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1 Einleitung

Aufgrund der rasanten Entwicklung in der Technik gewinnen Informationen und Daten
in der heutigen Zeit immer mehr an Bedeutung. Gleichzeitig steigen die bestehenden
Datenmengen rapide an, da anhaltend neue Daten generiert und gesammelt werden.
Um diese Fiille an Informationen addquat zu handhaben, wird dabei die Statistik her-
angezogen.

Im Zuge dessen ist es nicht iiberraschend, dass die Statistik, insbesondere die evidenz-
basierte Statitik, wihrend der letzten Jahrhundertwende immer mehr an Bedeutung ge-
wann. Das Heranziehen und Verfeinern von Elementen aus verschiedenen statistischen
Inferenzkonzepten ist eine statistisch moderne Darstellung, mit der wir problemlos unter-
schiedlichste Modellanalysen durchfithren konnen, wie unter anderem die Unsicherheit
eines Modells, der Vergleich von verschiedenen Modellen, die Schétzung von Parame-
tern und deren Unsicherheiten. Deshalb und wegen vieler anderer Griinde kénnen wir
behaupten, dass die evidenzbasierte Statistik momentan eine essentielle Rolle fiir die
Wissenschaft im 21. Jahrhundert einnimmt.(Taper und Ponciano; 2016, Abstract)

Im wissenschaftlichem Umfeld werden statistische Methoden fiir eine sinnvolle Inter-
pretation der Daten verwendet. Die Statistik bietet hierbei Moglichkeiten an, um auf
effiziente Weise objektive Alternativen neben der eigenen Beurteilung zu finden, damit
es moglich ist, die Evidenz aus Untersuchungs- und Beobachtungsstudien angemessen
zu deuten.(Royall; 1997, Preface)

Eine dieser Wissenschaften, in den die evidenzbasierte Statistik eine zentrale Rolle spielt,
ist die Medizin. Im Rahmen von Untersuchungen zur Wirksamkeit von medizinischen
Methoden oder Medikamenten werden Ergebnisse meist anhand der Evidenz erschlos-
sen. Mit Hilfe dieser evidenzbasierten Moglichkeiten werden subjektive Intuitionen und
unsystematische klinische Studien vermieden, damit rationale Entscheidungsfindungen
getroffen werden konnen.(Miillner; [2005, Kapitel 1), (Guyatt et al.; 1992, Abstract)
Trotz der Bedeutung der Evidenz weisen die gdngigen statistischen Methoden, die fiir den
Zweck der Evidenzbestimmung genutzt werden wie unter anderem der Hypothesentest,

kein konkret definiertes Evidenzkonzept auf. Ferner liefern sie dadurch keine Antwort



auf die grundlegenden Fragen, wann es richtig wére zu sagen, dass die gegebenen Daten
eine Evidenz zugunsten einer Hypothese gegeniiber einer anderen aufweist oder ob wir
ein objektives Mafl haben, um die Stdrke dieser Evidenz auszudriicken.(Royall; 2000,
Kapitel 1)

Einen moglichen Ansatz, um dieses Problem der Ungenauigkeit zu bewéltigen, bietet
das evidential framework von Jeffrey D. Blume an. Dieses allgemeine Framework soll
uns den Vergleich und die Evaluation statistischer Paradigmen erméglichen, die augen-
scheinlich die Stérke der statistischen Evidenz in den Daten messen. Dabei soll die Evi-
denz nicht mehr nur auf einen Wert beschréankt werden, sondern wird in drei essentiellen
Groflen aufgeteilt. Im Folgenden wird dargelegt werden, wie jede einzelne Grofle fiir das
Verstandnis und die Bewertung der statistischen Evidenz relevant ist. Auflerdem wird
sich zeigen, dass das Fehlen eines wohldefinierten Frameworks zu verschiedenen Kontro-
versen fithren kann. Das evidential framework wird auf einen medizinischen Datensatz
angewendet, um den Einfluss von verschiedenen Faktoren auf die Sectiorate herauszu-
finden.(Blume; 2011} Kapitel 1)



2 Statistische Inferenzkonzepte

Ein wichtiger Nutzen, den wir aus statistischen Inferenzkonzepten ziehen kénnen, ist
die Konstruktivitiat dieser Konzepte, die uns eine universelle Anwendbarkeit ermoglicht.
Neben der bekannten klassischen bzw. frequentistischen Inferenz gibt es zum einen die
Likelihood-Inferenz und zum anderen die Bayes-Inferenz. Der Kern des baysianischen
Konzepts ist es, die Likelihood-Funktion mit Vorwissen zu verbinden, um daraus neue
Erkenntnisse zu ziehen.(Held; 2008, Kapitel 1.1)

Es gibt in breiterem Sinne drei Problembereiche, fiir die wir statistische Inferenzkonzepte
benstigen. Der Erste ist das Schitzproblem['] Unter der Bedingung, dass eine bestimmte
Modellannahme existiert und die Daten gegeben sind, wollen wir versuchen, Aussagen
iiber den unbekannten Modellparametern zu treffen, d.h. wir méchten hierbei diese Para-
meter schiitzen. Der zweite Bereich ist das Modellwahlproblem?!, bei dem wir das Modell
aus verschiedenen Modellen herausfinden wollen, welches die gegebenen Daten am bes-
ten beschreibt. Der letzte Problembereich ist das Prognoseproblem!. Hier interessieren
wir uns dafiir, die Erkenntnisse aus den vorliegenden Daten zu nutzen, um zukiinftige
Beobachtungen sinnvoll zu prognostizieren.(Held; 2008, Kapitel 1.1)

Im Laufe dieses Kapitels werden sowohl die Likelihood-Inferenz als auch die Bayes-
Inferenz genauer betrachtet, da diese neben der frequentistischen Inferenz die Grundlage

fiir das evidential framework im nédchstem Kapitel bilden.

2.1 Likelihood-Inferenz

Eine der bekanntesten Methoden zur statistischen Inferenz ist die von Sir Ronald A.
Fisher eingefiihrte Likelihood-Inferenz. Dabei kann der englische Begriff Likelithood am
ehesten mit ,,Plausabilitat® {ibersetzt werden. Die Basis dieses Inferenzkonzepts bildet
die Likelihood-Funktion.(Held; 2008, Kapitel 2)

'Ein Begriff, der vom Autor Held eingefiihrt wurde.



2.1.1 Likelihood-Funktion

Wir nehmen an, dass X = z die beobachtete Realisation einer Zufallsvariable X mit
dazugehoriger Dichtefunktion f(x|f) ist. Die Funktion f(x|f) beschreibt die Verteilung
der Zufallsvariable X fiir einen festen Parameter #. Das Ziel besteht darin, Aussagen
iiber den unbekannten Parameter # aus dem Parameterraum © zu folgern, wobei die
Funktion f(z|f) bekannt ist. Die Likelihood-Funktion mit festem x

L(O) = f(z]), 0€0©

bildet hierbei die Hauptgrofie. (Held; 2008, Kapitel 2.1), (Held und Bové; 2014, Kapitel
2.1)

2.1.2 Law of Likelihood

Die statistische Analyse hat in der Wissenschaft die wichtige Aufgabe, die Evidenz aus
den beobachteten Daten zu deuten. Obwohl es dafiir momentan durchaus géngige Me-
thoden gibt, wie beispielsweise den Hypothesentest oder die Interpretation der Konfiden-
zintervalle, beinhaltet die Theorie dieser Methoden kein konkretes Evidenzkonzept und
kann somit nicht die zentrale Frage beantworten, wann die gegebenen Daten eine eviden-
te Unterstiitzung einer statistischen Hypothese gegeniiber einer anderen représentiert.
Diese Unzulédnglichkeit fithrt zu einer Kontroverse iiber die ordnungsgeméfie Anwendung
und Interpretation der p-Werte. Doch die Law of Likelihood fiillt die Liicke im fehlendem
Evidenzkonzept.(Royall; 2000, Kapitel 1)

Die Antwort auf die grundlegende Frage, wie statistische Daten als Evidenz zu interpre-
tieren sind, liefert uns die Definition der Law of Likelthood:

Wenn eine Hypothese H; impliziert, dass eine Zufallsvariable X den Wert x mit der
dazugehorigen Wahrscheinlichkeit fi(x) annimmt, wéhrend eine andere Hypothese Hy
impliziert, dass die Wahrscheinlichkeit fo(z) ist, dann ist die Beobachtung X = x eine
Evidenz fiir die Hypothese H; gegeniiber Hs, falls fi(z) > fo(z) gilt. Dabei ist die Like-
lihood Ratio % ein Maf} fiir die Stérke dieser Evidenz.(Royall; 2000, Kapitel 1.1)
Daraus ergibt sich, dass die Law of Likelthood eine Leitlinie zur Interpretation der sta-
tistischen Daten als Evidenz ist. Sobald durch dieses Axiom eine Hypothese iiber einer
Anderen steht, bedeutet es, dass die bevorzugte Hypothese eine genauere Préadiktion
liefert, d.h. sie erzielt eine gréflere Wahrscheinlichkeit zu dem beobachteten Punkt x.
Dadurch wird nicht die Frage beantwortet, ob die Evidenz fiir oder gegen eine einzel-

ne Hypothese ist, sondern es gibt uns eine Interpretationsweisung, wie wir die Evidenz



fiir eine Hypothese gegeniiber einer anderen deuten sollen. Wir konnen festhalten, dass
die Law of Likelihood eine objektive Evaluation der Daten als Evidenz unabhéngig von
Vorwissen ermdglicht.(Royall; 2000, Kapitel 1.1)

2.1.3 Likelihood Principle

Seien ein Wahrscheinlichkeitsmodell fiir eine Zufallsvariable X, dessen Verteilungsfamilie
durch den Parameter 6 indiziert ist, und eine Beobachtung, die eine Likelihood-Funktion
L(0) erzeugt, gegeben. Mittels der Law of Likelihood erhélt diese Funktion ihre Bedeu-
tung, d.h. fiir zwei Parameterwerte #; und 6, misst deren Likelihood Ratio % die
Evidenzstiarke X = x zugunsten von 6, gegeniiber 65.(Royall; 2000, Kapitel 1.2)

Die Definition der Likelithood Principle lautet wie folgt:

Nachdem X = x bereits beobachtet wurde, sind alle Informationen iiber 6 in der
Likelihood-Funktion fiir 6 enthalten. Sofern zwei Likelihood-Funktion fiir  proportional
zueinander sind, enthalten sie zudem die selbe Information tiber 6.(Berger et al.; 1988)
Nehmen wir nun an, dass wir zwei Datenszenarios mit erhobenen Daten zu statistischer
Evidenz haben. Diese erzeugen eine dquivalente statistsche Evidenz, was bedeutet, dass
alle Likelihood Ratios gleich sein miissen. Im Umkehrschluss bedeutet es aber auch, dass
beide Likelihood-Funktion aus den Datenszenarios identisch sind. Daraus kénnen wir den
Schluss ziehen, dass fiir jedes Paar von 6; und 6, die Stéarke der Evidenz zugunsten von
01 gegeniiber 6 in beiden Szenarien gleich ist. Mit Hilfe der Definition der Likelihood
Principle kénnen wir schlussfolgern:

Zwei Fille von statistischer Evidenz sind dquivalent und haben die selbe evidente Be-
deutung, wenn und nur wenn sie die selbe Likelihood-Funktion erzeugen.

