
Bachelorarbeit

im Studiengang Statistik

an der Ludwig-Maximilians-Universität München

Department Institut für Statistik

Visualization and replay memory database
design for reinforcement learning in R

Written by
Sebastian Gruber

Duty date
24th July 2018

Supervision
Prof. Dr. Bernd Bischl

Xudong Sun

Abstract

In this thesis, a basic intro to reinforcement learning, deep learning and
database systems will be given. Reinforcement learning describes methods
learning on data generated from acting in an environment. Unless conventional
machine learning algorithms, these kind of artificial learners are meant to start
with zero data. Additionally to the theoretical parts in this thesis, there will
be several implementations in R not only for demonstration purposes, but also
to help storing the generated data plus understanding the learning process in
retrospective.

1

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Introduction to reinforcement learning 5
2.2 Implementation of basic reinforcement learning alogrithm 9
2.3 Introduction to artificial neural networks 12

2.3.1 Layer types . 13
2.3.2 Network design . 15
2.3.3 Training . 17

2.4 Deep Q learning . 18

3 Relational databases in R 19
3.1 Motivation . 19
3.2 Basic theory of relational databases and SQLite 21

4 Database and visualization method implementations for reinforce-
ment learning in R 25
4.1 Database design . 25
4.2 Database benchmarks . 26
4.3 Evaluation . 29
4.4 Visualization . 30

5 Summary 34

Appendices 36

2

1 Introduction

Due to the increase of computing power and the introduction of new powerful algo-
rithms in the deep learning subdomain, machine learning as a whole has experienced
a substantial uplift of interest - not only in the research world, but also on the busi-
ness side of things in form of millions of dollars of investment [17]. This broad hype
has led many key figures in society to believe that humanity is stepping into a new
age of data-driven artificial intelligence, although it is questionable to call algorithms
trying to fit more or less random patterns in a limited pile of numbers as intelligence.
Especially, because a key component of intelligence - generalisation - will only be to
some extend achievable with the engineering and supervision of highly skilled craft-
manship (the so called Data Scientists) if - and only if - the available data does allow
general patterns to be find. There is also the additional and highly time-inefficient
challenge of cleaning at first glance useless data to something a machine learning
algorithm can even run on because universal standards for storing data are lacking
and a general carelessness for the data quality during the data generation process is
still common.
And this is the part where Reinforcement Learning comes to shine. As a subcate-
gory of machine learning algorithms it has its similarities with other machine learning
methods and even puts some of these into highly use, but with one single big dif-
ference allowing to cirumvent some of the above mentioned disadvantages: It starts
with zero data.
Unless conventional algorithms like in supervised or unsupervised learning, these kind
of artificial learners start in a virtual environment and generate their own data by
acting in there and experiencing the consequences of their actions in terms of change
of this environment plus a reward upon reaching a predefined goal. Not only does
that allow to learn a solution of problems being too high dimensional and dynamic
for exhaustive search methods (like the chinese game Go), but this also means the
algorithm tries to learn the optimal behaviour based on a whole environment and
not on scarse, badly balanced or biased data points, achieving better generalisation
as a consequence. Thanks to this, quicker and better learned solutions than through
the usage of other algorithms based on natural/human data become possible.[14]
Of course reinforcement learning has its own kind of problems. It is absolutely
mandatory that every task exists as a (time consumingly) crafted virtual simulation
as a bag for pulling the data out, plus this data may require very high amount of
storage, plus the learning process may be very unstable (the algorithm can even fail
to converge to a solution), plus even if a good solution is reached, it’s extremely dif-
ficult to reason about that. These difficulties are a major reason why reinforcement
learning is still mostly stuck in academic research, while being wholeheartedly ig-
nored by most of the real world without access to a specialized research department.
This bachelor thesis will not be about how to program a virtual environment in a
quick manner, but I will try to tackle the other above mentioned issues by providing
a storage solution and a visualization app to review the learning process.

3

First of all, there will be quick introduction to the theoretical backgrounds of rein-
forcement learning plus an in R implemented basic example, giving a better under-
standing than the shallow words used so far. This follows up with an explanation
of some basic knowledge around artifical neural networks, that are heavily used be
reinforcement learning algorithms, and further theory about relational databases
to understand how the increase of storage efficiency in the implementation part is
achieved for the replay memory (synonym for the stored generated data pile). After
that, another chapter describes the visualization possibilities of the learning process
introduced by a shiny app. This implementation will be done as addition for the
reinforcement learning specific R package rlR (authored by Xudong Sun [15]).

4

2 Preliminaries

2.1 Introduction to reinforcement learning

Before any task can be handled by a reinforcement learning algorithm, it is absolutely
required for the task to be specified as a Markov Decision Process (MDP). To define
a MDP a finite set S of states s ∈ S is needed, in where it is possible to transition
stepwise between state i to state j by a given probability Pa(i, j) (called transition
probability) with a stochastic reward r ∈ R ⊂ R as additional result - although
future rewards suffer from a discount factor γ ∈ [0, 1]. Furthermore these transition
probabilities are influenced for each state by taking actions a ∈ A - A also being a
finite set. To sum this up, a MDP is specified as a five-tupel of (S,A,Pa,R, γ). [16]
It is important to note that no matter what transition happens, the system can never
be left. This means that given a certain state, the cumulative probability to move
to a new state is always equal 1. Note that it’s also possible to transition to the
same state again - leading to no state change at all. This special case is also treated
as a transition to a new state. Of course it is also possible for single transitions to
have probability of zero. This simply means a specific state can not be reached from
this state. If all transitions are zero in probability except the transition to the state
itself, the state is called a terminal state because change is impossible.
To make this compliant with real world tasks, we simply define every possible view-
/datapoint during a task as a state and the whole environment around the task as
the system. For example if we have a robot in a room, we can either define each
image frame captured by a camera as a state or - if the robot always exists on a grid
with discrete values - the positional coordinates after every move of itself as states.
In both scenarios it is important to summarize all the knowledge (the image or the
coordinates) into a single state.
Additionally, since we want an artificial and smart actor in an environment and not
just simply transition randomly from state to state without goal or reasoning, we
have to take the predefined numerical reward from each transition into account and
the possible actions we can take as condition of how the next state plus reward may
look like - we don’t look at transitions from state to state alone, but rather from
states paired with actions to states paired with rewards. This gives us the flexibility
on the one hand to say that actions in the same state have consequences on what
next state will be reached while on the other hand to assume different kind of rewards
with different probabilities for the next state.
The following definition is a mathematical way of expressing the just explained re-
quirements for the transition probabilities [16, p. 38]:

p(s′, r|s, a) := P(St = s′, Rt = r |St−1 = s, At−1 = a) (1)

in which s′, s ∈ S, r ∈ R and a ∈ A(s)
with sets of states, actions and rewards (S, A and R) and t as the transition iter-
ation. This term basically tells us all about what is important for a Reinforcement

