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1 Einleitung

Im Rahmen dieser Bachelorarbeit geht es um die Funktion rbsurv, die im Statistik-
Programm R implementiert ist. Die Funktion findet hauptsichlich in der Biologie ihre
Verwendung, genauer gesagt bei der Auswertung von Microarray-Daten. Das Ziel von Aus-
wertungen mit der Funktion rbsurv ist das Entdecken von Genen, welche die Uberlebenszeit
von Individuen beeinflussen. Der darin enthaltene Algorithmus basiert dabei hauptséchlich
auf dem Cox proportional hazards model und verspricht laut den Autoren Cho et al.| (2009)
eine einfache und praktische Anwendung, die dennoch robuste Schatzungen und Ergeb-
nisse liefert. Um eine auf die Daten angepasste Auswertung vorzunehmen, kann der An-
wender verschiedene Parameter der Funktion nach seinen Bediirfnissen verdndern. Um die
Parameter-Einstellungen und ihre Auswirkungen aufzuzeigen, wird ein multizentrischer
Datensatz von Kopf-Hals-Tumor-Patienten verwendet. Pro Patient liegen dafiir ca. 1000
Expressionen von Micro-RNA’s vor, die eventuell in Verbindung zu dem Tumor stehen
konnten.

Das Ziel dieser Bachelorarbeit ist die Untersuchung und Bewertung der rbsurv-Funktion
und ihrer Ergebnisse. Dabei steht vor allem die Parameterwahl und die dadurch verursachte
Variablenselektion im Mittelpunkt. Im Zuge dessen wird versucht, ein optimales Modell
durch eine optimale Parametereinstellung zu finden. Als Modellgiitekriterium wird hierfiir
der Konkordanz-Index nach Harrell et al.| (1982) verwendet.

Nach der Einleitung folgt in Kapitel 2] eine kurze Erklarung zur Survival Analyse und ihren
Grundlagen. Hierbei wird unter anderem das Coz proportional hazards model genauer vor-
gestellt, das im R-Paket rbsurv verwendet wird. In Kapitel [3| geht es ausschlieflich um das
R-Paket rbsurv. Dabei wird der Algorithmus der rbsurv-Funktion und die dazugehérigen
Parameter genauer betrachtet. Die Analyse folgt in Kapitel 4. Nach der Vorstellung der
Daten und dem angewandten Vorgehen befinden sich hier zwei Simulationslaufe mit jeweils
sechs Iterationen. Die Ergebnisse jener Simulationen im Bezug auf die Variablenselektion
und die Robustheit des R-Paketes rbsurv sind in Kapitel [f] enthalten. Kapitel [6] schliefit
die Bachelorarbeit dann mit einem kurzen Fazit ab. Weitere Abbildungen und Tabellen
sind zudem noch im Anhang (Kapitel [7)) zu finden.



2 Survival-Analyse

Die Survival-Analyse (oder auch Uberlebenszeitanalyse/Ereigniszeitanalyse) untersucht
die (Lebens-) Zeit unterschiedlicher Abldufe bis ein vorher festgelegtes Ereignis (Event)
auftritt. Verwendung findet die Survival Analyse in der medizinischen und biologischen
Forschung, bei der Entwicklung verschiedener Produkte oder der Analyse von demogra-
phischen Gegebenheiten. Voraussetzung fiir die Anwendung der Survival Analyse ist, dass
die Objekte innerhalb des Beobachtungszeitraums einem Risiko fiir das Eintreten eines
Events ausgesetzt sind. Dieses Event kann z.B. der Tod, das Auftreten einer Krankheit
oder der Funktionsverlust eines Gerites sein (Wollschlager, 2017)).

2.1 Zensierte Daten

Survival-Daten liegen oft in zensierter Form vor. Dabei wird zwischen unterschiedlichen
Varianten unterschieden. Am héufigsten tritt die sogenannte Rechts-Zensur auf. Dabei
weisen die Objekte innerhalb des Beobachtungszeitraums kein Event auf, da sie z.B.
aus der Studie ausgeschieden sind oder weiterhin leben bzw. gesund sind. Dennoch kann
die Information der Beobachtungen in die Modellschéitzung miteinbezogen werden (|Liu,
2012)). Zusétzlich gibt es noch Links-zensierte Daten (Event tritt vor dem Beobachtungs-
zeitraum auf) und Intervall-zensierte Daten (Event tritt an unbekannter Stelle innerhalb
eines Zeit-Intervalls auf). " Wichtig fiir die Survival-Analyse ist die Annahme, dass der zur
Zensierung fithrende Mechanismus unabhéngig von Einflussgrofen auf die Uberlebenszeit
ist” (Wollschldger, 2017, S.351).

2.2 Allgemeine Annahmen

Geht man von einer Stichprobenpopulation von N Individuen aus, so kann entweder
die Zeit bis zu einem Event oder einer Zensierung beobachtet werden. Bei einer rechts-
zensierten Beobachtung weifl man also lediglich, dass die Zeit bis zu einem Event grofier
ist als der Beobachtungszeitraum. Die Uberlebensfunktion lisst sich darstellen durch:

S(t)=P(T > 1), t >0, (1)
mit )
S(t) = Uberlebensfunktion

T = pos. Zufallsvariable fiir den Zeitpunkt eines Events
t = Zeit (Nikulin und Wu, [2016).

Sie ist die Wahrscheinlichkeit dafiir, dass ein beliebiges Individuum aus den Daten den
Zeitpunkt t iiberlebt (Nikulin und Wu, 2016). Folglich ergibt sich die kumulative Ver-
teilungsfunktion der Lebenszeit T mit

Fit)=P(T <t)=1-5(t) (2)

(Nikulin und Wu, 2016]).



Die Hazard-Funktion driickt letztlich die unmittelbare Ereignisrate einer Beobachtung
zum Zeitpunkt t aus:

Pt<T <t+A|T>1)

Ay—0Tt At

Pt<T <t+A)/A, 5
Ar—0+ P(T >t)

mit
f(t) = Dichtefunktion der Uberlebenszeit T (Wollschlager, 2017)).

2.3 Cox proportional hazards model

Die Cox-Regression ist ein nach Sir David Roxbee Cox benanntes Analyseverfahren fiir
Ereigniszeitdaten. Es handelt sich dabei um ein semi-parametrisches Regressionsmodell,
dessen Modellgleichung sich folgendermaflen ergibt:

Ats z) = exp(z" B)Mo(1), (4)

mit

t = Zeit

z = Vektor der Einflussvariablen

£ = Vektor der Parameterschétzer

Ao(t) = baseline hazard (allgemeine Ausfallrate) (Cox, 1972).

Das Modell macht dabei keine Annahmen {iber die Form des baseline hazard. Falls das
Modell keine Einfliisse enthélt (z = 0), so bleibt lediglich der baseline hazard \o(t) tibrig.
Dieser spiegelt das Grundrisiko der Beobachtungen wider. Dabei wird auch fiir die beob-
achtete Uberlebenszeit T keine bestimmte Verteilung angenommen. Stattdessen nimmt
man an, dass die Effekte verschiedener Variablen auf das Uberleben iiber die Zeit kon-
stant sind (Ziegler et al., [2004). Durch diese Annahme ergeben sich sowohl Vor- als auch
Nachteile. Durch die konstanten Effekte iiber die Zeit hinweg lédsst sich der Hazard Ra-
tio, also der Quotient zweier Hazard-Funktionen, eindeutig definieren und interpretieren.
Allerdings ist die Annahme dieser Proportionalitit der Hazard-Funktionen nicht immer
korrekt. So kann es in der Realitdt durchaus eine von der Zeit abhéngige Variable geben,
wie z.B. das Gewicht oder das Alter einer Person (Ziegler et al., [2004)). Nimmt man bei-
spielsweise an, dass das Cox Modell lediglich eine Einflussvariable besitzt und somit die
folgende Form aufweist:

A(t; z) = exp(z151)Ao(t), (5)
mit
t = Zeit
z1 = Einflussvariable
[£1 = Parameterschéatzer
Ao(t) = baseline hazard (allgemeine Ausfallrate).



Dann ist der erwartete Hazard Ratio (Risikoquotient) bei zwei unterschiedlichen Beob-
achtungen A und B
exp(2aB1)Ao(t)
exp(z551)Ao(t)

= exp((za — zB)51); (6)

und damit unabhéngig von der Zeit ¢t und dem baseline hazard.

2.3.1 Partielle Likelihood-Funktion

Fiir die Schiatzung und Interpretation eines Modells sind in erster Linie die S-Parameter-
schétzer von Interesse. Dadurch, dass der baseline hazard eine willkiirliche Storgrofie dar-
stellt, kann man allerdings keine normale Maximum-Likelihood-Methode (ML-Methode)
anwenden. In diesem Zusammenhang schlégt Cox]| (1972)) eine partielle Likelihood-Schétzung
vor. Er argumentiert damit, dass die Zeitintervalle zwischen den Events keine wichtigen
Informationen liefern, da die StorgroBe Ao(f) dort vermutlich identisch mit Null ist. Bei
Survival-Daten ohne Bindungen (sieche Abschnitt reicht es also aus, wenn nur die
Zeitpunkte betrachtet werden, in denen ein Event stattfindet. So ist fiir ein bestimmtes
Event zum Zeitpunkt ¢(;), bedingt auf die Risikomenge R(t(;), die Wahrscheinlichkeit,
dass das Event auch beim beobachteten Individuum auftritt, folgende:

exp{z) B}
> eap{zp)f}

lER(t(i))

(7)

(Cox, [1972).

Aus dem Produkt der einzelnen Beobachtungen ergibt sich damit die partielle Likelihood:

al ex {Z(i)ﬁ}
L(8) = P 8
R | S )

leR(t(i))
bzw. die partielle log-Likelihood:
N N
(B) =) zf—) log| > explzqh} (9)
i=1 i=1 IER(t()

(Cox, 1972).

Auch wenn es sich hierbei nicht um eine gewohnliche Likelihood-Schétzung handelt, so
kann sie doch in den meisten Fillen als eine solche behandelt werden. So besitzt die ML-
Schétzung nach Cox in groflen Datenmengen die selben asymptotischen Eigenschaften wie
eine normale ML-Schitzung (Kalbfleisch und Prentice, 2002).



2.3.2 Bindungen

In den meisten Survival-Daten lassen sich allerdings Bindungen finden. Diese Bindun-
gen enstehen, wenn Beobachtungen die exakt selbe Uberlebenszeit besitzen. Wiirde man
die Zeit auf einer perfekten stetigen Skala messen, wiirde dieser Fall nie eintreten. Aller-
dings wird in der Realitét der Einfachheit halber meist eine diskrete Zeit-Skala verwendet
(Boruckal, 2014). Auch durch Zensierungen kann es zu vielen gleichen Uberlebenszeiten
kommen. Da bei der partiellen Likelihood-Schétzung nach Cox jedoch die Reihenfolge der
Events von Bedeutung ist, kann dies bei Bindungen zu Problemen fiithren. Die partielle
Likelihood muss dann dementsprechend angepasst werden. Der natiirlichste Weg ist, laut
Kalbfleisch und Prentice| (2002)), die durchschnittliche Likelihood zu berechnen, die sich
aus allen moglichen Kombinationen aus der Reihenfolge der Events ergibt. Bei einer groflen
Anzahl an Bindungen fiihrt diese Methode allerdings zu einem hohen Rechen-, bzw. Zeit-
aufwand. Aufgrund dessen gibt es mehrere approximative Alternativen fiir die partiel-
le Likelihood, welche bei Bindungen einen geringeren Zeitaufwand versprechen. Die am
hédufigsten verwendeten Methoden sind neben der exakten Methode von [Kalbfleisch und
Prentice, (2002) die Methoden nach Breslow| (1974) und [Efron! (1977). Die resultierenden
Schétzer durch die Methoden von Breslow und Efron kénnen je nach Stichprobengrofie
und Anzahl an Bindungen eine Verzerrung aufweisen. Fiir Datensétze mit geringer Anzahl
an Bindungen erreichen alle drei Schétzer dhnliche Resultate (Kalbfleisch und Prentice,
2002). Auch wenn die Methoden nach Breslow und Efron eine Verzerrung der Schéitzer
bewirken kénnen, so werden sie in der Praxis dennoch héufig angewendet, da sie im Ver-
gleich zur exakten Methode von |Kalbfleisch und Prentice (2002) einen deutlich geringeren
Rechenaufwand mit sich bringen.

2.4 C-Index

Nachdem ein geeignetes Modell angepasst wurde, stellt sich die Frage, wie gut das Modell
die Wirklichkeit abbildet. Durch falsche Annahmen, fehlende Daten oder durch nicht
miteinbezogene Storvariablen kann es erhebliche Verzerrungen im Modell geben. Der
Konkordanz-Index C (Harrell et al., [1982) ist dabei ein oft verwendetes Validierungswerk-
zeug fiir Uberlebenszeitmodelle. Fiir unzensierte Daten stellt der Konkordanz-Index C
(c-Index) die relative Héufigkeit von konkordanten Paaren unter allen moglichen Paaren
dar. Dabei wird ein Paar als konkordant bezeichnet, wenn das Individuum mit der gerin-
geren Uberlebenszeit auch das hohere Risiko fiir ein Event besitzt (Gerds et al., 2013)). Ist
die vom Modell prognostizierte Uberlebenszeit fiir zwei Individuen identisch, so werden sie
nur zur Hélfte mitberechnet. Besitzen zwei Individuen dagegen die selbe Uberlebenszeit,
so gelten sie als unbrauchbar und kénnen nicht verwendet werden (Harrell et al., 1996).
Der c-Index kann Werte zwischen 0 und 1 annehmen. Dabei entspricht ein Wert von
1 einem perfekten Modell bzw. einer perfekten Vorhersage. Nimmt der c-Index einen
Wert von 0.5 an, so ist das Modell nicht besser als eine willkiirliche Zufallsentscheidung
(Harrell et al.l 1996).

