices. [Liu and Aitkin, 2008, p. 364-366; Sinharay and Stern, 2002,

p. 196]

Furthermore, the BF approach commonly demands an informative πδ. This as-

sumes a considerable amount of prior knowledge and relevant information on part

of the analyst. One may appreciate the implied invitation to reflect on reasonable

effect sizes, interesting results and the given context. Moreover, one may expect a

scientist in psychological research to have certain, personal resources on the mean

and the variance of an effect under study.

Doubts regarding BF are primarily concerned with the practical feasibility or at

least the considerable efforts to achieve a reasonable πδ. However, this prior co-

determines BF ’s meaningfulness. [Pericchi and Walley, 1991, p. 3; Liu and Aitkin,

2008, p. 367; Goldstein, 2006, p. 407]

BF ’s benefits become apparent only on condition of profound prior information.

However, they are yet less instrumental in the general case of moderate prior knowl-

edge and even problematic, when relevant information is meager.

One may hereof claim: The distinctive deficiencies of BF first and foremost trace

back to the demand for precise value assignments on πδ’s hyperparameters.
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It is not the basic concept of BF and not the general inclusion of a subjective element

like πδ; it is the demand for prior precision that causes most of BF ’s deficiencies.

First, personal knowledge is in rarest cases directly transferable into a precise, nu-

merical value or a unique distribution.

Second, prior knowledge is pretty much never determinate enough for justified un-

ambigous value assignments of µδ and σ2
δ . This promts arbitrary choices, misspec-

ifications and amplifies discord among the scientific community. Researchers might

agree on certain boundaries, but unlikely on an exact pair of values (µδ, σ
2
δ ).

Third, BF is rather prone to disavowal and as such impedes generally accepted

findings. In combination with prior sensitivity, accusations of adjusted results are

often hard to turn away. [Rouder et al., 2009, p. 233]

Finally, the demand for prior precision may be stated as the major reason for re-

searchers to account the ”pain gain ratio” [Goldstein, 2006, p. 407] of BF to be too

high.

To sum up, BF is a valid tool for two-sample comparisons to anyone, who approves

the Bayesian conception of inference. It has groudedly become popular for a variety

of preferable properties in view of hypothesis comparison.

The points, for which BF is groundedly criticised or backed away from, may for a

large part be ascribed to the demand for a precise test-relevant prior πδ.

Finally, this is where one could effectively draw on, when willing to enhance BF .
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5 The Imprecise Bayes Factor - An enhancement pro-

posal in the context of Imprecise Probabilities

The following chapter is designated to make an enhancement proposal for the con-

ventional Bayes Factor for independent two-sample comparisons (BF ) descibed as

yet. The approach specifically draws on the problems BF entails concerning its

strict demand for a single, precise prior distribution on the effect size parameter δ.

Imbedded in the theory of Imprecise Probabilites, this restriction shall be eased. The

generalised BF outcome will finally be titled the Imprecise Bayes Factor (IBF ).

5.1 The enhancement target

The principal target in enhancing the conventional BF grounds on a problematic sit-

uation, in which many researchers find themselves, when willing to calculate a BF .

Under the endeavour to ascertain a difference in group means, they are demanded

to define prior distributions for all unknown parameters occuring in the hypothesis’

model classes. The prior distributions on µ and σ2 are argued not to be of note-

worthy consequence for the BF result. Thus, they are confidently set according to

Jeffreys’ noninformative proposal (see 3.11). [Rouder et al., 2009, p. 231] However,

BF is indeed sensitive to the choice of the test-relevant prior πδ(θδ) = N(µδ, σ
2
δ )

and thus to the choice of its hyperparameters µδ and σ2
δ . [Sinharay and Stern, 2002,

p. 196]

Now, even though a reseacher most often has some applicable prior knowledge about

the sought effect size δ, the same is (most) often not sufficient to decide on one,

unique prior distribution N(µδ, σ
2
δ ). [Goldstein, 2006, p. 418; Wolfenson and Fine,

1982, p. 80, Etz and Vandekerckhove, 2018, p. 7]

However, a suchlike specification presupposes ”very detailed prior knowledge” [Au-

gustin et al., 2014, p. 205] or rather ”extremely definite beliefs” [Joyce, 2010, p. 285].