5

Learning algorithm to work - an existing/current state, an action to do, a next state
to transition to (can be the same state) plus a reward after the transition happened.
As described before, it is essential that the following holds true:∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1, for all s ∈ S, a ∈ A(s) (2)

Otherwise, the agent (synonym for acting algorithm) could possibly leave the envi-
ronment. With the help of 1 it is possible to calculate all other desired attributes in
the MDP. Often it is useful to simply calculate the state-transition probabilities [16,
p.38]:

p(s′|s, a) := P(St = s′ |St−1 = s, At−1 = a) =
∑
r∈R

p(s′, r|s, a) (3)

Or - another important attribute - the expected reward given the agent is in a certain
state and applies a certain action:

r(s, a) := E(Rt |St−1 = s, At−1 = a) =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (4)

Besides that we can also calculate the expected reward once a certain state is reached
from a given previous state and action:

r(s, a, s′) := E(Rt |St−1 = s, At−1 = a, St = s′) =
∑
r∈R

r
p(s′, r|s, a)

p(s′|s, a)
(5)

But since we want to solve a whole environment the algorithm needs something
to optimize for, so we won’t get far by only looking at single state transitions. To
make the agent strive towards a single goal it is important to gather the rewards of a
chain of transitions together. This is called the Return Gt of the current iteration t
and it’s nothing else except the sum of all rewards from future transitions multiplied
by a constant γ [16, p. 43]:

Gt := Rt+1 + γRt+2 + γ2Rt+3 + ... =
T∑
k=0

γkRt+k+1 (6)

0 ≤ γ ≤ 1, T ≤ ∞ (in which either γ = 1 or T = ∞) γ has two purposes here:
On the one hand it tells the agent how short- or long sightened it should act, while
on the other hand it makes sure the expected return being calculable by keeping it
smaller than infinite. The Return can also be written recursively:

Gt = Rt+1 + γGt+1 (7)

Now, after specifying what goal the agent should follow, we want to set how it
acts to achieve this goal. For this we specify a policy function π acting in the most

6

general case as a probability density for the actions a the agent should commit to in
a certain state s:

π(a| s) = P (At = a| St = s)

The definition of the policy function above is the case of a stochastic policy and the
more general form of a deterministic policy. A deterministic policy is just a strict
mapping from a state to an action:

π(s) = a, with s ∈ S and a ∈ A

The latter basically makes the agent always perform the same action in the same
state. This is highly desired if the agent should maximize its overall reward, but
it has also a lack of exploration as consequence. Since the agent is supposed to
gather more information about an environment and basically never starts with full
knowledge, stochastic policies like ε−greedy have become common in Reinforcement
Learning algorithms. Upon this we can now calculate the expected return of a certain
state under the condition of the agent following policy π [16, p. 46]:

vπ(s) := Eπ(Gt |St = s) = Eπ

(
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

)
(8)

for all s ∈ S.

This is called state value function and allows us to quantify the expected return
an agent with a set policy recieves in the future for every state. Furthermore it is
now possible to differentiate between states in terms of how desired each one is for
achieving maximum return. Since the goal for an agent is to find the optimal policy
to gather the highest return possible, we can see finding the real expected returns
for each state as an important milestone for trivializing our main task.
Additionally, to make things even more straight forward for an artifical actor, we
can calculate the expected return of specific actions done in specific states with the
same condition of the agent following policy π again:

qπ(s, a) := Eπ(Gt |St = s, At = a) = Eπ

(
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

)
(9)

for all s ∈ S, a ∈ A(s). The above definition is called action value function and
holds at least as much importance as (8) - while (8) only gives us information about
how desirable a state is for maximizing reward, (9) tells us how desirable it is to
make a certain action in a certain state, giving us a direct chain of orders (actions
in context of a policy) to follow for transitioning from state to state while reaching
optimal rewards.
Of course knowing the real values of (8) or (9) would make any task trivial, but
(un)fortunately this is basically never the case in the real world. These functions

7

always have to be explored iteratively by an agent to find out their true appearance
and therefore generate more precise (and hopefully more rewarding) solutions for the
policy. With the use of the transition probabilities it is also possible (with the help
of (7)) to write both state value and action value functions recursively based on their
own values of the next state:

vπ(s) := Eπ(Gt |St = s) (10)

= Eπ(Rt+1 + γGt+1 |St = s) (11)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
(
r + γEπ(Gt+1 |St+1 = s′)

)
(12)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
(
r + γvπ(s′)

)
(13)

for all s ∈ S.
The last two equations are two different forms of the so called bellman equation [16,
p. 47]. Analogous, it also exists for the action value function:

qπ(s, a) := Eπ(Gt |St = s, At = a) (14)

= Eπ(Rt+1 + γGt+1 |St = s, At = a) (15)

=
∑
s′

∑
r

p(s′, r|s, a)
(
r + γmax

a′
Eπ(Gt+1 |St+1 = s′, At+1 = a′)

)
(16)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
(
r + γmax

a′
qπ(s′, a′)

)
(17)

for all s ∈ S and a ∈ A.
Furthermore to get the most reward out of an environment by following a specific
policy, the agent has to find the optimal policy π∗ out of all possible policies π. It is
defined by [16, p. 50]:

π∗(s) := argmaxπvπ(s), for all s ∈ S (18)

This can be interpreted as that there doesn’t existing any other policy having
a higher state value in any existing state than the optimal policy. Although, it is
not required for the optimal policy to be unique. Based on (18) and (7) the optimal
state-value function can be defined by the following equation:

v∗(s) := max
π

vπ(s), for all s ∈ S (19)

And analogous, the same follows for the optimal action-value function:

q∗(s, a) := max
π

qπ(s, a), for all s ∈ S, a ∈ A(s) (20)

8

Again, the optimal action-value function can be expressed in terms of the expectation
of the reward plus optimal state-value function of the next state:

q∗(s, a) = E(Rt+1 + γv∗(St+1) |St = s, At = a) (21)

With the help of the transition probabilities we can now define the Bellman optimality
equation for v∗ by using the above formulas and (17):

v∗(s) = max
a∈A(s)

qπ∗(s, a) (22)

= max
a

Eπ∗(Gt |St = s, At = a) (23)

= max
a

Eπ∗(Rt+1 + γGt+1 |St = s, At = a) (24)