Um die Giite eines Modells durch den c-Index zu berechnen, wird zusétzlich zu den Da-
ten, die fiir die Modellberechnung verwendet wurden, ein weiterer Datensatz bendotigt.
Dieser sollte unabhéngig von den anderen Daten sein, um somit die Prognosefdhigkeit des
Modelles testen zu konnen.
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3 R-Paket rbsurv

Dieses Kapitel basiert hauptséchlich auf dem im Januar 2009 von HyungJun Cho et. al.
vorgestellten Artikel im Journal of Statistical Software iiber ihr neues R-Paket rbsurv
(Cho et al., [2009). Das R-Paket dient dazu multiple Survival-Modelle aus Microarray-
Daten zu bilden. Hierbei wird das Software-Programm R verwendet, das in der Statistik
sehr verbreitet ist. Das Paket bzw. der darin enthaltene Algorithmus basiert auf der Cox-
Regressionsanalyse. Mit Hilfe des Software-Paketes lassen sich Gene finden, die einen
Bezug zur Uberlebenszeit eines Individuums besitzen.

3.1 Hintergrund und verwendete Methoden

Bei der Analyse von Microarray-Daten werden haufig Daten mit hoher Dimension und
geringer Stichprobengrofie verwendet (Engler und Li, 2009). Um aus dieser hohen Anzahl
an Variablen, die mit dem grofiten Einfluss herauszufiltern, wurden in der Vergangen-
heit bereits viele verschiedene Verfahren angewendet (vgl. dazu [Rosenwald et al., 2002;
Shannon et al.l 2002 |Gui und Li, 2005). Trotz dieser bereits existierenden Algorithmen
entschieden sich die Autoren fiir eine neue Variante, die im Software-Programm R ein-
gebunden ist. Der verwendete Algorithmus kann dabei aktiv vom Benutzer verédndert
bzw. angepasst werden und verspricht eine robuste Schitzung aufgrund der verwendeten
Kreuzvalidierungstechnik.

3.1.1 Kreuzvalidierung

Die Kreuzvalidierung ist ein statistisches Verfahren, um die Giite eines Modells zu iiber-
priifen. Bei der Kreuzvalidierung wird meist der Datensatz in einen Trainings- und einen
Testdatensatz eingeteilt. Dabei ist es oft besser, wenn der Trainingsdatensatz mehr als
50 Prozent der Daten enthélt. Verbreitet ist, dass der Trainingsdatensatz zwei Drittel
der Datenmenge enthélt (Witten et al 2016). Der Trainingsdatensatz bildet letztlich die
Grundlage fiir die Modell- bzw. Parameterschiatzung. Mit Hilfe des Testdatensatzes wird
dann die Fehlerrate des Modells berechnet. Verschiedene Modifikationen des Verfahrens
wie z.B. die stratifizierte Kreuzvalidierung bauen auf dem selben Grundprinzip auf.

3.1.2 Akaikes Informationskriterium

Ein Giitekriterium, das auch im R-Paket rbsurv verwendet wird, ist das Akaike Informa-
tionskriterium (AIC"). Das AIC wurde entwickelt, um einen mdoglichst guten Kompromiss
zwischen einer guten Datenanpassung und einer zu grofien Modellkomplexitat zu finden
(Fahrmeir et al. 2007). So wird durch die Hinzunahme von (unnétig) vielen Variablen
das Modell tiberangepasst (engl.: overfitting) und somit eventuell die Prognosefihigkeit
verschlechtert (Fahrmeir et al.l 2007). Das AIC ldsst sich durch die Formel

AIC = —20(0) + 2p (10)

darstellen. Es gilt:
¢ = p-dimensionaler Parametervektor

[(0) = log-Likelihood der geschitzten Parameter
p = Anzahl der geschéitzten Parameter (Fahrmeir et al., [2007)).

11



Letztlich wird dasjenige Modell bevorzugt, das den geringsten AIC aufweist. Der Term
2p bestraft somit die Modelle proportional zur Anzahl der enthaltenen Parameter p.

3.2 Algorithmus

Um einen effektiven und iibersichtlichen Algorithmus fiir die Analyse von Microarray-
Daten zu erméglichen, haben sich die Autoren des Paketes rbsurv verschiedene Schritte
iiberlegt. Dabei sollten die Einflussvariablen bereits normalisiert und entsprechend trans-
formiert worden sein.

1. Beschrinkung der Anzahl an Genen

Die meist grole Anzahl von Genen in Microarray-Daten fithrt dementsprechend zu
langen Berechnungszeiten. Um diese Berechnungszeiten moglichst kurz zu halten,
enthélt das Software-Programm eine Art Vor-Selektion der wichtigsten Gene. Dafiir
werden univariate Uberlebenszeitmodelle genutzt, die dann die Anzahl der Gene re-
duzieren ohne wichtige Gene bzw. Informationen zu verlieren. Das bedeutet, es wird
fiir jedes Gen ein univariates Uberlebenszeitmodell gebildet und anschlieBend wer-
den die Gene ausgewdhlt, die in den Modellen den kleinsten p-Wert aufweisen. Die
Auswahl der wichtigsten Gene erfolgt, wenn vom Anwender gewiinscht, zu Beginn
der Auswertung und wird mit dem Befehl [max.n.genes] iibergeben. Nur diese
gewiinschte Anzahl an Genen wird dann auch in den Algorithmus miteinbezogen.

2. Robuste Likelihood-Schiitzung in Uberlebenszeitmodellen

Der Datensatz wird zufillig in einen Trainings- und einen Validierungsdatensatz
eingeteilt. Die Grofle der zwei Teil-Datensétze wird mit dem Befehl [n.fold =
1/p] angegeben. Dabei enthilt der Trainingsdatensatz N(1 — p) und der Vali-
dierungsdatensatz Np Beobachtungen. AnschlieBend wird fiir jedes Gen getrennt
der Maximum-Likelihood-Schétzer B? auf Grundlage des Trainingsdatensatzes be-
rechnet. Um einen robusten Schéitzer zu erhalten ist es von Vorteil, das Modell
durch einen unabhéngigen Datensatz zu evaluieren, anstatt mit den Daten, die
zur Parameterschitzung verwendet wurden. Diesen unabhéngigen Datensatz stellt
der davor zufillig abgetrennte Validierungsdatensatz dar. Die angepasste partielle
log-Likelihood dient mit der Verwendung des Validierungsdatensatzes damit als
Giitemaf fiir die Anpassung des Modells.

3. Robuste Genschitzungen

Die Prozedur in Punkt 2 wird anschlieBend B-mal wiederholt. Dies wird der Funktion
mit Hilfe des R-Befehls [n.iter = B] mitgeteilt. Damit wird das Risiko, dass das
zufillige Einteilen in Trainings- und Validierungsdatensatz eine Verzerrung erzeugt,
minimiert. Aus den, fiir jedes einzelne Gen, erhaltenen B partiellen log-Likelihoods
wird das Gen mit der grofiten mittleren partiellen log-Likelihood ausgewéhlt. Dieses
Gen (hier: g(1y) hat nach diesem Ansatz den gréften Einfluss auf die Uberlebenszeit.
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4. Robuste Modellselektion

Nachdem das ausgewéhlte Gen gy dem Modell {ibergeben wird, werden die Punkte
2 und 3 abermals durchgefiihrt, um das beste Modell mit zwei Genen als Einfluss-
variablen zu finden. Es wird somit ein Modell gesucht, das zu dem bereits aus-
gewéhlten Gen g(;) ein bestmdgliches zweites Gen g(9) findet. Diese Vorwérts-Selektion
wird so lange durchgefiihrt, bis es durch fehlende Beobachtungen nicht mehr méglich
ist ein entsprechendes Modell anzupassen oder die maximale Anzahl an Genen er-
reicht ist. Man erhélt letztlich K Modelle mit: My = g1y, M2 = gay + 9¢2), - - -, Mg =
gay + 9@ + -+ gx)-

Um das beste Modell auszuwihlen, ist die log-Likelihood nicht geeignet, da sie in
jedem Fall das grofite Modell auswéhlen wiirde. Um ein owverfitting zu vermeiden,
wird das AIC verwendet. Durch den darin enthaltenen Strafterm fiir die Anzahl der
Variablen wird somit ein Modell mit geringer Variablenzahl bevorzugt. Es wird das
AIC fiir jedes der Modelle berechnet und das Modell mit dem kleinsten AIC wird
anschliefend ausgewahlt.

5. Multiple Modelle

Bei der Selektion der Gene fiir das optimale Modell kénnen aufgrund des Algorithmus
wichtige Gene fehlen. Angenommen zwei Gene haben einen &hnlichen Effekt auf
die Uberlebenszeit. Statistisch gesehen reicht es, das stirker assoziierte Gen aus-
zuwahlen. Biologisch betrachtet kann das zweite Gen allerdings ebenfalls einen
wichtigen Einfluss auf die Uberlebenszeit besitzen. Um dieses Szenario zu verhin-
dern, kann man mehrere optimale Modelle berechnen. Dafiir werden die Gene der
ersten Modellberechnung zur Seite genommen und mit den restlichen verbliebe-
nen Variablen ein zweites Modell berechnet. Die Anzahl an Modellberechnungen ist
dem Benutzer iiberlassen (vorausgesetzt es sind geniigend Gene vorhanden). Dem-
entsprechend ist statistisch gesehen das erste Modell das Beste, aber nicht unbedingt
aus der biologischen Sicht. Die Anzahl der berechneten Modelle wird im R-Paket
durch [n.seq = C] angegeben.

3.3 Risikofaktoren

Die Uberlebenszeit hingt nicht zwingend nur mit dem untersuchten Genmaterial zusam-
men. So kann es weitere Risikofaktoren wie z.B. das Alter oder der Krankheitsstatus
geben, fiir die das Modell adjustiert werden sollte. Dadurch kénnte eventuell ein Gen ins
Modell aufgenommen werden, welches eigentlich die Risikofaktoren beeinflusst aber nicht
direkt die Uberlebenszeit. Um die dadurch entstehenden Verzerrungen zu verhindern,
kann man dem Algorithmus fiir die likelihood-basierte Modellschétzung zusétzliche Risiko-
faktoren iibergeben. Diese Faktoren Zy, Zs, ..., Z, werden in alle Modell-Anpassungen im
Algorithmus miteinbezogen [rbsurv: z]. Mit dem Befehl [alpha] kann ein Signifikanzlevel
fiir die Risikofaktoren angegeben werden (z.B. [alpha = 0.05]). Somit werden lediglich
signifikante Risikofaktoren verwendet. Im Zuge dieser Auswertung sind allerdings keine
weiteren Risikofaktoren gegeben und dementsprechend wurde dieser Parameter auch nicht
weiter betrachtet.
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3.4 Sonstige Argumente in rbsurv

Weitere Argumente der Funktion rbsurv sind (vgl.: Tabelle [I)): [method], [gene.ID]
und [seed]. [method] gibt dabei an, welche Berechnungsmethode fiir Bindungen bei
der Cox-Regression verwendet werden. Hierbei wird unterschieden zwischen ”breslow”,
“efron” und "exact”. Mit dem Befehl [gene.ID] kann der Benutzer den Genen einen
Namen oder eine Identifikationsnummer zuordnen. Falls dies nicht explizit angegeben
ist, wird die Reihennummer verwendet. Mit [seed] wird der Zufallsgenerator auf einen
festen Startwert gesetzt. Dies bedeutet, dass die zuféllige Einteilung in Trainings- und
Validierungsdatensatz im Algorithmus bei gleichem [seed] auch immer gleich ist. Dies ist
niitzlich, um die Ergebnisse reproduzieren bzw. die Variabilitit der Ergebnisse betrachten
zu koénnen.

Argument Beschreibung

time Vektor mit den Uberlebenszeiten

status Vektor mit Status (0 = zensiert, 1 = Event/Krankheit wieder aufgetreten)
X Matrix mit den Einflusswerten (Gene in Reihen, Beobachtungen in Spalten)
z Matrix fiir die zusétzlichen Risikofaktoren

alpha Signifikanzlevel fiir die Risikofaktoren

gene.ID Vektor mit den Gen-IDs, ansonsten werden Reihennummern verwendet
method character string um die Methode fiir Bindungen festzulegen

n.iter Anzahl an Iterationen bei der Genselektion

n.fold Anzahl an Partitionen der Beobachtungen

n.seq Anzahl an multiplen Modellen

seed seed fiir Einteilung der Beobachtungen

max.n.genes | maximale Anzahl an betrachteten Genen

Tabelle 1: Ubersicht der Argumente im R-Paket rbsurv
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4 Analyse

Im Hauptteil dieser Bachelorarbeit geht es um den verwendeten Datensatz und die da-
mit durchgefiihrten Simulationen. Um die Variabilitdt der Variablenselektion aufgrund
der Parameterwahl aufzuzeigen, wurden die Simulationen nach einem festen Vorgehen
durchgefiihrt.

4.1 Erklarung der Daten

Der fiir diese Auswertung verwendete Datensatz stammt aus zwei unabhéngigen Kohorten
von strahlentherapeutisch behandelten Kopf-Hals-Tumor-Patienten. Insgesamt enthélt
der Datensatz 162 Beobachtungen von Patienten aus Deutschland. Dabei stammen 85
Personen aus einer multizentrischen Kohortenstudie vom Deutschen Konsortium fiir trans-
lationale Krebsforschung (DKTK) und 77 Personen von einer monozentrischen Kohorte
aus der klinischen Kooperationsgruppe (KKG) der LMU Miinchen und der Klinik fiir
Strahlentherapie und Radioonkologie. Die genaue Aufteilung der Kohortenstudien so-
wie die im weiteren Verlauf verwendeten Abkiirzungen finden sich in Tabelle 2] Aus
dem Genmaterial dieser 162 Patienten wurden globale micro-RNA (miRNA) Expres-
sionsanalysen durchgefithrt. MiRNA’s sind kleine, hoch konservierte, nicht-kodierende
RNA-Molekiile, die an der Regulation der Genexpression beteiligt sind (MacFarlane und
R Murphy, [2010). Da Anderungen an den miRNA’s Auswirkungen auf einen menschlichen
Tumor haben kénnen (Calin und Croce, 2006), enthélt dieser Datensatz 1031 verschiedene
miRNA’s mit den dazugehorigen Expressionen. Hierfiir wurden miRNA-Proben mit dem
Fluoreszenzfarbstoff Cy3 markiert. Diese hybridisieren mit den jeweils komplementéren
miRNA-Sequenzen auf einem Array und anhand der Intensitét des Fluoreszenzsignals wird
dann die Expression der miRNA’s gemessen (Lohaus et al., [2014)). Damit kénnte man im
Idealfall Riickschliisse ziehen, welche miRNA’s das Wiederauftreten des hier untersuchten
Kopf-Hals-Tumors begiinstigen. Um {ibersichtliche Abbildungen zu ermoglichen werden
im weiteren Verlauf die Bezeichnungen der miRNA’s durch Identifizierungsnummern ab-
gekiirzt. Im Anhang befindet sich dazu in Tabelle [7] die Gegeniiberstellung der Namen
und ihrer ID-Nummern. Zusétzlich zu den Expressionen der 1031 miRNA’s liegen noch
die Informationen iiber den Status der Person und ihre beobachtete Uberlebenszeit vor.
Der Status der Patienten ist dabei bindr codiert und bedeutet, dass bei dem Patient mit
[Status = 0] bis zum Ende der Studie der Tumor nicht wieder aufgetreten ist. Patienten
mit [Status = 1] dagegen sind dementsprechend Personen, bei welchen der Tumor noch
innerhalb des Studienzeitraumes wieder aufgetreten ist. Die Uberlebenszeit ist in diesem
Fall nicht wortlich zu nehmen. Stattdessen entspricht sie entweder der Zeit bis zum Wie-
derauftreten des Tumors, bis zum Studienende oder bis zum Ausscheiden des Patienten
aus der Studie. Die Uberlebenszeit ist dabei in Tagen angegeben und reicht von minimal
56 Tagen bis zu maximal 3002 Tagen.