It is debatable, whether precise credences are ever attainable in practice and thus,

whether a single prior distribution is ever justified to model uncertainty about δ

under H1. [see Berger, 1990, p. 305, 306, Joyce, 2010, p. 283; Pericchi and Walley,

1991, p. 3]

Notwithstanding this, prior knowledge is incomplete and contentious in many prac-

tical situations and if so, any precise choice can be accused of arbitrariness and are

indeed quite likely to be misstated. [Goldstein, 2006, p. 418; Walley et al., 1996,

p. 458] Accrding to Kass and Raftery [1995, p. 784],

”[a]ny approach that selects a single model [...] leads to underestimation

of the uncertainty about quantities of interest, sometimes to a dramatic

extent.”

Especially under BF ’s high level of prior sensitivity,
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”[...] ’overprecision’ by too rigorous assumptions may destroy the prac-

tical relevance of the results obtained.”

[Augustin et al., 2014, p. 146]

Beyond the problem of individual prior uncertainty, groups of researchers often need

to achieve joint conclusions despite of indiviually diverse prior notions. [Berger, 1990,

p. 304, 305] In such cases, single prior distributions are not only hard to agree upon,

but also negligent of multiple perspectives.

Suchlike precarious combinations of prior uncertainty and prior sensitivity - which

unfortunately apply to many cases in scientific practice - are regarded as a major

drawback of Bayesian analyses long-since. [Berger et al., 2012, p. 2]

In order to antagonize the problematic nature of Bayesian analyses in that regard,

procedures were developed to deal with its prior sensitivity in a state of partial prior

knowledge, where it is usually difficult to assign prior distributions on unknown pa-

rameters. [see Pericchi and Walley, 1991; see Ŕıos Insua and Ruggeri, 2012]

The traditional approach to deal with the prior sensitivity of Bayes Factors in sci-

entific practice is to submit an obtained Bayes Factor result to a so-called Bayesian

sensitivity analysis [Walter, 2013, p. 40] or Robust Bayesian analysis. [Berger et al.,

2012, p. 1]

Applied to the concrete case of BF , its basic concept goes as follows: In principle,

one assumes the existence of a ’correct’ prior distribution πδ, which could ideally

model prior uncertainty regarding the effect size δ and thus lead to an ’ideal’ BF

analysis. Due to the unfortunate case of incomplete prior knowledge, this distribu-

tion is not attainable. [Walley et al., 1996, p. 462]

Thus, BF is calculated over a class of individually plausible candidate prior distri-

butions. Often, this class is conceived as a sort of ”neighbourhood” [Pericchi and

Walley, 1991, p. 1, 2] to one ”central element” [Walter, 2013, p. 40] that is intended

to be chosen for πδ and whose single-valued BF outcome shall be primarily reported

afterwards.

Finally, the major goal of a robust Bayesian analysis is to assess the sensitivity of

a BF result to reasonable variations of the hyperparameters µδ and σδ in order to

confirm the BF as a stable result or to transparently unfold how other prior choices

would have lead to different BF results. [Berger et al., 2012, p. 1, 7 ]

However, robust analyses do not ease the analyst past the general dilemma to assign

precise values to µδ and σ2
δ when lacking in sufficient prior knowledge. Still, any

choice’s adequacy remains unclear and unanimity among different researchers can-

not be ensured. Finally, the one BF result selected for reports or further analyses

still comprises the analyst’s prior uncertainty in its entirety.
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5.2 The enhancement proposal

The major target of an IBF analysis is to relax BF ’s deficient demand for a precise

hyperparameter choice. It’s major idea for enhancement draws on the theory of

Imprecise Probabilities and may be broken down as follows:

The hyperparameters are defined as closed intervals instead of single values. This

leads to a subjective credal set comprising infinitely many precise prior distribtutions

instead of only one.

5.2.1 Imprecise Probabilities

Imprecise Probabilities aim at an adequate modelling of situations, where prior in-

formation is partial, prior beliefs are imprecise and thus, a precise specification of

πδ is problematic and ambiguous. [Augustin et al., 2014, p. 145, 146, 148]

Over time, Imprecise Probabilities have evolved into a full-fledged theretical frame-

work to

”[...] encompass and extend the traditional concepts and methods of

probability and statistics by allowing for incompleteness, imprecision and

indecision, and provide new modelling opportunities where reliability of

conclusions from incomplete information is important.”