= max
a

E(Rt+1 + γv∗(St+1) |St = s, At = a) (25)

= max
a

∑
s′,r

p(s′, r|s, a)
(
r + γv∗(s

′)
)

(26)

This equation has the benefit of not requiring a policy to calculate v∗ as it expresses
the fact of the optimal policy simply being equal to the best action in terms of highest
expected return.
Once more, the bellman optimality equation also exists for q∗:

q∗(s, a) = E(Rt+1 + γmax
a′

q∗(St+1, a
′) |St = s, At = a) (27)

=
∑
s′,r

p(s′, r|s, a)
(
r + γmax

a′
q∗(s

′, a′)
)

(28)

2.2 Implementation of basic reinforcement learning alogrithm

So, what we know from the last chapter is if an agent wants to find an optimal
policy in an environment either the unknown state values or the action values do
have to be as close as possible to their real values. In this chapter a small algorithm
that focuses on finding out the nature of the action value function by running it-
eratively on a small discrete environment is being introduced. The idea is to store
the more or less correctly guessed action values Q inside a tabular (only works for
small state spaces) and for each new experience of a state-action pair to update the
Q value inside the tabular with the just encountered reward [16, p. 133]. To make
words more discrete, the above happens in form of the following pseudo code line
after every step the agent took following a policy with (S, A, R, S ′) ∈ S×A×R×S:

Q(S, A) = Q(S, A) + α [R + γ maxa∈AQ(S ′, a)−Q(S, A)] (29)

The policy is kept to be ε-greedy, meaning the agent will either act greedy by proba-
bility of 1− ε or randomly otherwise. This ensures the states near the agents current

9

optimal behaviour are also explored to some degree - because the momentary policy
may be pretty bad overall due to a lack of knowledge of the true action values. By
doing actions and thus moving through the environment plus updating its knowledge
(the Q tabular), the agent slowly learns the correct values of the true action value
function and can find a best solution for the environment. Of course with this being
a very simply algorithm, the statement only holds true for also simple environments.
To give insight of how this looks in action, the algorithm is implemented and exe-
cuted in the programming language R. The following code snippet gives a minimal
example of how the core functionality of a single episode will look like written in a
executable program. Mind that the agent stops his episode either if a terminal state
is reached or if 100 steps were done without achieving anything.

for (iteration in 1:100) {
rand_a = sample (1:4, 1)
best_a = sample(which.max(Q[state ,]), 1)
a = sample(c(best_a, rand_a), 1, prob = c(1-eps , eps))
step = env$step(a - 1)
s_1 = step [[1]] + 1 # new state
r = step [[2]] # reward
done = step [[3]]
Q[s,a] = Q[s,a] + alpha * (r + gamma * max(Q[s_1,]) - Q[s,

a])
s = s_1 # update old state
if (done) break

}

—End of code—

The environment has a simple chessboard alike layout with 4× 12 squares and was
introduced in the gym package [2]. The start state is the left lower corner, the target
state the right lower one - the latter also holds a positive reward if stepped onto it.
Between the start and the target state is a cliff, giving the agent a big minus reward
if he steps into it and moving him back to the start state. All other states are free to
move around. As a consequence of this definition, to get the most reward out of this
environment one has to find the shortest route from the start to the target state. A
visualization of this environment is given in the following:

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
x C C C C C C C C C C T

From here on several visualizations of the decisions in the different states based
on a greedy policy will be depicted after a specific amount of learning episodes. Note

10

there are simply so many up-arrows in the beginning because at first all decisions
have the same action values, so the first action (up) is simply chosen. The decisions
the agent makes after one episode:

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ← →
→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ → ↓
→ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

For some few states the optimal decision is already found, but most are still wrong
which is no surprise after only one episode.
The decisions after 150 episodes:

↓ → ↓ ↓ ↓ ↓ → ↓ ↓ ↓ ↓ ↓
← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ → → → → → → → → → → ↓
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Above, one can see that the agent found out the perfect route from the start to
the target location. There are still other states being off, but these only matter from
here on if the agent moves onto them by random.
And the updated decisions after 500 episodes:

→ → → → → → → → → → → ↓
→ → → → → → → → → → → ↓
→ → → → → → → → → → → ↓
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

At 500 episodes based on the tabular above it is clear the agent found the opti-
mal policy for every state existing in the environment. No matter at what position
he is, the right choice will always be made.
Furthermore the return after every episode is plotted as a time series graph in figure
1. Highly noteworthy is the change of the slope around episode 150 - this is exactly
the spot when the agent discovered the best greedy solution. The further minor im-
provements can be explained by the agent ending up in a state off the perfect route
due to random choices.

11

Figure 1: Change of the cummulated rewards over training episodes

2.3 Introduction to artificial neural networks

Most problems comming from the real world have a quasi-infinite amount of states
making tabular learning impossible to implement without further manual discretiza-
tion and thus a loss of information of the environment. To circumvent this problem
the values of action/state functions aren’t stored in a tabular anymore, but rather
expressed as a function approximating the real value function. This is done by us-
ing a machine learning algorithm iteratively adapting its weight to reduce the error
occuring by wrong estimations. The most common choice for a task like this are
artificial neural networks due to their high flexibility and scalability for tasks of high
complexity like making predictions on image data.

Artificial Neural Networks exist as a link of several single nodes (analogous to
neurons in nature). The name is inspired by brain research, but in machine learning
it’s nothing more than a weight vector w multiplied on a numeric input vector x with
a bias weight b and an activation function f (like for example ReLU(.) = max(0, .))
on top [8, p. 167]:

y = f(wTx + b) (30)

w, x ∈ Rn

b ∈ R

In Figure 2 the calculations of a single node are presented in a very graphic way
to make the connection to brain science even more clearer - though this kind of
depiction is unhandy for bigger networks and that’s why the scheme of Figure 3 is
used from now on. The weights of w and b are initialized randomly and are iteratively
changed during a training phase to approximate the structural link between a target

12

Figure 2: Graphical illustration of the
calculations in a single node

Figure 3: Minimalistic
depiction

variable y and its depending data x - a more extensive section on the training will
follow further down.

2.3.1 Layer types

To recieve a high dimensional output vector y instead, the weight vector w is simply
expanded to a weight matrix W and the bias scalar to a bias vector b with each row
in W and each entry of b corresponding exclusively to an output dimension. We then
call the function f(x; W, b) a layer.
Formulating this in pseudo code gives [8, p. 191]:

y = f(x; W, b) = f(Wx + b) (31)

W ∈ Rmxn

b ∈ Rm

For example if a three dimensional output vector is desired for an eight dimen-
sional input vector, the W will have 24 entries - this specific case is visualized in
figure 4.