Somit dient die Likelihood-Funktion als mathematische Verkoérperung der statistischen
Evidenz an sich und die Likelihood Ratio misst die dazugehorige Evidenzstérke. (Royall;
2000, Kapitel 1.2), (Birnbaum) 1962, Kapitel 5)

2.2 Bayes-Inferenz

Im Gegensatz zur klassischen Statistik hat die bayesianische Variante den Vorteil, dass sie
auf intuitiver Weise anschaulicher und einfacher zu begriinden ist. Probleme im Bereich
der Hypothesenpriifung oder der Bereichsschitzung, die in der frequentistischen Statis-
tik nicht zu 16sen sind, konnen mit der Bayes-Statistik entwirrt werden. Der Grund dafiir

ist, dass das bayesianische Konzept auf dem Bayes-Theorem basiert, wodurch wir den



unbekannten Parametern Wahrscheinlichkeitsverteilungen zuordnen kénnen. Alle Frage-
stellungen der Parameterschéitzung, der Hypothesenpriifung und der Bereichsschiatzung
werden auf Basis des Bayes-Theorems durchgefiihrt.(Kochj 2000, Kapitel 1)

In der klassischen Statistik betrachten wir die Daten X als zufillig. Wir interessieren
uns hier fiir die frequentistischen Eigenschaften von daraus abgeleiteten Statistiken, ins-
besondere von moglichen Punkt- und Intervallschétzern. Der aus dem Wahrscheinlich-
keitsmodell gegebene Parameter € ist in der klassischen Inferenz unbekannt, aber fest,
weshalb er hier keine Zufallsvariable bildet. Im Gegensatz dazu ist der Parameter 6 im
bayesianischem Pendant eine Zufallsvariable mit einer Priori-Verteilung f(6). Nach der
Untersuchung der Daten X = z ist vor allem die Betrachtung der Posteriori-Verteilung
f(8]z) von groBer Wichtigkeit. Beide Verteilungen nehmen in der Bayes-Inferenz einen
sehr hohen Stellenwert ein, weshalb wir im Laufe dieses Kapitels ndher auf die Priori-

und die Posteriori-Verteilung eingehen werden.(Held; 2008, Kapitel 5)

2.2.1 Bayes-Theorem

Der Satz von Bayes bildet das zentrale Element in der Bayes-Statistik. Nehmen wir
an, dass () eine Grundmenge mit disjunkten Zerlegungen Aj, A, ..., Ax C € ist und
fir die Wahrscheinlichkeiten P(A;) > 0 und P(B|A4;) > 0 gilt, wobei ¢ = 1,...,k und
B C Q gilt. Nun interessiert uns die Wahrscheinlichkeit von A; unter der Bedingung
einer bereits bekannten Information fiir Ereignis B. Unter den gegebenen Annahmen
kann die bedingte Wahrscheinlichkeit als

P(B|A) - P(A))
P(B) ’

P(4,|B) = i=1,..k (2.1)

dargestellt werden. Ferner gilt mit dem Satz von der totalen Wahrscheinlichkeit fiir

P(B) = ZP(B‘Ai) - P(Ay),

i=1
wodurch wir den Satz von Bayes auch in der Form

P(B|A;) - P(A))

P(Ai|B) = =
Zz‘:l P(B|Ai) ’ P(Ai)

, i=1,..k

fiir ein bestimmtes Ereignis darstellen kénnen. Hierbei ist die Priori-Wahrscheinlichkeit
P(A;) und die Posteriori-Wahrscheinlichkeit ist dargestellt als P(A;|B). Das heifit, dass



P(A;) die Wahrscheinlichkeit fiir das Aufkommen des Ereignisses A; angibt, wobei wir
hier keine Informationen iiber das Ereignis B besitzen. Sobald B eintritt, nehmen wir die-
se Erkenntnis, die die Priori-Wahrscheinlichkeit veréndert, als ,, Hintergrundwissen“ auf
und erhalten dadurch die Posteriori-Wahrscheinlichkeit P(A;|B).(Fahrmeir, Kiinstler,
Pigeot und Tutz; 2007, Kapitel 4.6 & 4.7), (Kochj 2000, Kapitel 2.1.8)

2.2.2 Posteriori-Verteilung

Die Posteriori-Verteilung umfasst die gesamte Dateninformation iiber den unbekann-
ten Parameter 6§ nach der Beobachtung der Daten X = x, weshalb sie die wichtigste
GroBe in der Bayes-Statistik bildet.(Held und Bové; 2014 Kapitel 6.2) Die Definition
der Posteriori-Verteilung lautet wie folgt:

Gegeben sei die Beobachtung x einer Zufallsvariable bzw. eines Zufallsvektors X mit der
Dichtefunktion f(z|@). Nachdem die Festlegung einer Priori-Verteilung mit der Dichte-
funktion f(0) erfolgt ist, ergibt sich aus dem Satz von Bayes (siehe Kapitel bei

einem stetigem Parameterraum © die Dichtefunktion

o) )
fO01) = 5 a10) - F(0)d0
(€]

der Posteriori-Verteilung, wobei f(x|6) die Likelihood-Funktion L(#) darstellt. Nach der

Integration des Nenners

/fmw»fwmezjfmwwezfu>

konnen wir feststellen, dass der Nenner nicht von # abhéngt. Daraus ergibt sich die

1

Erkenntnis, dass die Posteriori-Verteilung mit der Proportionalitdtskonstante o)

zum

Produkt von Priori-Verteilung und Likelihood proportional ist, also
Posteriori-Verteilung o< Priori-Verteilung - Likelihood.
Eine weitere Notationsform ist:
f(0lx) o< f(0) - f(x]0)

wobei auch hier die Proportionalitdtskonstante ﬁ ist und die Eigenschaft der Dichte

[ f(0]z)do = 1 gegeben sein muss. (Held; 2008, Definition 5.1)



2.2.3 Priori-Verteilung

Die Bayes-Statistik ermoglicht es uns mittels einer festgelegten Priori-Verteilung Aus-
sagen iiber die Wahrscheinlichkeit unbekannter Parameter zu treffen. Obwohl die Fest-
legung der Priori-Verteilung im Allgemeinen eher subjektiv ist, gibt es einige Metho-
den, um diesen Grad an Subjektivitdt zu verringern. Der Grund dafiir ist, dass die
Priori-Verteilung definitionsgemafl vor der Beobachtung bereits festgelegt sein muss.
Wiirden wir diese Festlegung erst nach der Beobachtung der zu analysierenden Daten
durchfithren, wére dadurch die logische Kohérenz verletzt. Die Frage ist jedoch, wie
wir diese Verteilung fiir differenzierte Anwendungen mit einer bestimmten Likelihood-
Funktion festlegen kénnen. Fiir diese Verteilungswahl existieren mehrere Moglichkeiten.
(Held; 2008, Kapitel 5.2), (Gelman und Hennig; 2017, Kapitel 5.3)

Konjugierte Priori-Verteilung

Wir versuchen die Priori-Verteilung so zu wihlen, dass die resultierende Posteriori-
Verteilung einer géngigen Verteilungsfamilie folgt. Im Idealfall nimmt die Posteriori-
Verteilung die selbe Verteilungsklasse an wie die Priori-Verteilung. (Held; 2008, Kapitel
5.2.1) Man spricht dann von einer konjugierten Priori-Verteilung mit folgender Definiti-
on:

Wir nehmen an, dass L(#) = f(z|0) eine Likelihood-Funktion basierend auf der Beob-
achtung X = x ist. Eine Klasse G von Verteilungen heif3t konjugiert beziiglich L(6), wenn
fir alle x die Posterior-Verteilung f(f|z) in G ist, wann immer die Prior-Verteilung f(6)
ebenfalls in G enthalten ist.(Held; 2008, Definition 5.5), (Held und Bové; 2014}, Definition
6.5)

Daraus ergibt sich, dass die Menge G = {alle Verteilungen} immer zu einer beliebigen
Likelihood-Funktion L(6) konjugiert. Da dieses Vorgehen in der Praxis wenig sinnvoll
ist, werden in der Regel kleinere Mengen G gesucht.(Held; 2008, Kapitel 5.2.1)

Um dieses Vorgehen genauer darzustellen, illustrieren wir es anhand einer Binomialver-
teilung. Sei X |7 ~ B(n, 7). Wenn wir nun die Beta-Verteilung fiir 7 als Priori-Verteilung
annehmen, ist m ~ Be(a, ) konjugiert beziiglich der Likelihood-Funktion L(7), da die
Posteriori-Verteilung ebenfalls wieder Beta-verteilt, 7|z ~ Be(a+x, 5+n—x), ist. Denn
fir a priori m ~ Be(a, 8) und «, 5 > 0 ist die Likelihood-Funktion

L(m) = f(x|m) = ( Z ) (1 —m)" " r=0,1,..,n



und fiir die Priori-Verteilung gilt

1
B(a, B)

Fiir die Dichtefunktion der Posteriori-Verteilung ergibt sich somit (vgl. Kapitel [2.2.2))

N1 — )P 0<m<l

f(m) =

f(r|z) o< L(mr) - f(m)
o (1 — )" o (1 — )P

— ﬂ_onra:fl(l . 7T),6’+nfzfl’

d.h. die Posteriori-Verteilung folgt der Beta-Verteilung, jedoch mit anderen Parametern:

m|lx ~ Be(a + x, 5 +n — x).(Held; 2008, Beispiel 5.1 & 5.3)

Uneigentliche und Nichtinformative Priori-Verteilungen

Wollen wir hingegen den Einfluss durch die Wahl der Priori-Verteilung minimieren,
miissen wir eine Verteilung mit sehr grofler Varianz wéhlen. Im Extremfall kann dies
dazu fithren, dass die gewihlte Priori-Verteilung nicht mehr integrierbar ist. In die-
sem Fall spricht man von einer uneigentlichen Priori-Verteilung. Doch solange die da-
zugehorige Posteriori-Verteilung integrierbar bleibt, ist die Verwendung von uneigentli-
chen Priori-Verteilungen durchaus moglich. (Held; 2008, Kapitel 5.2.2) Eine uneigentliche
Priori-Verteilung mit der Dichtefunktion f(#) > 0 ist gegeben, wenn

/f(@)dGzoo oder Zf(@):oo

0cO

fiir einen entsprechend stetigen oder diskreten Parameter 6 gilt.(Held und Bové; 2014,
Definition 6.6)

Mit der Absicht so wenig Hintergrundwissen wie moglich in die Wahl der Priori-Verteilung
f(0) einflieBen zu lassen, gibt es den naiven Ansatz, fiir den Parameter 0 eine stetige
Gleichverteilung anzunehmen. Dies ist die sogenannte nichtinformative Priori-Verteilung.
Es besteht jedoch die Moglichkeit, dass im Anschluss die zugehorige Dichtefunktion der
Priori-Verteilung f(6) nicht mehr integrierbar ist.(Held; 2008, Kapitel 5.2.3)



2.3 Kurze Konklusion beider Inferenzkonzepte

Zusammenfassend konnen wir sehen, dass beide Inferenzkonzepte zwar nicht auf die selbe
Art und Weise agieren, aber in manchen Punkten besteht doch ein Zusammenhang zwi-
schen beiden Konzepten. Wiahrend das zentrale Element der Likelihood-Inferenz sich in
der Law of Likelihood widerspiegelt, ist es aus bayesianischer Sicht das Bayes-Theorem.
Wie wir aber in Kapitel gesehen haben, spielt die Likelihood-Funktion in der Bayes-
Statistik ebenfalls eine Rolle.