[Augustin et al., 2014, p. xiii]

However, the overall, basic concept of Imprecise Probailities can be broken down

to the rather simple and indeed natural idea of replacing a (hardly attainable or

unjustified) precise probability measure P (A) by an interval of probability measures

[
¯
P (A); P̄ (A)]. The latter spawns an inprecise set of probability measures, defined

over
¯
P (A) and P̄ (A) as the interval’s lower and upper bound, respectively. [Walter,

2013, p. 33; Joyce, 2010, p. 281]

The systematic use of intervals rests upon the notion, that prior uncertainty can

never be modelled adequately under the use of precise probabilities, parameter val-

ues or models. It is argued that the latter would certainly underrate the actual

uncertainty associated with their results. [Kass and Raftery, 1995, p. 784; Walley

et al., 1996, p. 462]

Consequently, statistical conclusions are submitted solely through lower and upper

bounds. [Walley et al., 1996, p. 463]

As such, the theory of Imprecise Probabilities objects the classical, Bayesian inter-

pretation of probability as stated in chapter 2.1.
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In the following, one special approach within the framework of Imprecise Proba-

bilities shall be employed to model prior uncertainty about the hyperparameters µδ

and σ2
δ .

5.2.2 The subjective credal set

As stated above, the IBF approach refers to situations, in which a researcher in-

tends to calculate BF whilst being unsure about the choice of µδ and σ2
δ required

to specify the effect size prior. In accordance with his prior knowledge, he can at

best locate the hyperparameters within certain value ranges. [cf. Joyce, 2010, p. 283]

Whereas a conventional BF analysis cannot incorporate incomplete prior knowledge,

an IBF analysis aims at the flexible consideration of the latter. In order to explic-

itly model prior uncertainty, the IBF approach resorts to a common, imprecise-

probabilistic tool, termed credal set. [Walter, 2013, p. 37; Augustin et al., 2014,

p. 19]

Credal sets generally denote non-empty sets or classes of (precise) probability dis-

tributions, consistent with prespecified lower and upper bounds on the parameters

contained in these distributions. [Walter, 2013, p. 37, 38; Walley et al., 1996, p. 462]

Transferred to the specific case of imprecise prior knowledge on µδ and σ2
δ , a suchlike

credal set may be constructed as follows:

Instead of deciding on one value pair, the researcher expresses his hyperparameter

choices in terms of closed intervals Iµδ and Iσ2
δ
. These shall depict two ranges of

µδ- and σ2
δ - values, seperately accounted reasonable in the light of available prior

knowledge.

Concretely, this requires the researcher to set 4 precise interval boundaries, which

he shall choose according to the motto:

As narrow as possible and as broad as necessary, so that the width of the inteveral

accurately reflects the amount of uncertainty in the prior choices.

Finally, his specifications are of the form

Iµδ = [
¯
µδ; µ̄δ] and Iσ2

δ
= [

¯
σ2
δ ; σ̄

2
δ ]. (5.1)

Thereby,
¯
µδ and µ̄δ one by one depict the lower and the upper bound of the inter-

val Iµδ . Taken together, they are sufficient to repesent incomplete prior knowledge

about µδ. The analog applies to the definition of
¯
σ2
δ and σ̄2

δ .

Mathematically speaking, the IBF approach expands the hyperparameter specifi-

cation from a single point (µδ, σ
2
δ ) in the two-dimensional space to a rectangular

hyperparameter area [
¯
µδ, µ̄δ] × [

¯
σ2
δ , σ̄

2
δ ], comprising infinitely many, potential value
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pairs.

σδ
2

σδ
2

µδ µδ
µδ

σδ
2

Figure 2: Rectangular area of hyperparameter choices

Based thereon, the credal set M may be defined as

M = {N(µδ, σ
2
δ ) : µδ ∈ Iµδ , σ

2
δ ∈ Iσ2

δ
} (5.2)

or in the style of Berger and Sellke [1987, p. 115],

M = {all normal distributions N(µδ, σ
2
δ ) :

¯
µδ ≤ µδ ≤ µ̄δ,

¯
σ2
δ ≤ σ2

δ ≤ σ̄2
δ}. (5.3)

Verbalized, M depicts a closed set of all normal prior distributions, that match the

analyst’s interval-valued prior belief in the values of µδ and σ2
δ . [cf. Augustin et al.,

2014, p. 147]

As the applied lower and upper bounds were specified merely upon subjective prior

knowledge and personal beliefs,M shall explicitly be termed a subjective credal set.