Figure 4: Scheme of a layer with three nodes

13

Figure 5: Convolutional layer with kernel size h = 3. Connections with the same
colours share the same weights.

A weight matrix in which every entry is adaptable and adapted individually by
the training process is called a fully connected layer.

But such a layer where every node-input-dimension pair has its own weight also
has a big disadvantage, namely the lack of scalability for higher dimensional input
like image data. Images usually grow roughly quadratic in their pixel amount (be-
cause for a sharper image one has to increase the resolution not only in the x-, but
also in the y-direction), as a result the amount of weights required to simply input a
vector representing the pixels of an image also grows quadratic. So, to make neural
networks also work on such cases, there was another layer type introduced by the
scientific community - called convolutional layer [8, p. 247]. This kind of layer re-
quires far less individual weights, because by design it only has individual weights
inside a ẃindow(́called kernel from here on) of predefined size h [8, p. 325]. This
kernel then moves over all possible neighborhoods of the input and creates new kinds
of features (the output here is called f́eature map)́ as output for the next layer [9].
As a result this gives a reduction of dimensionality by a minimal amount of trainable
weights - resulting in more stable and highly computational efficient training phases.
Depending on the dimensionality of the input, this kernel may be one dimensional
(in case of vector data) or two dimensional (in case of matrix data, like images). For
introductional purposes only the one dimensional case will be explained from here
on, as the two dimensional works the same, but is a lot harder to visualize. In figure
5 a convolutional layer is shown. The colours explain the weight dependencies, and
as one can see only three weights have to be trained in this example even though the
size of the input is way higher. [8, p. 326]

For the one dimensional case of a convolutional layer it is possible to explain
the calculations once more as a weight matrix. The dimension of the latter will be
(n−h+ 1)×n - with n as the input vector length and h as the kernel size. In figure
6 and 7 are two examples of a fully connected and a convolutional weight matrix
with same sized input vectors for comparison depicted. Again, this makes clear how
much less trainable weights are required for a convolutional layer.

14

Figure 6: Weight matrix of a fully connected lyers with
entries a, ..., x ∈ R

Figure 7: Weight matrix of a convolutional layer with
entries a, b, c ∈ R

To furthermore reduce the size of the output vector (or feature map) an operation
called max pooling takes place. This operation also uses a kernel for creating neigh-
borhoods like the convolutional layer, but in this case non-overlapping ones. Then,
simply the highest value in each neighborhood is taken, while all the others are dis-
carded. The idea behind this is to only focus on important/relevant information by
only giving the strongest signal in a neighborhood a pass-through to the next layer.
[8, p. 330]

2.3.2 Network design

Now we know how a single layer looks like and since the input and output of such
one are both vectors, we encounter the possibility of stacking several different layers
on top of each other - meaning the output vector of one layer is (part of) the input
vector of another one. A chain of layers like this is called an Artificial Neural Network
(ANN). The last layer of an ANN is called the output layer and all layers beforehand
are the so called hidden layers. [8, p. 163/164]
Overall an ANN can be seen as a function mapping an input (data) vector to an out-
put space by an arbitrarily (but manually predefined) amount of adjustable weights
θ:

y = ANN(x; θ)

15

Figure 8: Example scheme of a convolutional neural network architecture

A more specific example of how a chain of layers is in figure 8 depicted. Here a
1D convolutional layer is put on the input vector, followed up by two fully connected
layers plotting to a two dimensional output vector, like one is used for the fitting of
binary classification tasks for example.
Writing this down as pseudo code (∗ is matrix multiplication):

hidden layer1 = f1(W1 ∗ input vector + b1)

hidden layer2 = f2(W2 ∗ hidden layer1 + b2)

output layer = f3(W3 ∗ hidden layer2 + b3)

Here, input vector would be our data vector x and output layer the prediction
ŷ. The forward processing of each values through the different layers is also called
forward propagation. [8, p. 197]
Thanks to the recursive nature of such an architecture it is possible to create function
fitters for prediction tasks with any kind of complexity. Configured and tuned the
right way this can even lead to a predictive accuracy superior to human. But with
great power comes great responsibility, meaning there are very important drawbacks
of complex neural networks:

• In general ANNs have more weights then strictly required for a predictive task.
This is because an ANN with perfectly adjusted weights may still have a bias
and isn’t able to fully fit the structure of data if not enough weights/layers are
predefined. On the other hand, starting with too many weights only has an
increased computational effort as disadvantage at first. As a consequence of
this, ANNs are initiated with an highly generous amount of weights, making
them basically almost always capable of fitting more complex patterns than
appearing in the data. Therefore, at some point during training, ANNs start
to heavily fit random noise, introducing a high variance error. This effect is
called overfitting. [8, p. 107-113]

• Due to neural networks being able to have an arbitrarily amount of weights and
the computational effort of the training increasing with each additional weight

16

specified in an network architecture, the runtime (and power cost) for finishing
training can be extremely high (several days are not rare, even though there is
no real upper bound). Additionally bigger datasets (10.000 data points) are
also required compared to models of the more classic statistics domain. [6]

• Several layers on top of each other make interpretability of results extremely
difficult and are an art of its own to master. [12]

Neural networks are very important for reinforcement learning as they allow to ap-
proximate unknown functions, like the Q function. In the rlR package they are put
into heavy use - for example AgentDQN uses a fully connected network with two
layers, while AgentActorCritic uses even two networks with several convolutional
layers. [15]

2.3.3 Training

Like already mentioned the entries of every weight matrix and bias vector in each
layer are initialized randomly, meaning that - assuming we want predictions to be
as accurate as possible - these weights have to be changed in some way to not only
give random predictions. For this we define a criterion function E (called loss func-
tion) being able to quantify the difference between the calculated prediction ŷ of
the network and the real target value y of each data point. To furthermore specify
the training process, we only take a small sample of the whole dataset per training
iteration (called minibatch, often in the size of 50 to 64 datapoints) - as it is em-
pirically verified [8, p. 272] - this will not reduce the training quality, but greatly
increase processing speed. After forward propagating the minibatch and recieving
the predictions, calculating Ê on the minibatch data gives a good idea of how wrong
these predictions are. It is now possible through calculating the derivates of E based
on each weight to change the weights in a way to make these predictions less wrong
or rather more accurate. Calculating the derivates of Ê is the most computationally
expensive part of the whole training but thanks to the recursive nature of artifical
neural networks, it is also possible to recursively calculate these by the chain rule.
This process is called backpropagation and basically uses the derivates of each layer
twice: One time for adapting the weights of the current layer (starting at the last
layer) and the second time to give an interim result for calculating the derivate of
the layer in front and therefore reducing the computational cost for the latter [8, p.
197-217]. After the derivate for a single weight is now given, its value is changed
based on a procedure called gradient descent (or stochastic gradient descent in this
very specific case, since we never use the whole dataset but rather small samples -
the minibatches) [8, p. 286]. In this procedure the weight recieves a small change to
its value in the direction of the gradient given by the derivative. A hyperparameter
specifying the extent of the change of the value is given by ε.