4.2 Deskription

Aufgrund der Grofle des Datensatzes ist es im Rahmen dieser Arbeit nicht moglich, jede
einzelne Variable genauer vorzustellen. Es werden lediglich die Wichtigsten betrachtet.
Dazu gehoren sowohl die beobachtete Uberlebenszeit, welchen Status sie aufweist und
aus welchem Institut die Person stammt. Zusétzlich werden noch einige représentativen
miRNA’s niher betrachtet.
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Kohorte | Abkiirzung | Institutsort

DKTK BER Berlin

DKTK DD Dresden

DKTK EU Essen

DKTK FB Freiburg

DKTK FFM Frankfurt am Main

DKTK HD Heidelberg

DKTK TUE Tiibingen

DKTK TUM Technische Universitat Miinchen, Klinikum rechts der Isar
KKG KKG Klinische Kooperationsgruppe

DKTK DKTK Deutsches Konsortium fiir Translationale Krebsforschung

Tabelle 2: Erklarung der Abkiirzungen fiir die Institute.

Der Datensatz enthélt 162 Beobachtungen, die aus verschiedenen Instituten in Deutsch-
land stammen. Abbildung [I] zeigt dabei die Verteilung auf die insgesamt neun Institute.
Dabei ist eine sehr ungleiche Verteilung zu beobachten. So stammen allein 77 Patienten
aus der klinischen Kooperationsgruppe LMU/Helmholtz Zentrum Miinchen, wéihrend aus
Berlin und Heidelberg lediglich je zwei Patienten kommen. Da sich die Stichprobe aus
sehr vielen verschiedenen Quellen zusammensetzt, kann es dadurch auch zu Verzerrungen
kommen. So kénnen in den Krankenhéusern z.B. unterschiedliche Standards in der Krebs-
behandlung vorliegen. Auch die Qualitéit der behandelnden Arzte ist nicht iiberall gleich
und kann sich somit auf das Wiederauftreten des Krebs und damit auf die Ergebnisse der
Analyse mit auswirken.

Herkunft der Beobachtungen
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Anzahl Beobachtungen
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Abbildung 1: Die Anzahl der Krebspatienten, welche in der Studie beobachtet wurden, pro Institut.
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Status pro Institut

(o}
o
[

~
o
1

(o2}
o
[

a1
o
[

Status
o
B

Anzahl Beobachtungen
N »
< °

FFM TUE
Institut

BER

Abbildung 2: Die Anzahl der Krebspatienten, welche in der Studie beobachtet wurden, bei denen der
Krebs zuriickkam (Status = 1) und die zensiert wurden (Status = 0).
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Abbildung 2 zeigt zusétzlich zur Herkunft der Patienten das Verhéltnis zwischen Personen
mit dem Wiederauftreten von Krebs (gekennzeichnet mit [Status = 1]) im Gegensatz zu
zensierten Personen (gekennzeichnet mit [Status = 0]). Hierbei ist zu sehen, dass aus
jedem Krankenhaus mindestens eine Person mit Status 1 und eine Person mit Status 0
kommt. Das Verhéltnis ist dabei aber nicht immer identisch. Bis auf das Institut der
TUM sind allerdings immer mindestens 50% der Beobachtungen aus den Krankenhdusern
zensiert ([Status = 0]).

Auch die Verteilung der Uberlebenszeit (hier: Zeit bis zum Event bzw. bis zur Zensur)
ist von Bedeutung. In Abbildung |3|sind die Zeiten in Form von Boxplots dargestellt. Bis
auf das Krankenhaus HD weisen alle Gruppen einen relativ dhnlichen Mittelwert auf.
Die Lange der Boxen, welche die mittleren 50% der Daten enthalten, ist dagegen sehr
abhéangig von der Gruppengrofle. Besonders die Krankenhduser BER, HD und TUM ha-
ben dementsprechend eine geringere Streuung der Uberlebenszeiten. Allerdings lisst sich
allein mit dieser Abbildung noch kein Zusammenhang zwischen der Uberlebenszeit und
dem Status der Person feststellen.

Abbildung EI bildet dagegen den Status der Personen in Relation zur Uberlebenszeit ab.
Die horizontalen Linien zeigen die jeweiligen Mittelwerte. Dabei ist der grofle Unter-
schied zwischen den zwei Mittelwerten deutlich wahrnehmbar. So liegt der Mittelwert
fiir die Beobachtungen mit Status 0 bei circa 1535 Tagen, wéahrend er fiir Beobachtun-
gen mit Status 1 nur bei ca. 432 Tagen liegt. Worin dieser Unterschied begriindet liegt,
ist allerdings nicht ersichtlich. Ein méglicher Grund dafiir wére, dass das Risiko fiir das
Wiederkehren des Kehlkopfkrebses besonders in der Anfangszeit erhoht ist.
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Verteilung der Uberlebenszeiten
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Abbildung 3: Die Verteilung der Uberlebenszeiten betrachtet auf die Krankenhiuser der Krebspatienten,
welche in der Studie beobachtet wurden. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen
den jeweiligen Mittelwerten.

Zusammenhang zwischen Status und Uberlebenszeiten
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Abbildung 4: Die Verteilung der Uberlebenszeiten abhingig vom Status und der Herkunft der Beobach-
tungen. Status = 0 steht flir zensierte Beobachtungen und Status = 1 fiir Beobachtungen bei denen der
Kopf-Hals-Tumor wiederaufgetreten ist. Die horizontalen Linien stellen die jeweiligen Mittelwerte der
Beobachtungen dar.
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Wie bereits erwihnt ist es nicht moglich alle 1031 Einflussvariablen néher zu betrachten.
Abbildungerméglicht allerdings einen kleinen Uberblick iiber vier ausgewéhlte Variablen.
Die dort gezeigten Variablen sind auch diejenigen, die den grofiten bzw. kleinsten Wert
aufweisen mit ca. 6 und —5.5. Alle Einflussvariablen wurden zudem standardisiert und
besitzen dadurch einen Mittelwert von 0 und eine Varianz von 1.

Verteilung einzelner Variablen
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hsa.let.7g9.3p hsa.miR.1470 hsa.miR.6732.3p hsa.miR.7975
Variable

Abbildung 5: Die Verteilung einiger ausgewéhlter Einflussvariablen, die bereits in eine standardisierte
Form gebracht wurden.

4.3 Vorgehen

Um die Auswirkungen der Parameterwahl auf die Variablenselektion zu untersuchen, wird
zunéchst nach der optimalen Einstellung der Parameter geschaut. Mit dieser optimalen
Einstellung kann das bestmogliche Modell berechnet werden, welches dann auch die wich-
tigsten Einflussvariablen enthalten sollte. Im Rahmen dieser Arbeit bedeutet bestmoglich,
dass das Modell auf den unabhéingigen Validierungsdaten den hochsten c-Index aufweist.
Der Algorithmus der rbsurv-Funktion dient also dazu, die entsprechend wichtigen Varia-
blen herauszufiltern. Mit diesen Variablen wird anschlielend ein Cox-Modell auf Grund-
lage des Trainingsdatensatzes berechnet. Dieses wird dann mit dem Validierungsdatensatz
und dem darauf berechneten c-Index bewertet. Im Zuge dieses Prozesses werden dann,
durch unterschiedliche Werte fiir die einzelnen Parameter, Vergleiche der Modelle und ih-
ren dazugehorigen Variablen méglich. Um mit dem vorhandenen Datensatz ein geeignetes
Modell mit den wichtigsten Variablen zu erhalten, wird folgendermafien vorgegangen:
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Schritt 1: Die freien Parameter der rbsurv-Funktion werden in einer geeigneten Reihenfolge
geordnet, in welcher sie spéter dann entsprechend hintereinander optimiert werden.

Schritt 2: Es wird ein Modell mit den Default-Werten der Funktion berechnet. Lediglich
der erste freie Parameter wird verandert. Dabei wird das Modell mit mehreren
verschiedenen Werten fiir den Parameter berechnet und anschlieSend wird der Para-
meter auf den besten Wert festgesetzt. Die Kriterien dafiir sind hauptséchlich der
c-Index und die Berechnungsdauer.

Schritt 3: Schritt 2 wird fiir jeden freien Parameter wiederholt. Die zuvor in Schritt 2 gewon-
nenen optimierten Werte werden als neue Default-Werte verwendet.

Schritt 4: Die Schritte 2 und 3 werden mit den davor gewonnenen Werten als neue Default-
Werte nochmals wiederholt.

Diese hier aufgefithrten Schritte dienen als Ubersicht fiir das weitere Vorgehen. Die einzel-
nen Schritte und die dadurch gewonnenen Informationen werden im Folgenden ausfiihrlicher
betrachtet.

4.3.1 Schritt 1

In Tabellekann eine Ubersicht aller vorhandenen Parameter gefunden werden. Allerdings
werden diese nicht alle in der Modellfindung benétigt. So ist der Befehl [gene. ID] lediglich
dazu gedacht eine bessere Ubersicht iiber die Daten zu erhalten. Fiir die Modellanpassung
selbst spielt er aber keine Rolle. Da es in dem vorhandenen Datensatz keine zusétzlichen
Risikofaktoren gibt, werden auch die Befehle [z] und [alpha] nicht benotigt. Zusatzlich
werden die Befehle [time],[status] und [x] nur gemeinsam verindert, da sie ja jeweils
zueinander gehoren und nicht getrennt verdndert werden konnen. Sie werden deshalb
im weiteren Verlauf als Parameter [Datensatz] zusammengefasst. Die zur Modellfindung
iibriggebliebenen Parameter zusammen mit ihren Default-Einstellungen sind in Tabelle
zu finden. Die Default-Einstellung fiir den Datensatz wurde auf den Teildatensatz DKTK
festgelegt. Der restliche Teil der Daten (KKG) wird somit anschlieflend zur Validierung
mit Hilfe des c-Indexes verwendet.

Argument Beschreibung Default-Einstellung
Datensatz Datensatz zur Modellberechnung hier: DKTK

method die Methode fiir Bindungen Methode nach Efron

n.iter Anzahl an Iterationen bei der Genselektion | 10

n.fold Anzahl an Partitionen der Beobachtungen | 3

n.seq Anzahl an multiplen Modellen 1

seed seed fiir Einteilung der Beobachtungen 1234

max.n.genes | maximale Anzahl an betrachteten Genen hier: Anzahl Beobachtungen

Tabelle 3: Argumente im R-Paket rbsurv, die in den Simulationen verdndert werden
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4.3.2 Schritt 2

Dieser Schritt dient dazu den besten Wert eines Parameters herauszufinden. Hierfiir wird
der Parameter auf mehrere unterschiedliche Werte festgelegt und fiir jeden dieser Werte
werden 40 verschiedene Berechnungen getétigt. Diese 40 Berechnungen ergeben sich aus
der zuvor festgelegten Anzahl von 40 verschiedenen seed‘s pro Auspridgung. Fiir die
Auswahl der moglichen Werte fiir die Parameter spielten sowohl die Default-Einstellung
der rbsurv-Funktion, die mégliche resultierende Berechnungszeit und die gegebenen Gren-
zen des rbsurv-Algorithmus eine Rolle. Die daraus gewonnenen Berechnungen sind dann
letztlich die Grundlage fiir die Entscheidung, auf welchen Wert bzw. welche Auspriagung
der Parameter gesetzt wird. Hierfiir ist primér der c-Index entscheidend. Dieser ist ein
hiufig verwendetes Werkzeug zur Validierung eines Uberlebenszeitmodelles. Es wird da-
bei empfohlen, wie bereits in Abschnitt erldutert, dass der Datensatz fiir die Modell-
findung nicht derselbe wie fiir die Validierung ist. Aufgrund dessen wird lediglich ein Teil-
Datensatz dem Algorithmus der rbsurv-Funktion iibermittelt, wahrend der restliche Teil
des Datensatzes zur Validierung mit dem c-Index verwendet wird. Als Default-Einstellung
wird der Algorithmus der rbsurv-Funktion auf dem Datensatz DKTK ausgefiihrt, fiir die
Validierung dann der Datensatz KKG. Somit wird die Prognosegiite des Modells auf neue
Daten getestet. Allerdings stellt der c-Index nicht das einzige Kriterium fiir die Modell-
findung dar. Auch die Berechnungsdauer ist von Bedeutung. Je nach Datensatzumfang
nehmen die Berechnungen einen erheblichen Zeitumfang ein. Deshalb ist es sowohl im
Rahmen dieser Arbeit, wie auch vermutlich in vielerlei anderweitiger Verwendung durch-
aus ein wichtiges Kriterium, um in annehmbaren Zeiten ein ausreichend gutes Modell zu
finden. Bei einem gegensétzlichen Verlauf der Berechnungszeit und der Modellgiite muss
somit von Fall zu Fall entschieden werden. Die in folgenden Abbildungen angegebene
Berechnungszeit dient in erster Linie dazu, die verschiedenen Berechnungszeiten in ein
Verhiltnis zueinander zu setzen. Die Zeiten selbst konnen von Computer zu Computer
variieren und wurden deshalb zur Vergleichbarkeit alle am selben Gerét berechnet.