In sum, the IBF approach asks the analyst to specify two hyperparameter intervals

Iµδ and Iσ2
δ

instead of two precise hyperparameter values µδ and σ2
δ . Thereby, it

counteracts his dilemma to make precise, subjective decisions in a state of prior

uncertainty and instead enables for a flexible, more realistic expression of partial

knowledge. [cf. Wolfenson and Fine, 1982, p. 80]

By now, IBF ’s final outcome may be determined.

Consequently, the following chapter is dedicated to the accomplishment, definition

and interpretation of an IBF result.
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5.3 The Imprecise Bayes Factor

By now, imprecise prior knowledge is modelled as a set of infinitely many, precise

prior distributions.

However, the principal target of an IBF analysis remains to make conclusions about

statistical evidence in favor of H0 against H1 or vice versa in the light of a sample

x.

As a imprecise-probabilistic method, M is considered as an ”entity of its own”

[Walter, 2013, p. 40] As no single prior distribution is believed to yield a justified BF

result, no particular meaning is given to individual prior distributions and nothing

is concluded from any single BF result. Instead,M yields an interval of BF results

that is expressed solely over lower and upper bounds. [Walley et al., 1996, p. 462]

Finally, this intervall may be introduced as the Imprecise Bayes Factor.

5.3.1 Derivation & Definition

In concrete terms, the same depicts an interval of multiple Bayes Factors, bounded

by the maximal and the minimal BF value derivable from the elements of the credal

set M.

IBF01(x, Iµδ , Iσ2
δ
) =

[
min
µδ∈Iµδ
σ2
δ∈Iσ2

δ

BF01(x, µδ, σ
2
δ ); max

µδ∈Iµδ
σ2
δ∈Iσ2

δ

BF01(x, µδ, σ
2
δ )

]
(5.4)

As the IBF is defined over two BF values, which seperately take values (0,∞), the

same value range applies to IBF ’s upper and lower bound. For reasons of clarity,

IBF ’s bounds may denoted as BF and BF hereafter.

Finally, the following relation may be inferred:

IBF01 =

[
BF 01; BF 01

]
⇔ IBF10 =

[
(BF 01)

−1
; (BF 01)−1

]
(5.5)

5.3.2 Calculation

In order to calculate an IBF , the sample data set x = {x1, x2} (see definition 3.1)

and the subjectively specified hyperparameter intervals Iµδ and Iσ2
δ

are demanded

as input. In order to process an IBF result, the two BF extrema overM need to be

identified. Indeed, M’s closure property warrants their finite existence. However,

their detection requires the calculation of (theoretically infinitely many) BF values,

resultant from each and every prior distribution inherent to M.
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In the hypothetical case of a finite credal set, a suchlike endeavour could be met

through an application of the Generalized Bayes’ Rule.

According to Walter [2013, p. 39], the same enables to coherently ”transfer the basic

aspects of traditional Bayesian inference to the generalised [imprecise] setting”. In

the case of a given credal set M , it purports:

”The prior credal set M is updated element by element to obtain the

posterior credal set [...] cosisting of all posterior distributions [...] ob-

tained by traditional Bayesian updating of elements of the prior credal

set”

[Walter, 2013, p. 39]

Now, instead of gradually updating an imprecise prior distribution to an imprecise

posterior distribution via Bayes’ Rule, one might also deploy each hyperparameter

combination (µδ, σδ) inM - once at a time - to calculate a set of corresponding BF s

and finally set the maximum and the minimum value as seeked interval boundaries.

However,M - as defined in 5.2 - in fact contains infinitely many prior distributions.

On that account, IBF ’s interval boudaries cannot be calcuated in practice.

Instead, the latter turns into a numerical optimization problem. One might herefore

apply the R-function optim() and optimize the function BF01(x, µδ, σ
2
δ ) (see 3.15)

over µδ and σ2
δ , simultaneously. One optimization process may thusly lead to the

seeked minimum and a second may serve to yield the maximum. (see Appendix A)

5.3.3 Interpretation

Just like its credal setM, an IBF result is to be interpreted as one cohesive entity.

That is to say, an IBF result is interpreted in terms of its lower and upper bounds.

One does explicitly not regard to single BF values contained in the interval so to

declare the imprecise-theoretic notion that none of them is reasonable for themselves.