17

Figure 9: Generic example of overfitting appearing around episode 60 and higher
during training phase

Formulating this process in pseudo code (for each weight w in the network) [10,
p. 80f]:

4w = −ε ∂E
∂w

wnew = wold +4w
The minibatch sampling, forward propagation, error calculation, backpropagation

and weight adaption by stochastic gradient descent happens in every training episode
in this order. The episodes happen iteratively and can theoretically go on forever
even if only marginal changes in the weights happen. But it is important to keep
overfitting in mind, so a typical stop criterion is once the loss function of a seperate
test data set not being used during the training starts increasing [8, p. 107/112].
At first, the loss functions of the training and test data set looks roughly similar,
but at some point the curve coresponding the training data keeps falling, while the
other curve stales and slowly starts increasing again. At this point, it is save to
assume further training will not improve the predictive capabilities of the network
on new data points and therefore shall be stopped. In figure 9 one can see a training
procedure with overfitting starting at around episode 60.

2.4 Deep Q learning

Now, we can use an artificial neural network to approximate the Q function stored in
a tabular before. This makes it possible to apply Q learning on tasks with quasi infi-
nite and high dimensional states. This combination of deep learning and Q learning
also leads to its name - deep Q learning. Furthermore, because we need minibatches
to calculate the derivates for the neural network training procedure, we have to
use several state-action-reward-state combinations at once. But using consecutive

18

instances of these by always taking the last experienced ones introduces heavy cor-
relation between the data points of a minibatch and may possibly skew the training
and the end result. Therefore, every state-action-reward-state encounter is stored in
a table called replay memory, making it possible to draw random samples for the
minibatch and minimalizing any possible correlation as a consequence. Implementing
these random samples with a replay memory into an algorithm is called experience
replay and presented in the following pseudo code with the deep Q learning algorithm
using the ε-greedy policy [11]:

Algorithm 1 Deep Q learning with experience replay

1: Initialize replay memory D
2: Initialize neural network (representing action-value function Q) with random

weights θ
3: for episode = 1, . . . ,M do
4: Initialise start state s1
5: for t = 1, . . . , T do
6: With probability ε select a random action at
7: Otherwise select at = maxaQ(st, a; θ)
8: Execute action at and observe rt and st+1

9: Store transition (st, at, rt, st+1) in D
10: Sample random minibatch of transition (sj, aj, rj, sj+1) from D
11:

Set yj =

{
rj if j is terminal

rj + γ maxa′Q(sj+1, a
′; θ) otherwise

12: Perform gradient descent step with (yj −Q(sj, aj; θ)) as loss function E
13: Set st = st+1

This algorithm is also implemented in the R package rlR [15]. The neural net-
work has two fully connected layers with a default amount of 64 hidden nodes. A
demonstration of it is run in chapter 4.4.

3 Relational databases in R

3.1 Motivation

After an agent learned for a certain amount of episodes, and if the environment’s
states are defined as image data stored as three dimensional arrays in the computer
memory, it can occure that the required storage is getting out of hand. In the special
case of the OpenAI gym environment simulating Atari games, a single image frame
has 210×160 coloured pixels with no alpha information (for transparency) - example
in figure 10 depicted. This means we have 210 ∗ 160 ∗ 3 = 100800 entries in such

19

Figure 10: In R plotted image representation of the Pong-v0 start state

an array holding integer values between 0 to 255. An integer in R always requires 4
Bytes of storage, creating a minimal required storage space for a single state of

100800 ∗ 4B = 403200B

To confirm this with a simple example, let’s construct a Pong-v0 environment [2,
OpenAI gym package] and check the storage size of a single state:

library(reticulate)
gym = import("gym")
env = gym$make("Pong -v0")
state = env$reset() # generate the starting state
object.size(state)
#> 403408 bytes

As we can see a single state does indeed require approximately 400 KB of storage.
After an agent finished one episode of training, the amount of states visited and stored
in the replay memory may easily exceed the 1000 mark. Even if it’s designed smart
and doesn’t store every old and new state as a pair, but rather use state IDs for not
saving every state twice, the required storage hits

400KB ∗ 1000 = 400MB

for sure.
Since several episodes are required to be finished to make an agent learn an optimal
solution for the environment, it’s highly realistic to assume several Gigabytes of
storage size are required only for the replay memory. This leads to the danger of

20

the whole session to crash if the RAM limit of the used PC is exceeded. A already
really good PC has 16 GB of RAM, making it possible to store roughly 40 episodes
of the above example at best before crashing. Empircal testing on a single machine
with this amount of RAM showed that the amount of 40 episodes was indeed never
reached once - the R session always aborted before.
Due to Atari games being very old, the above storage requirements don’t even hold
true for most of todays image generation processes. Alhough there’s definitely a
limit of image pixel amount a state will have in today’s standards and reducing
the pixels by resizing the image (and thus reducing the image quality) is always a
possibility, creating a solid storage strategy for almost arbitrarily large states is key to
successfully implement a replay memory for any Reinforcement Learning algorithm
requiring such one.
Additionally it may be desired to reliably store a replay memory independently
of sessions and to manage its entries in an accessable way. Therefore a solution
for these problems is presented in the following. It consists of shifting the storage
from the working memory to the SSD by using the relational database management
system SQLite. For this a theoretical part about relational databases and SQLite
will be presented before going through the details of the implementations and the
read/write/storage performance benchmarks in this chapter.

3.2 Basic theory of relational databases and SQLite

The underlying theory for relational databases is the relational algebra.
In the relation algebra relations are defined as a subset of n-tuples resulting from n
domains [1, p. 73]:

R ⊆ D1 ×D2 × · · · ×Dn

For example, if you have two relations (by definition every domain is also a relation
and every relation is also a set) A and B with each containing 1-tuples, then the
cartesian product of these is a 2-tuple:

A × B = {(a, b)| a ∈ A, b ∈ B}

Furthermore the set operations union, intersection or difference also work the same
on relations as long as these relations have the same tuple size. Thus, (A× B) ∪ A
is not valid for relations, if the result has to be a relation again.
Since dealing with complete relations is unpractical, two more relation specific oper-
ations are required to narrow down the results we recieve by looking at a relation:

• Selection [1, p. 88]:

σcondition(R) := {r| condition(r) ∧ r ∈ R}

21

The σ operator allows to make a selection on the tuples in a relation. In general
the condition can consist of a (valid) mixture of arbitrarily complexity of the
following: Domains of R, constants, boolean operators, arithmetic equation
operators.

