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1 Einleitung

Aufgrund der rasanten Entwicklung in der Technik gewinnen Informationen und Daten

in der heutigen Zeit immer mehr an Bedeutung. Gleichzeitig steigen die bestehenden

Datenmengen rapide an, da anhaltend neue Daten generiert und gesammelt werden.

Um diese Fülle an Informationen adäquat zu handhaben, wird dabei die Statistik her-

angezogen.

Im Zuge dessen ist es nicht überraschend, dass die Statistik, insbesondere die evidenz-

basierte Statitik, während der letzten Jahrhundertwende immer mehr an Bedeutung ge-

wann. Das Heranziehen und Verfeinern von Elementen aus verschiedenen statistischen

Inferenzkonzepten ist eine statistisch moderne Darstellung, mit der wir problemlos unter-

schiedlichste Modellanalysen durchführen können, wie unter anderem die Unsicherheit

eines Modells, der Vergleich von verschiedenen Modellen, die Schätzung von Parame-

tern und deren Unsicherheiten. Deshalb und wegen vieler anderer Gründe können wir

behaupten, dass die evidenzbasierte Statistik momentan eine essentielle Rolle für die

Wissenschaft im 21. Jahrhundert einnimmt.(Taper und Ponciano; 2016, Abstract)

Im wissenschaftlichem Umfeld werden statistische Methoden für eine sinnvolle Inter-

pretation der Daten verwendet. Die Statistik bietet hierbei Möglichkeiten an, um auf

effiziente Weise objektive Alternativen neben der eigenen Beurteilung zu finden, damit

es möglich ist, die Evidenz aus Untersuchungs- und Beobachtungsstudien angemessen

zu deuten.(Royall; 1997, Preface)

Eine dieser Wissenschaften, in den die evidenzbasierte Statistik eine zentrale Rolle spielt,

ist die Medizin. Im Rahmen von Untersuchungen zur Wirksamkeit von medizinischen

Methoden oder Medikamenten werden Ergebnisse meist anhand der Evidenz erschlos-

sen. Mit Hilfe dieser evidenzbasierten Möglichkeiten werden subjektive Intuitionen und

unsystematische klinische Studien vermieden, damit rationale Entscheidungsfindungen

getroffen werden können.(Müllner; 2005, Kapitel 1), (Guyatt et al.; 1992, Abstract)

Trotz der Bedeutung der Evidenz weisen die gängigen statistischen Methoden, die für den

Zweck der Evidenzbestimmung genutzt werden wie unter anderem der Hypothesentest,

kein konkret definiertes Evidenzkonzept auf. Ferner liefern sie dadurch keine Antwort
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auf die grundlegenden Fragen, wann es richtig wäre zu sagen, dass die gegebenen Daten

eine Evidenz zugunsten einer Hypothese gegenüber einer anderen aufweist oder ob wir

ein objektives Maß haben, um die Stärke dieser Evidenz auszudrücken.(Royall; 2000,

Kapitel 1)

Einen möglichen Ansatz, um dieses Problem der Ungenauigkeit zu bewältigen, bietet

das evidential framework von Jeffrey D. Blume an. Dieses allgemeine Framework soll

uns den Vergleich und die Evaluation statistischer Paradigmen ermöglichen, die augen-

scheinlich die Stärke der statistischen Evidenz in den Daten messen. Dabei soll die Evi-

denz nicht mehr nur auf einen Wert beschränkt werden, sondern wird in drei essentiellen

Größen aufgeteilt. Im Folgenden wird dargelegt werden, wie jede einzelne Größe für das

Verständnis und die Bewertung der statistischen Evidenz relevant ist. Außerdem wird

sich zeigen, dass das Fehlen eines wohldefinierten Frameworks zu verschiedenen Kontro-

versen führen kann. Das evidential framework wird auf einen medizinischen Datensatz

angewendet, um den Einfluss von verschiedenen Faktoren auf die Sectiorate herauszu-

finden.(Blume; 2011, Kapitel 1)
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2 Statistische Inferenzkonzepte

Ein wichtiger Nutzen, den wir aus statistischen Inferenzkonzepten ziehen können, ist

die Konstruktivität dieser Konzepte, die uns eine universelle Anwendbarkeit ermöglicht.

Neben der bekannten klassischen bzw. frequentistischen Inferenz gibt es zum einen die

Likelihood-Inferenz und zum anderen die Bayes-Inferenz. Der Kern des baysianischen

Konzepts ist es, die Likelihood-Funktion mit Vorwissen zu verbinden, um daraus neue

Erkenntnisse zu ziehen.(Held; 2008, Kapitel 1.1)

Es gibt in breiterem Sinne drei Problembereiche, für die wir statistische Inferenzkonzepte

benötigen. Der Erste ist das Schätzproblem1. Unter der Bedingung, dass eine bestimmte

Modellannahme existiert und die Daten gegeben sind, wollen wir versuchen, Aussagen

über den unbekannten Modellparametern zu treffen, d.h. wir möchten hierbei diese Para-

meter schätzen. Der zweite Bereich ist das Modellwahlproblem1, bei dem wir das Modell

aus verschiedenen Modellen herausfinden wollen, welches die gegebenen Daten am bes-

ten beschreibt. Der letzte Problembereich ist das Prognoseproblem1. Hier interessieren

wir uns dafür, die Erkenntnisse aus den vorliegenden Daten zu nutzen, um zukünftige

Beobachtungen sinnvoll zu prognostizieren.(Held; 2008, Kapitel 1.1)

Im Laufe dieses Kapitels werden sowohl die Likelihood-Inferenz als auch die Bayes-

Inferenz genauer betrachtet, da diese neben der frequentistischen Inferenz die Grundlage

für das evidential framework im nächstem Kapitel bilden.

2.1 Likelihood-Inferenz

Eine der bekanntesten Methoden zur statistischen Inferenz ist die von Sir Ronald A.

Fisher eingeführte Likelihood-Inferenz. Dabei kann der englische Begriff Likelihood am

ehesten mit
”
Plausabilität“ übersetzt werden. Die Basis dieses Inferenzkonzepts bildet

die Likelihood-Funktion.(Held; 2008, Kapitel 2)

1Ein Begriff, der vom Autor Held eingeführt wurde.
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2.1.1 Likelihood-Funktion

Wir nehmen an, dass X = x die beobachtete Realisation einer Zufallsvariable X mit

dazugehöriger Dichtefunktion f(x|θ) ist. Die Funktion f(x|θ) beschreibt die Verteilung

der Zufallsvariable X für einen festen Parameter θ. Das Ziel besteht darin, Aussagen

über den unbekannten Parameter θ aus dem Parameterraum Θ zu folgern, wobei die

Funktion f(x|θ) bekannt ist. Die Likelihood-Funktion mit festem x

L(θ) = f(x|θ), θ ∈ Θ

bildet hierbei die Hauptgröße.(Held; 2008, Kapitel 2.1), (Held und Bové; 2014, Kapitel

2.1)

2.1.2 Law of Likelihood

Die statistische Analyse hat in der Wissenschaft die wichtige Aufgabe, die Evidenz aus

den beobachteten Daten zu deuten. Obwohl es dafür momentan durchaus gängige Me-

thoden gibt, wie beispielsweise den Hypothesentest oder die Interpretation der Konfiden-

zintervalle, beinhaltet die Theorie dieser Methoden kein konkretes Evidenzkonzept und

kann somit nicht die zentrale Frage beantworten, wann die gegebenen Daten eine eviden-

te Unterstützung einer statistischen Hypothese gegenüber einer anderen repräsentiert.

Diese Unzulänglichkeit führt zu einer Kontroverse über die ordnungsgemäße Anwendung

und Interpretation der p-Werte. Doch die Law of Likelihood füllt die Lücke im fehlendem

Evidenzkonzept.(Royall; 2000, Kapitel 1)

Die Antwort auf die grundlegende Frage, wie statistische Daten als Evidenz zu interpre-

tieren sind, liefert uns die Definition der Law of Likelihood :

Wenn eine Hypothese H1 impliziert, dass eine Zufallsvariable X den Wert x mit der

dazugehörigen Wahrscheinlichkeit f1(x) annimmt, während eine andere Hypothese H2

impliziert, dass die Wahrscheinlichkeit f2(x) ist, dann ist die Beobachtung X = x eine

Evidenz für die Hypothese H1 gegenüber H2, falls f1(x) > f2(x) gilt. Dabei ist die Like-

lihood Ratio f1(x)
f2(x)

ein Maß für die Stärke dieser Evidenz.(Royall; 2000, Kapitel 1.1)

Daraus ergibt sich, dass die Law of Likelihood eine Leitlinie zur Interpretation der sta-

tistischen Daten als Evidenz ist. Sobald durch dieses Axiom eine Hypothese über einer

Anderen steht, bedeutet es, dass die bevorzugte Hypothese eine genauere Prädiktion

liefert, d.h. sie erzielt eine größere Wahrscheinlichkeit zu dem beobachteten Punkt x.

Dadurch wird nicht die Frage beantwortet, ob die Evidenz für oder gegen eine einzel-

ne Hypothese ist, sondern es gibt uns eine Interpretationsweisung, wie wir die Evidenz
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für eine Hypothese gegenüber einer anderen deuten sollen. Wir können festhalten, dass

die Law of Likelihood eine objektive Evaluation der Daten als Evidenz unabhängig von

Vorwissen ermöglicht.(Royall; 2000, Kapitel 1.1)

2.1.3 Likelihood Principle

Seien ein Wahrscheinlichkeitsmodell für eine Zufallsvariable X, dessen Verteilungsfamilie

durch den Parameter θ indiziert ist, und eine Beobachtung, die eine Likelihood-Funktion

L(θ) erzeugt, gegeben. Mittels der Law of Likelihood erhält diese Funktion ihre Bedeu-

tung, d.h. für zwei Parameterwerte θ1 und θ2 misst deren Likelihood Ratio L(θ1)
L(θ2)

die

Evidenzstärke X = x zugunsten von θ1 gegenüber θ2.(Royall; 2000, Kapitel 1.2)

Die Definition der Likelihood Principle lautet wie folgt:

Nachdem X = x bereits beobachtet wurde, sind alle Informationen über θ in der

Likelihood-Funktion für θ enthalten. Sofern zwei Likelihood-Funktion für θ proportional

zueinander sind, enthalten sie zudem die selbe Information über θ.(Berger et al.; 1988)

Nehmen wir nun an, dass wir zwei Datenszenarios mit erhobenen Daten zu statistischer

Evidenz haben. Diese erzeugen eine äquivalente statistsche Evidenz, was bedeutet, dass

alle Likelihood Ratios gleich sein müssen. Im Umkehrschluss bedeutet es aber auch, dass

beide Likelihood-Funktion aus den Datenszenarios identisch sind. Daraus können wir den

Schluss ziehen, dass für jedes Paar von θ1 und θ2 die Stärke der Evidenz zugunsten von

θ1 gegenüber θ2 in beiden Szenarien gleich ist. Mit Hilfe der Definition der Likelihood

Principle können wir schlussfolgern:

Zwei Fälle von statistischer Evidenz sind äquivalent und haben die selbe evidente Be-

deutung, wenn und nur wenn sie die selbe Likelihood-Funktion erzeugen.