A generally valid interpretation of IBF01 might then read as: Given the subjec-

tive credal setM as an expression of imprecise belief regarding πδ’s hyperparameters

µδ and σδ, the sample x is at least BF01 and at most BF 01 times as much statistical

evidence for H0 as for H1.

Rather colloquially speaking, one might say: If we locate µδ somewhere between
¯
µδ

and µ̄δ and assume σ2
δ to lie within

¯
σ2
δ and σ̄2

δ , then we would expect to obtain a

BF01 within a range of BF01 and BF 01.

To sum it: One does no longer state comparative statistical evidence in precise terms,

but merely delimits the same to an interval of a certain size. As such, one makes

a less distinct, but on the other hand more cautious and transparent, comparative
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evidence statement. The same is apt to give a rough, inclusive impression about

BF results in the light of prior uncertainty.

5.3.4 Arguable conclusions

Arguable conclusions from an IBF result indeed demand for some deliberation.

However, the same are not always quite straighforward.

In fact, if BF01 is greater than 1, one might conclude that x consistently favors H0

over H1, albeit to varying degrees. If BF 01 remains below 1, just the opposite may

be inferred. Otherwise, an IBF explains how the comparative evidence remains

somewhat ambigious, given the extent of prior imprecision. In such cases, any single

BF result could be disputed on grounds of unjust precision.

As stated above, an IBF might also result from a collection of differing prior beliefs

held by a research group. In such cases, one may conclude to what extent these

differences are relevant in the sense of being reflected in the overall BF variation.

In any case, one may incorporate the size of the IBF interval relative to that of Iµδ
and Iσ2

δ
into his conclusions. However, the former stongly depends on the size of the

hyperparameter intervals used to represent the uncertain inputs. [cf. Berger et al.,

2012, p. 9, cf. Etz and Vandekerckhove, 2018, p. 27] Of course, the expressiveness

and clarity of conclusions implies reasonably narrow IBF intervals. If the latter are

too broad to be conclusive, there are two options that can be taken so as to yield

a satisfactory result. One is to narrow the hyperparameter intervals further and

the other is to collect additional data. Of course, a more detailed specification of

prior knowledge needs to be justified by an attainment of certain, additional prior

information. If neither is possible, Berger [1990, p. 307] reasons that

”[...] then there are legitimate differences or uncertainties in opinion

which lead to different conclusions, and it seems wisest just to conclude

that there is no answer; more evidence is needed to solve the ambiguity.

Any ’alternative’ [approach] which claims to do more, would simply be

masking legitimate uncertainty by ’sweeping it under the carpet’. ”

In accordance with Goldstein [2006, p. 418], one might claim that even then ”the

value of an incomplete analysis overweighs possible missspecifications and wrong

results”. Of course, overly vague, ambigious intervals are no longer informative. [cf.

Walter, 2013, p. 50]
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5.4 A simulated application example

Hereafter, an exemplary IBF analysis shall be performed on the basis of a simu-

lated data set. The hypothetical research question shall hereby adapt to a relevant

topic in the field of psychological research. Primary reference applies to the article

Sex similarities and differences in risk factors for recurrence of major depression,

published in the journal Psycholgical Medicine. [van Loo et al., 2017]

According to a number of studies, women are approximately twice as likely to ex-

perience major depression (MD) than men. [see van Loo et al., 2017, p. 1695;

Noel-Hoeksema, 2001, p. 173] However, it is rather uncertain, whether this gender

difference persists after disease onset. Previous studies turned out controversial re-

sults. [see van Loo et al., 2017, p. 1695]

In a loose reference thereto, the following, hypothetical research situation may be

imagined:

A scientist in psychological research wants to pursue the question, whether women

are more likely to experience a recurrence of MD than men. He formulates his

research question as: Is the overall risk of a MD recurrence different in both sexes?

Or rather: Is there a gender effect within the recurrence risk of MD?

The overall risk of recurrence may captured by a score, calculated over a number of

different risk predictors. [cf. van Loo et al., 2017, p. 1687-1689] In this illustrative

example, it may be assumed that the score results are normally distributed. As the

results may stem from a preliminary inquiry, they are standardised with the men’s

group mean and the pooled standard deviation.

For the purpose of a statistical analysis, the researcher may draw on a (simulated)

sample data set x composed of two independent, normally distributed group samples

x1 and x2.