• Projection [1, p. 89]:

ΠDk1
,...,Dkl

(R) := {(dk1 , . . . , dkl)| (d1, . . . , dk1 , . . . , dkl , . . . , dn) ∈ R}, with k1 < · · · < kl and l ≤ n

The Π operator allows us to make a selection of the domains a relation consists
of.

For our usecase these theoretical constructs are already enough to successfully un-
derstand the commands in a relational/SQL database [1, p. 118]:

• tables in a database ⇐⇒ relations

• columns of a table ⇐⇒ domains of a relation

• SELECT statement ⇐⇒ Projection-Operator

• WHERE statement ⇐⇒ Selection-Operator

• FROM statement ⇐⇒ argument of the above operators

For the database implementation in this thesis the choice to use SQLite as a
database management system was made for several reasons. First of all it’s consistent
with the ACID-Principle (an acronyme for these traits) [4]:

• Atomicity:
Every transaction consisting of multiple statements will only have any effect
if and only if every single statement executes successfully. So, if one statement
fails, the whole transaction will fail, leaving the database unchanged.

• Consistency:
Every transaction can only move the database from one valid state to the other
- changes in data are either consistent with all defined rules or not made at all.
Note that single statements of a transaction may lead to invalid intermediate
steps, but due to the Atomicity principle these will be reversed if the transaction
fails.

• Isolation:
Transactions executed in parallel need to have the same results as if executed
sequentially - otherwise one transaction will be blocked until the other finishes.

• Durability:
Once a transaction finishes, any changes done to the database are durable -
even in the case of a crash or power outage.

22

These principles guarantee a database free of corrupted data. Furthermore, SQLite
is open source and follows a minimalistic principle, resulting in a very easy installa-
tion process and low storage requirements. Thus, making SQLite perfect as a tool
comming with an R package, even though (or just because) SQLite is only meant for
single user usage. [5]
To demonstrate SQLite with R the package RSQLite will be used in the following
with some basic examples. First of all, after loading the library in R, an object
containing the connection to a database (here: my database) has to be aquired:

library(RSQLite)
con = dbConnect(SQLite (), dbname = "my_database")

The con object will then be used in combination with any statement doing a
transaction in the database of this connection. Here, we start by creating a new
table scheme called my table [1, p. 115]:

create_table = "
CREATE TABLE my_table (

matriculation_id INTEGER PRIMARY KEY ,
name TEXT NOT NULL ,
age INTEGER NOT NULL CHECK(age > 0),
registration DATE DEFAULT(CURRENT_DATE)

)
"
dbExecute(con , create_table)
#> 0

The listings in the brackets are the column names of the table with their data type
and further constraints of arbitrarily amount. PRIMARY KEY makes this column
only hold unique values, allowing the user to uniquely identify rows by these values.
Additionally, CHECK only allows entries meeting the condition of its argument,
while DEFAULT sets a default value if no value is specified for new entries.
After creating the hull of our table, let’s fill it with some life with the INSERT -
statement [1, p. 116]:

insert_values = "
INSERT INTO my_table (name , age)

VALUES (’Max ’, 18),
(’Berta ’, 19)

"
dbExecute(con , insert_values)
#> 2

The brackets behind the table name and the VALUES keyword require the same
amount of entries, as this statement maps values to columns, while filling unmen-
tioned columns with NULL or the predefined default value. Note, by not declaring

23

name or age one would trigger an error in this case due to the NOT NULL con-
straint.
Now, to get the data from our table, we write a query by applying the above defined
relational logic [1, p. 116]:

query = "
SELECT *
FROM my_table
WHERE age = 19

"
dbGetQuery(con , query)
#> matriculation_id name age registration
#> 1 2 Berta 19 2018 -06 -22

This query just selected all columns (by using the special character *́́ınstead of col-
umn names) of the table my table with the entry in the age column having a value
equal to 19.
We can also use more convenient wrapper functions of the RSQLite package to write
data to a table without defining its scheme, even though not defining a table scheme
is absolutely not recommended since no constraints (like PRIMARY KEYS) can be
specified, making undesired entries possible. An example of use of such a wrapper
function:

dbWriteTable(con , "cars", mtcars)
cars = dbGetQuery(con , "SELECT * FROM cars")
all(cars == mtcars)
#> TRUE

The last line tells us, by writing to the database table and querying the entries
again, nothing changed - like it is supposed to be.
To delete unwanted tables simply use the DROP TABLE statement:

dbExecute(con , "DROP TABLE my_table")
#> 0
dbExecute(con , "DROP TABLE cars")
#> 0

No confirmation or delay will happen by executing the above lines, so use with care.

24

4 Database and visualization method implemen-

tations for reinforcement learning in R

In the following sections the implementations of a database into the R package rlR
and the plots of an app for visualization (also implemented into rlR) will be presented.

4.1 Database design

The states of the Pong-v0 environment are represented as an three dimensional array
with 100800 entries. This is extremely inefficient for storing image data. For this
reason a method for lossless data compression was chosen by transforming the image
data to the PNG format with the help of the R package PNG [13]. The data is then
represented as a string consisting of appended hexadecimal value pairs.

library(png)

(state_png = writePNG(state / 255L) %>% paste(collapse = "")
)

#> [1] "89504 e470d0a1a0a0000000d [...]"
nchar(state_png) # length of the string
#> [1] 1408
object.size(state_png)
#> 1504 bytes

As we can see the storage requirements for a single state is dramatically reduced
by a factor of approximately 270 compared to storing the state in its ńaturalárray
format.
To confirm there is no loss of information by running the state through all of these
steps the following code was executed. The last line of code basically gives out that
the values of the state did indeed not change at all.

parser = function(x)
paste0(x[c(TRUE , FALSE)], x[c(FALSE , TRUE)]) %>%
as.hexmode %>% # necessary for correct as.raw
as.raw %>% # make it readable as PNG
readPNG * 255L

con = dbConnect(SQLite (), dbname = "replay_memory")
dbWriteTable(con , "test_png", data.frame(state = state_png))
result = dbGetQuery(con , "SELECT * FROM test_png")[[1]] %>%

strsplit("") %>%
.[[1]] %>%
parser

all(result == state)
#> [1] TRUE

25

4.2 Database benchmarks

To test the database performance a Pong-v0 environment of the gym package was
run for n amount of steps (with n being set to 100, 1000 and 10000). The steps were
made by a random agent, but the rest was kept as closely as possible to a real appli-
cation. During every step the information (iteration, current state, action, reward,
next state) was stored as a single write transaction into a predefined table in the
replay memory database. The required time to finish these n steps was noted. The
computer, the benchmarks have been performed on, is equipped with an SSD, there-
fore making the ratios to in-memory versions totally overoptimistic for using an HDD.