4.3.3 Schritt 3

Da es nicht ausreicht, lediglich den ersten Parameter gegebenenfalls anzupassen, wird
Schritt 2 fiir alle weiteren Parameter in einer bestimmten Reihenfolge wiederholt. Diese
Reihenfolge wurde in Schritt 1 festgelegt. Dabei bauen die einzelnen Iterationen auf-
einander auf. Das bedeutet, dass, falls z.B. beim ersten Parameter der Default-Wert
verdndert wird, diese Verdnderung auch fiir die folgenden Parametern mit einbezogen
wird. Die Iterationen sind demnach abhéngig voneinander.

4.3.4 Schritt 4

Um eine robuste Schétzung zu erlangen, werden die Schritte 2 und 3 nochmals wieder-
holt. Die einzige Verdnderung zum ersten Durchgang besteht darin, dass jetzt bereits
neue optimale Werte fiir die Parameter festgelegt wurden und diese im zweiten Durch-
gang als neue Default-Einstellungen iibernommen werden. Somit kann ein Parameter im
zweiten Durchgang auf einen anderen optimalen Wert gesetzt werden als noch im ersten
Durchgang, da die Kombination mit den anderen Parametern verdndert wurde.
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4.4 Simulationen

Um aus den vorhandenen Parametern eine geeignete Reihenfolge zu finden, wurden fol-
gende Uberlegungen angestellt.

e Der Parameter [seed] kann zwar unterschiedliche Modelle durch unterschiedliche
Werte verursachen, allerdings bedeutet dies lediglich das Eingreifen in einen Zu-
fallsprozess. Dieser wird durch die unterschiedlichen Werte im Parameter [seed]
beeinflusst, aber es bleibt dennoch ein Zufallsprozess. Der Parameter [seed] ist so-
mit kein Parameter, den man z.B. durch Vorwissen oder durch Simulationen auf den
"besten” Wert festlegen kann. Aufgrund dieser Umsténde durchlauft der Parameter
[seed] bei jedem einzelnen Simulationsschritt eine gewisse Anzahl an Werten. Durch
die dadurch gewonnene Simulationsstichprobengréfie erhoht sich zusétzlich die Ro-
bustheit der aus den Simulationen gewonnenen Erkenntnisse. Um diese Robustheit
entsprechend hoch und die Simulationsdauer entsprechend kurz zu halten, wurde
die Anzahl der verschieden Werte fiir den Parameter [seed] auf 40 gesetzt.

e Ein wichtiger Punkt in der Simulationsstudie ist die benotigte Rechenzeit. Um diese
moglichst gering zu halten, wurde der Parameter [max.n.genes]| als erster Parameter
ausgewahlt, da hierbei aufgrund vorheriger Testversuche, die grofite Zeitersparnis
vermutet wurde. Die Default-Einstellung entspricht normalerweise der Anzahl der
im Datensatz enthaltenen Gene. Da diese aber in diesem Fall die Anzahl der Beob-
achtungen iibersteigen, wird sie auf die Anzahl der Beobachtungen zuriickgestuft.
Aufgrund der Festlegung des Datensatzes DKTK als Default-Einstellung, gilt folg-
lich auch die Default-Einstellung [max.n.genes = 85]. Die restlichen Gene werden
zuvor mit Hilfe univariater Modelle (sieche Abschnitt aussortiert.

e Da ein Teil der Daten zur spéteren Validierung mit dem c-Index bendtigt wird,
kann nicht der vollstandige Datensatz fiir den Algorithmus verwendet werden (siehe
hierzu Abschnitt [4.3.2)). Wie bereits erwiihnt, wird im Rahmen dieser Arbeit der
Teil-Datensatz DKTK als Default-Einstellung verwendet und somit dem rbsurv-
Algorithmus iibergeben. Um diese Wahl zu iiberpriifen, ist der [Datensatz| der
zweite Parameter, der in den Simulationen verdndert wird. Der Datensatz fiir den
Algorithmus sollte im Normalfall grofier als 50% der Daten sein (siche Kapitel [3.1)).
Fiir weitere Varianten des verwendeten Datensatzes wurden die Beobachtungen in
verschiedene Verhéltnisse aufgeteilt. Wihrend die Aufteilung DKTK vs. KKG einem
Verhéltnis von ca. (52 : 48) Prozent entspricht, enthalten die anderen Varianten
Verhiltnisse von (50 : 50) bis zu (80 : 20) Prozent. Eine genaue Ubersicht dariiber
befindet sich in Tabelle [l

e Die verbleibenden Parameter wurden aufgrund moglicher Verkiirzungen der Berech-
nungszeiten in folgender Reihenfolge verwendet: [method|, [n.iter], [n.fold] und

[n.seq].

Die letztlich verwendete Rangfolge ist in Tabelle 4] dargestellt. Zusétzlich sind auch die
unterschiedlichen Ausprégungen vermerkt, die in den Simulationen benutzt wurden.
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Rangfolge | Parameter | Ausprigungen

1 max.n.genes | 10, 20, 30, 50, 85, 100

2 Datensatz DKTK, T_60, T_70_1, T_70_2, T_80_1, T_80_2, 50, 60, 70, 80
3 method efron, breslow, exact

4 n.iter 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

5 n.fold 2,3,4,5,6,7,8,9, 10

6 n.seq 1,2,3

Tabelle 4: Die Rangfolge und ihre Ausprigungen der Argumente im R-Paket rbsurv fiir die Simulationen

4.4.1 Hintergrund

Um bereits zu Beginn einen Eindruck von der Parameterwahl und ihren Auswirkungen
zu bekommen, wurde beispielhaft der Parameter [n.iter| ausgewéhlt. Abbildung@ zeigt
den Unterschied fiir zwei Berechnungen mit unterschiedlichen Werten fiir den Parameter
[n.iter| und die daraus resultierenden Variablen in den Modellen. Die Werte der restlichen
Parameter entsprechen den Default-Einstellungen der rbsurv-Funktion. Hierbei lasst sich
bereits gut erkennen, dass die Parameterwahl einen durchaus grofien Einfluss auf die
Variablen und damit auch auf die Giite eines Modelles hat. So findet sich in diesem
Beispiel lediglich eine miRNA in beiden Modellen wieder. Im Anhang befindet sich die
Tabelle [, die den entsprechenden Namen der miRNA’s zur ID-Nummer enthilt. Im Fol-

genden werden die verschiedenen Iterationen durchgefiihrt, die auf Tabelle [4 basieren. Am
Ende des Kapitels E befindet sich in Tabelle |§| zudem eine Ubersicht iiber den Aufbau
und die Ergebnisse der einzelnen Iterationen.

Auftreten der miRNA's in den Modellen
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Abbildung 6: Die Auswirkungen der Anzahl der Iterationen auf die Variablenselektion. Die {ibrigen Para-
meter wurden auf die Default-Einstellungen gesetzt.
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4.4.2

Iteration 1.1 bis 1.6

Wie bereits erwihnt, wird der Parameter [seed] in der Auswertung nicht auf einen festen
Wert festgelegt. Stattdessen wird er immer wieder nach dem Zufallsprinzip neu bestimmt,
um dadurch robustere Ergebnisse zu erhalten. Abbildung [7] zeigt allerdings, dass auch der
Parameter [seed| einen relativ grofien Einfluss auf die Giite eines Modelles haben kann.
So schwankt allein in dieser kleinen Stichprobe von zehn verschiedenen seed’s der c-Index
um mehr als 0.12. Der c-Index wurde mit Hilfe des Validierungsdatensatzes (hier: KKG)
berechnet. Allerdings ist der mittlere c-Index dieser zehn Berechnungen mit ca. 0.506 auch
nur knapp iiber 0.5 (gestrichelte Linie) und deutet somit auf keine gute Modellanpassung

hin.

Auswirkungen des Parameters [seed]
1.0-
0.9-
0.8-

0.7-

1 1 1 1 1 1 1 1 1
122615 211826 237083 243926 321223 463171 843891 867900 938347 996336
seed

Abbildung 7: Die Auswirkungen von verschiedenen Werten des Parameters [seed] auf den c-Index. Die
iibrigen Parameter entsprechen den Default-Einstellungen.

Iteration 1.1

Im ersten Schritt zum optimalen Modell wird der Parameter [max.n.genes| fest-
gelegt. Hierfiir wurden die Default-Einstellungen der rbsurv-Funktion iibernommen
und kombiniert mit jeweils verschiedenen Werten fiir [max.n.genes]. Jede dieser
Kombinationen wurde dann mit 40 verschiedenen Werten fiir den Parameter [seed]
berechnet. Abbildung [§] zeigt den Vergleich der Berechnungen im Hinblick auf den
c-Index. Hierbei lassen sich bereits deutliche Unterschiede erkennen. So schneidet
die Default-Einstellung von 85 miRNA’s mit einem durchschnittlichen c-Index von
0.516 relativ schlecht ab. Der durchschnittlich beste c-Index wurde dagegen mit der
Einstellung [max.n.genes = 20| erreicht. Zusétzlich liegen hier auch die mittleren
50% der Daten am engsten beieinander und weisen somit die geringste Streuung in
diesem Bereich auf.
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Auswirkungen des Parameters [max.n.genes]
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Abbildung 8: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf den
c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 9: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf die
Berechnungsdauer. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Zudem lasst sich eine hohe positive Korrelation von ca. 0.999 (nach Pearson) zwischen
der Berechnungsdauer und dem Parameter [max.n.genes| beobachten, wie auch in
Abbildung [9 zu sehen ist. Aufgrund des deutlich besseren, da hoheren c-Index und
der relativ geringen Berechnungsdauer werden die weiteren Berechnungen mit der
Parameterwahl [max.n.genes = 20| fortgefiihrt.

Tteration 1.2

Die zweite Iteration beinhaltet das Festlegen des Parameters [Datensatz|. Die bis
hierhin verwendete Default-Einstellung war der Datensatz DKTK. Die ersten vier
Teil-Datensétze wurden zuféllig aus dem vollstédndigen Datensatz gebildet. Es wurde
dabei also nicht auf die Gruppen- bzw. Institutszugehorigkeit geachtet. Bei den
letzten sechs Teil-Datensétze wurde darauf geachtet, dass die einzelnen Institute mit
ihren dazugehorigen Beobachtungen nicht getrennt wurden. Die weiteren getesteten

Teil-Datensétze und ihre Zusammensetzung sind in Tabelle [5] zu finden.

Bezeichnung | Umfang (proz. Anteil) | enthaltene Datensétze

50 81 (50%) zufillig gebildet aus vollstdndigem Datensatz
60 97 (60%) zufillig gebildet aus vollstiandigem Datensatz
70 113 (70%) zufillig gebildet aus vollstdndigem Datensatz
80 130 (80%) zuféllig gebildet aus vollstdndigem Datensatz
DKTK 85 (52%) DD, FB, EU, FFM, TUE, TUM, BER, HD
T_60 97 (60%) KKG, FB, TUM

T_70.1 113 (70%) KKG, DD, FFM

T 702 113 (70%) KKG, DD, TUE

T_80_1 130 (80%) KKG, DD, FB, FFM

T_80.2 130 (30%) KKG, DD, FB, TUE

Tabelle 5: Die verwendeten Trainings-Datensétze und ihre Zusammenstellung

Betrachtet man die Auswirkung der verschiedenen Teil-Datensétze zur Modellwahl
in Abbildung[10} so sind durchaus Unterschiede erkennbar. Der c-Index der jeweiligen
Teil-Datensétze unterscheidet sich dabei sowohl im Mittelwert als auch in der Streu-
ung deutlich. Dabei ist aber keine Tendenz auszumachen, dass ein groflerer Teil-
Datensatz zu einem besseren Ergebnis fithren wiirde. Da sich die jeweiligen Berech-
nungszeiten der Teil-Datensétze nicht betriachtlich voneinander unterscheiden (siehe
Anhang: Abbildung , wird der Parameter [Datensatz| weiterhin auf DKTK ge-
setzt. Zwar weist der Teildatensatz 60 einen minimal hoheren mittleren c-Index
auf, allerdings ist die Bildung dieses Teildatensatzes sehr vom Zufall gepriagt und
dementsprechend weniger aussagekriftig.

Im Vergleich des c-Index der beiden Teildatensidtze 60 und DKTK ist also kein
grofler Unterschied zu bemerken. Schauen wir uns allerdings das relative Vorkommen
der miRNA’s in den Modellen an, so basieren die jeweiligen Modelle fast ausschlief3-
lich auf unterschiedlichen Variablen. In Abbildung sind die 15 am hé&ufigsten
vorkommenden miRNA’s zu sehen. Lediglich die Nummer 973 ist in beiden Modell-
gruppen sehr hiufig zu finden. Ansonsten gibt es fast keine Uberschneidungen.
Aufgrund der Ubersichtlichkeit befinden sich auch in den weiteren Abbildungen
des selben Musters lediglich die 15 am haufigsten vorkommenden miRNA’s. Die
vollstdndigen Abbildungen befinden sich im digitalen Anhang.
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Auswirkungen des Parameters [Datensatz]
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Abbildung 10: Die verschiedenen Trainings-Datensétze und ihre Auswirkungen auf den c-Index. Die roten
Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 11: Vergleich zweier Teil-Datensétze und das relative Vorkommen der 15 am haufigsten auf-
tretenden miRNA’s in den zugehorigen Modellen. Es wurden pro Teil-Datensatz 40 Modelle berechnet.
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e Iteration 1.3

In Iteration 1.3 geht es um die verwendete Berechnungsmethode bei Bindungen.
Hierfiir stellt das Paket drei verschiedene Optionen bereit. Zuséatzlich zur Default-
Einstellung [method = efron| gibt es noch die exakte Berechnung nach
und Prentice (2002)) und die Methode nach Breslow, (1974)). Vergleichen wir die drei
Methoden im Hinblick auf den c-Index (siehe Abbildung , so sind keine grofien
Unterschiede zu bemerken. Dies lédsst sich auch damit begriinden, dass die Daten
insgesamt relativ wenig Bindungen enthalten. Wéren {iberhaupt keine Bindungen
vorhanden, so wiirden sich fiir alle drei Methoden die gleichen Ergebnisse ergeben.