Thereby, x1 includes the scores of 10 men and x2 comprises the score values of 10

women. In both cases, the data are true, fictitious values, drawn from two different

normal distributions. (see Appendix A)

In order to examine a potential gender difference in the average recurrence risk, the

researcher intends to conduct a Bayesian analysis.

Consequently, he constructs two contrasting hypotheses of the form

H0 : δ = 0 vs. H1 : δ ∼ N(µδ, σ
2
δ ). (5.6)

Whereas the null hypothesis states equal, average recurrence risk for women and

men, the alternative implies a normally distributed effect size δ around the mean µδ

and with a variance of σ2
δ .

46



Up to this point, all requirements are met for the researcher to carry out a conven-

tional BF analysis. (see chapter 3.4)

In order calculate a BF , the latter finally expects him to specify precise hyperpa-

rameter values µδ and σ2
δ based on his personal prior knowledge. (see definition 3.15)

After all, the researcher lacks a sufficient knowledge base to confidently make precice

choices in that regard. On that account, he decides to make use of BF ’s enhance-

ment proposal, the IBF approach, for which he proceeds as follows:

In order to yield a credal set M of prior distributions for δ under H1, he specifies

two hyperparameter intervals. According to his prior knowledge, he chooses lower

and upper bounds for µδ and σ2
δ , each. Given H1, he expresses his assumptions

regarding µδ in form of the interval

Iµδ = [0; 0.5]

and localizes σ2
δ - indicative for the expected effect range - within the interval

Iσ2
δ

= [0.5; 3].

Thereby, he constructed an area of potential hyperparameter pairs, visualisable as:

0.5

3.0

0.0 0.5
µδ

σδ
2

Figure 3: Subjectively specified hyperparameter area

47



In accordance with his previous interval specifications, the subective credal set M
holds as

M = {all N(µδ, σ
2
δ ) distributions : 0 ≤ µδ ≤ 0.5, 0.5 ≤ σ2

δ ≤ 3}.

Finally, the corresponding IBF10 is defined as

IBF10(x, [0; 0.5], [0.5; 3]) =

[
min

µδ∈ [0;0.5]

σ2
δ∈[0.5;3]

BF01(x, µδ, σ
2
δ ); max

µδ∈ [0;0.5]

σ2
δ∈[0.5;3]

BF01(x, µδ, σ
2
δ )

]

(5.7)

By means of an appropriate, numerical optimization algoritm, the minimal and the

maximal BF10-value may be computed successively. (see section 5.3.2)

Using the R-function optim(), the IBF interval yields as

IBF10(x, [0; 0.5], [0.5; 3]) = [1.836817; 5.994383].

Finally, the researcher is in a position to say that x is about 1.8 to 6 - times as much

statistical evidence for H1 than for H0. Taking into account his prior uncertainty

about δ under H1, the BF consistently favors H1 over H0. Merely the preference

degree varies, so that the value of upper bound is about 3-times that of the lower.

He may conclude or report: The data x imply 1.8 to 6-times more statistical evidence

for a certain gender effect than for equal recurrence risk of MD in both sexes.
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To allow for a visualisation of the interval boundaries’ accomplishment, the hyper-

parameter intervals Iµδ and Iσ2
δ

may be discretised into respective segments (at

intervals of 0.05 and 0.1 hereafter).

Consequently, M comprises only a finite number of normal distributions, based on

which just as many BF values may be calculated and plotted in form of a heatmap.

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5
µδ

σδ
2

2
3
4
5

Figure 4: Heatmap of discretised BF results

Finally, the IBF interval boundaries are the minimum and the maximum BF value

occuring in this heatmap. Their values are 1.836817 and 5.994381, respectively. As

such, the discretised bounds correspond to the optimized up to the sixth decimal

point.

As highlighted through the white grid, these BF values have been calculated dis-

cretely. Yet, the graphical representation suggests the assumption of BF ’s continuity

regarding the hyperparameters µδ and σ2
δ . A mathematical proof exceeds the scope

of this thesis, but as continuity nevertheless stands to reason, a smoothed heatmap

is displayed .
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5.5 An enhancement record

Eventually, IBF ’s overall capacity to enhance BF shall be evaluated. As to that,

the following key points provide a general view over IBF ’s major advantages over

its conventional counterpart.