First of all it’s important to define the table scheme manually, so the state id we are
using for identifying every entry is unique (due to specifying it as PRIMARY KEY):

dbExecute(con , "
CREATE TABLE IF NOT EXISTS pong_png (

state_id INTEGER PRIMARY KEY ,
state TEXT ,
next_state TEXT ,
reward NUMERIC ,
action INTEGER

)"
)

If we search in a column with non-unique entries we have to check every entry
for equality (also known as exhaustive search), thus resulting in an average time
complexity of O(n) for a single search on a column with n entries.
But if we search in a column with only unique entries, SQLite performs a binary
search - for every entry checked half of the unchecked entries are discarded, resulting
in an average time complexity of O(logn) for the whole search of a single entry. [7,
p. 135]
So by defining the state id as PRIMARY KEY, the time complexity of searching for
specific entries by their state id’s is reduced from O(kn) to O(k log n) for k amount
of searches on a table with n entries. [7]

26

The R code for a single write into the table pong png of the connection con (ex-
ecuted n times):

dbWriteTable(con , "pong_png",
data.frame(

state_id = iteration ,
state =

writePNG(old_state / 255L) %>% paste(
collapse = ""),

next_state =
writePNG(observation / 255L) %>% paste(

collapse = ""),
reward = reward ,
action = action

), append = TRUE
)

After n steps were performed, a single read over all n entries of the table was
performed and also measured:

entries = dbGetQuery(con , "SELECT * FROM ’pong_png ’")

To make the measurement of the transaction above even in confidence with the
other transactions the mean was taken of n repetitions. Additionally all entries were
called separately by indexing of the iteration leading to n single reads being mea-
sured together:

for (index in 1:n)
entry = dbGetQuery(

con ,
paste("SELECT * FROM ’pong_png ’ WHERE state_id =", index

)
)

These three measurements were repeated ten times and the average results in
seconds are represented in the following table for n = 100, 1000, 10000:

n Write All read Repeated single read
100 1.3402 s 0.0009 s 0.0302 s
1000 13.5244 s 0.0078 s 0.3257 s
10000 136.9608 s 0.0723 s 3.5405 s

Besides that a SQLite specific analysis program [3, sqlite3 analyzer] was used to
further check the storage requirements after 10000 entries were written. The conclu-
sion was that approximately 41 MB of overall storage was consumed with a single
entry requiring 4.1 KByte.

27

Figure 11: Measured relative time of a single transaction (with 100 iterations of each
type as baseline)

Besides that, a head to head benchmark between the implementations in rlR with
and without database was done. This way it’s possible to estimate the impact of
writing and reading SQLite databases on the overall runtime compared to the time
an agent requires for fitting its model. Note the Pong-v0 runs finishing a lot faster
due to the R session crashing thanks to running out of memory for higher learning
episodes.

The following tabular holds benchmarks (measured in seconds) of different setups
- comparing the usage of a database with without one in each. The CartPole-v0 envi-
ronments have run for exactly 1000 episodes, while the Pong-v0 have run for only 10
episodes. This is because sessions of Pong-v0 crashed on the test computer (with 16
GB RAM) due to running out of memory for an higher episode amount. AgentPG is
another reinforcement learning algorithm called monte-carlo Policy-Gradient imple-
mented in the rlR package, that is only adapting its parameters after a full episode
finished, therefore performing way less sampling than the Deep Q Network/learning
agent.

Environment Agent No Database Database
CartPole-v0 AgentPG 421 s 492 s

AgentDQN 2150 s 4116 s
Pong-v0 AgentPG 227 s 326 s

AgentDQN 4018 s 7173 s

28

Figure 12: Measured time of the database versions relative to each version without
database

On average approximately 89 entries were written per episode of CartPole-v0,
while for the Pong-v0 environment the amount was 1050. This is important to put
into perspective because single indexing of the tables was heavily used, thus the
runtime for a single search increases the more entries (n) there are in the table (due
to O(log n) search complexity).

4.3 Evaluation

Even though the chosen database is highly scalable and performs well for very high
entry sizes, based on the benchmarks, we can conclude the runtime is in general
suffering from the database implementation. But it is also depending heavily on
the algorithm and the environment being used to what extend this time punishment
appears. It seems in cases of image processing environments (like Pong-v0) the
runtime disadvantage is not as bad as in the case of low dimensional states (like
CartPole-v0). Furthermore, the agent has an even bigger influence. The cause for
this is simply how often the agent performs sampling of the replay memory in form
of index searching - AgentDQN namely performs a sampling after every step during
an episode, while AgentPG only samples after an episode. This means the latter
does fewer transactions than the former, which at no surprise leads to less additional
time required for using the database instead of the computer’s working memory. As
a conclusion one can say that it is very case dependent if the use of a database
makes sense. The additional time required to run one is not neglectable for really
long training sessions - requiring for example four days instead of two to finish can
be a big no-go for some situations. But, if the replay memory is outgrowing the
capabilities of the PC’s memory, then there will be no way around using one. So it

29

may make sense to check the size of a single state beforehand and roughly calculate
an estimate if the algorithm finishes converging before the working memory is full.

4.4 Visualization

Another important implementation done for this thesis is a way to interactively visu-
alize the training progress of the action value function predictions and to have a view
of how the action value function is shaping over the whole state space. Additionally,
the option to view the trained weights of the used neural network is also given. This
all is provided by designing a web application with help of the R package shiny one
can start by running a normal learn session of the rlR package. Due to the plots
used being low dimensional, the app is not designed (and indeed will not start) for
image data.

In the following a basic example for demonstrating the visualization capabilities
of the app was created. First of all, the rlR package has to be loaded and an agent
with an environment set up. In this case, the choice was fallen on the CartPole-v0
and the AgentDQN as these were already used in advance:

library(rlR)

env = makeGymEnv("CartPole -v0")
conf = getDefaultConf("AgentDQN")
conf$set(agent.store.model = TRUE)
agent = makeAgent("AgentDQN", env , conf)
perf = agentDB$learn (300)

As one can see in figure 13, the agent successfully converged during these 300
episodes, so it makes sense to now have a look at the insights of the training process
the app can provide.