Auswirkungen des Parameters [method]
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Abbildung 12: Die verschiedenen Methoden fiir die Berechnung der Likelihood und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

Die Ursache fiir die geringen Unterschiede im c-Index rithren daher, dass sich die
Modelle kaum unterscheiden. Bei der Betrachtung der enthaltenen miRNA’s in Ab-
bildung[13|fillt auf, dass die drei Modellgruppen fast immer zu gleichen Anteilen die
miRNA’s enthalten. Da sich die verschiedenen Methoden im vorhandenen Daten-
satz kaum unterschiedlich bemerkbar machen, wird vorerst die Default-Einstellung
[method = efron| beibehalten.
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Auftreten der miRNA's in den Modellen
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Abbildung 13: Vergleich dreier Methoden fiir die Berechnung der Likelihood bei vorhandenen Bindungen
und das relative Vorkommen der 15 am h#ufigsten auftretenden miRNA’s in den zugehorigen Modellen.
Es wurden pro Methode 40 Modelle berechnet.

e Iteration 1.4

Der Parameter [n.iter| dient in der rbsurv-Funktion dazu robustere Schétzungen
fiir die berechneten Parameter zu erlangen. Bei Betrachtung der Abbildung [14] mit
verschiedenen Werten fiir diesen Parameter, kann keine positive Korrelation erkannt
werden. Tatséchlich ist die Korrelation des Parameter [n.iter| und des c-Index mit
—0.19 (Pearson) leicht negativ, was somit fiir eine geringe Anzahl an Iterationen
spricht. Auffallig ist zudem, dass die Gréfle der Boxen im Boxplot mit zunehmender
Anzahl an Iterationen ebenfalls ansteigt. Dies spricht dafiir, dass Modelle, welche
mit einer hohen Anzahl an Iterationen berechnet wurden, eine hthere Schwankung
der Modellgiite vorweisen.

Um festzustellen, welche Auswirkungen der Parameter auf die Variablenselektion
hat, schauen wir uns zusétzlich Abbildung[T5an. Die drei repréisentativen Werte fiir
den Parameter zeigen, dass relativ viele miRNA’s in allen Modellgruppen zumindest
zum Teil vorkommen. Die Modelle setzen sich also vermutlich zum Grofiteil aus
demselben Pool an miRNA’s zusammen, allerdings ist die Zusammenstellung der
einzelnen miRNA’s bei Modellen mit hoher Anzahl an Iterationen im Durchschnitt
schlechter.

Der hohe Anstieg der Berechnungsdauer (siche Anhang: Abbildung und der
zusétzlich beste mittlere c-Index sprechen dafiir, den Parameter [n.iter| auf finf
Iterationen festzulegen.
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Auswirkungen des Parameters [n.iter]
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Abbildung 14: Die verschiedene Anzahl an Iterationen in der rbsurv-Funktion und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehotrigen Zahlen entsprechen den jeweiligen Mittelwerten.

Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 15: Vergleich dreier verschiedener Anzahlen an Iterationen in der rbsurv-Funktion und das
relative Vorkommen der 15 am héufigsten auftretenden miRNA’s in den zugehdrigen Modellen. Es wurden

pro Wert 40 Modelle berechnet.
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e Iteration 1.5

Die fiinfte Iteration behandelt den Parameter [n.fold]. Dessen Default-Einstellung
liegt hierbei bei [n.fold = 3]. Das bedeutet, dass innerhalb der rbsurv-Funktion
eine Einteilung der Daten zu zwei Drittel zum Trainingsdatensatz und zu einem
Drittel zum Validierungsdatensatz erfolgt. Diese Einteilung erfolgt ausschliefllich im
Algorithmus der Funktion und hat nichts mit der anschlieBenden Validierung zur
Gewinnung des c-Index zu tun. Diese basiert auf den Daten, die nicht im Algorith-
mus verwendet wurden.

Setzt man den Parameter beispielsweise auf [n.fold = 5|, so teilt der Algorithmus
die Daten so ein, dass der Trainingsdatensatz vier Fiinftel und der Validierungs-
datensatz ein Fiinftel der Daten enthélt. Diese Einteilung wird mehrmals gemafl der
Einstellung des Parameters [n.iter] durchgefiihrt (siehe Abschnitt [3.2).

Auswirkungen des Parameters [n.fold]
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Abbildung 16: Die unterschiedlichen Werte des Parameters [n.fold] in der rbsurv-Funktion und der
dazugehorige c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mit-
telwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

In Abbildung[L6]ist der c-Index fiir neun verschiedene Werte des Parameters [n. fold]
abgebildet. Dabei entsprechen die Einstellungen [n.fold = 2] und [n.fold = 10]
dem Minimum bzw. dem Maximum der méglichen Werte. Damit auch der Validierungs-
datensatz ausreichend Informationsgehalt besitzt, achtet der Algorithmus darauf,
dass die folgende Formel eingehalten wird:

ny > 3% [nfold, (11)
mit
ny = Summe der Beobachtungen im Datensatz mit Status = 1 (Cho et al., [2009).
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Da fiir den Teil-Datensatz DKTK n; = 32 gilt, ist die grofite ganze Zahl, welche
die Gleichung erfiillt, die 10. Fiir das Minimum des Parameters ist die 2 zudem eine
sinnvolle Wahl, da somit gewéhrleistet ist, dass mindestens die Hélfte der Daten als
Trainingsdatensatz genutzt werden konnen. Werden die moglichen Einstellungen
fir den Parameter [n.fold| im Blick auf den c-Index in Abbildung [L6| betrachtet,
so fillt auf, dass die Default-Einstellung von [n.fold = 3] im Mittel am schlech-
testen abschneidet. Der beste mittlere c-Index berechnet sich auf der Grundlage
[n.fold = 10|, was bedeutet, dass der Trainingsdatensatz 90% der verwendeten
Daten enthélt. Allerdings liegen die Mittelwerte alle relativ eng beieinander und es
ist keine klare Tendenz zu erkennen. Zudem besitzt der Parameter [n.fold] keinen
grofien Einfluss auf die Berechnungszeit (siche Anhang: Abbildung und wird
deshalb auf [n.fold = 10] gesetzt.

Iteration 1.6

Der letzte Parameter im ersten Durchlauf ist der Parameter [n.seq], der dazu dient
multiple Modelle zu bilden. Setzt man den Parameter beispielsweise auf [n.seq = 3],
so bildet der Algorithmus drei eigenstindige Modelle, die insofern voneinander
abhingig sind, dass sie keine Uberschneidungen in den enthaltenen miRNA’s be-
sitzen. Zur besseren Vergleichbarkeit wurden im Zuge dieser Auswertung bei der
Bildung multipler Modelle anschlieend alle ausgewéhlten Variablen in ein Modell
iibergeben. Dies kann dazu fiithren, dass die Modelle statistisch gesehen nicht opti-
mal sind, da es zwischen den Einflussvariablen durchaus hohe Korrelationen geben
kann. Allerdings kénnen sie dadurch, aus biologischer Sicht, mehr wichtige Einfluss-
variablen enthalten, die sonst eventuell nicht beachtet worden wéren.

Aus Griinden der Berechnungszeit sind in dieser Auswertung lediglich maximal drei
verschiedene Modelle berechnet worden. In Abbildung [17]sind diese Modellgruppen
zu schen. Hierbei ist die Einstellung [n.seq = 3] die mit dem besten mittleren
c-Index. Betrachten wir dazu die verwendete Berechnungszeit in Abbildung [I8] so
lasst sich auch hier ein grofier Zusammenhang erkennen (Korrelationskoeffizient nach
Pearson: 0.874).

32



Auswirkungen des Parameters [n.seq]
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Abbildung 17: Unterschiedliche Anzahlen an multiplen Modellen und der dazugehorige c-Index. Die roten
Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 18: Unterschiedliche Anzahlen an multiplen Modellen und ihre Auswirkungen auf die Berech-
nungsdauer. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung zeigt die verwendeten miRNA’s in den Modellen. Hier lsst sich
kein grofler Unterschied erkennen, was auch darin begriindet ist, dass bei multi-
plen Modellen lediglich neue miRNA’s zum bereits vorhandenen Modell hinzugefiigt
werden. Dadurch kann der Anteil an auftretenden miRNA’s in den Modellen mit
zunehmender Anzahl an multiplen Modellen ebenfalls nur zunehmen oder gleich
bleiben.
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Abbildung 19: Vergleich dreier verschiedener Anzahlen an multiplen Modellen in der rbsurv-Funktion
und das relative Vorkommen der 15 am héufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40
Modelle berechnet.

Obwohl der mittlere c-Index bei drei Modellberechnungen am hochsten ist, wird der
Parameter aufgrund der Berechnungszeit auf [n.seq = 1] belassen. Um allerdings
ein optimales Modell mit hoher Prognosegiite zu erhalten, wére es durchaus sinnvoll
auch multiple Modelle zu verwenden.
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4.4.3 Iteration 2.1 bis 2.6

Der zweite Durchgang optimiert die einzelnen Parameter in der gleichen Reihenfolge wie
im ersten Durchgang. Die im ersten Durchgang bereits optimierten Parameter werden
weiterhin als neue Default-Einstellungen verwendet. Um eine bessere Vergleichbarkeit
zwischen den zwei Durchgéngen zu erméglichen, wurden innerhalb der Parameter immer
die selben seed’s verwendet. Das bedeutet, dass sich sowohl in Iteration 1.1 als auch in
Iteration 2.1 dieselben seed’s finden. Das gleiche gilt fiir Iteration 1.2 und Iteration 2.2,
usw. .

e Iteration 2.1

In der ersten Iteration des zweiten Durchgangs wird der Parameter [max.n.genes]
zum zweiten Mal optimiert. Bei der Betrachtung des c-Index fiir verschiedene maxi-
male Anzahlen an miRNA’s in den Modellen in Abbildung 20| lisst sich ein dhnlicher
Verlauf wie im ersten Durchgang (siehe Abbildung[8]) erkennen. Es fillt zudem auf,
dass der mittlere c-Index fiir jeden Wert des Parameters [max.n.genes] gestiegen
ist. Dies ist auf die im ersten Durchgang optimierten Parameter zuriickzufiihren.

Auswirkungen des Parameters [max.n.genes]
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Abbildung 20: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf den
c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

Der hochste mittlere c-Index wird hier durch Werte von zehn bzw. 20 erreicht.
Aufgrund dessen, dass eine Beschréankung von iiber 1000 miRNA’s auf nur maximal
zehn miRNA’s, die in das Modell mitaufgenommen werden koénnen, relativ stark
eingrenzt, wird der Parameter weiterhin auf max.n.genes = 20] festgelegt.
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Auftreten der miRNA's in den Modellen
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Abbildung 21: Vergleich dreier Anzahlen an maximalen miRNA’s in der rbsurv-Funktion und das relative
Vorkommen der 15 am héufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40 Modelle berechnet.
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Abbildung 22: Vergleich dreier Anzahlen an maximalen miRNA’s in der rbsurv-Funktion und das relative
Vorkommen der 15 am hiufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40 Modelle berechnet.
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In Abbildung [21] und [22] ist ein Vergleich der Variablenselektionen zwischen dem
ersten und zweiten Durchgang zu sehen. Hierbei wurden jeweils verschiedene Werte
fiir den Parameter [max.n.genes] betrachtet und die dazugehorigen Variablen, die
dadurch in die Modelle mit aufgenommen wurden. Elf von den 15 am hiufigsten
vorgekommenen miRNA’s im ersten Durchgang finden sich auch im zweiten Durch-
gang unter den Top 15 der miRNA’s wieder. Ebenfalls auffillig ist das Ansteigen
der summierten relativen Haufigkeit. Zwar steigt die summierte relative Haufigkeit
nicht fiir jede miRNA an, allerdings ist das Niveau insgesamt hoher. Die vorkom-
menden miRNA’s im zweiten Durchgang treten dementsprechend 6fters vermehrt in
den Modellen auf als noch im ersten Durchgang. So kommt beispielsweise im ersten
Durchgang die am 15. hiufigste auftretende miRNA mit der ID 860 auf 16 Modelle,
in welchen sie auftritt. Im zweiten Durchgang ist die am 15. hdufigste auftretende
miRNA (ID: 148) in 26 Modellen vertreten. Dieser Vergleich zeigt auf, dass durch die
optimierten Parameter hdufiger dieselben und vermutlich auch wichtigeren miRNA’s
fiir die Modelle ausgew&hlt werden und die Variabilitdt der Variablenselektion da-
durch geringer wird.

Tteration 2.2

Der Parameter [Datensatz]| wurde im ersten Durchgang nicht verdndert und ist
unverindert auf die Default-Einstellung DKTK eingestellt. Die Simulationen im
zweiten Durchgang zeigen jedoch deutliche Verdnderungen gegeniiber dem ersten
Durchgang. Bei der Betrachtung des mittleren c-Index in Abbildung lasst sich
gut erkennen, dass der Datensatz T_80-2 den hochsten c-Index besitzt. Besonders
der Unterschied zwischen dem Datensatz 7_80_2 und dem zufillig gebildeten Da-
tensatz 80 ist auffallig. Obwohl beide Datenséitze jeweils 80% der gesamten Daten
enthalten, weisen sie doch deutliche Unterschiede im mittleren c-Index auf. Aller-
dings kann man daraus keine allgemeine Aussage ableiten, da dies lediglich auf
diese zwei Datensétze zutrifft. Der Datensatz 60, der noch im ersten Durchgang den
hochsten c-Index aufweisen konnte (siehe Abbildung , ist dagegen lediglich im
Mittelfeld der hier aufgefiihrten Datensétze zu finden. Die Berechnungsdauer hat
keine entscheidende Bedeutung (siche Anhang: Abbildung . Fiir die weiteren Si-
mulationen wurde die Einstellung [Datensatz = T_80_2| iibernommen.

Iteration 2.3

In Iteration 2.3 wird der Parameter [method| nochmals genauer betrachtet. Ab-
bildung [24] zeigt hierbei ein dhnliches Bild wie bereits im ersten Durchgang (siehe
Abbildung . So haben die unterschiedlichen Methoden fiir die Berechnung der
partiellen Likelihood hier keinen grofien Einfluss auf den c-Index. Die Parameterein-
stellung [method = exact] weist zwar einen etwas hoheren Median fiir den c-Index
auf, aber die Mittelwerte sind jeweils fast identisch. Allerdings ist zu beobachten,
dass auch hier der mittlere c-Index durch die optimierten Parameter im Vergleich
zum ersten Durchgang angestiegen ist.
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Auswirkungen des Parameters [Datensatz]
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Abbildung 23: Die verschiedenen Trainings-Datensétze und ihre Auswirkungen auf den c-Index. Die roten
Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.