(a) Awareness of context dependence

First of all, the IBF approach - as a direct generalisation of the BF approach

- cleaves to the notion, that subjective prior knowledge is a gain to statistical

analyses. Just like BF , it applies personal beliefs to yield the subjective credal

set M. As such, it equally prompts the researcher to think about reasonable

hyperparameter values. Even more, it promts him to specifiy Iµδ and Iσ2
δ

as

narrow as possible. Finally, IBF similarly encourages the analyst to use his

avaiable background information in order to raise context dependence and adjust

the analysis to his intended research question. [cf. Gelman and Hennig, 2017,

p. 973- 975]

(b) Increase of practicability

The IBF offers a pragmatic alternative to the infeasible, time-consuming spec-

ification of one precise hyperparameter pair (µδ, σδ) in situations, where prior

knowledge is partial. This eases the burden, usually imposed on the analyst. In

order to compute an IBF , the same is no longer ought to the unpleasant situ-

ation of decision making, when precise judgements lack a sufficient knowledge

base. Instead, IBF exclusively demands for practical assessments. Finally, this

makes IBF -analyses more attractive and qualified for common use.

(c) Reduction of error proneness & Increase of real-world correspondence

Compared to BF results, IBF intervals are less error prone. Obviously, the

risk of misstating hyperparameter intervals of an arbitrary, finite size is lower

than that of being wrong about two precise values. Even more, M is much

likelier to contain a prior that matches with the real world situation. The case

that this holds true for a single distribution N(µδ, σ
2
δ ) can practically be ruled

out. As such, IBF is a better approximation of the real world situation it refers

to. Finally, the reduced danger of misspecifiactions makes IBF results more

meaningful and harder to confute.

(d) Extension of interpretability

An IBF result affords the analyst an extended, overall impression of compara-

tive, statistical evidence. After all, it provides insight about the overall range of

BF values deemed reasonable according to respective prior beliefs. This range

may likewise result from different, personal notions or from prior uncertainty.

Based on IBF ’s interval size, one may reflect about BF ’s overall robustness
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against differing hyperparameter assumptions or individual uncertainty. How-

ever, the IBF implies a sensitivity analysis, just under a different rationale.

(e) Flexible consideration of prior uncertainty

The IBF approach can flexibly adapt to the available amount of prior infor-

mation. It can cope with situations, where the latter is sparse and at the same

time it does not impede thorough prior knowledge. [cf. Augustin et al., 2014,

p. 145] To sum it: Applying the IBF approach, one can explicitly model any

(partial) degree of prior knowledge. [cf. Augustin et al., 2014, p. 158] As such,

IBF simply expands the BF approach by loosening its restrictions on prior

specification.

(f) Awareness of multiple perspectives & Encouragement of consensus

The conventional BF is often criticised to counter general agreement. However,

conclusions based on a certain prior N(µδ, σ
2
δ ) can be discounted as irrelevant

for anybody who would have chosen another. [cf. Gelman and Hennig, 2017,

p. 989]

The fact that IBF incorporates prior knowledge in form of intervals, enables

for a union of multiple, individual prior notions about µδ and σ2
δ . As such, a

number of different researchers may arrive at and agree on one joint IBF re-

sult. [cf. Berger, 1990, p. 304] Indeed, this is no longer a definite conclusion,

but considering that ”[m]ultiple perspectives are a reality to be reckoned with

and should not be hidden” [Gelman and Hennig, 2017, p. 975], a range of BF

values states an eligible compromise between the ideal of overall agreement and

the reality of debatable, different opinions.

The composition of common hyperparameter intervals in turn provides a good

opportunity for scientific reasoning and communication about reasonable hyper-

parameter values. [cf. Gelman and Hennig, 2017, p. 975]

(g) Encourament of cautiousness & Transparency

An IBF result as such itself requests the analyst to draw cautious conclusions. It

demands that any evidence statement is expressed with reference to the resective

prior imprecision. This makes IBF conclusions less over-precise and withal more

honest. [cf. Augustin et al., 2014, p. 145]

Through Iµδ and Iσ2
δ
, prior assumptions are laid out transparently. [cf. Gelman

and Hennig, 2017, p. 989] This makes it easy for different researchers to equalize

the latter with their own beliefs and thus decide whether they want to support

the obtained result. [Goldstein, 2006, p. 409]

(h) Automized applicability

Finally, the IBF can easily be implemented in an application software. The

computation of respective interval boundaries can be achieved through variant
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optimization algorithms, applied to the closed-form BF function introduced

by Gönen et al. [2005, p. 253]. The programming language R, for instance,

offers the optimization algorithms optim() or optimize() for this purpose. For

the practical use in psychological reseach, one may thus imagine an interactive

software package, which requests the 4 interval boundaries for µδ and σδ from

the analyst and processes them into an interval-valued IBF output.
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6 Conclusion

On the whole, this thesis was dedicated to the Bayes Factor as the result of Bayesian

hypothesis comparison. In particular, it intended to present, discuss and enhance

the Bayes Factor approach, referred to as the ”Bayesian two-sample-t-test”.