Auch bei der Informationsgewinnung aus Daten unterscheidet sich die Vorgehensweise in
beiden Inferenzkonzepten. Aus bayesianischer Sicht beinhaltet die Posteriori-Verteilung
die gesamte Dateninformation iiber den Parameter 6, der aus dem Wahrscheinlichkeits-
modell hervorgeht, und dient somit in der Bayes-Statistik als Basis fiir die Dateninter-
pretation. Dagegen ist in der Likelihood-Inferenz das zentrale Element der Dateninter-
pretation die Likelihood-Funktion. Sie bildet die Leitlinie zur Interpretation der statis-
tischen Daten als Evidenz. Auflerdem gilt nach der Definition der Likelihood Principle,
dass alle Informationen {iber den Parameter ¢ in der Likelihood-Funktion fiir § enthal-
ten sind, sofern die Daten bereits bekannt sind. Zudem besagt die Likelihood Principle,
dass zwei Likelihood-Funktion von 6 die gleiche Information iiber € enthalten, wenn
sie proportional zueinander sind. Das bedeutet hier aber auch, dass der Effekt auf jede
Priori-Verteilung fiir 6 in beiden Fillen derselbe ist. (Royall; 2000, Kapitel 1.2).
Letzten Endes konnen wir also sagen, dass die Law of Likelihood mit dem Likelihood Ra-
tio ein Maf fiir die Evidenzstérke zwischen zwei Hypothesen bietet. Demgegeniiber gibt
es noch die Likelihood Principle, die die Konditionen, unter denen zwei Experimente die
selbe dquivalente statistische Evidenz erzielt, festlegt. Diese Bedingung ist erfiillt, wenn

und nur wenn beide Experimente die selbe Likelihood-Funktion erzeugen (vgl. Kapitel

2.1.3)).(Blume; 2011}, Kapitel 2)
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3 Evidential Frameworks

Da die Statistik in der Wissenschaft eine wichtige Rolle fiir die korrekte Interpretation
der Daten im Sinne einer wissenschaftlichen Evidenz spielt, gibt es ein breites Spek-
trum an statistischer Literatur, die sich mit diesem Thema beschéftigt. Aufgrund der
Komplexitiat dieses Themengebietes ist eine Vielfalt von Sichtweisen und Meinungen
diesbeziiglich entstanden. Bedingt durch diese Diversitiat fehlt uns ein allgemein an-
erkanntes Framework zur Charakterisierung und Bewertung von Paradigmen, welche
vorgeben, statistische Evidenz zu messen, d.h. uns fehlt, wie in Kapitel beschrie-
ben, ein konkretes Evidenzkonzept.(Blume} 2011, Kapitel 1)

Ein mogliches allgemeines Framework bietet uns der Ansatz von Blume. Er ermdoglicht
uns den Vergleich und die Beurteilung von statistischen Paradigmen, die behaupten, die
Stéarke der Evidenz in den Daten zu messen. Die Schliisselkomponenten fiir dieses Frame-
work setzen sich aus drei Groflien zusammen, die aus den drei bekannten Inferenzkonzep-
ten der Statistik, der frequentistischen, der bayesianischen und der Likelihood-Inferenz,
hervorgehen. Das Ziel besteht darin, eine kritischere Beurteilung der statistischen Evi-
denz zu ermoglichen. (Blume; 2011}, Kapitel 1)

Das Fehlen eines wohldefinierten Frameworks kann zu verschiedenen Kontroversen fiihren,
wie die ordnungsgeméfie Anwendung und Interpretation der p-Werte (vgl. Kapitel .
Auch die Bayes-Inferenz ist nicht frei von Ungewissheit. Hier soll sowohl die Posteriori-
Verteilung als auch der Bayes-Faktor ein Maf fiir die Evidenzstéirke in den Daten dar-
stellen. Daran lédsst sich erkennen, dass auch hier ein klares Evidenzkonzept fehlt und
es stellt sich uns die Frage, welches Mafi die Evidenzstédrke in den Daten besser re-
prasentiert. Im Laufe des Kapitels wird sich zeigen, dass die drei Schliisselkomponenten
einen wichtigen Beitrag zum Verstdndnis des Schemas zur Messung der statistischen
Evidenz leisten.(Blume; 2011, Kapitel 1 & 1.3)
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3.1 Drei GroBBen zur Evidenz

Die drei essentiellen Grofien zur Bewertung und Interpretation der Evidenz in den Daten

(im weiteren Verlauf EQEI genannt) setzen sich zusammen aus:
e EQ1: das Ma8 fiir die Stédrke der Evidenz

e EQ2: die Wahrscheinlichkeit, dass ein bestimmtes Studiendesign eine irrefithrende

Evidenz hervorbringt
e EQ3: die Wahrscheinlichkeit, dass die beobachtete Evidenz selbst irrefiihrend ist.

EQ2 informiert uns iiber den Sammelprozess der Daten, wihrend EQ1 und EQ3 uns
Informationen {iber die statistische Evaluation der Daten als wissenschaftliche Evidenz
geben. Alle drei Groflen sind daher in der Wissenschaft und in der Statistik unentbehr-
lich. Die zeitliche Reihenfolge, in der die EQs wéhrend einer wissenschaftlichen Forschung
bestimmt werden, ist: EQ2, EQ1 und EQ3, wobei EQ2 vor dem Sammelprozess der Da-
ten bereits bestimmt wird.(Blume; 2011}, Kapitel 1.1)

Jede einzelne Evidenzgrofle beinhaltet die Antwort auf eine kritische Frage. EQ1 beant-
wortet die Frage, wie stark die Evidenz fiir oder gegen eine Hypothese in den Daten ist.
EQ2 liefert uns Ergebnisse zur Wahrscheinlichkeit, mit der eine Studie Daten hervor-
bringen wird, die irrefiihrend sind. EQ3 wiederum zeigt die Wahrscheinlichkeit an, dass
die bereit beobachteten Daten irrefithrend sind. Daraus konnen wir schlieffen, dass EQ1
und EQ3 von den beobachteten Daten abhéngen und sich auf diese beziehen. EQ2 héngt
hingegen vom gewihltem Studiendesign ab und liefert keine Informationen zur Datenin-
terpretation, weil EQ2 bereits vor dem Sammelprozess der Daten bestimmt wird.(Blume;
2011, Kapitel 1.1)

Jedes einzelne Evidenzmaf bietet einzigartige Informationen beziiglich der Interpretation
(EQ1), des Sammelprozesses (EQ2) und der Zuverldssigkeit (EQ3) an. Ein wohldefinier-
tes evidential framework ist erst dann gegeben, wenn alle drei EQs eindeutig definiert
sind und klar voneinander unterschieden werden.(Blume; 2011} Kapitel 1.1)

In Kapitel wird anhand einer Analogie der Unterschied zwischen den Wahrschein-
lichkeiten EQ2 und EQ3 klarer beschrieben.

2 Abkiirzung aus dem englischem evidential quantity
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3.2 Analogie zum Unterschied zwischen EQ2 und EQ3

Sowohl EQ2 als auch EQ3 stellen jeweils eine Wahrscheinlichkeit dar. Das kann zu einer
Verwechslung der beiden Groflen fithren. Doch die genaue Unterscheidung der beiden
EQs ist erforderlich, da jede fiir sich eine ausschlaggebende Information iiber die sta-
tistische Evidenz enthélt. Wir wissen aus Kapitel [3.1], dass EQ2 bereits vor dem Sam-
melprozess bestimmt wird. EQ2 charakterisiert also die Wahrscheinlichkeit, dass das
gewéhlte Studiendesign ein irrefithrendes Ergebnis erzielen wird. Doch sobald ein Da-
tensatz zusammengetragen wurde, verliert EQ2 ihre Bedeutung, denn die beobachteten
Daten sind entweder irrefithrend beziiglich der Evidenz oder nicht. Unser Hauptinter-
esse gilt nun der Wahrscheinlichkeit, dass die gerade gesammelten Daten irrefithrend
sind. Genau diese Wahrscheinlichkeit wird im evidential framework als EQ3 bezeichnet.
Daraus geht hervor, dass EQ3 die Wahrscheinlichkeit, mit der ein bereits beobachtetes
Ergebnis irrefithrend ist, beschreibt.(Blume; 2011, Kapitel 1.2)

Mithilfe eines simplen Beispiels soll der genaue Unterschied beider Evidenzgrofien illus-
triert werden. Max und Moritz nehmen an einer Lotterie teil. Die Regeln lauten wie folgt:
Es gibt 59 weifle und 39 rote Kugeln, wobei die Weiflen von 1 bis 59 und die Roten von
1 bis 39 durchnummeriert sind. Um den Hauptgewinn zu erhalten, miissen fiinf richtige
weile Kugeln und eine richtige rote Kugel ohne Zuriicklegen gezogen werden, wobei die
Reihenfolge bei den weilen Kugeln irrelevant ist. Daraus ergibt sich eine Gewinnchance
von 1 zu 195,249,054.(Blume; 2011}, Kapitel 1.2)