Vergleicht man allerdings die enthaltenen miRNA’s in den Modellen, so ergeben
sich grole Unterschiede. In Abbildung [25[sind die 15 am haufigsten vorkommenden
miRNA’s in den Modellen zum Parameter [method] zu sehen. Vergleicht man diese
mit Abbildung[13] so sind bis auf die miRNA mit der ID 973 keine Gemeinsamkeiten
zu erkennen. Auch die vollstindige Auflistung aller in den Modellen vorkommenden
miRNA’s liefert dasselbe Ergebnis (siehe digitaler Anhang). Das bedeutet, dass die
gebildeten Modelle im ersten und im zweiten Durchgang bis auf die miRNA mit
der ID 973 vollig unterschiedliche Einflussvariablen besitzen. Dieser grofie Unter-
schied ist vermutlich damit zu begriinden, dass in der vorherigen Iteration 2.2 der
Trainings-Datensatz gedndert wurde. Die Verhéltnisse zwischen den unterschied-
lichen Methoden und dem Vorkommen der einzelnen miRNA’s scheinen relativ
konstant proportional zueinander zu sein und bestétigen somit den Eindruck aus
Abbildung dass die Methode fiir Bindungen hier keinen grofien Einfluss auf die
Modelle hat. Dadurch wird auch im weiteren Verlauf der Parameter auf der Default-
Einstellung [method = efron] belassen.
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Auswirkungen des Parameters [method]
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Abbildung 24: Die verschiedenen Methoden fiir die Berechnung der Likelihood und ihre Auswirkungen auf

den c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 25: Vergleich dreier Methoden fiir die Berechnung der Likelihood bei vorhandenen Bindungen
und das relative Vorkommen der 15 am héufigsten auftretenden miRNA’s in den zugehorigen Modellen.
Es wurden pro Methode 40 Modelle berechnet.
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e Iteration 2.4

Der Parameter [n.iter| wurde im ersten Durchgang von der Default-Einstellung
[n.iter = 10] auf [n.iter = 5] optimiert. Durch Abbildung [26] bestétigt sich diese
Optimierung auch im zweiten Durchgang, da auch hier die Einstellung [n.iter = 5]
den hochsten mittleren c-Index aufweist. Der Korrelationskoeffizient des Parameter
[n.iter| und des c-Index ist mit —0.19 (Pearson) leicht negativ und entspricht ziem-
lich exakt dem gleichen Korrelationskoeffizienten wie noch im ersten Durchgang. Die
Berechnungsdauern, die in Abbildung[27]zu finden sind, steigen proportional zur An-
zahl der Iterationen deutlich an. So ist auch hier eine geringe Anzahl an Iterationen
im Algorithmus zu befiirworten und dementsprechend wird auch im zweiten Durch-

gang der Parameter auf [n.iter = 5] festgelegt.

Auswirkungen des Parameters [n.iter]
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Abbildung 26: Die verschiedene Anzahl an Iterationen in der rbsurv-Funktion und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

40



Auswirkungen des Parameters [n.iter]
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Abbildung 27: Die verschiedene Anzahl an Iterationen in der rbsurv-Funktion und ihre Auswirkungen
auf die Berechnungsdauer. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen
Mittelwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

e Iteration 2.5

Um den Parameter [n.fold] ein weiteres Mal zu optimieren, wurden dieselben Werte
fiir den Parameter simuliert wie bereits in Iteration 1.5. Der Uberblick iiber den
jeweils dazugehorigen mittleren c-Index befindet sich in Abbildung 28] Auch hier
bestétigt sich der Eindruck aus dem ersten Durchgang, dass sich ein hoher Wert fiir
den Parameter [n.fold] positiv auf den c-Index auswirkt.

Die Berechnungsdauer ist fiir jeden der einzelnen Werte so gut wie identisch (siehe
Anhang: Abbildung [38)) und spielt somit keine Rolle fiir die Optimierung des Para-
meters. Aufgrund des hochsten c-Index wird dieser weiterhin auf [n.fold = 10]
gesetzt.
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Auswirkungen des Parameters [n.fold]
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Abbildung 28: Die unterschiedlichen Werte des Parameters [n.fold] in der rbsurv-Funktion und der
dazugehorige c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mit-
telwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

e Iteration 2.6

Der letzte Iterationsschritt hat wieder den Parameter [n.seq] im Blick. Dieser dient
zur Uberpriifung, ob die Bildung mehrerer Modelle eventuell einen hoheren c-Index
bewirkt. In Abbildung [29 wird dieser Eindruck verstérkt. So steigt der c-Index mit
steigender Anzahl an Modellen. Die erhohte Prognosegiite durch multiple Modelle
hat allerdings auch eine deutlich lingere Berechnungsdauer zur Folge. Abbildung 30]
zeigt, dass die Berechnungsdauer von einem Modell auf drei Modelle um fast 50%
zunimmt. Da es sich hierbei um die letzte Iteration handelt, wird der Parameter
ungeachtet der lingeren Berechnungsdauer auf [n.seq = 3] gesetzt.
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Auswirkungen des Parameters [n.seq]
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Abbildung 29: Unterschiedliche Anzahlen an multiplen Modellen und der dazugehorige c-Index. Die roten
Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 30: Unterschiedliche Anzahlen an multiplen Modellen und ihre Auswirkungen auf die Berech-
nungsdauer. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Ubersicht

In Tabelle B] befindet sich der Uberblick iiber die einzelnen Iterationsschritte. Auch das
abschlieende Modell mit den optimierten Parametern befindet sich darin.

Iteration | max.n.genes | Datensatz | method | n.iter | n.fold | n.seq
Start 85 DKTK efron 10 3 1
1.1 X DKTK efron 10 3 1
1.2 20 X efron 10 3 1
1.3 20 DKTK X 10 3 1
1.4 20 DKTK efron X 3 1
1.5 20 DKTK efron 5 X 1
1.6 20 DKTK efron 5 10 X
2.1 X DKTK efron 5 10 1
2.2 20 X efron 5 10 1
2.3 20 T_80_2 X 5 10 1
2.4 20 T_80_2 efron X 10 1
2.5 20 T_80_2 efron 5 X 1
2.6 20 T 802 efron 5 10 X
Ende 20 T_80.2 efron 5 10 3

Tabelle 6: Die einzelnen Simulationsschritte und die dazugehorige Parameterwahl. Die Variable = steht
dafiir, dass diese Variable mit mehreren Ausprigungen in die Simulation einflief3t.

4.4.4 Auswirkungen der optimierten Parameterwahl

Vergleicht man das Modell mit den Default-Parametereinstellungen mit dem optimierten
Modell, so lassen sich deutliche Unterschiede erkennen. Bis auf den Parameter [method]
wurden dabei alle Parameter im Laufe der Iterationsschritte optimiert (siche Tabelle [G).
Vergleicht man den durchschnittlichen c-Index der beiden Modelle, so schneidet das opti-
mierte Modell deutlich besser ab. Abbildung [31] zeigt die Verteilung des c-Index fiir je 40
Modelle pro Gruppe. Hierbei ldsst sich eine Differenz des mittleren c-Index von ca. 0.15
feststellen. Auch die Varianz des c-Index mit den Default-Einstellungen ist mit ca. 0.0023
mehr als doppelt so hoch wie die Varianz des c-Index mit den optimierten Parametern
(ca. 0.0011).

Betrachtet man die dazugehorige Berechnungsdauer in Abbildung [32] so ldsst sich auch
hier ein grofler Unterschied erkennen. Die durchschnittliche Berechnungszeit der Default-
Einstellung betrdgt mit ca. 156 Sekunden mehr als sechs Mal so viel wie die durch-
schnittliche Berechnungszeit mit den optimierten Parametern (23.5 Sekunden). Dieser
enorme Zeitgewinn durch die optimierten Parameter wird hauptséchlich durch die Ver-
ringerung der maximalen Anzahl an miRNA’s im Modell verursacht. So konnte bereits in
Abbildung[9) der grofie Unterschied zwischen den verschiedenen Werten fiir den Parameter
[max.n.genes| ausgemacht werden.

Obwohl das optimierte Modell deutliche Verbesserungen hinsichtlich des c-Index und der

Berechnungsdauer vorweist, ist keinesfalls gegeben, dass es sich dabei um die optimalen
Parameter-Einstellungen handelt.
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Abbildung 31: Der Vergleich zwischen den Default-Einstellungen und dem optimierten Modell bzgl. dem
c-Index. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 32: Der Vergleich zwischen den Default-Einstellungen und dem optimierten Modell bzgl. der
Berechnungsdauer. Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Betrachtet man die summierte relative Haufigkeit der 15 am haufigsten vorkommenden
miRNA’s im optimierten Modell, so sind die zehn haufigsten miRNA’s in iiber 75% der
Modelle enthalten. Dadurch, dass das optimierte Modell sich allerdings aus multiplen
Modellen zusammensetzt, steigt die Summe der enthaltenen miRNA’s automatisch an.
Aus den 40 verschiedenen Modellen mit den optimierten Parametereinstellungen besitzt
das beste Modell einen c-Index von ca. 0.7181 mit dem dazugehorigen Konfidenzintervall
[0.5614; 0.8749]. Die ID-Nummern der elf enthaltenen miRNA’s sind: 147,194, 196, 443, 626,
627,723,801, 963,973 und 1000.

Das schlechteste Modell der 40 Modelle mit den optimierten Parametereinstellungen be-
sitzt einen c-Index von ca. 0.5907 (Konfidenzintervall: [0.3930;0.7884]). Dieser Unter-
schied liegt an den unterschiedlichen Werten fiir den Parameter [seed] und der damit
verbundenen zufélligen Aufteilung in Trainings- und Validierungsdatensatz innerhalb der
Kreuzvalidierung.

Interessanterweise ist das beste Modell mit den optimierten Parametereinstellungen nicht
das beste Modell, welches in den Simulationsschritten zu finden war. So gab es innerhalb
der Iterationsschritte Modelle, die einen héheren c-Index aufweisen konnen. Das beste da-
bei gefundene Modell ist in Iterationsschritt 2.5 berechnet worden. Im Unterschied zur op-
timierten Parametereinstellung wurden hier die Parameter [n.fold = 8] und [n.seq = 1]
angewendet. Dadurch ergab sich ein Modell mit neun miRNA’s und einem c-Index von
ca. 0.7606 (Konfidenzintervall: [0.6213;0.8999]).

Auftreten der miRNA's in den Modellen
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Abbildung 33: Das relative Vorkommen der 15 am h#ufigsten vorkommenden miRNA’s in den Modellen
mit optimierten Parametern. Es wurden 40 Modelle berechnet.
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5 Ergebnisse

Die vorangegangene Auswertung brachte verschiedene Erkenntnisse zu Tage. Mit Hilfe
von Simulationen wurden viele verschiedene Modelle mit dem R-Paket rbsurv berechnet
und ausgewertet. Dadurch wurde die Variabilitdt der Funktion rbsurv und den darin
enthaltenen Parametern aufgezeigt. Die Simulationen fithrten letztlich zu einem Modell
mit optimierten Parametern, das deutliche Verbesserungen gegeniiber dem Modell mit den
Default-Parametereinstellungen aufweist. Zudem konnten Erkenntnisse fiir eine allgemeine
optimale Parametereinstellung gewonnen werden.

5.1 Bestes Modell

Durch die zwei Simulations-Durchgéinge und die darin enthaltenen Iterationsschritte wurde
ein bestes Modell mit optimierter Parametereinstellung gefunden. Der Vergleich in Kapitel
[4.4.4) zeigt, dass das optimierte Modell in der Prognosegiite und der Berechnungszeit deut-
liche Vorteile gegeniiber dem Modell mit den Default-Einstellungen besitzt. Allerdings ist
auch bei den optimierten Parametereinstellungen noch eine relativ grofle Varianz beziiglich
des Parameters [seed] zu beobachten. Zudem gab es im Zuge der Auswertung bessere
Modelle bezogen auf den c-Index. Aufgrund der Schwankungen durch den Parameter
[seed| konnen somit andere Parametereinstellungen zu noch besseren Modellen fiihren.
Die durch die Iterationen festgelegten Parameter versprechen somit nicht das beste einzel-
ne Modell, sondern den im Durchschnitt héchsten c-Index, der hier berechneten Modelle.
Durch die Verwendung von zufilligen und damit meist unterschiedlichen Werten fiir den
Parameter [seed| wird der Vergleich zwischen den verschiedenen Modellen zusétzlich er-
schwert. Es ist dadurch nicht ersichtlich, ob der Grund fiir den Unterschied zwischen den
Modellen die Parametereinstellung oder der Parameter [seed] ist.

Die in Abbildung[33] vorkommenden miRNA’s sind nach dem optimierten Modell die wich-
tigsten miRNA’s fiir das Wiederauftreten des Kopf-Hals-Tumors. Um ein gutes Modell zu
finden empfiehlt es sich, mehrere Modelle mit den optimierten Parametern zu berechnen.
Aus diesen sollte dann das beste Modell ausgesucht werden. Damit kann der Einfluss von
der zufilligen Schwankung der Modellgiite durch den Parameter [seed] verringert werden.

5.2 Empfehlung fiir die Parametereinstellung

Da die erhaltenen Erkenntnisse und Ergebnisse alle auf einem einzelnen, relativ kleinen
Datensatz basieren, ist es schwer daraus allgemeine Grundsitze fiir die Parameterwahl zu
schliefen. Dennoch lassen sich verschiedene Aussagen fiir die Parameter aus den Simula-
tionen treffen.

1. Parameter [seed]

Der Parameter [seed] ist der einzige Parameter, der sich nicht optimieren ldsst. Den-
noch zeigt z.B. Abbildung[20|die unterschiedlichen Auswirkungen, die der Parameter
(abhéngig von den anderen Parametern) auf die Ergebnisse hat. In Abbildung |31]ist
allerdings zu sehen, dass die Varianz des c-Index durch die optimierten Parameter
deutlich kleiner geworden ist. Dementsprechend liegt die Vermutung nahe, dass eine
gute Einstellung der Parameter auch die Variabilitdt durch den Parameter [seed]
verringert.
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2. Parameter [max.n.genes]|

Der Parameter [max.n.genes] ist per Default-Einstellung auf die Anzahl der miRNA’s
festgelegt. Wird er nicht explizit angegeben, werden alle miRNA’s auch im Algo-
rithmus verwendet und es werden davor keine miRNA’s durch univariate Modelle
aussortiert. Bei der Verwendung der DKTK-Daten als Trainingsdatensatz wird die
Default-Einstellung auf die Anzahl der Beobachtungen zuriickgestuft, die dann 85
betragt.