This section summarizes the most important results and clarifies the strengths and

limitations of the proposed Imprecise Bayes Factor.

Chapter 1 introduced the general Bayes Factor as a component of the odds nota-

tion of Bayes’ Rule. It presented the same as the ratio of two marginal likelihoods.

The Bayes Factor was interpreted as the amount of evidence, a sample x holds in

favor of one scientific hypothesis against another. Furthermore, the Bayes Factor

was exposed as a relational and relative measure of statistical evidence. As such, its

explanatory power depends on the meaningfulness of the considered hypothesis set

and any valid conclusions remain comparative. By itself, the Bayes Factor is inapt

for hypothesis selection or absolute hypothesis evaluations.

In chapter 2 presented the ”Bayesian two sample t-test” as an exceedingly common,

statistical problem in psychological research. This special case holds a facile, closed-

form for BF calculations. In fact, Gönen et al. developed a formula, in which BF

is dependent only on x and the two hyperparameters of the normally distributed

effect size prior, representing H1. This enables for a simple calculation and a high

ease of use for non-statisticians. However, facile applicability is not the only reason

for the increased popuarity of the BF approach.

As stated in chapter 3, proponents endorse BF ’s clear interpretative framework and

the great flexibility to adapt H1 to the research question and the scientific context.

Moreover, they approve BF ’s comparative nature, which allows to gain comparative

evidence in favor of H0.

The controversy around the BF is largely confined to the test-relevant prior πδ.

Misgivings primarily hit the practical feasibility and the additional efforts to specify

a reasonable prior distribution πδ = N(µδ, σ
2
δ ) over a reasonable pair of hyperpa-

rameters. Doubts adress the necessity for a subjective specification of πδ as well as

BF ’s (high) sensitivity to varying hyperparameter choices. The discussion in chap-

ter 3 turned out that BF ’s demand for prior precision may largely be deplored. It

was reasoned that precise prior knowlegde is rarely attainable in scientific practice.

However, this prompts arbitrary hyperparameter choices, causes misspecifications

and thus boosts the risk of meaningless BF results and wrong conclusions. Finally,

a relaxation of the demand for prior precision was declared as the chief working

point for BF enhancement.

The Imprecise Bayes Factor proposed in chapter 5 is the direct response thereto. It

enables the analyst to specify the hyperparameters in form of intervals, whose lengths

represent subjective prior uncertainty. Through a corresponding credal set, the IBF

approach explicitly models partial prior knowledge. This generalisation increases the
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feasibility of πδ-specifications in scientific practice, reduces error-proneness and en-

ables for an inclusion of multiple perspectives. As the resulting IBF interval is con-

sidered and interpreted as an entity of its own, cautious, more realistic conclusions

are encouraged. Finally, an IBF result is likelier to contain the prior distribution,

that matches the real word situation.

A final, concluding remark may read as follows: The IBF enhances the conventional

BF in situations, where prior knowledge does not allow for precise prior specifica-

tions. The generalisation focused on a realistic dealing with uncertainty to reach

more honest and stable results. It raises awareness of subjectivity, prior uncertainty

and the reality of different prior notions. Yet, these strengths are at cost of a more

vague, possibly ambigious statements of comparative evidence. Too broad hyperpa-

rameter intervals might lead to cumbersome, uninformative results. As to that, the

respective analyst needs to deem an interval a satisfactory outcome.

As yet, the IBF applies to one special case of application. Extensions to other,

more general research questions are certainly conceivable. However, these would

commonly involve a much more complex computation of lower and upper bounds.
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A Digital Supplement

This Bachelor thesis involves a digital supplement, which consists of the folder

Bachelor Thesis IBF. It contains the R-code to reproduce all figures and calcu-

lations reported in the thesis.
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