Somit dient die Likelihood-Funktion als mathematische Verkörperung der statistischen

Evidenz an sich und die Likelihood Ratio misst die dazugehörige Evidenzstärke.(Royall;

2000, Kapitel 1.2), (Birnbaum; 1962, Kapitel 5)

2.2 Bayes-Inferenz

Im Gegensatz zur klassischen Statistik hat die bayesianische Variante den Vorteil, dass sie

auf intuitiver Weise anschaulicher und einfacher zu begründen ist. Probleme im Bereich

der Hypothesenprüfung oder der Bereichsschätzung, die in der frequentistischen Statis-

tik nicht zu lösen sind, können mit der Bayes-Statistik entwirrt werden. Der Grund dafür

ist, dass das bayesianische Konzept auf dem Bayes-Theorem basiert, wodurch wir den
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unbekannten Parametern Wahrscheinlichkeitsverteilungen zuordnen können. Alle Frage-

stellungen der Parameterschätzung, der Hypothesenprüfung und der Bereichsschätzung

werden auf Basis des Bayes-Theorems durchgeführt.(Koch; 2000, Kapitel 1)

In der klassischen Statistik betrachten wir die Daten X als zufällig. Wir interessieren

uns hier für die frequentistischen Eigenschaften von daraus abgeleiteten Statistiken, ins-

besondere von möglichen Punkt- und Intervallschätzern. Der aus dem Wahrscheinlich-

keitsmodell gegebene Parameter θ ist in der klassischen Inferenz unbekannt, aber fest,

weshalb er hier keine Zufallsvariable bildet. Im Gegensatz dazu ist der Parameter θ im

bayesianischem Pendant eine Zufallsvariable mit einer Priori-Verteilung f(θ). Nach der

Untersuchung der Daten X = x ist vor allem die Betrachtung der Posteriori-Verteilung

f(θ|x) von großer Wichtigkeit. Beide Verteilungen nehmen in der Bayes-Inferenz einen

sehr hohen Stellenwert ein, weshalb wir im Laufe dieses Kapitels näher auf die Priori-

und die Posteriori-Verteilung eingehen werden.(Held; 2008, Kapitel 5)

2.2.1 Bayes-Theorem

Der Satz von Bayes bildet das zentrale Element in der Bayes-Statistik. Nehmen wir

an, dass Ω eine Grundmenge mit disjunkten Zerlegungen A1, A2, ..., Ak ⊂ Ω ist und

für die Wahrscheinlichkeiten P (Ai) > 0 und P (B|Ai) > 0 gilt, wobei i = 1, ..., k und

B ⊂ Ω gilt. Nun interessiert uns die Wahrscheinlichkeit von Ai unter der Bedingung

einer bereits bekannten Information für Ereignis B. Unter den gegebenen Annahmen

kann die bedingte Wahrscheinlichkeit als

P (Ai|B) =
P (B|Ai) · P (Ai)

P (B)
, i = 1, ..., k (2.1)

dargestellt werden. Ferner gilt mit dem Satz von der totalen Wahrscheinlichkeit für

P (B) =
k∑
i=1

P (B|Ai) · P (Ai),

wodurch wir den Satz von Bayes auch in der Form

P (Ai|B) =
P (B|Ai) · P (Ai)∑k
i=1 P (B|Ai) · P (Ai)

, i = 1, ..., k

für ein bestimmtes Ereignis darstellen können. Hierbei ist die Priori-Wahrscheinlichkeit

P (Ai) und die Posteriori-Wahrscheinlichkeit ist dargestellt als P (Ai|B). Das heißt, dass
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P (Ai) die Wahrscheinlichkeit für das Aufkommen des Ereignisses Ai angibt, wobei wir

hier keine Informationen über das Ereignis B besitzen. Sobald B eintritt, nehmen wir die-

se Erkenntnis, die die Priori-Wahrscheinlichkeit verändert, als
”
Hintergrundwissen“ auf

und erhalten dadurch die Posteriori-Wahrscheinlichkeit P (Ai|B).(Fahrmeir, Künstler,

Pigeot und Tutz; 2007, Kapitel 4.6 & 4.7), (Koch; 2000, Kapitel 2.1.8)

2.2.2 Posteriori-Verteilung

Die Posteriori-Verteilung umfasst die gesamte Dateninformation über den unbekann-

ten Parameter θ nach der Beobachtung der Daten X = x, weshalb sie die wichtigste

Größe in der Bayes-Statistik bildet.(Held und Bové; 2014, Kapitel 6.2) Die Definition

der Posteriori-Verteilung lautet wie folgt:

Gegeben sei die Beobachtung x einer Zufallsvariable bzw. eines Zufallsvektors X mit der

Dichtefunktion f(x|θ). Nachdem die Festlegung einer Priori-Verteilung mit der Dichte-

funktion f(θ) erfolgt ist, ergibt sich aus dem Satz von Bayes (siehe Kapitel 2.2.1) bei

einem stetigem Parameterraum Θ die Dichtefunktion

f(θ|x) =
f(x|θ) · f(θ)∫

Θ

f(x|θ) · f(θ)dθ

der Posteriori-Verteilung, wobei f(x|θ) die Likelihood-Funktion L(θ) darstellt. Nach der

Integration des Nenners∫
f(x|θ) · f(θ)dθ =

∫
f(x|θ)dθ = f(x)

können wir feststellen, dass der Nenner nicht von θ abhängt. Daraus ergibt sich die

Erkenntnis, dass die Posteriori-Verteilung mit der Proportionalitätskonstante 1
f(x)

zum

Produkt von Priori-Verteilung und Likelihood proportional ist, also

Posteriori-Verteilung ∝ Priori-Verteilung · Likelihood.

Eine weitere Notationsform ist:

f(θ|x) ∝ f(θ) · f(x|θ)

wobei auch hier die Proportionalitätskonstante 1
f(x)

ist und die Eigenschaft der Dichte∫
f(θ|x)dθ = 1 gegeben sein muss.(Held; 2008, Definition 5.1)
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2.2.3 Priori-Verteilung

Die Bayes-Statistik ermöglicht es uns mittels einer festgelegten Priori-Verteilung Aus-

sagen über die Wahrscheinlichkeit unbekannter Parameter zu treffen. Obwohl die Fest-

legung der Priori-Verteilung im Allgemeinen eher subjektiv ist, gibt es einige Metho-

den, um diesen Grad an Subjektivität zu verringern. Der Grund dafür ist, dass die

Priori-Verteilung definitionsgemäß vor der Beobachtung bereits festgelegt sein muss.

Würden wir diese Festlegung erst nach der Beobachtung der zu analysierenden Daten

durchführen, wäre dadurch die logische Kohärenz verletzt. Die Frage ist jedoch, wie

wir diese Verteilung für differenzierte Anwendungen mit einer bestimmten Likelihood-

Funktion festlegen können. Für diese Verteilungswahl existieren mehrere Möglichkeiten.

(Held; 2008, Kapitel 5.2), (Gelman und Hennig; 2017, Kapitel 5.3)

Konjugierte Priori-Verteilung

Wir versuchen die Priori-Verteilung so zu wählen, dass die resultierende Posteriori-

Verteilung einer gängigen Verteilungsfamilie folgt. Im Idealfall nimmt die Posteriori-

Verteilung die selbe Verteilungsklasse an wie die Priori-Verteilung. (Held; 2008, Kapitel

5.2.1) Man spricht dann von einer konjugierten Priori-Verteilung mit folgender Definiti-

on:

Wir nehmen an, dass L(θ) = f(x|θ) eine Likelihood-Funktion basierend auf der Beob-

achtung X = x ist. Eine Klasse G von Verteilungen heißt konjugiert bezüglich L(θ), wenn

für alle x die Posterior-Verteilung f(θ|x) in G ist, wann immer die Prior-Verteilung f(θ)

ebenfalls in G enthalten ist.(Held; 2008, Definition 5.5), (Held und Bové; 2014, Definition

6.5)

Daraus ergibt sich, dass die Menge G = {alle Verteilungen} immer zu einer beliebigen

Likelihood-Funktion L(θ) konjugiert. Da dieses Vorgehen in der Praxis wenig sinnvoll

ist, werden in der Regel kleinere Mengen G gesucht.(Held; 2008, Kapitel 5.2.1)

Um dieses Vorgehen genauer darzustellen, illustrieren wir es anhand einer Binomialver-

teilung. Sei X|π ∼ B(n, π). Wenn wir nun die Beta-Verteilung für π als Priori-Verteilung

annehmen, ist π ∼ Be(α, β) konjugiert bezüglich der Likelihood-Funktion L(π), da die

Posteriori-Verteilung ebenfalls wieder Beta-verteilt, π|x ∼ Be(α+x, β+n−x), ist. Denn

für a priori π ∼ Be(α, β) und α, β > 0 ist die Likelihood-Funktion

L(π) = f(x|π) =

(
n

x

)
πx(1− π)n−x, x = 0, 1, ..., n
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und für die Priori-Verteilung gilt

f(π) =
1

B(α, β)
πα−1(1− π)β−1, 0 < π < 1.