Max kauft sich ein Lotterielos und Moritz zehn. Jedoch ist ein Los aus diesen zehn iden-
tisch mit dem von Max, d.h. falls Max gewinnen sollte, gewinnt Moritz ebenfalls. Da
Moritz aber mit seinen neun anderen Losen ebenso gewinnen konnte, hat er eine zehnmal
so hohe Wahrscheinlichkeit auf den Hauptgewinn. Aufgrund der unterschiedlichen Spiel-
strategien, haben beide unterschiedliche Gewinnwahrscheinlichkeiten und genau diese
Wahrscheinlichkeit auf den Hauptgewinn entspricht EQ2, d.h. die Wahrscheinlichkeit
mit den gewihlten Lotterielosen zu gewinnen. Dabei stellt das Gewinnen der Lotterie
die irrefithrende Evidenz dar und die Lotterielose das gewéhlte Studiendesign.(Blume;
2011, Kapitel 1.2)

Am Tag nach der Auslosung schauen beide in die Zeitung, um die Gewinnnummern zu
erfahren. Ungliicklicherweise ist die Nummer der roten Kugel verschmiert, sodass diese
nicht mehr zu erkennen ist. Doch die verbliebenen Nummern der weilen Kugeln stim-
men alle mit Max’ Lotterielos iiberein. Weil Moritz ein Los besitzt, dass identisch ist mit

dem vom Max, haben beide zum jetzigen Zeitpunkt dieselbe Gewinnwahrscheinlichkeit
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von 2.5%. Diese neue Wahrscheinlichkeit auf den Hauptgewinn entspricht EQ3, welche
die Wahrscheinlichkeit zu Gewinnen darstellt, nachdem alle Kugeln bis auf die Rote
iibereinstimmen. Die Tatsache, dass Moritz zuvor zehn Lotterielose gekauft und somit
eine zehnmal so hohe Gewinnwahrscheinlichkeit gegeniiber Max hatte, ist zum jetzigen
Zeitpunkt komplett irrelevant geworden. Das zeigt, wie bereits erwahnt, den Verlust der
Relevanz von EQ2 nach der Datenerhebung.(Blume; 2011, Kapitel 1.2)

3.3 Ansatz auf Basis der Likelihood-Inferenz

Der Ansatz dieses Frameworks basiert auf der Law of Likelihood, d.h. die Daten un-
terstiitzen eher die Hypothese, die die beobachteten Ereignisse besser vorhersagt, und
die Likelihood Ratio misst dabei den Grad, in dem eine Hypothese besser unterstiitzt
wird als die andere (vgl. Kapitel 2.1.2)). Dabei ist die Likelihood Ratio niemals nega-
tiv.(Blume; 2011} Kapitel 2)

3.3.1 MaB zur Evidenzstarke: Likelihood Ratio

Aus Kapitel wissen wir, dass EQ1 ein Maf fiir die Evidenzstérke in unserem Frame-
work ist und die Law of Likelithood bietet uns mit dem Likelihood Ratio eine konkrete
GroBe dazu an (vgl. Kapitel 2.1.2)). Nun fehlt noch die Erkenntnis, wie wir einen kon-
kreten Likelihood Ratio-Wert interpretieren konnen.

Wir nehmen an, dass die Beobachtungen Xj, ..., X,, unabhéngig und entsprechend ei-
ner Dichte f(X;|0) identisch verteilt sind. Zudem gibt es zum einen die Nullhypothese
Hy : 0 = 0y und zum anderen die Alternativhypothese H; : 6 = ;. Daraus ergibt sich,
dass die Likelihood Ratio LR = £ die Evidenzstirke fiir H, gegeniiber H, misst.

Ln(00)
Fiir eine beobachtete Likelihood Ratio wird zwischen drei Bereichen unterschieden:

e LR € [O, %] weist Evidenz fiir Hy iiber H; auf
e LR € (3, k): schwache Evidenz fiir beide Hypothesen
e LR € [k,00): weist Evidenz fiir H; iiber H, auf

Konventionell wird k£ = 8 oder 32 gesetzt. Eine LR = 8 in den Beobachtungen deutet auf
eine ,,ziemlich starke“ Evidenz hin und bei LR = 32 sprechen wir im Allgemeinen von
einer ,starken“ Evidenz. Je nach dem, ob wir eine ,,geméfligte* oder eine ,,harte Grenze
setzen wollen, wir das entsprechende k gewihlt.(Blume; 2011}, Kapitel 2.3), (Royall; 2000,
Kapitel 1.3)
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3.3.2 lllustration der drei EvidenzgroBen

Mithilfe eines Beispiels angelehnt an dem bekannten Diagnosetestbeispiel von Royall
(vgl. Royall; |1997, Kapitel 1.2) werden im Folgenden die drei Evidenzgrofien beschrie-
ben. Nehmen wir an, die Krankheit Diabetes mellitus einer werdenden Mutter sei im
Krankenhaus ein potentieller Faktor fiir die Schnittentbindung. Um zu erkennen, ob ei-
ne zukiinftige Mutter Diabetikerin ist, werden Blutuntersuchungen durchgefiihrt. Das

Bluttestergebnis dient in diesem Beispiel als Evidenz fiir eine Diabetes mellitus. Die

Bluttestergebnis (B)
Positiv (+) | Negativ (-)
Ja (1) 0.94 0.06
Nein (1) | 0.02 0.08

Diabetes mellitus (D)

Tabelle 3.1: Wahrscheinlichkeiten der Blutuntersuchung beziiglich einer Diabetes melli-
tus Erkrankung

Wahrscheinlichkeiten in unserem Krankenhausbeispiel mit fiktiven Zahlen sind in der
Tabelle aufgefiihrt. Daraus erkennen wir, dass in unserem Beispiel die Sensitivitit
0.94 = P(B + |D+) und die Spezifitaf] 0.98 = P(B — |D—) ist. Legen wir nun die
Hypothesen fest. H, bedeutet, dass die Mutter Diabetikerin ist, und H_ bedeutet wie-
derum, dass dies nicht der Fall ist. Bei einem positiven Bluttestergebnisses haben wir

eine Likelihood Ratio von

_P(B+|D+) 094

LR = = =47
P(B+|D—) 0.02
und bei einem Negativen betréigt die Likelihood Ratio
P(B—|D—- :
LR = ( | >—098:16.3.

P(B—|D+)  0.06

Mit Hilfe der Bereichsiibergénge aus Kapitel konnen die Likelihood Ratios nun
genauer interpretieren werden. Fiir k = 8 stellen wir bei einem positiven Untersuchungs-
ergebnis fest, dass hier mit LR = 47 eine starke Evidenz fiir H, gegeniiber H_ vorliegt.
Im Falle eines negativem Ergebnisses wird mit LR = 16.3 von einer starken Evidenz

fiir H_ gegeniiber H, gesprochen. Daraus erschliefit sich, dass die Likelihood Ratio den

3Richtig-Positiv-Rate: Fihigkeit zu erkennen, ob Miitter mit einem positivem Blutuntersuchungser-
gebnis tatsdchlich Diabetes mellitus haben

4Richtig-Negativ-Rate: Fahigkeit zu erkennen, ob Miitter mit einem negativem Blutuntersuchungser-
gebnis tatsdchlich kein Diabetes mellitus haben
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Grad misst, an dem die Daten eine Hypothese {iber eine andere unterstiitzt und somit
entspricht die Likelihood Ratio dem Maffi EQ1.(Blume; 2011, Kapitel 2.1)

Gleichwohl besteht die Moglichkeit, dass dieser Bluttest eine irrefithrende Evidenz ge-
neriert. FEin positives Untersuchungsergebnis wird korrekterweise als Evidenz fiir H,
gegeniiber H_ interpretiert, doch in 2% der Fiélle tritt ein positives Testergebnis auch
auf, obwohl die getestete Mutter keine Diabetikerin ist. Sofern dieses Szenario auftritt,
hat die Blutuntersuchung eine irrefithrende Evidenz erzeugt. Auch ein negatives Ergebnis
fithrt in unserem Beispiel in 6% der Félle zu einer fehlgeleiteten Evidenz. Diese beiden
Wahrscheinlichkeitswerte entsprechen der zweiten Evidenzgrofie (EQ2). Sie sind analog
zu den Fehlerraten im Hypothesentest und bilden wichtige Kennwerte fiir die Qualitét
der Blutuntersuchung und fiir den Sammelprozess der Daten. Ein guter Bluttest zeichnet
sich durch die Maximierung von Sensitivitdt und Spezifitdt aus, was hier gleichbedeutend
ist mit der Minimierung von EQ2. Durch das Verringern von EQ2 wird das Potential,
ein irrefithrendes Bluttestergebnis zu beobachten, minimiert.(Blume; 2011, Kapitel 2.1)
Obwohl wir durch die Likelihood Ratio (EQ1) wissen, wie stark die Evidenz in den Daten
ist, konnen wir dennoch keine sichere Aussage treffen, ob ein beobachtetes Testergeb-
nis irrefiihrend ist oder nicht. Allerdings besteht die Moglichkeit herauszufinden, ob ein
beobachtetes Testergebnis dazu neigt, in die Irre zu fithren. Voraussetzung dafiir ist die
Bereitschaft, eine bestimmte Annahme iiber die Priori Wahrscheinlichkeit der Hypothe-
sen zu treffen. Zusammenfassend kénnen wir fiir unser Beispiel sagen, dass ein positives
Ergebnis der Blutuntersuchung irrefiithrend ist, wenn und nur wenn die getestete Mutter
nicht unter der Krankheit Diabetes mellitus leidet. Dabei ist P(D—|B+) die Wahrschein-
lichkeit dafiir, dass die werdende Mutter keine Diabetikerin ist. Aus Kapitel wissen
wir, dass die Wahrscheinlichkeit P(D —|B+) allgemein als Posteriori-Wahrscheinlichkeit
bekannt ist.(Blume; 2011, Kapitel 2.1)

Damit die Berechnung dieser Posteriori-Wahrscheinlichkeit mit Hilfe des Bayes-Theorems
(s. Kapitel moglich ist, miissen zuvor die Priori-Wahrscheinlichkeiten festgelegt
werden. Sei in unserem Beispiel 7, = P(H,) (die Wahrscheinlichkeit, mit der die Pati-
entin unter Diabetes mellitus leidet) und 7_ = P(H_) (die Wahrscheinlichkeit, dass die
Patientin nicht unter Diabetes mellitus leidet) unsere Priori-Wahrscheinlichkeiten sind.
Wir wissen jedoch aus Kapitel [2.2.3] dass es verschiedene Wege gibt, um die Priori-
Wahrscheinlichkeit zu bestimmen. Jedoch miissen wir in unserem Krankenhausbeispiel
nicht die komplexen Methoden fiir die Priori-Wahrscheinlichkeiten nutzen, weil es sich
hier um eine binédre Aussage handelt. Ferner ist unser Beispiel angelehnt an dem Dia-

gnosetestbeispiel von Royall (vgl. [Royall; (1997, Kapitel 1.2), weshalb wir auch in unse-
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rem Szenario von einem Spezialfall sprechen kénnen, da es hier bereits eine allgemeine
Ubereinstimmung beziiglich der Priori-Wahrscheinlichkeit gibt. Sofern es angemessen ist
anzunehmen, dass die getestete Mutter zufillig aus einer Population gezogen wurde, bil-
det die Krankheitspriavalenz bzw. in unserem Beispiel die Diabetes mellitus Préavalenz
die Priori-Wahrscheinlichkeit.(Blume; 2011, Kapitel 2.1)