Betrachtet man die Simulationsschritte 1.1 und 2.1, so wurde der hochste c-Index
mit 10 bzw. 20 miRNA’s erreicht. Ab [max.n.genes = 30] wurde der c-Index mit
steigender Anzahl an miRNA’s immer niedriger. Ebenso steigt die Berechnungsdauer
der Modelle mit steigender Anzahl von miRNA’s deutlich an. Es scheint sich hier
tatséchlich zu lohnen, den Parameter manuell an die Daten anzupassen. Es wurde in
den hier berechneten Simulationen durch eine niedrige Einstellung des Parameters
[max.n.genes| nicht nur ein hoherer c-Index, sondern auch eine deutlich geringere
Berechnungsdauer erzielt.

3. Parameter [Datensatz]

Als Default-Einstellung fiir den Parameter [Datensatz| wurde hier der Teildatensatz
DKTK verwendet. Im Iterationsschritt 2.2 wurde diese Entscheidung zugunsten des
Teildatensatzes T_80_2 veréndert. Die Simulationen lassen allerdings keine Schliisse
auf eine optimale Einstellung bei multizentrischen Daten zu. So konnte weder eine
Tendenz beobachtet werden, dass ein groflerer Trainingsdatensatz zu besseren Er-
gebnissen fiithrt, noch dass das Beibehalten der Institutsgruppen im Vergleich zu
einer zufilligen Zuordnung einen positiven Unterschied ausmacht. Dementsprechend
kann man allein auf der Basis dieser Daten keine Empfehlungen fiir den Umgang
mit multizentrischen Daten aussprechen.

4. Parameter [method)|

Der Parameter [method| legt fest, nach welcher Methode Bindungen im Datensatz
bei der Berechnung der Likelihood behandelt werden. Neben der Default-Einstellung
von Efron| (1977) gibt es noch die exakte Berechnungsmethode von |[Kalbfleisch
und Prentice (2002) und die Methode nach Breslow| (1974)). Im Zuge dieser Aus-
wertung blieb der Parameter iiber die gesamte Zeit bei der Default-Einstellung
[method = efron|. Ein grofler Unterschied zwischen den Methoden konnte aber
nicht festgestellt werden. Der Grund hierfiir ist die geringe Anzahl an Bindungen
im vorhandenen Datensatz. Bei einer hoheren Anzahl an Bindungen verspricht die
exakte Methode nach Kalbfleisch und Prentice (2002) zwar die besten (genaues-
ten) Ergebnisse, allerdings steigt die Berechnungszeit proportional zur Anzahl der
Bindungen deutlich an. Ist die Berechnungszeit fiir den Anwender von hoher Be-
deutung, dann ist auch bei einer hohen Zahl an Bindungen die Default-Einstellung
[method = efron| zu empfehlen.
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5. Parameter [n.iter]

Betrachtet man die Simulationsschritte 1.4 und 2.4, so wurde der Parameter [n.iter]
zweimal auf den kleinsten Wert mit [n.iter = 5| gesetzt. Im Vergleich zur Default-
Einstellung von [n.iter = 10] wurde der Wert also nochmals herabgestuft. Die
Vermutung, dass sich durch eine hohere Anzahl an Iterationen robustere Ergeb-
nisse erzielen lassen koénnen, ist durch diese Auswertung nicht zu belegen. Statt-
dessen nimmt vor allem in Simulationsschritt 1.4 die Variabilitét des c-Index mit
steigender Anzahl an Iterationen immer mehr zu. Es scheint dementsprechend oft
ausreichend, wenn der Parameter [n.iter] relativ klein gehalten wird. Die Default-
Einstellung von [n.iter = 10| scheint hierbei eine gute Wahl zu sein, da somit auch
die Berechnungszeit in Grenzen gehalten wird.

6. Parameter [n.fold]

Der Parameter [n.fold| dient dazu, innerhalb des Algorithmus eine Aufteilung in
Trainings- und Validierungsdatensatz vorzunehmen. Diese Aufteilung erfolgt aus-
schliellich innerhalb des Algorithmus und hat nichts mit dem in dieser Auswertung
verwendeten Validierungsdatensatz fiir den c-Index zu tun. Die Auswertungen er-
gaben dabei zweimal die Empfehlung, dass der Parameter auf [n.fold = 10] gesetzt
werden solle. Es liel sich mit steigenden Werten fiir den Parameter [n.fold] jeweils
eine leicht positive Tendenz des c-Index beobachten. Dies legt die Vermutung nahe,
dass sich ein grofler interner Trainingsdatensatz positiv auf den c-Index bemerkbar
macht. Da diese Einteilungen keine nennenswerten Auswirkungen auf die Berech-
nungszeit besitzen, ist es empfehlenswert, die Default-Einstellung [n.fold = 3] zu
verdndern. Vorsicht ist allerdings geboten, da es, je nach Datensatz, unterschiedliche
Moglichkeiten zur Einstellung des Parameters gibt (siehe Formel .

7. Parameter [n.seq]

Der Parameter [n.seq] dient in erster Linie dazu, voneinander unabhingige, sich
ergdnzende multiple Modelle zu bilden. Im Rahmen dieser Bachelorarbeit wur-
den bei der Bildung multipler Modelle die Einflussvariablen alle in ein Modell
iibernommen. Dadurch ergab sich ein hoherer c-Index, allerdings nahm auch die Be-
rechnungszeit deutlich zu. Die Einstellung dieses Parameters hingt dementsprechend
stark von den Zielen des Anwenders ab. Ist ein Modell mit einer hohen Prognosegiite
oder das Auffinden aller eventuell relevanter miRNA’s gewiinscht, so ist die Bildung
multipler Modelle zu empfehlen. Das aus statistischer Sicht gesehen beste Modell
(nach dem AIC) ist aber meist mit der Einstellung [n.seq = 1] zu erreichen. Auch
die erhchte Berechnungszeit bei der Bildung multipler Modelle kann eine Rolle fiir
den Anwender spielen.
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6 Fazit

In dieser Bachelorarbeit wurden die Auswirkungen der Parameterwahl im R-Paket rbsurv
auf die Variablenselektion untersucht. Hierfiir wurde ein multizentrischer Datensatz vom
Deutschen Konsortium fiir translationale Krebsforschung und ein monozentrischer Daten-
satz der klinischen Kooperationsgruppe der LMU Miinchen und der Klinik fiir Strahlen-
therapie und Radioonkologie verwendet.

Im Zuge der Auswertung wurde ein Modell mit optimierten Parametereinstellungen ge-
sucht. Dazu wurden zwei Durchgénge mit jeweils sechs Iterationen durchgefiihrt. Inner-
halb einer Iteration wurde, bei Festhalten aller anderen Parameter, ein Parameter mit
verschiedenen Werten gepriift und auf den besten Wert festgelegt. Als Giitekriterium
wurde dabei der c-Index verwendet, der auf einem vom Modell unabhéngigen Validie-
rungsdatensatz ermittelt wurde. Als weiteres Giitekriterium wurde die Berechnungsdauer
der Modelle herangezogen.

Das durch die Iterationsschritte gewonnene, optimierte Modell weifit deutliche Verbes-
serungen hinsichtlich des c-Index und der Berechnungsdauer auf. So konnte der durch-
schnittliche c-Index im Vergleich zu dem Modell mit den Default-Einstellungen deutlich
erhoht werden und die mittlere Berechnungsdauer deutlich gesenkt werden. Werden die
einzelnen Parameter betrachtet, so haben sie alle eine mehr oder weniger grole Wirkung
auf die Variablenselektion und die damit verbundene Modellgiite. Ausgenommen werden
muss dabei der Parameter [method|, der durch die geringe Anzahl an Bindungen im vor-
liegenden Datensatz kaum einen Einfluss hat. Eine optimale Einstellung der Parameter
kann allerdings nicht pauschal angeben werden. Die Parameter und ihre optimale Ein-
stellung héngt insbesondere auch vom verwendeten Datensatz ab und ist somit fiir jede
Auswertung unterschiedlich. Allerdings gab es innerhalb dieser Auswertung Tendenzen zu
sehen, fiir welche Einstellungen die Parameter die besten Ergebnisse erzielten. Da im Zuge
dieser Auswertung auch verschiedene Teil-Datensétze als Trainings-Datensatz verwendet
wurden, konnen Vermutungen angestellt werden, dass diese Tendenzen auch fiir andere
Datensétze gelten. Um fiir eine neue Auswertung die richtigen Parameter-Einstellungen
zu finden, ist es dennoch zu empfehlen, individuelle Simulationen zu den einzelnen Para-
metern durchzufithren. Trotz dieser optimierter Einstellungen ist der Parameter [seed]
fiir eine gewisse Variabilitdt in den Ergebnissen verantwortlich. Durch eine Optimierung
der Parameter konnte diese zwar verringert, aber nicht vollsténdig verhindert werden.

Abschlielend ist festzuhalten, dass das R-Paket rbsurv eine gute und individuell anpassbare
Moglichkeit bietet, um Micro-Array-Daten zu analysieren. Allerdings kann es durchaus
aufwendig und schwierig sein die richtigen bzw. optimalen Parametereinstellungen zu fin-
den. Die Default-Einstellungen der Funktion dienen lediglich als Ausgangspunkt und sind
keineswegs fiir alle Datensédtze auch die optimalen Einstellungen. Mit einer optimierten
Parametereinstellung kann somit nicht nur die Modellgiite und die Berechnungsdauer
verbessert, sondern auch die Variabilitdt durch den Parameter [seed| verringert werden.
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7 Anhang

Im Anhang befindet sich weiteres Material zu dieser Bachelorarbeit. Dazu gehéren sowohl
weitere Abbildungen und Tabellen, wie auch die verwendeten R-Codes.

7.1 Abbildungen und Tabellen

Hier finden sich alle im vorhergehenden Text erwéhnten Abbildungen und Tabellen.

ID | miRNA ID | miRNA ID miRNA

1 hsa.let.7a.5p 345 | hsa.miR.3692.5p 689 | hsa.miR.605.5p
2 hsa.let.7b.3p 346 | hsa.miR.370.3p 690 | hsa.miR.6068

3 hsa.let.7b.5p 347 | hsa.miR.3713 691 | hsa.miR.6069

4 hsa.let.7c.5p 348 | hsa.miR.371a.5p 692 | hsa.miR.6073

) hsa.let.7d.3p 349 | hsa.miR.371b.5p 693 | hsa.miR.6074

6 hsa.let.7d.5p 350 | hsa.miR.373.5p 694 | hsa.miR.6075

7 hsa.let.7e.5p 351 | hsa.miR.374a.5p 695 | hsa.miR.6076

8 hsa.let.7f.5p 352 | hsa.miR.374b.5p 696 | hsa.miR.6083

9 hsa.let.7g.3p 353 | hsa.miR.376a.3p 697 | hsa.miR.6084
10 | hsa.let.7g.5p 354 | hsa.miR.376¢.3p 698 | hsa.miR.6085
11 | hsa.let.7i.5p 355 | hsa.miR.378a.3p 699 | hsa.miR.6086
12 | hsa.miR.1.3p 356 | hsa.miR.378b 700 | hsa.miR.6087
13 | hsa.miR.100.5p 357 | hsa.miR.378¢c 701 | hsa.miR.6088
14 | hsa.miR.101.3p 358 | hsa.miR.378d 702 | hsa.miR.6089
15 | hsa.miR.103a.3p 359 | hsa.miR.378e 703 | hsa.miR.6090
16 | hsa.miR.106b.5p 360 | hsa.miR.378f 704 | hsa.miR.610

17 | hsa.miR.107 361 | hsa.miR.378¢g 705 | hsa.miR.6124
18 | hsa.miR.10a.5p 362 | hsa.miR.378i 706 | hsa.miR.6125
19 | hsa.miR.10b.3p 363 | hsa.miR.381.3p 707 | hsa.miR.6126
20 | hsa.miR.10b.5p 364 | hsa.miR.3907 708 | hsa.miR.6127
21 | hsa.miR.1180.3p 365 | hsa.miR.3911 709 | hsa.miR.6129
22 | hsa.miR.1181 366 | hsa.miR.3917 710 | hsa.miR.6131
23 | hsa.miR.1182 367 | hsa.miR.3922.5p 711 | hsa.miR.6132
24 | hsa.miR.1183 368 | hsa.miR.3925.5p 712 | hsa.miR.6133
25 | hsa.miR.1185.1.3p | 369 | hsa.miR.3926 713 | hsa.miR.6134
26 | hsa.miR.1185.2.3p | 370 | hsa.miR.3934.3p 714 | hsa.miR.614

27 | hsa.miR.1199.5p 371 | hsa.miR.3934.5p 715 | hsa.miR.615.3p
28 | hsa.miR.1202 372 | hsa.miR.3935 716 | hsa.miR.616.3p
29 | hsa.miR.1203 373 | hsa.miR.3937 717 | hsa.miR.6165
30 | hsa.miR.1207.5p 374 | hsa.miR.3940.3p 718 | hsa.miR.617

31 | hsa.miR.1208 375 | hsa.miR.3940.5p 719 | hsa.miR.619.5p
32 | hsa.miR.1224.5p 376 | hsa.miR.3944.5p 720 | hsa.miR.622

33 | hsa.miR.1225.5p 377 | hsa.miR.3945 721 | hsa.miR.623

34 | hsa.miR.1226.5p 378 | hsa.miR.3960 722 | hsa.miR.628.3p
35 | hsa.miR.1227.3p 379 | hsa.miR.3972 723 | hsa.miR.629.3p
36 | hsa.miR.1227.5p 380 | hsa.miR.3976 724 | hsa.miR.630

37 | hsa.miR.1228.3p 381 | hsa.miR.422a 725 | hsa.miR.631
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38 | hsa.miR.1228.5p 382 | hsa.miR.423.3p 726 | hsa.miR.636

39 | hsa.miR.1229.3p 383 | hsa.miR.423.5p 727 | hsa.miR.638

40 | hsa.miR.1229.5p 384 | hsa.miR.424.3p 728 | hsa.miR.639

41 | hsa.miR.1233.5p 385 | hsa.miR.424.5p 729 | hsa.miR.640

42 | hsa.miR.1234.3p 386 | hsa.miR.425.3p 730 | hsa.miR.642a.3p
43 | hsa.miR.1236.5p 387 | hsa.miR.425.5p 731 | hsa.miR.642b.3p
44 | hsa.miR.1237.3p 388 | hsa.miR.4251 732 | hsa.miR.645