Für die Dichtefunktion der Posteriori-Verteilung ergibt sich somit (vgl. Kapitel 2.2.2)

f(π|x) ∝ L(π) · f(π)

∝ πx(1− π)n−x · πα−1(1− π)β−1

= πα+x−1(1− π)β+n−x−1,

d.h. die Posteriori-Verteilung folgt der Beta-Verteilung, jedoch mit anderen Parametern:

π|x ∼ Be(α + x, β + n− x).(Held; 2008, Beispiel 5.1 & 5.3)

Uneigentliche und Nichtinformative Priori-Verteilungen

Wollen wir hingegen den Einfluss durch die Wahl der Priori-Verteilung minimieren,

müssen wir eine Verteilung mit sehr großer Varianz wählen. Im Extremfall kann dies

dazu führen, dass die gewählte Priori-Verteilung nicht mehr integrierbar ist. In die-

sem Fall spricht man von einer uneigentlichen Priori-Verteilung. Doch solange die da-

zugehörige Posteriori-Verteilung integrierbar bleibt, ist die Verwendung von uneigentli-

chen Priori-Verteilungen durchaus möglich.(Held; 2008, Kapitel 5.2.2) Eine uneigentliche

Priori-Verteilung mit der Dichtefunktion f(θ) ≥ 0 ist gegeben, wenn∫
Θ

f(θ)dθ =∞ oder
∑
θ∈Θ

f(θ) =∞

für einen entsprechend stetigen oder diskreten Parameter θ gilt.(Held und Bové; 2014,

Definition 6.6)

Mit der Absicht so wenig Hintergrundwissen wie möglich in die Wahl der Priori-Verteilung

f(θ) einfließen zu lassen, gibt es den naiven Ansatz, für den Parameter θ eine stetige

Gleichverteilung anzunehmen. Dies ist die sogenannte nichtinformative Priori-Verteilung.

Es besteht jedoch die Möglichkeit, dass im Anschluss die zugehörige Dichtefunktion der

Priori-Verteilung f(θ) nicht mehr integrierbar ist.(Held; 2008, Kapitel 5.2.3)
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2.3 Kurze Konklusion beider Inferenzkonzepte

Zusammenfassend können wir sehen, dass beide Inferenzkonzepte zwar nicht auf die selbe

Art und Weise agieren, aber in manchen Punkten besteht doch ein Zusammenhang zwi-

schen beiden Konzepten. Während das zentrale Element der Likelihood-Inferenz sich in

der Law of Likelihood widerspiegelt, ist es aus bayesianischer Sicht das Bayes-Theorem.

Wie wir aber in Kapitel 2.2.2 gesehen haben, spielt die Likelihood-Funktion in der Bayes-

Statistik ebenfalls eine Rolle.

Auch bei der Informationsgewinnung aus Daten unterscheidet sich die Vorgehensweise in

beiden Inferenzkonzepten. Aus bayesianischer Sicht beinhaltet die Posteriori-Verteilung

die gesamte Dateninformation über den Parameter θ, der aus dem Wahrscheinlichkeits-

modell hervorgeht, und dient somit in der Bayes-Statistik als Basis für die Dateninter-

pretation. Dagegen ist in der Likelihood-Inferenz das zentrale Element der Dateninter-

pretation die Likelihood-Funktion. Sie bildet die Leitlinie zur Interpretation der statis-

tischen Daten als Evidenz. Außerdem gilt nach der Definition der Likelihood Principle,

dass alle Informationen über den Parameter θ in der Likelihood-Funktion für θ enthal-

ten sind, sofern die Daten bereits bekannt sind. Zudem besagt die Likelihood Principle,

dass zwei Likelihood-Funktion von θ die gleiche Information über θ enthalten, wenn

sie proportional zueinander sind. Das bedeutet hier aber auch, dass der Effekt auf jede

Priori-Verteilung für θ in beiden Fällen derselbe ist. (Royall; 2000, Kapitel 1.2).

Letzten Endes können wir also sagen, dass die Law of Likelihood mit dem Likelihood Ra-

tio ein Maß für die Evidenzstärke zwischen zwei Hypothesen bietet. Demgegenüber gibt

es noch die Likelihood Principle, die die Konditionen, unter denen zwei Experimente die

selbe äquivalente statistische Evidenz erzielt, festlegt. Diese Bedingung ist erfüllt, wenn

und nur wenn beide Experimente die selbe Likelihood-Funktion erzeugen (vgl. Kapitel

2.1.3).(Blume; 2011, Kapitel 2)
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3 Evidential Frameworks

Da die Statistik in der Wissenschaft eine wichtige Rolle für die korrekte Interpretation

der Daten im Sinne einer wissenschaftlichen Evidenz spielt, gibt es ein breites Spek-

trum an statistischer Literatur, die sich mit diesem Thema beschäftigt. Aufgrund der

Komplexität dieses Themengebietes ist eine Vielfalt von Sichtweisen und Meinungen

diesbezüglich entstanden. Bedingt durch diese Diversität fehlt uns ein allgemein an-

erkanntes Framework zur Charakterisierung und Bewertung von Paradigmen, welche

vorgeben, statistische Evidenz zu messen, d.h. uns fehlt, wie in Kapitel 2.1.2 beschrie-

ben, ein konkretes Evidenzkonzept.(Blume; 2011, Kapitel 1)

Ein mögliches allgemeines Framework bietet uns der Ansatz von Blume. Er ermöglicht

uns den Vergleich und die Beurteilung von statistischen Paradigmen, die behaupten, die

Stärke der Evidenz in den Daten zu messen. Die Schlüsselkomponenten für dieses Frame-

work setzen sich aus drei Größen zusammen, die aus den drei bekannten Inferenzkonzep-

ten der Statistik, der frequentistischen, der bayesianischen und der Likelihood-Inferenz,

hervorgehen. Das Ziel besteht darin, eine kritischere Beurteilung der statistischen Evi-

denz zu ermöglichen.(Blume; 2011, Kapitel 1)

Das Fehlen eines wohldefinierten Frameworks kann zu verschiedenen Kontroversen führen,

wie die ordnungsgemäße Anwendung und Interpretation der p-Werte (vgl. Kapitel 2.1.2).

Auch die Bayes-Inferenz ist nicht frei von Ungewissheit. Hier soll sowohl die Posteriori-

Verteilung als auch der Bayes-Faktor ein Maß für die Evidenzstärke in den Daten dar-

stellen. Daran lässt sich erkennen, dass auch hier ein klares Evidenzkonzept fehlt und

es stellt sich uns die Frage, welches Maß die Evidenzstärke in den Daten besser re-

präsentiert. Im Laufe des Kapitels wird sich zeigen, dass die drei Schlüsselkomponenten

einen wichtigen Beitrag zum Verständnis des Schemas zur Messung der statistischen

Evidenz leisten.(Blume; 2011, Kapitel 1 & 1.3)
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3.1 Drei Größen zur Evidenz

Die drei essentiellen Größen zur Bewertung und Interpretation der Evidenz in den Daten

(im weiteren Verlauf EQ2 genannt) setzen sich zusammen aus:

� EQ1: das Maß für die Stärke der Evidenz

� EQ2: die Wahrscheinlichkeit, dass ein bestimmtes Studiendesign eine irreführende

Evidenz hervorbringt

� EQ3: die Wahrscheinlichkeit, dass die beobachtete Evidenz selbst irreführend ist.

EQ2 informiert uns über den Sammelprozess der Daten, während EQ1 und EQ3 uns

Informationen über die statistische Evaluation der Daten als wissenschaftliche Evidenz

geben. Alle drei Größen sind daher in der Wissenschaft und in der Statistik unentbehr-

lich. Die zeitliche Reihenfolge, in der die EQs während einer wissenschaftlichen Forschung

bestimmt werden, ist: EQ2, EQ1 und EQ3, wobei EQ2 vor dem Sammelprozess der Da-

ten bereits bestimmt wird.(Blume; 2011, Kapitel 1.1)

Jede einzelne Evidenzgröße beinhaltet die Antwort auf eine kritische Frage. EQ1 beant-

wortet die Frage, wie stark die Evidenz für oder gegen eine Hypothese in den Daten ist.

EQ2 liefert uns Ergebnisse zur Wahrscheinlichkeit, mit der eine Studie Daten hervor-

bringen wird, die irreführend sind. EQ3 wiederum zeigt die Wahrscheinlichkeit an, dass

die bereit beobachteten Daten irreführend sind. Daraus können wir schließen, dass EQ1

und EQ3 von den beobachteten Daten abhängen und sich auf diese beziehen. EQ2 hängt

hingegen vom gewähltem Studiendesign ab und liefert keine Informationen zur Datenin-

terpretation, weil EQ2 bereits vor dem Sammelprozess der Daten bestimmt wird.(Blume;

2011, Kapitel 1.1)

Jedes einzelne Evidenzmaß bietet einzigartige Informationen bezüglich der Interpretation

(EQ1), des Sammelprozesses (EQ2) und der Zuverlässigkeit (EQ3) an. Ein wohldefinier-

tes evidential framework ist erst dann gegeben, wenn alle drei EQs eindeutig definiert

sind und klar voneinander unterschieden werden.(Blume; 2011, Kapitel 1.1)

In Kapitel 3.2 wird anhand einer Analogie der Unterschied zwischen den Wahrschein-

lichkeiten EQ2 und EQ3 klarer beschrieben.

2Abkürzung aus dem englischem evidential quantity
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3.2 Analogie zum Unterschied zwischen EQ2 und EQ3

Sowohl EQ2 als auch EQ3 stellen jeweils eine Wahrscheinlichkeit dar. Das kann zu einer

Verwechslung der beiden Größen führen. Doch die genaue Unterscheidung der beiden

EQs ist erforderlich, da jede für sich eine ausschlaggebende Information über die sta-

tistische Evidenz enthält. Wir wissen aus Kapitel 3.1, dass EQ2 bereits vor dem Sam-

melprozess bestimmt wird. EQ2 charakterisiert also die Wahrscheinlichkeit, dass das

gewählte Studiendesign ein irreführendes Ergebnis erzielen wird. Doch sobald ein Da-

tensatz zusammengetragen wurde, verliert EQ2 ihre Bedeutung, denn die beobachteten

Daten sind entweder irreführend bezüglich der Evidenz oder nicht. Unser Hauptinter-

esse gilt nun der Wahrscheinlichkeit, dass die gerade gesammelten Daten irreführend

sind. Genau diese Wahrscheinlichkeit wird im evidential framework als EQ3 bezeichnet.