Sei unsere Prévalenz fiir Diabetes mellitus 7, = 0.015. Der komplementire Wert dazu
ist demnach 7_ = 1 — 7, = 0.985. Daraus ergibt sich die Wahrscheinlichkeit, mit der

die werdende Mutter trotz positivem Bluttestergebnis kein Diabetes mellitus hat, durch

0 P(B+|D-)- P(D— R
P(D—|pp) B PBAIDZ)-PD=) () g T R=a7 e
P(B+) _

und analog dazu die Wahrscheinlichkeit, dass eine werdende Mutter trotz negativem

Bluttestergebnis Diabetes mellitus hat, durch

P+ @ PEZ VIO

—1
T LR =16.3
1+LR.- — = 0.0009.
P(B-) " )

T+

Diese beiden Posteriori-Wahrscheinlichkeiten entsprechen der dritten Evidenzgroie (EQ3).
Anhand der EQ3 Werte kénnen wir sehen, dass ein positives Untersuchungsergebnis
nicht so sicher ist wie ein Negatives. Tatséchlich fithrt in unserer Beispielpopulation
ein beobachtetes positives Bluttestergebnis in mehr als der Halfte der Félle in die Irre.
Es ist hier aber nicht falsch, das positive Testergebnis als Evidenz fiir die Préasens von
Diabetes mellitus zu interpretieren. Es bedeutet lediglich, dass unsere Evidenzstérke in
den Daten nicht stark genug ist, um unser Vorwissen iiber die Présenz von Diabetes
mellitus, also die Priori Wahrscheinlichkeiten, aufzuwiegen. P(D — |B+) = 0.583 be-
deutet keineswegs, dass ein positives Bluttestergebnis eine Abwesenheit der Diabetes
mellitus beweist. Interessant ist die Wahrscheinlichkeit fiir eine Diabetes mellitus Er-
krankung vor der Blutuntersuchung, die bei 1.5% = 7, liegt. Sobald aber ein positives
Untersuchungsergebnis erzielt wurde, steigt diese Wahrscheinlichkeit auf P(D + |B+) =
1 — P(D — |B+) = 41.7%. Der Grund fiir diese extreme Steigerung liegt in der grofen
Likelihood Ratio (LR = 47).(Blume; 2011}, Kapitel 2.1)

Zusammenfassend konnen wir fiir EQ3 sagen, die Evidenzgréfie hangt vom Kontext ab,
da sie auf der Priori-Wahrscheinlichkeit aufbaut. Zudem kann auch eine starke Evidenz
fehlgeleitet sein, aber in der Regel ist eine gréfere Likelihood Ratio ein eher sicheres An-
zeichen dafiir, dass eine bereits beobachtete Evidenz weniger wahrscheinlich in die Irre

fithrt. Je starker also die Evidenz ist, desto unwahrscheinlicher ist das Potential einer
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Irrefithrung. Deswegen haben EQ1 und EQ3 eine inverse Beziehung zueinander.(Blume;
2011, Kapitel 2.1)

3.4 Problematik beim Fehlen eines wohldefinierten

Frameworks

Wie bereits in Kapitel [3]erwéhnt, kann das Fehlen eines wohldefinierten evidential frame-
works zu verschiedenen Auseinandersetzungen kommen, wenn es um die Interpretation
der Evidenz geht. Im Folgenden werden bestimmte statistische Situationen beschrieben,

in denen diese Problematiken beziiglich der Evidenz auftreten.

3.4.1 Problematik im frequentistischem Inferenzkonzept

Zu den wichtigsten Werkzeugen der klassischen Inferenz gehoren zum einen der Hypothe-
sentest und zum anderen der Signifikanztest. Wahrend der statistischen Untersuchung
eines Experimentes werden typischerweise beide Testmethoden durchgefiihrt, wobei der
Hypothesentest das Studiendesign festlegt und im Signifikanztest die Analyse stattfin-
det. Da aber diese Kombination von Testmethoden nicht wohldurchdacht ist, entsteht
Verwirrung bei der sogenannten tail area Wahrscheinlichkeit?] Wihrend im Hypothesen-
test die tail area Wahrscheinlichkeit die zweite EvidenzgroBe (EQ2) als Fehler erster Art
verkorpert, soll sie im Signifikanztest jedoch die Stérke der Evidenz (EQ1) messen. Fer-
ner existiert im Signifikanztest kein EQ2 und im Hypothesentest lidsst sich keine Grofie
finden, die die Evidenzstéirke (EQ1) misst. Dies kann félschlicherweise zu der Annahme
fithren, es ware verniinftig, beide Evidenzgroflen zusammenzufassen. Doch in der Wis-
senschaft ist es immer ratsam, alle drei Evidenzgréfien auszumachen und voneinander
abzugrenzen, denn jede einzelne Gréfle birgt eine Information, die fiir den wissenschaft-
lichen Prozess unerlésslich ist.(Blume; 2011, Kapitel 2.2)

Um diese Problematik genauer zu illustrieren, iiberlegen wir uns einen passenden Hypo-
thesen- und Signifikanztest basierend auf dem Beispiel aus Kapitel [3.3.2] Fiir den Hypo-
thesentest werden zunéchst die Hypothesen formuliert. Die Nullhypothese Hj ist hier,
dass die Patientin nicht unter Diabetes mellitus leidet, und die Alternativhypothese H;
steht fiir eine Diabetes mellitus Erkrankung der Patientin. Sofern ein positives Blut-

untersuchungsergebnis beobachtet wird, kann die Nullhypothese abgelehnt werden und

5Die tail area Wahrscheinlichkeit ist ein wahrscheinlichkeitstheoretischer Begriff, der die Kernberech-
nung beim p-Wert und beim Fehler erster Art reprisentiert
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analog dazu die Nullhypothese nicht abgelehnt werden, wenn ein negatives Untersu-
chungsergebnis auftritt. Dabei soll der Fehler erster Art bei 2% und der Fehler zweiter
Art bei 6% liegen. Im Allgemeinen geht man hier von einem guten Test aus, da der
Fehler erster Art kleiner ist als die konventionelle Grenze von 5%. Problematisch wird
es erst, wenn wir versuchen, die resultierenden Testergebnisse als statistische Evidenz
zu interpretieren. Falls wir die Nullhypothese nicht ablehnen kénnen, impliziert dies kei-
neswegs eine Evidenz fiir die Nullhypothese. Ferner kann ein negatives Ergebnis, wie
beispielsweise das Scheitern der Ablehnung einer Nullhypothese, niemals als Evidenz
fiir das Fehlen der Diabetes mellitus Erkrankung interpretiert werden. Das Fehlen einer
Evidenz bedeutet ndmlich nicht, dass es eine Evidenz fiir das Fehlen ist. Sollte es nicht
moglich sein, die Nullhypothese abzulehnen, wird das Testergebnis stattdessen als statis-
tisch ergebnislos interpretiert. Auflerdem kénnen wir unter diesen Umstédnden nirgendwo
die Stérke der Evidenz wiedergeben, d.h. EQ1 existiert hier nicht. Die einzige Erkennt-
nis, die wir hieraus ziehen kénnen, ist die Entscheidung, ob wir anhand der Fehlerrate
aus unserer Entscheidungsregel die Nullhypothese ablehnen kénnen oder nicht.(Blume;
2011, Kapitel 2.2)

Diese Information allein ist jedoch aus wissenschaftlichem Standpunkt heraus unzurei-
chend, besonders wenn wir eine konkrete Evidenzstidrke zu der Hypothese wollen, die
uns interessiert. Um dies zu ermoglichen, wird am Ende einer Studie ein Signifikanz-
test durchgefiihrt. Dieser Test beinhaltet die Berechnung der p-Werte, die wir als Maf3
fiir die Evidenzstérke gegen die Nullhypothese verwenden. In unserem Beispiel liegt der
p-Wert bei 2%, was hinsichtlich des konventionellen Maflstabs von 5% als eine starke
Evidenz gegen die Nullhypothese betrachtet wird, da unser p-Wert kleiner ist als 5%.
Auch hier sehen wir, dass es nicht moglich ist, eine Evidenz zugunsten der Nullhypothese
zu bekommen. Grofle p-Werte konnen namlich nicht als Evidenz fiir die Nullhypothese
interpretiert werden, sondern sie deuten darauf hin, dass ein Ergebnis nicht beweiskréftig
ist. Daraus ergibt sich die Erkenntnis, dass im Signifikanztest zwar mit dem p-Wert ein
EQ1 vorhanden ist, aber es kénnen weder EQ2 noch EQ3 bestimmt werden.(Blume;
2011, Kapitel 2.2)

3.4.2 Problematik im bayesianischem Inferenzkonzept

Im bayesianischem Ansatz liegt der Mittelpunkt bei der Evidenz vor allem auf der
Posteriori-Wahrscheinlichkeit. Nehmen wir wieder das Beispiel aus Kapitel dann
liegt die Posteriori Wahrscheinlichkeit fiir Diabetes mellitus nach einem positiven Blut-
testergebnis bei P(D + |B+) = 0.417. Sofern diese Wahrscheinlichkeit als Maf fiir die
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Evidenzstarke (EQ1) dienen soll, bleibt unklar, wie dieses positive Bluttestergebnis zu
interpretieren ist. Denn hier liegt die Situation vor, dass es nach der Beobachtung eines
positiven Bluttestergebnisses wahrscheinlicher ist, kein Diabetes mellitus zu haben, da
P(D + |B+) = 41.7% < 50%.(Blume; [2011}, Kapitel 2.2)

Sollte also ein positives Blutuntersuchungsergebnis als Evidenz fiir das Fehlen der Dia-
betes mellitus Erkrankung betrachtet werden? Falls ja, kann die Blutuntersuchung nie-
mals eine statistische Evidenz fiir die Présenz einer Diabetes mellitus erzeugen, da die
Posteriori-Wahrscheinlichkeit fiir eine Diabtis mellitus Erkrankrung nach einem nega-
tivem Bluttestergebnis mit P(D + |[B—) = 0.0009 sehr klein ist. Falls nicht, basierend
auf welchem Mafistab und Kontext sollen wir dann unsere Posteriori Wahrscheinlich-
keit interpretieren? Es ist also notig, EQ1 genau zu definieren. Auflerdem bleibt im
bayesianischem Konzept unklar, ob es sinnvoll ist, EQ2 in Abhéngigkeit von der Priori
Wahrscheinlichkeit zu definieren. Also kénnen wir auch hier sagen, dass das Fehlen ei-
nes evidential frameworks zu keiner klaren Aussage beziiglich der Evidenz fiihrt.(Blume;
2011, Kapitel 2.2)
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4 Analyse von Einflussfaktoren auf die
Sectiorate anhand eines evidential

frameworks

Nachdem die Grundidee eines evidential frameworks in der Theorie beschrieben wur-
de, wenden wir dieses Konzept nun auf einen Datensatz aus dem medizinischen Bereich
an. Dieser Datensatz wurde von Herrn Dr. Martin Daumer vom ,,Sylvia Lawry Centre
for Multiple Sclerosis Research e.V.“ bereitgestellt. Bevor wir zu der Anwendung kom-
men, werden zunéchst der Datensatz und das verwendete Regressionsmodell genauer
betrachtet.