For this, the visualization app can be started by running the following method
startApp on the performance object perf returned by the learn method in the code
snippet before:

perf$startApp ()

The app contains 4 tabs with different interactive plots (created with the package
plotly): a 2D and a 3D plot each for weights of the neural network and for the action
value function. In the following screenshots of the interactive 3D plots are shown,
although the real graphics in the app are superior at delivering insights.
In figure 14 and 15, the values of the weight matrix entries of the first layer are
visualized by their respective row and column index in the matrix. For example, this
means all dots at col index = 4 are the weights connecting input dimension 4 with
each hidden node. Similar for the dots on row index = 1 presenting the weights
(or coefficients in another context) of the linear combination of the input vector for

30

Figure 13: Rewards per episode over time for 300 consecutive learning episodes of
an DQN agent in the CartPole-v0 environment.

hidden node 1. Same goes for figure 16 and 17 showing the respective weight values
of the second layer. As a quick side note to avoid confusion: The colours in the plot
are redundant in information as they are simply set by the value of the Z-axis - the
choice was still made to keep them like they are, because turning around the plot
interactively in the app may lead to a confusion in perspective. Of course this issue
does not appear in static screenshots like presented here.

31

Figure 14: Weight values of the first
layer

Figure 15: Weight values of the first
layer - different perspective

Figure 16: Weight values of the second
layer

Figure 17: Weight values of the second
layer - different perspective

32

Furthermore, the app also provides the possibility to plot the prediction surface
of the action value function dimensions in respective to the state space. For this,
the UI of the app gives several options to see the by the user desired information.
Extensive screenshots of this are shown in the appendix. For example, one can set
the following options amongst other things:

• the Z-axis to a desired action value dimension

• the X- and Y-axis to desired state dimensions

• the prediction plane after a specific episode

• the values of state dimensions not occuring in any plot axis

Additionally, the graphic holds the observed values to give an idea of how well the
predictions represent the existing data points. Because after several hundreds of
episodes the amount of observations is way too high for clear plotting, the choice
was made to only pick the data points of the last batch sample (in this case with
size 64).
Figures 18, 19, 20 and 21 show the development of the shape of the prediction plane
based on different learning episodes. In these plots the Z-Axis was chosen to be the
first action value dimension (in this environment representing the ĺeftáction) and the
X- and Y-Axis to represent the first and second state dimensions - the other state
dimensions are set to the value 0.0. As it is depicted, the surface of the prediction
plan becomes more and more extreme in its slope and manages to approximate the
data points in the last batch quite well.

Figure 18: After one episode: Predic-
tion plain of the action values for the
action left

Figure 19: After 100 episodes: Predic-
tion plain of the action values for the
action left

33

Figure 20: After 200 episodes: Predic-
tion plain of the action values for the
action left

Figure 21: After 300 episodes: Predic-
tion plain of the action values for the
action left

5 Summary

In this thesis an overview of the basic theories of reinforcement learning, artificial
neural networks and relational databases was given with the addition of a basic tab-
ular Q learning implementation. Furthermore in the context of the rlR package, a
database scheme for the replay memory was designed and benchmarked, and a visual-
ization app for training insights has been created. The database solution is primarily
a valid choice for image data to handle the high amount of storage requirements, but
it may not be the best choice for low dimensional data in combination with learn-
ing agents doing lots of sampling, as the benchmarks showed that the additional
runtime required is considerably high. Besides that, the visualization app allows to
look into the learning process of an agent in detail even in hindsight, allowing to
understand better why and how convergence happend - or didn’t happen. This may
be especially important, because it is often difficult to understand the behaviour of
algorithms in the reinforcement learning domain, where the data the agent produces
by his behaviour is also as important as the machine learning model that tries to fit
these data points.
A very interesting and expectedly highly useful further addition (that was out of
the scope of this thesis) to the app would be to provide an interactive plot showing
the decisions in the complete state space the agent would make based on its policy
with the option to select an arbitrarily episode. This would make it even easier to
reason about the agents behaviour, as currently only one action value dimension can
be plotted, making it hard to compare different actions in their value and thereby
what action is preferably.

34

References

[1] Andr Eickler Alfons Kemper. Datenbanksysteme: Eine Einführung. De Gruyter
Studium, 10. edition, 2015.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[3] SQLite development team. Sqlite 3 analyzer. https://www.sqlite.org/

download.html. abgerufen am 20.07.2018.

[4] SQLite development team. Sqlite is transactional. https://www.sqlite.org/

transactional.html. abgerufen am 20.07.2018.

[5] SQLite development team. Sqlite overview. https://www.tutorialspoint.

com/sqlite/sqlite_overview.html. abgerufen am 20.07.2018.

[6] Chris Edwards. Growing pains for deep learning. Commun. ACM, 58(7):14–16,
June 2015.

[7] Stefan Güting, Ralf Hartmut abd Dieker. Datenstrukturen und Algorithmen.
Teubner, 3. edition, 2013.

[8] Aaron Courville Ian Goodfellow, Yoshua Bengio. Deep Learning. MIT Press,
Cambridge, MA, 2016.

[9] Yoon Kim. Convolutional neural networks for sentence classification. CoRR,
abs/1408.5882, 2014.

[10] David Kriesel. Ein kleiner Überblick über Neuronale Netze. Unknown, 2007.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[12] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for
interpreting and understanding deep neural networks. CoRR, abs/1706.07979,
2017.

[13] Greg Roelofs. Png intro. http://www.libpng.org/pub/png/pngintro.html.
abgerufen am 20.07.2018.

[14] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den
Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go with-
out human knowledge. Nature, 550:354 EP –, Oct 2017. Article.

35

[15] Xudong Sun. R package rlr. https://github.com/smilesun/rlR. abgerufen
am 20.07.2018.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, MA, 2. edition, 2017.

[17] Dat Tran. Why the ai hype train is already off the rails
and why im over ai already. https://builttoadapt.io/

why-the-ai-hype-train-is-already-off-the-rails-and-why-im-over-ai-already-e7314e972ef4.
abgerufen am 20.07.2018.

Appendices

Figure 22: User interface 1

36

Figure 23: User interface 2

Figure 24: User interface 3

37

Figure 25: User interface 4

38

Figure 26: User interface 5

Figure 27: User interface 6

39

Erklärung

Hiermit versichere ich, dass ich diese Bachelorarbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel verwendet habe.

Die Arbeit wurde weder einer anderen Prüfungsbehörde
vorgelegt noch veröffentlicht.

München, den 21.07.2018

. .
Sebastian Gruber