Daraus geht hervor, dass EQ3 die Wahrscheinlichkeit, mit der ein bereits beobachtetes

Ergebnis irreführend ist, beschreibt.(Blume; 2011, Kapitel 1.2)

Mithilfe eines simplen Beispiels soll der genaue Unterschied beider Evidenzgrößen illus-

triert werden. Max und Moritz nehmen an einer Lotterie teil. Die Regeln lauten wie folgt:

Es gibt 59 weiße und 39 rote Kugeln, wobei die Weißen von 1 bis 59 und die Roten von

1 bis 39 durchnummeriert sind. Um den Hauptgewinn zu erhalten, müssen fünf richtige

weiße Kugeln und eine richtige rote Kugel ohne Zurücklegen gezogen werden, wobei die

Reihenfolge bei den weißen Kugeln irrelevant ist. Daraus ergibt sich eine Gewinnchance

von 1 zu 195,249,054.(Blume; 2011, Kapitel 1.2)

Max kauft sich ein Lotterielos und Moritz zehn. Jedoch ist ein Los aus diesen zehn iden-

tisch mit dem von Max, d.h. falls Max gewinnen sollte, gewinnt Moritz ebenfalls. Da

Moritz aber mit seinen neun anderen Losen ebenso gewinnen könnte, hat er eine zehnmal

so hohe Wahrscheinlichkeit auf den Hauptgewinn. Aufgrund der unterschiedlichen Spiel-

strategien, haben beide unterschiedliche Gewinnwahrscheinlichkeiten und genau diese

Wahrscheinlichkeit auf den Hauptgewinn entspricht EQ2, d.h. die Wahrscheinlichkeit

mit den gewählten Lotterielosen zu gewinnen. Dabei stellt das Gewinnen der Lotterie

die irreführende Evidenz dar und die Lotterielose das gewählte Studiendesign.(Blume;

2011, Kapitel 1.2)

Am Tag nach der Auslosung schauen beide in die Zeitung, um die Gewinnnummern zu

erfahren. Unglücklicherweise ist die Nummer der roten Kugel verschmiert, sodass diese

nicht mehr zu erkennen ist. Doch die verbliebenen Nummern der weißen Kugeln stim-

men alle mit Max’ Lotterielos überein. Weil Moritz ein Los besitzt, dass identisch ist mit

dem vom Max, haben beide zum jetzigen Zeitpunkt dieselbe Gewinnwahrscheinlichkeit
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von 2.5%. Diese neue Wahrscheinlichkeit auf den Hauptgewinn entspricht EQ3, welche

die Wahrscheinlichkeit zu Gewinnen darstellt, nachdem alle Kugeln bis auf die Rote

übereinstimmen. Die Tatsache, dass Moritz zuvor zehn Lotterielose gekauft und somit

eine zehnmal so hohe Gewinnwahrscheinlichkeit gegenüber Max hatte, ist zum jetzigen

Zeitpunkt komplett irrelevant geworden. Das zeigt, wie bereits erwähnt, den Verlust der

Relevanz von EQ2 nach der Datenerhebung.(Blume; 2011, Kapitel 1.2)

3.3 Ansatz auf Basis der Likelihood-Inferenz

Der Ansatz dieses Frameworks basiert auf der Law of Likelihood, d.h. die Daten un-

terstützen eher die Hypothese, die die beobachteten Ereignisse besser vorhersagt, und

die Likelihood Ratio misst dabei den Grad, in dem eine Hypothese besser unterstützt

wird als die andere (vgl. Kapitel 2.1.2). Dabei ist die Likelihood Ratio niemals nega-

tiv.(Blume; 2011, Kapitel 2)

3.3.1 Maß zur Evidenzstärke: Likelihood Ratio

Aus Kapitel 3.1 wissen wir, dass EQ1 ein Maß für die Evidenzstärke in unserem Frame-

work ist und die Law of Likelihood bietet uns mit dem Likelihood Ratio eine konkrete

Größe dazu an (vgl. Kapitel 2.1.2). Nun fehlt noch die Erkenntnis, wie wir einen kon-

kreten Likelihood Ratio-Wert interpretieren können.

Wir nehmen an, dass die Beobachtungen X1, ..., Xn unabhängig und entsprechend ei-

ner Dichte f(Xi|θ) identisch verteilt sind. Zudem gibt es zum einen die Nullhypothese

H0 : θ = θ0 und zum anderen die Alternativhypothese H1 : θ = θ1. Daraus ergibt sich,

dass die Likelihood Ratio LR = Ln(θ1)
Ln(θ0)

die Evidenzstärke für H1 gegenüber H0 misst.

Für eine beobachtete Likelihood Ratio wird zwischen drei Bereichen unterschieden:

� LR ∈
[
0, 1

k

]
: weist Evidenz für H0 über H1 auf

� LR ∈
(

1
k
, k
)
: schwache Evidenz für beide Hypothesen

� LR ∈ [k,∞): weist Evidenz für H1 über H0 auf

Konventionell wird k = 8 oder 32 gesetzt. Eine LR = 8 in den Beobachtungen deutet auf

eine
”
ziemlich starke“ Evidenz hin und bei LR = 32 sprechen wir im Allgemeinen von

einer
”
starken“ Evidenz. Je nach dem, ob wir eine

”
gemäßigte“ oder eine

”
harte“ Grenze

setzen wollen, wir das entsprechende k gewählt.(Blume; 2011, Kapitel 2.3), (Royall; 2000,

Kapitel 1.3)
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3.3.2 Illustration der drei Evidenzgrößen

Mithilfe eines Beispiels angelehnt an dem bekannten Diagnosetestbeispiel von Royall

(vgl. Royall; 1997, Kapitel 1.2) werden im Folgenden die drei Evidenzgrößen beschrie-

ben. Nehmen wir an, die Krankheit Diabetes mellitus einer werdenden Mutter sei im

Krankenhaus ein potentieller Faktor für die Schnittentbindung. Um zu erkennen, ob ei-

ne zukünftige Mutter Diabetikerin ist, werden Blutuntersuchungen durchgeführt. Das

Bluttestergebnis dient in diesem Beispiel als Evidenz für eine Diabetes mellitus. Die

Bluttestergebnis (B)
Positiv (+) Negativ (-)

Diabetes mellitus (D)
Ja (+) 0.94 0.06

Nein (-) 0.02 0.98

Tabelle 3.1: Wahrscheinlichkeiten der Blutuntersuchung bezüglich einer Diabetes melli-
tus Erkrankung

Wahrscheinlichkeiten in unserem Krankenhausbeispiel mit fiktiven Zahlen sind in der

Tabelle 3.1 aufgeführt. Daraus erkennen wir, dass in unserem Beispiel die Sensitivität3

0.94 = P (B + |D+) und die Spezifität4 0.98 = P (B − |D−) ist. Legen wir nun die

Hypothesen fest. H+ bedeutet, dass die Mutter Diabetikerin ist, und H− bedeutet wie-

derum, dass dies nicht der Fall ist. Bei einem positiven Bluttestergebnisses haben wir

eine Likelihood Ratio von

LR =
P (B + |D+)

P (B + |D−)
=

0.94

0.02
= 47

und bei einem Negativen beträgt die Likelihood Ratio

LR =
P (B − |D−)

P (B − |D+)
=

0.98

0.06
= 16.3.

Mit Hilfe der Bereichsübergänge aus Kapitel 3.3.1 können die Likelihood Ratios nun

genauer interpretieren werden. Für k = 8 stellen wir bei einem positiven Untersuchungs-

ergebnis fest, dass hier mit LR = 47 eine starke Evidenz für H+ gegenüber H− vorliegt.

Im Falle eines negativem Ergebnisses wird mit LR = 16.3 von einer starken Evidenz

für H− gegenüber H+ gesprochen. Daraus erschließt sich, dass die Likelihood Ratio den

3Richtig-Positiv-Rate: Fähigkeit zu erkennen, ob Mütter mit einem positivem Blutuntersuchungser-
gebnis tatsächlich Diabetes mellitus haben

4Richtig-Negativ-Rate: Fähigkeit zu erkennen, ob Mütter mit einem negativem Blutuntersuchungser-
gebnis tatsächlich kein Diabetes mellitus haben
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Grad misst, an dem die Daten eine Hypothese über eine andere unterstützt und somit

entspricht die Likelihood Ratio dem Maß EQ1.(Blume; 2011, Kapitel 2.1)

Gleichwohl besteht die Möglichkeit, dass dieser Bluttest eine irreführende Evidenz ge-

neriert. Ein positives Untersuchungsergebnis wird korrekterweise als Evidenz für H+

gegenüber H− interpretiert, doch in 2% der Fälle tritt ein positives Testergebnis auch

auf, obwohl die getestete Mutter keine Diabetikerin ist. Sofern dieses Szenario auftritt,

hat die Blutuntersuchung eine irreführende Evidenz erzeugt. Auch ein negatives Ergebnis

führt in unserem Beispiel in 6% der Fälle zu einer fehlgeleiteten Evidenz. Diese beiden

Wahrscheinlichkeitswerte entsprechen der zweiten Evidenzgröße (EQ2). Sie sind analog

zu den Fehlerraten im Hypothesentest und bilden wichtige Kennwerte für die Qualität

der Blutuntersuchung und für den Sammelprozess der Daten. Ein guter Bluttest zeichnet

sich durch die Maximierung von Sensitivität und Spezifität aus, was hier gleichbedeutend

ist mit der Minimierung von EQ2. Durch das Verringern von EQ2 wird das Potential,

ein irreführendes Bluttestergebnis zu beobachten, minimiert.(Blume; 2011, Kapitel 2.1)

Obwohl wir durch die Likelihood Ratio (EQ1) wissen, wie stark die Evidenz in den Daten

ist, können wir dennoch keine sichere Aussage treffen, ob ein beobachtetes Testergeb-

nis irreführend ist oder nicht. Allerdings besteht die Möglichkeit herauszufinden, ob ein

beobachtetes Testergebnis dazu neigt, in die Irre zu führen. Voraussetzung dafür ist die

Bereitschaft, eine bestimmte Annahme über die Priori Wahrscheinlichkeit der Hypothe-

sen zu treffen. Zusammenfassend können wir für unser Beispiel sagen, dass ein positives

Ergebnis der Blutuntersuchung irreführend ist, wenn und nur wenn die getestete Mutter

nicht unter der Krankheit Diabetes mellitus leidet. Dabei ist P (D−|B+) die Wahrschein-

lichkeit dafür, dass die werdende Mutter keine Diabetikerin ist. Aus Kapitel 2.2.2 wissen

wir, dass die Wahrscheinlichkeit P (D−|B+) allgemein als Posteriori-Wahrscheinlichkeit

bekannt ist.(Blume; 2011, Kapitel 2.1)

Damit die Berechnung dieser Posteriori-Wahrscheinlichkeit mit Hilfe des Bayes-Theorems

(s. Kapitel 2.2.1) möglich ist, müssen zuvor die Priori-Wahrscheinlichkeiten festgelegt

werden. Sei in unserem Beispiel π+ = P (H+) (die Wahrscheinlichkeit, mit der die Pati-

entin unter Diabetes mellitus leidet) und π− = P (H−) (die Wahrscheinlichkeit, dass die

Patientin nicht unter Diabetes mellitus leidet) unsere Priori-Wahrscheinlichkeiten sind.