4.1 Datensatz

Um herauszufinden, inwiefern verschiedene Faktoren die Sectiorate in den deutschen
Krankenh&usern beeinflussen, wurde mittels Crowdsourcing iiber das Internet eine offene
Umfrage durchgefiihrt, die mehrere kategoriale Fragen iiber die gegebenen Bedingungen
und Richtlinien im gynékologischen Bereich der jeweiligen Kliniken beinhalten.

Der Grund fiir das Interesse an diesem Thema ist die rasant gestiegene Rate an Kai-
serschnitt Operationen in Deutschland, die 2010 bei 31.9% lag und somit innerhalb ei-
nes Jahrzehnts um zehn Prozentpunkte zugenommen hat. Damit unnotige Kaiserschnitt
Operationen zukiinftig vermieden werden, besteht die Nachfrage, herauszufinden, welche
Faktoren den Anstieg der Sectiorate beeinflussen. Obwohl die Risiken einer Sectio fiir
Mutter und Kind deutlich gesunken sind, wére ein Anstieg an medizinisch unnétigen Kai-
serschnitt Operationen dennoch nicht erstrebenswert. Problematisch ist hierbei nicht nur
das allgemeine Risiko eines operativen Eingriffs, es existieren auch Hinweise auf mogliche
langfristige gesundheitliche Folgen fiir das Kind (z.B. hoheres Risiko auf Diabetes Typ 1,
Asthma und Ubergewicht) oder mogliche psychische Folgen fiir Mutter und Kind. (Kolip
et al.f 2012, Kapitel 1 & 2.1)
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In der Abbildung sehen wir einen Auszug des Fragebogens aus der offenen Umfra-

5. In welchem Bereich wird in lhrer Klinik die Baseline als normal angesehen? *
Mark only one oval

6. Halten Sie in lhrer Klinik die Differenzierung zwischen den oben genannten
unterschiedlichen Normbereichen fiir sinnvoll? *
Mark on /

120-160 bmp
110-160 bmp
110-150 bmp
115-160 bpm
Andere

one oval

Ja

Nein

Abbildung 4.1: Auszug aus dem Fragebogen

ge, der an die ,,Deutsche Gesellschaft fiir Gynékologie und Geburtshilfe e.V.“ gerichtet

wurde, wobei Krankenh&user die Zielgruppe sind. Mithilfe dieser Umfrage wurde ein

Datensatz mit einem Stichprobenumfang von 97 generiert.

Die Variablen, auf die wir uns im Laufe dieses Kapitels bei der Anwendung des evidential

frameworks beziehen werden, sind in Tabelle aufgelistet. Da wir die verschiedenen

Variable

|

Erklarung

Sectio

Primére und sekundére Sectiorate in der Klinik
7 Kategorien: <20%, 21-25%, 26-30%, 31-35%, 36-40%,
41-45%, >45%

Entbindung_Jahr

Anzahl der Entbindungen in der Klinik im Jahr 2014

5 Kategorien: <500 Geburten/Jahr, 500-1000 Geburten/Jahr,
1001-1500 Geburten/Jahr, 1501-2000 Geburten/Jahr,

> 2001 Geburten/Jahr

Software Hersteller der Zentraliiberwachungssoftware
4 Kategorien: Andere, Nexus, Philips, Trium

Baseline Klinik-intern festgelegter Normalbereich fiir die Baseline
5 Kategorien: 110-150 bmp, 110-160 bmp, 115-160 bmp,
120-160 bmp, Andere

DiffBase Differenzierung von Normbereichen fiir die Baseline sinnvoll?

(aus Sicht der Klinik)
bindr: Ja, Nein

Tabelle 4.1: Variablenliste
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Einfliisse auf die Sectiorateﬁﬂ herausfinden mochten, ist unsere Zielvariable ,,Sectio®“. In
der Abbildung sechen wir, wie sich die 97 Krankenhduser aus der Umfrage auf die
Kategorien der Zielvariable verteilen.

Es zeigt sich, dass die Kategorien ,,41-45%" und ,,>45%" mit je zwei Krankenh&usern

Primadre und Sekundére Sectiorate

0.4

0.3
1

Relativer Anteil der Krankenhauser
0.1 0.2
|

[

<20%  21-25% 26-30% 31-35% 36-40% 41-45%  >45%

0.0
L

Sectiorate

Abbildung 4.2: Relative Haufigkeiten der Zielvariable , Sectio®

vergleichsweise unterreprésentiert sind, weshalb hier beide Kategorien mit der Katego-
rie ,,36-40% zusammengefasst werden. Daraus ergibt sich die neue Kategorie ,,>35%".

Durch diese Verkniipfung in eine gemeinsame Kategorie verhindern wir mogliche Kompli-
kationen bei der spéteren Modellierung, da unterreprisentierte Kategorien wahrschein-
licher einen nicht repriasentativen Effekt erzielen kénnen.

In Abbildung sehen wir einen deskriptiven Uberblick unserer Kovariablen. Um auch
bei den Kovariablen das Problem mit unterreprisentierten Kategorien zu vermeiden,
wurden bei der Kovariable ,,Baseline“ die Kategorien ,,115-160 bmp* und ,,120-160 bmp*
in die Kategorie ,,Andere“ aufgenommen. Somit ergibt sich eine neue Konstellation der
Kategorien einiger Variablen, die wir in Tabelle sehen koénnen.

Bevor diese Zusammenfassung der Kategorien durchgefiithrt wird, stellt sich die Frage,
ob gerade ein Krankenhaus, das eine Differenzierung von Baseline-Normbereichen fiir
redundant hélt, bei der Kovariable ,,Baseline“ in die Kategorie ,Andere* fallt. Aus dem
Mosaikplot aus Abbildung konnen wir jedoch erkennen, dass Krankenhduser, die

6Primire Sectio: Kaiserschnitt Operation wird vor dem Einsetzen der Wehen und bei intakter Frucht-
blase durchgefiihrt.(Kolip et al.; 2012, Kapitel 3.2)

"Sekundire Sectio: Kaiserschnitt Operation wird aufgrund einer Notfallsituation oder wegen der
miitterlichen oder kindlichen Indikation (z.B. Geburtsstillstand) durchgefiihrt.(Kolip et al.; 2012,
Kapitel 3.2)
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Anzahl der Entbindungen im Jahr 2014 Software zur Zentrallberwachung Festgelegter Normalbereich der Baseline

B
=1

03
]
0.4
]

0.6

0.3
|

0.2
1

04 05

0.3

01

0.1
0.2

Relativer Anteil der Krankenhauser
Relativer Anteil der Krankenhauser
0.2
1
Relativer Anteil der Krankenhiuser

0.1

0.0
L

, —4 —
=500 501- 1001-  1500-  =2000 110- 110- 115 120-  Andere
1000 1500 2000 Trium Fhilips Nexus Andere 150 160 160 160

absolute Anzahl der Geburten pra Jahr Softwarehersteller Baseline-Bereich in bmp

Abbildung 4.3: Relative Haufigkeiten der Kovariablen
links: ,,Entbindung_Jahr*, mitte: ,,Software“, rechts: ,,Baseline*

eine Differenzierung als nicht sinnvoll erachten, meistens einen geregelten Normbereich
fiir die Baseline haben. So sind etwa 39.4% der Kliniken, die einen Normbereich fiir
die Baseline von 110-160bmp festgelegt haben, diejenigen, die eine Differenzierung fiir
redundant halten. Von allen befragten Kliniken, die einen reglementierten Normbereich
von 120-160bmp haben, sind es sogar 72.7%, die eine Differenzierung des Normbereichs

als nicht sinnvoll erachten.

4.2 Proportional Odds Model

Das Modell der proportionalen kumulativen Chancen oder auch proportional odds model
(s. [Fahrmeir, Kneib und Lang (2007)), Kapitel 5.3 & Harrell (2015), Kapitel 13.3) ist
das ordinal logistische Modell, welches am h#ufigsten angewendet wird. Die Anwendung
dieses Modells ist dann geeignet, wenn die abhéngige Variable ordinalskaliert ist, d.h.
wenn sie Werte in geordneten Kategorien annimmt. Wir nehmen an, dass in diesem
Modell hinter den beobachteten Kategorien eine latente unbeobachtbare Variable U

steht, die zur Kovariablenvektor x; durch
U= -2+ ¢, i=1,..,n

bestimmt ist, wobei § einen Parametervektor, n die Anzahl der Beobachtungen und ¢;
eine Storvariable mit Verteilungsfunktion F' darstellt. Der Zusammenhang zwischen der

latenten Variable U und der Beobachtung Y sei bestimmt durch das Schwellenwertkon-
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Festgelegter Normalbereich der Baseline
~ |st die Differenzierung in Normalbereiche sinnvoll

Ja

Nein

Differenzierung sinnvoll

110-150
110-160
115-160 I

g ¢
s 2
[=] c
T
«

Baselinebereich in bmp

Abbildung 4.4: Zusammenhang zwischen den Kovariablen ,, Baseline“ und ,,DiffBase*

zept
Y=r=a_<U<a, r=1,..,q,

wobeli —00 = ap < a1 < ... < a. = oo die Schwellwerte sind, die auf dem latenten
Kontinuum liegen. (Fahrmeir, Kneib und Lang; 2007, Kapitel 5.3)

Daraus ergibt sich das kumulative Modell mit der Verteilungsfunktion F durch

P(Y; <rlx;) = P(U; < o) = Fa, + 23), r=1,..c

Wir sehen, dass wir nun ein Regressionsmodell mit den Regressoren z;, den Parametern
aq, ..., und [ haben, wobei die latente Variable im Modell nicht mehr enthalten ist.

Daraus ergeben sich auch die Wahrscheinlichkeiten

P(Y; = 1|z)

P(Y; < ;) = F(ay + i),
P(Y; < rlr) — PO < 7~ 1]1)
F(a, + 2.8) — F(a,_1 + 2.8), r=2..4.

3
=
[

7“|l’7:)
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Um das proportional odds model bzw. das kumulative Logit-Modell zu erhalten, nehmen

wir fiir F' die logistische Verteilungsfunktion an, wodurch wir

exp(a, + 21)
P(Y; <rlx;) = :
(Y < rlz) 1+ exp(ay, + x}5)

oder dquivalent dazu

PY, < )
ln( (Y; < rlx;)

= logit(P(Y; < r|z;)) = !

erhalten. Der Name des kumulativen Logit-Modells leitet sich von der Eigenschaft der
proportional iiber alle Kategorien hinweg bestehenden kumulierten Chancen im Modell
ab. Dies zeigt sich beim Verhéltnis der kumulativen Chancen beziiglich zweier Subpo-

pulationen x; und z;:

P < rla)/P(Yi > rlz:) _ explar + 23f)

B(Y; < ) /P > 11 eaplar+ i)~ <P = 2P)

Es zeigt sich nédmlich, dass dieses Verhéltnis nicht mehr von der Kategorie r» abhéngig
ist.(Fahrmeir, Kneib und Langj; 2007, Kapitel 5.3)

Variable ‘ Erklarung

Sectio Primére und sekundére Sectiorate in der Klinik

5 Kategorien: <20%, 21-25%, 26-30%, 31-35%, >35%
Entbindung_Jahr | Anzahl der Entbindungen in der Klinik im Jahr 2014

5 Kategorien: <500 Geburten/Jahr, 500-1000 Geburten/Jahr,
1001-1500 Geburten/Jahr, 1501-2000 Geburten/Jahr,

> 2001 Geburten/Jahr

Software Hersteller der Zentraliiberwachungssoftware
4 Kategorien: Andere, Nexus, Philips, Trium
Baseline Klinik-intern festgelegter Normalbereich fiir die Baseline
3 Kategorien: 110-150 bmp, 110-160 bmp, Andere
DiffBase Differenzierung von Normbereichen fiir die Baseline sinnvoll?

(aus Sicht der Klinik)

bindr: Ja, Nein

Tabelle 4.2: Variablenliste mit den angepassten Kategorien
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4.3 Anwendung des evidential frameworks

Bevor wir die einzelnen Evidenzgrofien (EQs) bestimmen konnen, stellen wir unser un-
restringiertes proportional odds model (vgl. Kapitel auf. Wenn wir die Variablen aus
der Tabelle verwenden und ,,Sectio* als Zielvariable festlegen, erhalten wir folgendes
Modell:

lOth(P(Y S T|Iz)) = Q5 + BEntbindung,Jahr + BSoftware + ﬁBaseline + BDiffBase (41)

mit » = 1,...,4. Die Indizes von [ sind so zu verstehen, dass sie jeweils fiir eine Kate-
gorie aus der jeweiligen Kovariable stehen (s. Tabelle , wobei die Referenzkategorien
ausgenommen wurden. Die Referenzkategorien fiir die einzelnen Kovariablen lauten wie
folgt: fiir Kovariable , Entbindung_Jahr* ist es die Kategorie ,,<500 Geburten/Jahr, fiir
Kovariable ,,Software® ist es die Kategorie ,, Andere”, fiir Kovariable ,, Baseline“ ist es die
Kategorie ,,110-150 bmp“ und fiir Kovariable , DiffBase® ist es die Kategorie ,,Ja‘“.

Bei der Wahl der Hypothesen gibt es typischerweise verschiedene Untersuchungsvarian-
ten, die von den Interessen eines Anwenders abhédngen. In unserem Fall mochten wir
iiberpriifen, ob die Festlegung eines Normalbereichs fiir die Baseline einen Einfluss auf
die Sectiorate hat, da wir nicht erkennen kénnen, auf welcher Basis diese Normbereiche
entstehen. Unsere Vermutung ist, dass diese Normalbereiche der Baseline je nach Klinik

eher willkiirlich festgelegt werden. Daraus entstehen unsere folgenden Hypothesen:

e Nullhypothese Hj: Die Kovariable ,Baseline” hat keinen Einfluss auf die Zielva-

riable (restringiertes Modell ohne die Kovariable , Baseline*)

e Alternativhypothese H;: Die Kovariable ,,Baseline* hat einen Einfluss auf die Ziel-

variable (unrestringiertes Modell)

oder dquivalent dazu Hy: Bpaseiine = 0 und Hi: Bpaseiine 7 0.

Nachdem das Modell und die Hypothesen festgelegt sind, kénnen wir unser evidential fra-
mework definieren. Dabei ist EQ1 die Likelihood Ratio zwischen unserem restringierten
Modell ohne der Kovariable ,,Baseline® und dem unrestringierten Modell. EQ2 funk-
tioniert analog zum sogenannten Likelihood Ratio Test (s. [Huelsenbeck und Crandall
(1997), Kapitel Likelihood Ratio Tests In Phylogenetics & Harrell (2015), Kapitel 9.2.1)
und liefert uns mit dem Fehler erster Art die Wahrscheinlichkeit fiir eine irrefithrende
Evidenz im gewé&hlten Studiendesign.

Anders als im Krankenhausbeispiel aus Kapitel unterscheidet sich in unserem Fall
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die Berechnung der Likelihood Ratio. Bedingt durch die verschiedene Parametervekto-
ren s unseres proportional odds models und unter Beriicksichtigung unserer Hypothesen
Hy: Bpasetine = 0 und Hi: Bpasetine 7 0 ergibt sich fiir unsere Likelihood Ratio (Banerjee
und Wellner; 2001, Kapitel 2.2)

sup, [ (
sup, f (Yil BEntvindung_sanrs Bsoftwares BBaselines BDif f Base)
_ supm, f(Yi| Bgesamt)
S

- SUPH, yi‘ﬁgesamt)

LR = yi|/6Entbindung,Jah7"v 5Softwa7"e7 BBaselinea ﬁDiffBase)

(4.2)

mit ¢ = 1, ...,n, wobei n die Anzahl der befragten Kliniken ist. Die Funktion f(-) ist eine
diskrete Dichtefunktion bzw. unsere Likelihood-Funktion und liefert die Wahrscheinlich-
keit fiir die Beobachtung y; unter den gegebenen Parametervektoren (Bgesamt)-

Fiir EQ3 miissen wir unser bisheriges Modell in ein bayesianisches Modell umformen,
womit wir die Posteriori-Wahrscheinlichkeit (EQ3) bestimmen kénnen. Wie bereits in
Kapitel erwahnt, lautet die Reihenfolge fiir die Berechnung der einzelnen Evidenz-
folgen EQ2, EQ1 und EQ3.

4.3.1 Berechnung von EQ1 und EQ2

Wie wir nun wissen, funktioniert unsere EQ2 analog zum Likelihood Ratio Test (LR-
Test). Die Likelihood Ratio Statistik folgt bei grofem Stichprobenumfang approximativ
der x2-Verteilung und die Differenz der Parameter in beiden zu vergleichenden Modellen
entspricht der Anzahl an Freiheitsgraden. Dabei werden unsere proportional odds models
in R mithilfe der Funktion polr () aus dem R-Paket MASS (s. Venables und Ripley| (2002))
dargestellt, wobei hier beachten werden miissen, dass die Funktion polr () fiir die odds
bzw. fiir die Chancen statt 6, + /5 die Form 6, — 2,5 verwendet. Die Teststatistik zum
LR-Test ist (Harrell; 2015, Kapitel 9.2.1)

T = _Q(Zn(supHof(yi|/Bgesamt)) - ln(sulef(yi|6gesamt))) — _2(l0 - ll)

Damit wir den Fehler erster Art (EQ2) bestimmen kénnen, nutzen wir die Eigenschaft
der approximativen Verteilungsannahme der Teststatistik 7". Dabei muss folgende Trans-

formation durchgefiihrt werden, damit 7' approximativ der y2-Verteilung mit 7' ~ x3
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folgt:

exp(T) = exp(—2(ly — 1))
=exp(ly — ;)2

(o

_ (SupHof(yi|5gesamt) ) -
B SupH1f(yi|ﬂgesamt)

o (SupH1f(yi‘ﬂgesamt))2
B SupHof(yi‘/Bgesamt)

= LR?.

Wie aus Kapitel bekannt ist, muss LR > k sein, damit eine Evidenz zugunsten
von H; iiber Hy vorliegt. In unserem Fall wiahlen wir die konventionelle Grenze k = 8.
Bezogen auf die Teststatistik 7" und der Transformation ergibt sich ein Grenzwert von
In(LR?) = In(8?). Wenn wir das auf unsere gewihlten Hypothesen anwenden, erhal-
ten wir fiir Hy : T < In(64) und fir Hy :> In(64). Da LR stetig ist, und somit die
Wahrscheinlichkeit fiir einen konkreten Punkt gleich 0 ist, kénnen wir bei der Nullhy-
pothese statt T < In(64) auch unsere jetzige Definition wihlen, damit die Korrektheit
der Hypothesenbildung beriicksichtigt wird. Unser EQ2 entspricht nun dem Fehler erster
Art, d.h. die Wahrscheinlichkeit, dass unser gewéhltes Studiendesign eine Evidenz fiir
H, aufweist, obwohl H, wahr ist, P(T > In(64)|H, wahr). Daraus ergibt sich fiir EQ2

(Berechnung mit R, s. elektronischer Anhang)
P(T > In(64)|Hy wahr) = 1 — P(T < In(64)|H, wahr) ~ 0.125,

d.h. unsere Wahrscheinlichkeit, dass wir mit unserem Studiendesign eine irrefithrende
Evidenz erhalten (EQ2), betriagt etwa 12.5%.
Im néchsten Schritt bestimmen wir die Stérke der Evidenz (EQ1) anhand der Likelihood

Ratio (vgl. Kapitel [3.3.1)). Daraus ergibt sich (Berechnung mit R, s. elektronischer An-

hang)

LR Sulef(yi‘ﬂgesamt) ~ 3604,

SupHof(yi‘ﬁgesamt)

d.h. wir haben eine starke Evidenz zugunsten des unrestringierten Modells (H;) ge-

geniiber dem restringierten Modell ohne die Kovariable , Baseline® (Hy).
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4.3.2 Berechnung von EQ3 mit spike-and-slab Prioris

Um schlussendlich die Posteriori-Wahrscheinlichkeit (EQ3) bestimmen zu kénnen, miissen
wir unser frequentistisches Modell in ein bayesianisches konvertieren. Das ermdoglicht
uns, die notwendige Priori-Wahrscheinlichkeit zu bestimmen, die fiir die Berechnung der
Posteriori-Wahrscheinlichkeit benotigt werden. In Kapitel haben wir gesehen, dass
es verschiedene Methoden der Priori-Bestimmung gibt. Aufgrund der Komplexitéit un-
seres proportional odds models konnen wir hier keine konjugierten Priori-Verteilungen
benutzen. Doch in unserem Fall bietet sich die sogenannte . spike-and-slab® Priori-
Verteilung an.