Wir wissen jedoch aus Kapitel 2.2.3, dass es verschiedene Wege gibt, um die Priori-

Wahrscheinlichkeit zu bestimmen. Jedoch müssen wir in unserem Krankenhausbeispiel

nicht die komplexen Methoden für die Priori-Wahrscheinlichkeiten nutzen, weil es sich

hier um eine binäre Aussage handelt. Ferner ist unser Beispiel angelehnt an dem Dia-

gnosetestbeispiel von Royall (vgl. Royall; 1997, Kapitel 1.2), weshalb wir auch in unse-
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rem Szenario von einem Spezialfall sprechen können, da es hier bereits eine allgemeine

Übereinstimmung bezüglich der Priori-Wahrscheinlichkeit gibt. Sofern es angemessen ist

anzunehmen, dass die getestete Mutter zufällig aus einer Population gezogen wurde, bil-

det die Krankheitsprävalenz bzw. in unserem Beispiel die Diabetes mellitus Prävalenz

die Priori-Wahrscheinlichkeit.(Blume; 2011, Kapitel 2.1)

Sei unsere Prävalenz für Diabetes mellitus π+ = 0.015. Der komplementäre Wert dazu

ist demnach π− = 1 − π+ = 0.985. Daraus ergibt sich die Wahrscheinlichkeit, mit der

die werdende Mutter trotz positivem Bluttestergebnis kein Diabetes mellitus hat, durch

P (D − |B+)
(2.1)
=

P (B + |D−) · P (D−)

P (B+)
= ... =

(
1 + LR · π+

π−

)−1
LR = 47

= 0.583

und analog dazu die Wahrscheinlichkeit, dass eine werdende Mutter trotz negativem

Bluttestergebnis Diabetes mellitus hat, durch

P (D + |B−)
(2.1)
=

P (B − |D+) · P (D+)

P (B−)
= ... =

(
1 + LR · π−

π+

)−1
LR = 16.3

= 0.0009.

Diese beiden Posteriori-Wahrscheinlichkeiten entsprechen der dritten Evidenzgröße (EQ3).

Anhand der EQ3 Werte können wir sehen, dass ein positives Untersuchungsergebnis

nicht so sicher ist wie ein Negatives. Tatsächlich führt in unserer Beispielpopulation

ein beobachtetes positives Bluttestergebnis in mehr als der Hälfte der Fälle in die Irre.

Es ist hier aber nicht falsch, das positive Testergebnis als Evidenz für die Präsens von

Diabetes mellitus zu interpretieren. Es bedeutet lediglich, dass unsere Evidenzstärke in

den Daten nicht stark genug ist, um unser Vorwissen über die Präsenz von Diabetes

mellitus, also die Priori Wahrscheinlichkeiten, aufzuwiegen. P (D − |B+) = 0.583 be-

deutet keineswegs, dass ein positives Bluttestergebnis eine Abwesenheit der Diabetes

mellitus beweist. Interessant ist die Wahrscheinlichkeit für eine Diabetes mellitus Er-

krankung vor der Blutuntersuchung, die bei 1.5% = π+ liegt. Sobald aber ein positives

Untersuchungsergebnis erzielt wurde, steigt diese Wahrscheinlichkeit auf P (D+ |B+) =

1 − P (D − |B+) = 41.7%. Der Grund für diese extreme Steigerung liegt in der großen

Likelihood Ratio (LR = 47).(Blume; 2011, Kapitel 2.1)

Zusammenfassend können wir für EQ3 sagen, die Evidenzgröße hängt vom Kontext ab,

da sie auf der Priori-Wahrscheinlichkeit aufbaut. Zudem kann auch eine starke Evidenz

fehlgeleitet sein, aber in der Regel ist eine größere Likelihood Ratio ein eher sicheres An-

zeichen dafür, dass eine bereits beobachtete Evidenz weniger wahrscheinlich in die Irre

führt. Je stärker also die Evidenz ist, desto unwahrscheinlicher ist das Potential einer
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Irreführung. Deswegen haben EQ1 und EQ3 eine inverse Beziehung zueinander.(Blume;

2011, Kapitel 2.1)

3.4 Problematik beim Fehlen eines wohldefinierten

Frameworks

Wie bereits in Kapitel 3 erwähnt, kann das Fehlen eines wohldefinierten evidential frame-

works zu verschiedenen Auseinandersetzungen kommen, wenn es um die Interpretation

der Evidenz geht. Im Folgenden werden bestimmte statistische Situationen beschrieben,

in denen diese Problematiken bezüglich der Evidenz auftreten.

3.4.1 Problematik im frequentistischem Inferenzkonzept

Zu den wichtigsten Werkzeugen der klassischen Inferenz gehören zum einen der Hypothe-

sentest und zum anderen der Signifikanztest. Während der statistischen Untersuchung

eines Experimentes werden typischerweise beide Testmethoden durchgeführt, wobei der

Hypothesentest das Studiendesign festlegt und im Signifikanztest die Analyse stattfin-

det. Da aber diese Kombination von Testmethoden nicht wohldurchdacht ist, entsteht

Verwirrung bei der sogenannten tail area Wahrscheinlichkeit5. Während im Hypothesen-

test die tail area Wahrscheinlichkeit die zweite Evidenzgröße (EQ2) als Fehler erster Art

verkörpert, soll sie im Signifikanztest jedoch die Stärke der Evidenz (EQ1) messen. Fer-

ner existiert im Signifikanztest kein EQ2 und im Hypothesentest lässt sich keine Größe

finden, die die Evidenzstärke (EQ1) misst. Dies kann fälschlicherweise zu der Annahme

führen, es wäre vernünftig, beide Evidenzgrößen zusammenzufassen. Doch in der Wis-

senschaft ist es immer ratsam, alle drei Evidenzgrößen auszumachen und voneinander

abzugrenzen, denn jede einzelne Größe birgt eine Information, die für den wissenschaft-

lichen Prozess unerlässlich ist.(Blume; 2011, Kapitel 2.2)

Um diese Problematik genauer zu illustrieren, überlegen wir uns einen passenden Hypo-

thesen- und Signifikanztest basierend auf dem Beispiel aus Kapitel 3.3.2. Für den Hypo-

thesentest werden zunächst die Hypothesen formuliert. Die Nullhypothese H0 ist hier,

dass die Patientin nicht unter Diabetes mellitus leidet, und die Alternativhypothese H1

steht für eine Diabetes mellitus Erkrankung der Patientin. Sofern ein positives Blut-

untersuchungsergebnis beobachtet wird, kann die Nullhypothese abgelehnt werden und

5Die tail area Wahrscheinlichkeit ist ein wahrscheinlichkeitstheoretischer Begriff, der die Kernberech-
nung beim p-Wert und beim Fehler erster Art repräsentiert
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analog dazu die Nullhypothese nicht abgelehnt werden, wenn ein negatives Untersu-

chungsergebnis auftritt. Dabei soll der Fehler erster Art bei 2% und der Fehler zweiter

Art bei 6% liegen. Im Allgemeinen geht man hier von einem guten Test aus, da der

Fehler erster Art kleiner ist als die konventionelle Grenze von 5%. Problematisch wird

es erst, wenn wir versuchen, die resultierenden Testergebnisse als statistische Evidenz

zu interpretieren. Falls wir die Nullhypothese nicht ablehnen können, impliziert dies kei-

neswegs eine Evidenz für die Nullhypothese. Ferner kann ein negatives Ergebnis, wie

beispielsweise das Scheitern der Ablehnung einer Nullhypothese, niemals als Evidenz

für das Fehlen der Diabetes mellitus Erkrankung interpretiert werden. Das Fehlen einer

Evidenz bedeutet nämlich nicht, dass es eine Evidenz für das Fehlen ist. Sollte es nicht

möglich sein, die Nullhypothese abzulehnen, wird das Testergebnis stattdessen als statis-

tisch ergebnislos interpretiert. Außerdem können wir unter diesen Umständen nirgendwo

die Stärke der Evidenz wiedergeben, d.h. EQ1 existiert hier nicht. Die einzige Erkennt-

nis, die wir hieraus ziehen können, ist die Entscheidung, ob wir anhand der Fehlerrate

aus unserer Entscheidungsregel die Nullhypothese ablehnen können oder nicht.(Blume;

2011, Kapitel 2.2)

Diese Information allein ist jedoch aus wissenschaftlichem Standpunkt heraus unzurei-

chend, besonders wenn wir eine konkrete Evidenzstärke zu der Hypothese wollen, die

uns interessiert. Um dies zu ermöglichen, wird am Ende einer Studie ein Signifikanz-

test durchgeführt. Dieser Test beinhaltet die Berechnung der p-Werte, die wir als Maß

für die Evidenzstärke gegen die Nullhypothese verwenden. In unserem Beispiel liegt der

p-Wert bei 2%, was hinsichtlich des konventionellen Maßstabs von 5% als eine starke

Evidenz gegen die Nullhypothese betrachtet wird, da unser p-Wert kleiner ist als 5%.