Im Folgenden werden die Verteilungsannahmen der verschiedenen Parameter und Varia-
blen aus unserem bayesianischen Modell beschrieben. Sei die Priori-Verteilung der Ko-
effizienten Bentindung_jahr Bsoftware UNA BpiffBase €ine Normalverteilung mit Bgesame ~
N(0,1). Da wir durch unsere Hypothesen Hy: Bpasciine = 0 und Hi: Bpaseiine # 0 den
Einfluss der Kovariable ,,Baseline“ iiberpriifen wollen, hat Spaseiine €ine andere Priori-
Verteilung. Sie folgt der ,, spike-and-slab* Priori-Verteilung.

Sei Bpaseiine definiert als Bpasetine = U+ Bhuserine: Dabel gibt der Parameter ¥ an, ob
die Kovariable ,Baseline“ einen Einfluss auf die Zielvariable hat, d.h. ¥ = 1, wenn
BBasetine 7 0 und ¥ = 0, wenn Bpgserine = 0. Also ist der Parameter ¢ € {0,1} und
folgt einer Bernoulli-Verteilung mit ¥ ~ B(1,0.5). Die Verteilung von ¢ bildet dabei
den ,, spike* Teil und représentiert somit die Wahrscheinlichkeit, dass ein Koeffizient aus
dem Modell gleich 0 ist. Der . slab“ Part bildet hingegen die Verteilung fiir die Werte,
deren Koeffizienten nicht 0 sind, bedingt auf das Wissen, welche Koeffizienten ungleich
0 sind. In unserem Fall ist es die Verteilung von [5j, i, die analog zu den anderen
Koeffizienten normalverteilt ist mit 55,,.5ime ~ N (0,1).(Scott und Varian; [2015, Kapitel
4.2.2)

Nun fehlen noch die Verteilungsannahmen der Intercepts und der Zielvariable. Die Inter-
cepts a, mit r = 1, ..., 4 folgen der Normalverteilung: c,. ~ N(0,1000). Die Zielvariable
Y; mit ¢ = 1,...,n ist multinomialverteilt mit Y; ~ M(n,p,). Dabei steht n fiir die An-
zahl der befragten Krankenh&user aus dem Datensatz, z stellt eine Kategorie aus der
Zielvariable ,,Sectio“ (s. Tabelle dar und p, ist die Wahrscheinlichkeit, mit der eine
Beobachtung in die Kategorie z fallt.

Die Posteriori-Verteilung unseres bayesianischen Modells kann nun mithilfe eines Mar-
kov Chain Monte Carlo (MCMC) Algorithmus simuliert werden. Dieser Algorithmus
wird sehr oft wiederholt, sodass sich eine Kette von Ziehungen ergibt, aus der wir die

Verteilung der Posteriori-Wahrscheinlichkeit von ¢ empirisch schétzen kénnen. Da 9 ein
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bindrer Parameter ist, entspricht der Erwartungswert von ¢ der Wahrscheinlichkeit, fiir
die ¥ = 1 ist, d.h. die Wahrscheinlichkeit, dass die Kovariable ,,Baseline* einen Einfluss
auf die Zielvariable hat. Also ergibt sich unsere gesuchte Posteriori-Wahrscheinlichkeit
(EQ3) aus dem Erwartungswert der gezogenen 9s.(Scott und Varian; 2014} Kapitel 4.1)
Fiir eine genauere Erlauterung der Theorie zu den spike-and-slab Prioris wird neben der
verwendeten Literatur auf folgende Quellen verwiesen: Mitchell und Beauchamp (1988)),
George und McCulloch| (1993)), Ishwaran und Rao| (2005). Die Berechnung der EQ3 wur-
de in R mit der Funktion run. jags() aus dem R-Paket runjags (s.(Denwood; 2016)))
durchgefiihrt. Aus der Simulation des MCMC Algorithmus mit 2 Ketten, in denen je-
weils 10,000 Zufallsziehungen stattfinden, erhalten wir fiir den Erwartungswert von o
E(¥) ~ 0.794 (Berechnung mit R, s. elektronischer Anhang). Diese Posteriori zeigt aber
die Wahrscheinlichkeit fiir einen Einfluss der Kovariable , Baseline“ (H;) an. Da unser
EQ1 eine Evidenz zugunsten von H; gegeniiber H, aufweist und wir die Wahrscheinlich-
keit, mit der die beobachtete Evidenz irrefiithrend ist, suchen, muss fiir EQ3 die Gegen-
wahrscheinlichkeit gebildet werden. Daraus ergibt sich eine Posteriori-Wahrscheinlichkeit
von 1 —0.794 = 0,206, d.h. die Wahrscheinlichkeit, mit der unsere beobachtete Evidenz
irrefithrend ist (EQ3), betridgt 20.6%, wobel mit beobachteter Evidenz die Likelihood
Ratio (EQ1) aus Kapitel gemeint ist.

Zusammenfassend ergibt sich fiir das untersuchte Hypothesenpaar Hy: 8paseiine = 0 und
Hi: Bpasetine # 0 folgendes Ergebnis: Die Wahrscheinlichkeit, dass unser gewéhltes Stu-
diendesign eine irrefithrende Evidenz erzielt (EQ2), betragt etwa 12.5%. Die berechnete
Likelihood Ratio (EQ1) von etwa 36.04 zeigt, dass die Daten eine starke Evidenz zuguns-
ten von H; gegeniiber H, aufweist, wobei die Wahrscheinlichkeit, dass diese beobachtete
Evidenz irrefiihrend ist, 20.6% betrigt.
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5 Fazit und Ausblick

Wie aufgezeigt wurde, ist ein wohldefiniertes Framework fiir die Evidenz durchaus von
Vorteil. Es zeigt sich, dass ein alleiniger Wert, der die Evidenz in den Daten représentieren
soll, nicht ausreicht, um vollkommene Klarheit zu erlangen. Aufgrund des mangelnden
Informationsspektrums der herkommlichen Methoden zur Festlegung der Evidenz stellt
der Autor Jeffrey Blume sein evidential framework vor. In seinem Ansatz wird die In-
formation iiber die Evidenz nicht mehr ausschliefilich an einem Wert gemessen. Weil
jede einzelne der drei Evidenzgrofien unerléssliche Informationen enthélt, kann diesem
Mangel entgegen gewirkt werden. Nur wenn alle drei Evidenzgroflen klar voneinander
unterschieden werden, spricht man von einem wohldefinierten Framework. Dadurch ist
es nicht nur moglich zu iiberpriifen, ob Evidenz in den Daten ist, sondern es gibt uns die
Moglichkeit, eine Aussage dariiber zu treffen, wie wahrscheinlich es ist, eine irrefithrende
Evidenz vor der Datenerhebung zu erzielen. Zusétzlich ist eine konkrete Bezifferung der
Evidenzstirke und die Wahrscheinlichkeit, dass diese beobachtete Evidenz irrefithrend
ist, ein weiterer Vorteil des Frameworks. Dieses evidential framework ermoglicht es, ge-
nauere Behauptungen iiber die Evidenz zu treffen.

Es besteht zudem die Moglichkeit, die einzelnen Evidenzgrofien (EQs) des evidential fra-
meworks neben der bisherigen Konstellation zu verdndern. Dadurch ist es moglich, sich
unterschiedlichen Situationen anzupassen. Im Bezug zu einer Studie der Bertelsmann
Stiftung (Kolip et al.; [2012) bestiinde die Moglichkeit, nicht die Likelihood Ratio (LR)
sondern die Odds Ratio (OR) als EQ1 zu wihlen, da sie in dieser Studie als Bezugs-
wert fiir statistische Evidenz dient. Resultierend daraus miissten auch die Hypothesen
fiir EQ2 gedndert werden. Eine mogliche Hypothesenwahl wére, dass Hy : OR = 1 und
H, : OR # 1 ist. Eine OR von 1 bedeutet nédmlich, dass sich die Odds bzw. die Chancen
der verglichenen Gruppen sich nicht voneinander unterscheiden.

Eine weitere Gestaltungsmoglichkeit des evidential frameworks wére eine auf den AIC
Wert basierende Evidenzstéirke. Es bestiinde die Moglichkeit, die Differenz der AIC Wer-
te aus zwei Modellen (A 47¢), die verglichen werden sollen, als EQ1 zu wéhlen. Der Vor-
teil des AICs gegeniiber dem LR-Ansatz ist der Strafterm. Er hédngt von der Anzahl der
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geschétzten Parameter ab und bei einer Zunahme der geschétzten Parameter wird das
Modell hirter bestraft.(Fahrmeir, Kneib und Langj 2007, Kapitel 4.1.4)

Um genauere Aussagen iiber die tatséichliche Evidenzstérke zu treffen, miisste man hier,
dhnlich wie bei der Likelihood Ratio, Grenzen festlegen, die zeigen, ab wann A 47¢ eine
starke Evidenz fiir oder gegen ein Modell aufweist (vgl. Kapitel . Auch bei dieser
Wahl von EQ1 miissten die Hypothesen fiir EQ2 neu formuliert werden. Eine mogliche
Gestaltung der Hypothesen konnte sein, dass Hy : Aaqrc = 0 und Hy : Aaec # 0, da
Aarc = 0 bedeuten wiirde, dass es weder fiir das eine noch das andere Modell eine
Evidenz gibt.

AbschlieSlend muss angemerkt werden, dass der Einfachheit halber bei der Modellierung
im Kapitel die Betrachtung der Interaktionen zwischen den einzelnen Kovariablen
vernachléssigt wurde, da der Fokus dieser Arbeit vor allem auf die Methodik zum evi-
dential framework und deren Anwendung lag. Bei einer genaueren Analyse in der Praxis
sollte dieser Schritt beriicksichtigt werden.

Aufgrund der Flexibilitéit und des Informationsgewinns ist das evidential framework von
Jeffrey Blume durchaus ein aussichtsreicher Ansatz, um zukiinftig die Durchfithrung von

evidenzbasierten Studien akkurater zu gestalten.
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