Auch hier sehen wir, dass es nicht möglich ist, eine Evidenz zugunsten der Nullhypothese

zu bekommen. Große p-Werte können nämlich nicht als Evidenz für die Nullhypothese

interpretiert werden, sondern sie deuten darauf hin, dass ein Ergebnis nicht beweiskräftig

ist. Daraus ergibt sich die Erkenntnis, dass im Signifikanztest zwar mit dem p-Wert ein

EQ1 vorhanden ist, aber es können weder EQ2 noch EQ3 bestimmt werden.(Blume;

2011, Kapitel 2.2)

3.4.2 Problematik im bayesianischem Inferenzkonzept

Im bayesianischem Ansatz liegt der Mittelpunkt bei der Evidenz vor allem auf der

Posteriori-Wahrscheinlichkeit. Nehmen wir wieder das Beispiel aus Kapitel 3.3.2, dann

liegt die Posteriori Wahrscheinlichkeit für Diabetes mellitus nach einem positiven Blut-

testergebnis bei P (D + |B+) = 0.417. Sofern diese Wahrscheinlichkeit als Maß für die
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Evidenzstärke (EQ1) dienen soll, bleibt unklar, wie dieses positive Bluttestergebnis zu

interpretieren ist. Denn hier liegt die Situation vor, dass es nach der Beobachtung eines

positiven Bluttestergebnisses wahrscheinlicher ist, kein Diabetes mellitus zu haben, da

P (D + |B+) = 41.7% < 50%.(Blume; 2011, Kapitel 2.2)

Sollte also ein positives Blutuntersuchungsergebnis als Evidenz für das Fehlen der Dia-

betes mellitus Erkrankung betrachtet werden? Falls ja, kann die Blutuntersuchung nie-

mals eine statistische Evidenz für die Präsenz einer Diabetes mellitus erzeugen, da die

Posteriori-Wahrscheinlichkeit für eine Diabtis mellitus Erkrankrung nach einem nega-

tivem Bluttestergebnis mit P (D + |B−) = 0.0009 sehr klein ist. Falls nicht, basierend

auf welchem Maßstab und Kontext sollen wir dann unsere Posteriori Wahrscheinlich-

keit interpretieren? Es ist also nötig, EQ1 genau zu definieren. Außerdem bleibt im

bayesianischem Konzept unklar, ob es sinnvoll ist, EQ2 in Abhängigkeit von der Priori

Wahrscheinlichkeit zu definieren. Also können wir auch hier sagen, dass das Fehlen ei-

nes evidential frameworks zu keiner klaren Aussage bezüglich der Evidenz führt.(Blume;

2011, Kapitel 2.2)
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4 Analyse von Einflussfaktoren auf die

Sectiorate anhand eines evidential

frameworks

Nachdem die Grundidee eines evidential frameworks in der Theorie beschrieben wur-

de, wenden wir dieses Konzept nun auf einen Datensatz aus dem medizinischen Bereich

an. Dieser Datensatz wurde von Herrn Dr. Martin Daumer vom
”
Sylvia Lawry Centre

for Multiple Sclerosis Research e.V.“ bereitgestellt. Bevor wir zu der Anwendung kom-

men, werden zunächst der Datensatz und das verwendete Regressionsmodell genauer

betrachtet.

4.1 Datensatz

Um herauszufinden, inwiefern verschiedene Faktoren die Sectiorate in den deutschen

Krankenhäusern beeinflussen, wurde mittels Crowdsourcing über das Internet eine offene

Umfrage durchgeführt, die mehrere kategoriale Fragen über die gegebenen Bedingungen

und Richtlinien im gynäkologischen Bereich der jeweiligen Kliniken beinhalten.

Der Grund für das Interesse an diesem Thema ist die rasant gestiegene Rate an Kai-

serschnitt Operationen in Deutschland, die 2010 bei 31.9% lag und somit innerhalb ei-

nes Jahrzehnts um zehn Prozentpunkte zugenommen hat. Damit unnötige Kaiserschnitt

Operationen zukünftig vermieden werden, besteht die Nachfrage, herauszufinden, welche

Faktoren den Anstieg der Sectiorate beeinflussen. Obwohl die Risiken einer Sectio für

Mutter und Kind deutlich gesunken sind, wäre ein Anstieg an medizinisch unnötigen Kai-

serschnitt Operationen dennoch nicht erstrebenswert. Problematisch ist hierbei nicht nur

das allgemeine Risiko eines operativen Eingriffs, es existieren auch Hinweise auf mögliche

langfristige gesundheitliche Folgen für das Kind (z.B. höheres Risiko auf Diabetes Typ 1,

Asthma und Übergewicht) oder mögliche psychische Folgen für Mutter und Kind.(Kolip

et al.; 2012, Kapitel 1 & 2.1)

21



In der Abbildung 4.1 sehen wir einen Auszug des Fragebogens aus der offenen Umfra-

Abbildung 4.1: Auszug aus dem Fragebogen

ge, der an die
”
Deutsche Gesellschaft für Gynäkologie und Geburtshilfe e.V.“ gerichtet

wurde, wobei Krankenhäuser die Zielgruppe sind. Mithilfe dieser Umfrage wurde ein

Datensatz mit einem Stichprobenumfang von 97 generiert.

Die Variablen, auf die wir uns im Laufe dieses Kapitels bei der Anwendung des evidential

frameworks beziehen werden, sind in Tabelle 4.1 aufgelistet. Da wir die verschiedenen

Variable Erklärung

Sectio Primäre und sekundäre Sectiorate in der Klinik
7 Kategorien: <20%, 21-25%, 26-30%, 31-35%, 36-40%,
41-45%, >45%

Entbindung Jahr Anzahl der Entbindungen in der Klinik im Jahr 2014
5 Kategorien: <500 Geburten/Jahr, 500-1000 Geburten/Jahr,
1001-1500 Geburten/Jahr, 1501-2000 Geburten/Jahr,
> 2001 Geburten/Jahr

Software Hersteller der Zentralüberwachungssoftware
4 Kategorien: Andere, Nexus, Philips, Trium

Baseline Klinik-intern festgelegter Normalbereich für die Baseline
5 Kategorien: 110-150 bmp, 110-160 bmp, 115-160 bmp,
120-160 bmp, Andere

DiffBase Differenzierung von Normbereichen für die Baseline sinnvoll?
(aus Sicht der Klinik)
binär: Ja, Nein

Tabelle 4.1: Variablenliste
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Einflüsse auf die Sectiorate67 herausfinden möchten, ist unsere Zielvariable
”
Sectio“. In

der Abbildung 4.2 sehen wir, wie sich die 97 Krankenhäuser aus der Umfrage auf die

Kategorien der Zielvariable verteilen.

Es zeigt sich, dass die Kategorien
”
41-45%“ und

”
>45%“ mit je zwei Krankenhäusern

Abbildung 4.2: Relative Häufigkeiten der Zielvariable
”
Sectio“

vergleichsweise unterrepräsentiert sind, weshalb hier beide Kategorien mit der Katego-

rie
”
36-40%“ zusammengefasst werden. Daraus ergibt sich die neue Kategorie

”
>35%“.

Durch diese Verknüpfung in eine gemeinsame Kategorie verhindern wir mögliche Kompli-

kationen bei der späteren Modellierung, da unterrepräsentierte Kategorien wahrschein-

licher einen nicht repräsentativen Effekt erzielen können.

In Abbildung 4.3 sehen wir einen deskriptiven Überblick unserer Kovariablen. Um auch

bei den Kovariablen das Problem mit unterrepräsentierten Kategorien zu vermeiden,

wurden bei der Kovariable
”
Baseline“ die Kategorien

”
115-160 bmp“ und

”
120-160 bmp“

in die Kategorie
”
Andere“ aufgenommen. Somit ergibt sich eine neue Konstellation der

Kategorien einiger Variablen, die wir in Tabelle 4.2 sehen können.

Bevor diese Zusammenfassung der Kategorien durchgeführt wird, stellt sich die Frage,

ob gerade ein Krankenhaus, das eine Differenzierung von Baseline-Normbereichen für

redundant hält, bei der Kovariable
”
Baseline“ in die Kategorie

”
Andere“ fällt. Aus dem

Mosaikplot aus Abbildung 4.4 können wir jedoch erkennen, dass Krankenhäuser, die

6Primäre Sectio: Kaiserschnitt Operation wird vor dem Einsetzen der Wehen und bei intakter Frucht-
blase durchgeführt.(Kolip et al.; 2012, Kapitel 3.2)

7Sekundäre Sectio: Kaiserschnitt Operation wird aufgrund einer Notfallsituation oder wegen der
mütterlichen oder kindlichen Indikation (z.B. Geburtsstillstand) durchgeführt.(Kolip et al.; 2012,
Kapitel 3.2)
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Abbildung 4.3: Relative Häufigkeiten der Kovariablen
links:

”
Entbindung Jahr“, mitte:

”
Software“, rechts:

”
Baseline“

eine Differenzierung als nicht sinnvoll erachten, meistens einen geregelten Normbereich

für die Baseline haben. So sind etwa 39.4% der Kliniken, die einen Normbereich für

die Baseline von 110-160bmp festgelegt haben, diejenigen, die eine Differenzierung für

redundant halten. Von allen befragten Kliniken, die einen reglementierten Normbereich

von 120-160bmp haben, sind es sogar 72.7%, die eine Differenzierung des Normbereichs

als nicht sinnvoll erachten.

4.2 Proportional Odds Model

Das Modell der proportionalen kumulativen Chancen oder auch proportional odds model

(s. Fahrmeir, Kneib und Lang (2007), Kapitel 5.3 & Harrell (2015), Kapitel 13.3) ist

das ordinal logistische Modell, welches am häufigsten angewendet wird. Die Anwendung

dieses Modells ist dann geeignet, wenn die abhängige Variable ordinalskaliert ist, d.h.

wenn sie Werte in geordneten Kategorien annimmt. Wir nehmen an, dass in diesem

Modell hinter den beobachteten Kategorien eine latente unbeobachtbare Variable U

steht, die zur Kovariablenvektor xi durch

Ui = −x′iβ + εi, i = 1, ..., n

bestimmt ist, wobei β einen Parametervektor, n die Anzahl der Beobachtungen und εi

eine Störvariable mit Verteilungsfunktion F darstellt. Der Zusammenhang zwischen der

latenten Variable U und der Beobachtung Y sei bestimmt durch das Schwellenwertkon-
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Abbildung 4.4: Zusammenhang zwischen den Kovariablen
”
Baseline“ und

”
DiffBase“

zept

Yi = r ⇐⇒ αr−1 < Ui ≤ αr, r = 1, ..., q,

wobei −∞ = α0 < α1 < ... < αc = ∞ die Schwellwerte sind, die auf dem latenten

Kontinuum liegen.(Fahrmeir, Kneib und Lang; 2007, Kapitel 5.3)

Daraus ergibt sich das kumulative Modell mit der Verteilungsfunktion F durch

P (Yi ≤ r|xi) = P (Ui ≤ αr) = F (αr + x′iβ), r = 1, ..., c.

Wir sehen, dass wir nun ein Regressionsmodell mit den Regressoren xi, den Parametern

α1, ..., αq und β haben, wobei die latente Variable im Modell nicht mehr enthalten ist.

Daraus ergeben sich auch die Wahrscheinlichkeiten

P (Yi = 1|xi) = P (Yi ≤ 1|xi) = F (α1 + x′iβ),

P (Yi = r|xi) = P (Yi ≤ r|xi)− P (Yi ≤ r − 1|xi)

= F (αr + x′iβ)− F (αr−1 + x′iβ), r = 2, ..., q.

25



Um das proportional odds model bzw. das kumulative Logit-Modell zu erhalten, nehmen

wir für F die logistische Verteilungsfunktion an, wodurch wir

P (Yi ≤ r|xi) =
exp(αr + x′iβ)

1 + exp(αr + x′iβ)

oder äquivalent dazu

ln

(
P (Yi ≤ r|xi)
P (Yi > r|xi)

)
= logit(P (Yi ≤ r|xi)) = αr + x′iβ

erhalten. Der Name des kumulativen Logit-Modells leitet sich von der Eigenschaft der

proportional über alle Kategorien hinweg bestehenden kumulierten Chancen im Modell

ab. Dies zeigt sich beim Verhältnis der kumulativen Chancen bezüglich zweier Subpo-

pulationen xi und x̃i:

P (Yi ≤ r|xi)/P (Yi > r|xi)
P (Yi ≤ r|x̃i)/P (Yi > r|x̃i)

=
exp(αr + x′iβ)

exp(αr + x̃′iβ)
= exp ((x− x̃)′β)

Es zeigt sich nämlich, dass dieses Verhältnis nicht mehr von der Kategorie r abhängig

ist.(Fahrmeir, Kneib und Lang; 2007, Kapitel 5.3)

Variable Erklärung

Sectio Primäre und sekundäre Sectiorate in der Klinik
5 Kategorien: <20%, 21-25%, 26-30%, 31-35%, >35%

Entbindung Jahr Anzahl der Entbindungen in der Klinik im Jahr 2014
5 Kategorien: <500 Geburten/Jahr, 500-1000 Geburten/Jahr,
1001-1500 Geburten/Jahr, 1501-2000 Geburten/Jahr,
> 2001 Geburten/Jahr

Software Hersteller der Zentralüberwachungssoftware
4 Kategorien: Andere, Nexus, Philips, Trium

Baseline Klinik-intern festgelegter Normalbereich für die Baseline
3 Kategorien: 110-150 bmp, 110-160 bmp, Andere

DiffBase Differenzierung von Normbereichen für die Baseline sinnvoll?
(aus Sicht der Klinik)
binär: Ja, Nein

Tabelle 4.2: Variablenliste mit den angepassten Kategorien
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4.3 Anwendung des evidential frameworks

Bevor wir die einzelnen Evidenzgrößen (EQs) bestimmen können, stellen wir unser un-

restringiertes proportional odds model (vgl. Kapitel 4.2) auf. Wenn wir die Variablen aus

der Tabelle 4.2 verwenden und
”
Sectio“ als Zielvariable festlegen, erhalten wir folgendes

Modell:

logit(P (Y ≤ r|xi)) = αr + βEntbindung Jahr + βSoftware + βBaseline + βDiffBase (4.1)

mit r = 1, ..., 4. Die Indizes von β sind so zu verstehen, dass sie jeweils für eine Kate-

gorie aus der jeweiligen Kovariable stehen (s. Tabelle 4.2), wobei die Referenzkategorien

ausgenommen wurden. Die Referenzkategorien für die einzelnen Kovariablen lauten wie

folgt: für Kovariable
”
Entbindung Jahr“ ist es die Kategorie

”
<500 Geburten/Jahr“, für

Kovariable
”
Software“ ist es die Kategorie

”
Andere“, für Kovariable

”
Baseline“ ist es die

Kategorie
”
110-150 bmp“ und für Kovariable

”
DiffBase“ ist es die Kategorie

”
Ja“.

Bei der Wahl der Hypothesen gibt es typischerweise verschiedene Untersuchungsvarian-

ten, die von den Interessen eines Anwenders abhängen. In unserem Fall möchten wir

überprüfen, ob die Festlegung eines Normalbereichs für die Baseline einen Einfluss auf

die Sectiorate hat, da wir nicht erkennen können, auf welcher Basis diese Normbereiche

entstehen. Unsere Vermutung ist, dass diese Normalbereiche der Baseline je nach Klinik

eher willkürlich festgelegt werden. Daraus entstehen unsere folgenden Hypothesen:

� Nullhypothese H0: Die Kovariable
”
Baseline“ hat keinen Einfluss auf die Zielva-

riable (restringiertes Modell ohne die Kovariable
”
Baseline“)

� Alternativhypothese H1: Die Kovariable
”
Baseline“ hat einen Einfluss auf die Ziel-

variable (unrestringiertes Modell)

oder äquivalent dazu H0: βBaseline = 0 und H1: βBaseline 6= 0.

Nachdem das Modell und die Hypothesen festgelegt sind, können wir unser evidential fra-

mework definieren. Dabei ist EQ1 die Likelihood Ratio zwischen unserem restringierten

Modell ohne der Kovariable
”
Baseline“ und dem unrestringierten Modell. EQ2 funk-

tioniert analog zum sogenannten Likelihood Ratio Test (s. Huelsenbeck und Crandall

(1997), Kapitel Likelihood Ratio Tests In Phylogenetics & Harrell (2015), Kapitel 9.2.1)

und liefert uns mit dem Fehler erster Art die Wahrscheinlichkeit für eine irreführende

Evidenz im gewählten Studiendesign.

Anders als im Krankenhausbeispiel aus Kapitel 3.3.2 unterscheidet sich in unserem Fall
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die Berechnung der Likelihood Ratio. Bedingt durch die verschiedene Parametervekto-

ren βs unseres proportional odds models und unter Berücksichtigung unserer Hypothesen

H0: βBaseline = 0 und H1: βBaseline 6= 0 ergibt sich für unsere Likelihood Ratio (Banerjee

und Wellner; 2001, Kapitel 2.2)

LR =
supH1f(yi|βEntbindung Jahr, βSoftware, βBaseline, βDiffBase)
supH0f(yi|βEntbindung Jahr, βSoftware, βBaseline, βDiffBase)

=
supH1f(yi|βgesamt)
supH0f(yi|βgesamt)

(4.2)

mit i = 1, ..., n, wobei n die Anzahl der befragten Kliniken ist. Die Funktion f(·) ist eine

diskrete Dichtefunktion bzw. unsere Likelihood-Funktion und liefert die Wahrscheinlich-

keit für die Beobachtung yi unter den gegebenen Parametervektoren (βgesamt).

Für EQ3 müssen wir unser bisheriges Modell in ein bayesianisches Modell umformen,

womit wir die Posteriori-Wahrscheinlichkeit (EQ3) bestimmen können. Wie bereits in

Kapitel 3.1 erwähnt, lautet die Reihenfolge für die Berechnung der einzelnen Evidenz-

folgen EQ2, EQ1 und EQ3.

4.3.1 Berechnung von EQ1 und EQ2

Wie wir nun wissen, funktioniert unsere EQ2 analog zum Likelihood Ratio Test (LR-

Test). Die Likelihood Ratio Statistik folgt bei großem Stichprobenumfang approximativ

der χ2-Verteilung und die Differenz der Parameter in beiden zu vergleichenden Modellen

entspricht der Anzahl an Freiheitsgraden. Dabei werden unsere proportional odds models

in R mithilfe der Funktion polr() aus dem R-Paket MASS (s. Venables und Ripley (2002))

dargestellt, wobei hier beachten werden müssen, dass die Funktion polr() für die odds

bzw. für die Chancen statt θr + x′iβ die Form θr − x′iβ verwendet. Die Teststatistik zum

LR-Test ist (Harrell; 2015, Kapitel 9.2.1)

T = −2(ln(supH0f(yi|βgesamt))− ln(supH1f(yi|βgesamt))) = −2(l0 − l1).

Damit wir den Fehler erster Art (EQ2) bestimmen können, nutzen wir die Eigenschaft

der approximativen Verteilungsannahme der Teststatistik T . Dabei muss folgende Trans-

formation durchgeführt werden, damit T approximativ der χ2-Verteilung mit T
a∼ χ2

2
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folgt:

exp(T ) = exp(−2(l0 − l1))

= exp(l0 − l1)−2

=

(
exp(l0)

exp(l1)

)−2

=

(
supH0f(yi|βgesamt)
supH1f(yi|βgesamt)

)−2

=

(
supH1f(yi|βgesamt)
supH0f(yi|βgesamt)

)2

4.2
= LR2.

Wie aus Kapitel 3.3.1 bekannt ist, muss LR ≥ k sein, damit eine Evidenz zugunsten

von H1 über H0 vorliegt. In unserem Fall wählen wir die konventionelle Grenze k = 8.

Bezogen auf die Teststatistik T und der Transformation ergibt sich ein Grenzwert von

ln(LR2) = ln(82). Wenn wir das auf unsere gewählten Hypothesen anwenden, erhal-

ten wir für H0 : T ≤ ln(64) und für H1 :> ln(64). Da LR stetig ist, und somit die

Wahrscheinlichkeit für einen konkreten Punkt gleich 0 ist, können wir bei der Nullhy-

pothese statt T < ln(64) auch unsere jetzige Definition wählen, damit die Korrektheit

der Hypothesenbildung berücksichtigt wird. Unser EQ2 entspricht nun dem Fehler erster

Art, d.h. die Wahrscheinlichkeit, dass unser gewähltes Studiendesign eine Evidenz für

H1 aufweist, obwohl H0 wahr ist, P (T > ln(64)|H0 wahr). Daraus ergibt sich für EQ2

(Berechnung mit R, s. elektronischer Anhang)

P (T > ln(64)|H0 wahr) = 1− P (T ≤ ln(64)|H0 wahr) ≈ 0.125,

d.h. unsere Wahrscheinlichkeit, dass wir mit unserem Studiendesign eine irreführende

Evidenz erhalten (EQ2), beträgt etwa 12.5%.

Im nächsten Schritt bestimmen wir die Stärke der Evidenz (EQ1) anhand der Likelihood

Ratio (vgl. Kapitel 3.3.1). Daraus ergibt sich (Berechnung mit R, s. elektronischer An-

hang)

LR
4.2
=
supH1f(yi|βgesamt)
supH0f(yi|βgesamt)

≈ 36.04,

d.h. wir haben eine starke Evidenz zugunsten des unrestringierten Modells (H1) ge-

genüber dem restringierten Modell ohne die Kovariable
”
Baseline“ (H0).
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4.3.2 Berechnung von EQ3 mit spike-and-slab Prioris

Um schlussendlich die Posteriori-Wahrscheinlichkeit (EQ3) bestimmen zu können, müssen

wir unser frequentistisches Modell (4.1) in ein bayesianisches konvertieren. Das ermöglicht

uns, die notwendige Priori-Wahrscheinlichkeit zu bestimmen, die für die Berechnung der

Posteriori-Wahrscheinlichkeit benötigt werden. In Kapitel 2.2.3 haben wir gesehen, dass

es verschiedene Methoden der Priori-Bestimmung gibt. Aufgrund der Komplexität un-

seres proportional odds models können wir hier keine konjugierten Priori-Verteilungen

benutzen. Doch in unserem Fall bietet sich die sogenannte
”
spike-and-slab“ Priori-

Verteilung an.

Im Folgenden werden die Verteilungsannahmen der verschiedenen Parameter und Varia-

blen aus unserem bayesianischen Modell beschrieben. Sei die Priori-Verteilung der Ko-

effizienten βEntbindung Jahr, βSoftware und βDiffBase eine Normalverteilung mit βgesamt ∼
N (0, 1). Da wir durch unsere Hypothesen H0: βBaseline = 0 und H1: βBaseline 6= 0 den

Einfluss der Kovariable
”
Baseline“ überprüfen wollen, hat βBaseline eine andere Priori-

Verteilung. Sie folgt der
”
spike-and-slab“ Priori-Verteilung.

Sei βBaseline definiert als βBaseline = ϑ · β?Baseline. Dabei gibt der Parameter ϑ an, ob

die Kovariable
”
Baseline“ einen Einfluss auf die Zielvariable hat, d.h. ϑ = 1, wenn

βBaseline 6= 0 und ϑ = 0, wenn βBaseline = 0. Also ist der Parameter ϑ ∈ {0, 1} und

folgt einer Bernoulli-Verteilung mit ϑ ∼ B(1, 0.5). Die Verteilung von ϑ bildet dabei

den
”
spike“ Teil und repräsentiert somit die Wahrscheinlichkeit, dass ein Koeffizient aus

dem Modell gleich 0 ist. Der
”
slab“ Part bildet hingegen die Verteilung für die Werte,

deren Koeffizienten nicht 0 sind, bedingt auf das Wissen, welche Koeffizienten ungleich

0 sind. In unserem Fall ist es die Verteilung von β?Baseline, die analog zu den anderen

Koeffizienten normalverteilt ist mit β?Baseline ∼ N (0, 1).(Scott und Varian; 2015, Kapitel

4.2.2)

Nun fehlen noch die Verteilungsannahmen der Intercepts und der Zielvariable. Die Inter-

cepts αr mit r = 1, ..., 4 folgen der Normalverteilung: αr ∼ N(0, 1000). Die Zielvariable

Yi mit i = 1, ..., n ist multinomialverteilt mit Yi ∼ M(n, pz). Dabei steht n für die An-

zahl der befragten Krankenhäuser aus dem Datensatz, z stellt eine Kategorie aus der

Zielvariable
”
Sectio“ (s. Tabelle 4.2) dar und pz ist die Wahrscheinlichkeit, mit der eine

Beobachtung in die Kategorie z fällt.

Die Posteriori-Verteilung unseres bayesianischen Modells kann nun mithilfe eines Mar-

kov Chain Monte Carlo (MCMC) Algorithmus simuliert werden. Dieser Algorithmus

wird sehr oft wiederholt, sodass sich eine Kette von Ziehungen ergibt, aus der wir die

Verteilung der Posteriori-Wahrscheinlichkeit von ϑ empirisch schätzen können. Da ϑ ein
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binärer Parameter ist, entspricht der Erwartungswert von ϑ der Wahrscheinlichkeit, für

die ϑ = 1 ist, d.h. die Wahrscheinlichkeit, dass die Kovariable
”
Baseline“ einen Einfluss

auf die Zielvariable hat. Also ergibt sich unsere gesuchte Posteriori-Wahrscheinlichkeit

(EQ3) aus dem Erwartungswert der gezogenen ϑs.(Scott und Varian; 2014, Kapitel 4.1)

Für eine genauere Erläuterung der Theorie zu den spike-and-slab Prioris wird neben der

verwendeten Literatur auf folgende Quellen verwiesen: Mitchell und Beauchamp (1988),

George und McCulloch (1993), Ishwaran und Rao (2005). Die Berechnung der EQ3 wur-

de in R mit der Funktion run.jags() aus dem R-Paket runjags (s.(Denwood; 2016))

durchgeführt. Aus der Simulation des MCMC Algorithmus mit 2 Ketten, in denen je-

weils 10,000 Zufallsziehungen stattfinden, erhalten wir für den Erwartungswert von ϑ

E(ϑ) ≈ 0.794 (Berechnung mit R, s. elektronischer Anhang). Diese Posteriori zeigt aber

die Wahrscheinlichkeit für einen Einfluss der Kovariable
”
Baseline“ (H1) an. Da unser

EQ1 eine Evidenz zugunsten von H1 gegenüber H0 aufweist und wir die Wahrscheinlich-

keit, mit der die beobachtete Evidenz irreführend ist, suchen, muss für EQ3 die Gegen-

wahrscheinlichkeit gebildet werden. Daraus ergibt sich eine Posteriori-Wahrscheinlichkeit

von 1− 0.794 = 0, 206, d.h. die Wahrscheinlichkeit, mit der unsere beobachtete Evidenz

irreführend ist (EQ3), beträgt 20.6%, wobei mit beobachteter Evidenz die Likelihood

Ratio (EQ1) aus Kapitel 4.3.1 gemeint ist.

Zusammenfassend ergibt sich für das untersuchte Hypothesenpaar H0: βBaseline = 0 und

H1: βBaseline 6= 0 folgendes Ergebnis: Die Wahrscheinlichkeit, dass unser gewähltes Stu-

diendesign eine irreführende Evidenz erzielt (EQ2), beträgt etwa 12.5%. Die berechnete

Likelihood Ratio (EQ1) von etwa 36.04 zeigt, dass die Daten eine starke Evidenz zuguns-

ten von H1 gegenüber H0 aufweist, wobei die Wahrscheinlichkeit, dass diese beobachtete

Evidenz irreführend ist, 20.6% beträgt.
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5 Fazit und Ausblick

Wie aufgezeigt wurde, ist ein wohldefiniertes Framework für die Evidenz durchaus von

Vorteil. Es zeigt sich, dass ein alleiniger Wert, der die Evidenz in den Daten repräsentieren

soll, nicht ausreicht, um vollkommene Klarheit zu erlangen. Aufgrund des mangelnden

Informationsspektrums der herkömmlichen Methoden zur Festlegung der Evidenz stellt

der Autor Jeffrey Blume sein evidential framework vor. In seinem Ansatz wird die In-

formation über die Evidenz nicht mehr ausschließlich an einem Wert gemessen. Weil

jede einzelne der drei Evidenzgrößen unerlässliche Informationen enthält, kann diesem

Mangel entgegen gewirkt werden. Nur wenn alle drei Evidenzgrößen klar voneinander

unterschieden werden, spricht man von einem wohldefinierten Framework. Dadurch ist

es nicht nur möglich zu überprüfen, ob Evidenz in den Daten ist, sondern es gibt uns die

Möglichkeit, eine Aussage darüber zu treffen, wie wahrscheinlich es ist, eine irreführende

Evidenz vor der Datenerhebung zu erzielen. Zusätzlich ist eine konkrete Bezifferung der

Evidenzstärke und die Wahrscheinlichkeit, dass diese beobachtete Evidenz irreführend

ist, ein weiterer Vorteil des Frameworks. Dieses evidential framework ermöglicht es, ge-

nauere Behauptungen über die Evidenz zu treffen.

Es besteht zudem die Möglichkeit, die einzelnen Evidenzgrößen (EQs) des evidential fra-

meworks neben der bisherigen Konstellation zu verändern. Dadurch ist es möglich, sich

unterschiedlichen Situationen anzupassen. Im Bezug zu einer Studie der Bertelsmann

Stiftung (Kolip et al.; 2012) bestünde die Möglichkeit, nicht die Likelihood Ratio (LR)

sondern die Odds Ratio (OR) als EQ1 zu wählen, da sie in dieser Studie als Bezugs-

wert für statistische Evidenz dient. Resultierend daraus müssten auch die Hypothesen

für EQ2 geändert werden. Eine mögliche Hypothesenwahl wäre, dass H0 : OR = 1 und

H1 : OR 6= 1 ist. Eine OR von 1 bedeutet nämlich, dass sich die Odds bzw. die Chancen

der verglichenen Gruppen sich nicht voneinander unterscheiden.

Eine weitere Gestaltungsmöglichkeit des evidential frameworks wäre eine auf den AIC

Wert basierende Evidenzstärke. Es bestünde die Möglichkeit, die Differenz der AIC Wer-

te aus zwei Modellen (∆AIC), die verglichen werden sollen, als EQ1 zu wählen. Der Vor-

teil des AICs gegenüber dem LR-Ansatz ist der Strafterm. Er hängt von der Anzahl der
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geschätzten Parameter ab und bei einer Zunahme der geschätzten Parameter wird das

Modell härter bestraft.(Fahrmeir, Kneib und Lang; 2007, Kapitel 4.1.4)

Um genauere Aussagen über die tatsächliche Evidenzstärke zu treffen, müsste man hier,

ähnlich wie bei der Likelihood Ratio, Grenzen festlegen, die zeigen, ab wann ∆AIC eine

starke Evidenz für oder gegen ein Modell aufweist (vgl. Kapitel 3.3.1). Auch bei dieser

Wahl von EQ1 müssten die Hypothesen für EQ2 neu formuliert werden. Eine mögliche

Gestaltung der Hypothesen könnte sein, dass H0 : ∆AIC = 0 und H1 : ∆AIC 6= 0, da

∆AIC = 0 bedeuten würde, dass es weder für das eine noch das andere Modell eine

Evidenz gibt.

Abschließend muss angemerkt werden, dass der Einfachheit halber bei der Modellierung

im Kapitel 4.3 die Betrachtung der Interaktionen zwischen den einzelnen Kovariablen

vernachlässigt wurde, da der Fokus dieser Arbeit vor allem auf die Methodik zum evi-

dential framework und deren Anwendung lag. Bei einer genaueren Analyse in der Praxis

sollte dieser Schritt berücksichtigt werden.

Aufgrund der Flexibilität und des Informationsgewinns ist das evidential framework von

Jeffrey Blume durchaus ein aussichtsreicher Ansatz, um zukünftig die Durchführung von

evidenzbasierten Studien akkurater zu gestalten.
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