45 | hsa.miR.1237.5p 389 | hsa.miR.4253 733 | hsa.miR.648

46 | hsa.miR.1238.3p 390 | hsa.miR.4257 734 | hsa.miR.650

47 | hsa.miR.1238.5p 391 | hsa.miR.4259 735 | hsa.miR.6500.3p
48 | hsa.miR.1246 392 | hsa.miR.4260 736 | hsa.miR.6500.5p
49 | hsa.miR.1247.3p 393 | hsa.miR.4261 737 | hsa.miR.6507.5p
50 | hsa.miR.1249.3p 394 | hsa.miR.4269 738 | hsa.miR.6508.5p
51 | hsa.miR.1249.5p 395 | hsa.miR.4270 739 | hsa.miR.6509.5p
52 | hsa.miR.1254 396 | hsa.miR.4271 740 | hsa.miR.6510.5p
53 | hsa.miR.125a.3p 397 | hsa.miR.4274 741 | hsa.miR.6511a.3p
54 | hsa.miR.125a.5p 398 | hsa.miR.4280 742 | hsa.miR.6511a.5p
55 | hsa.miR.125b.1.3p | 399 | hsa.miR.4281 743 | hsa.miR.6511b.3p
56 | hsa.miR.125b.2.3p | 400 | hsa.miR.4282 744 | hsa.miR.6511b.5p
57 | hsa.miR.125b.5p 401 | hsa.miR.4284 745 | hsa.miR.6512.5p
58 | hsa.miR.126.3p 402 | hsa.miR.4286 746 | hsa.miR.6515.3p
59 | hsa.miR.126.5p 403 | hsa.miR.429 747 | hsa.miR.6516.3p
60 | hsa.miR.1260a 404 | hsa.miR.4291 748 | hsa.miR.6516.5p
61 | hsa.miR.1260b 405 | hsa.miR.4294 749 | hsa.miR.652.5p
62 | hsa.miR.1261 406 | hsa.miR.4298 750 | hsa.miR.654.5p
63 | hsa.miR.1266.3p 407 | hsa.miR.4299 751 | hsa.miR.658

64 | hsa.miR.1268a 408 | hsa.miR.4300 752 | hsa.miR.659.3p
65 | hsa.miR.1268b 409 | hsa.miR.4304 753 | hsa.miR.660.5p
66 | hsa.miR.127.3p 410 | hsa.miR.4306 754 | hsa.miR.662

67 | hsa.miR.1273c 411 | hsa.miR.431.5p 755 | hsa.miR.663a

68 | hsa.miR.1273d 412 | hsa.miR.4311 756 | hsa.miR.663b

69 | hsa.miR.1273e 413 | hsa.miR.4312 757 | hsa.miR.664a.3p
70 | hsa.miR.1273f 414 | hsa.miR.4313 758 | hsa.miR.664a.5p
71 | hsamiR.1273g.3p | 415 | hsa.miR.4314 759 | hsa.miR.664b.3p
72 | hsa.miR.1273g.5p | 416 | hsa.miR.4317 760 | hsa.miR.664b.5p
73 | hsa.miR.1273h.3p | 417 | hsa.miR.432.5p 761 | hsa.miR.665

74 | hsa.miR.1273h.5p | 418 | hsa.miR.4322 762 | hsa.miR.668.3p
75 | hsa.miR.1275 419 | hsa.miR.4323 763 | hsa.miR.671.3p
76 | hsa.miR.1276 420 | hsa.miR.4324 764 | hsa.miR.671.5p
77 | hsa.miR.128.1.5p | 421 | hsa.miR.4327 765 | hsa.miR.6716.5p
78 | hsa.miR.128.3p 422 | hsa.miR.4417 766 | hsa.miR.6717.5p
79 | hsa.miR.1281 423 | hsa.miR.4418 767 | hsa.miR.6718.5p
80 | hsa.miR.1285.3p 424 | hsa.miR.4419a 768 | hsa.miR.6720.3p
81 | hsa.miR.1285.5p 425 | hsa.miR.4419b 769 | hsa.miR.6720.5p
82 | hsa.miR.1287.5p 426 | hsa.miR.4421 770 | hsa.miR.6722.3p
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83 | hsa.miR.1288.3p 427 | hsa.miR.4425 771 | hsa.miR.6722.5p
84 | hsa.miR.129.5p 428 | hsa.miR.4428 772 | hsa.miR.6723.5p
85 | hsa.miR.1290 429 | hsa.miR.4429 773 | hsa.miR.6724.5p
86 | hsa.miR.1291 430 | hsa.miR.4430 774 | hsa.miR.6726.5p
87 | hsa.miR.1295a 431 | hsa.miR.4433a.3p | 775 | hsa.miR.6727.5p
88 | hsa.miR.1295b.3p | 432 | hsa.miR.4433a.5p | 776 | hsa.miR.6728.5p
89 | hsa.miR.1296.5p 433 | hsa.miR.4433b.3p | 777 | hsa.miR.6729.5p
90 | hsa.miR.1299 434 | hsa.miR.4436a 778 | hsa.miR.6730.3p
91 | hsa.miR.1301.5p 435 | hsa.miR.4436b.3p | 779 | hsa.miR.6730.5p
92 | hsa.miR.1303 436 | hsa.miR.4436b.5p | 780 | hsa.miR.6731.3p
93 | hsa.miR.1304.3p 437 | hsa.miR.4441 781 | hsa.miR.6732.3p
94 | hsa.miR.1305 438 | hsa.miR.4442 782 | hsa.miR.6732.5p
95 | hsa.miR.1306.3p 439 | hsa.miR.4443 783 | hsa.miR.6734.5p
96 | hsa.miR.1307.3p 440 | hsa.miR.4444 784 | hsa.miR.6736.5p
97 | hsa.miR.1307.5p 441 | hsa.miR.4446.3p 785 | hsa.miR.6737.3p
98 | hsa.miR.130a.3p 442 | hsa.miR.4447 786 | hsa.miR.6737.5p
99 | hsa.miR.130b.3p 443 | hsa.miR.4448 787 | hsa.miR.6738.5p
100 | hsa.miR.132.3p 444 | hsa.miR.4449 788 | hsa.miR.6739.5p
101 | hsa.miR.1321 445 | hsa.miR.4450 789 | hsa.miR.6740.5p
102 | hsa.miR.1323 446 | hsa.miR.4451 790 | hsa.miR.6741.5p
103 | hsa.miR.133a.3p 447 | hsa.miR.4453 791 | hsa.miR.6743.3p
104 | hsa.miR.133b 448 | hsa.miR.4455 792 | hsa.miR.6743.5p
105 | hsa.miR.134.5p 449 | hsa.miR.4458 793 | hsa.miR.6745

106 | hsa.miR.1343.5p 450 | hsa.miR.4459 794 | hsa.miR.6746.5p
107 | hsa.miR.135a.3p 451 | hsa.miR.4462 795 | hsa.miR.6747.5p
108 | hsa.miR.135b.5p 452 | hsa.miR.4463 796 | hsa.miR.6748.5p
109 | hsa.miR.138.2.3p | 453 | hsa.miR.4465 797 | hsa.miR.6749.5p
110 | hsa.miR.139.3p 454 | hsa.miR.4466 798 | hsa.miR.6751.3p
111 | hsa.miR.140.3p 455 | hsa.miR.4468 799 | hsa.miR.6752.3p
112 | hsa.miR.140.5p 456 | hsa.miR.4470 800 | hsa.miR.6752.5p
113 | hsa.miR.141.3p 457 | hsa.miR.4472 801 | hsa.miR.6753.3p
114 | hsa.miR.142.3p 458 | hsa.miR.4475 802 | hsa.miR.6753.5p
115 | hsa.miR.142.5p 459 | hsa.miR.4476 803 | hsa.miR.6754.5p
116 | hsa.miR.143.3p 460 | hsa.miR.4478 804 | hsa.miR.6756.3p
117 | hsa.miR.144.3p 461 | hsa.miR.4481 805 | hsa.miR.6756.5p
118 | hsa.miR.145.5p 462 | hsa.miR.4482.3p 806 | hsa.miR.6757.5p
119 | hsa.miR.1469 463 | hsa.miR.4484 807 | hsa.miR.6758.5p
120 | hsa.miR.146a.5p 464 | hsa.miR.4485.3p 808 | hsa.miR.6759.3p
121 | hsa.miR.146b.5p 465 | hsa.miR.4485.5p 809 | hsa.miR.6760.3p
122 | hsa.miR.1470 466 | hsa.miR.4486 810 | hsa.miR.6760.5p
123 | hsa.miR.1471 467 | hsa.miR.4487 811 | hsa.miR.6762.5p
124 | hsa.miR.148a.3p 468 | hsa.miR.4488 812 | hsa.miR.6763.3p
125 | hsa.miR.148b.3p 469 | hsa.miR.4489 813 | hsa.miR.6763.5p
126 | hsa.miR.149.3p 470 | hsa.miR.4494 814 | hsa.miR.6765.3p
127 | hsa.miR.149.5p 471 | hsa.miR.4496 815 | hsa.miR.6765.5p
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128 | hsa.miR.150.3p 472 | hsa.miR.4497 816 | hsa.miR.6766.3p
129 | hsa.miR.150.5p 473 | hsa.miR.4498 817 | hsa.miR.6767.5p
130 | hsa.miR.151a.3p 474 | hsa.miR.4499 818 | hsa.miR.6768.5p
131 | hsa.miR.151a.5p 475 | hsa.miR.449b.3p 819 | hsa.miR.6769a.5p
132 | hsa.miR.151b 476 | hsa.miR.4502 820 | hsa.miR.6769b.5p
133 | hsa.miR.152.3p 477 | hsa.miR.4505 821 | hsa.miR.6771.5p
134 | hsa.miR.1539 478 | hsa.miR.4506 822 | hsa.miR.6772.5p
135 | hsa.miR.155.5p 479 | hsa.miR.4507 823 | hsa.miR.6774.5p
136 | hsa.miR.1587 480 | hsa.miR.4508 824 | hsa.miR.6775.3p
137 | hsa.miR.15a.5p 481 | hsa.miR.4510 825 | hsa.miR.6775.5p
138 | hsa.miR.15b.5p 482 | hsa.miR.4513 826 | hsa.miR.6776.5p
139 | hsa.miR.16.5p 483 | hsa.miR.4514 827 | hsa.miR.6777.3p
140 | hsa.miR.17.3p 484 | hsa.miR.4515 828 | hsa.miR.6777.5p
141 | hsa.miR.17.5p 485 | hsa.miR.4516 829 | hsa.miR.6778.5p
142 | hsa.miR.181a.5p 486 | hsa.miR.4518 830 | hsa.miR.6779.3p
143 | hsa.miR.181b.5p 487 | hsa.miR.4519 831 | hsa.miR.6779.5p
144 | hsa.miR.181d.5p 488 | hsa.miR.451a 832 | hsa.miR.6780a.5p
145 | hsa.miR.1825 489 | hsa.miR.452.5p 833 | hsa.miR.6780b.5p
146 | hsa.miR.183.3p 490 | hsa.miR.4522 834 | hsa.miR.6781.5p
147 | hsa.miR.184 491 | hsa.miR.4526 835 | hsa.miR.6782.5p
148 | hsa.miR.185.5p 492 | hsa.miR.4530 836 | hsa.miR.6784.3p
149 | hsa.miR.186.5p 493 | hsa.miR.4531 837 | hsa.miR.6784.5p
150 | hsa.miR.187.5p 494 | hsa.miR.4532 838 | hsa.miR.6785.3p
151 | hsa.miR.188.5p 495 | hsa.miR.4533 839 | hsa.miR.6785.5p
152 | hsa.miR.18a.5p 496 | hsa.miR.4534 840 | hsa.miR.6786.5p
153 | hsa.miR.1908.3p 497 | hsa.miR.4535 841 | hsa.miR.6787.3p
154 | hsa.miR.1909.5p 498 | hsa.miR.4538 842 | hsa.miR.6787.5p
155 | hsa.miR.191.3p 499 | hsa.miR.4539 843 | hsa.miR.6788.5p
156 | hsa.miR.1910.3p 500 | hsa.miR.455.3p 844 | hsa.miR.6789.5p
157 | hsa.miR.1910.5p 501 | hsa.miR.4632.5p 845 | hsa.miR.6790.3p
158 | hsa.miR.1913 502 | hsa.miR.4633.5p 846 | hsa.miR.6790.5p
159 | hsa.miR.1914.3p 503 | hsa.miR.4634 847 | hsa.miR.6791.5p
160 | hsa.miR.1915.3p 504 | hsa.miR.4636 848 | hsa.miR.6792.3p
161 | hsa.miR.193a.3p 505 | hsa.miR.4640.5p 849 | hsa.miR.6792.5p
162 | hsa.miR.193a.5p 506 | hsa.miR.4642 850 | hsa.miR.6793.5p
163 | hsa.miR.193b.3p | 507 | hsa.miR.4644 851 | hsa.miR.6794.5p
164 | hsa.miR.193b.5p 508 | hsa.miR.4646.5p 852 | hsa.miR.6795.5p
165 | hsa.miR.194.3p 509 | hsa.miR.4647 853 | hsa.miR.6796.3p
166 | hsa.miR.195.3p 510 | hsa.miR.4648 854 | hsa.miR.6796.5p
167 | hsa.miR.195.5p 511 | hsa.miR.4649.3p 855 | hsa.miR.6797.3p
168 | hsa.miR.196a.5p 512 | hsa.miR.4651 856 | hsa.miR.6797.5p
169 | hsa.miR.196b.5p 513 | hsa.miR.4653.3p 857 | hsa.miR.6798.3p
170 | hsa.miR.197.3p 514 | hsa.miR.4654 858 | hsa.miR.6798.5p
171 | hsa.miR.197.5p 515 | hsa.miR.4655.3p 859 | hsa.miR.6799.5p
172 | hsa.miR.1972 516 | hsa.miR.4655.5p 860 | hsa.miR.6800.3p
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173 | hsa.miR.1973 517 | hsa.miR.4656 861 | hsa.miR.6800.5p
174 | hsa.miR.198 518 | hsa.miR.4657 862 | hsa.miR.6801.3p
175 | hsa.miR.199a.3p 519 | hsa.miR.4659a.3p | 863 | hsa.miR.6801.5p
176 | hsa.miR.199a.5p 520 | hsa.miR.4659b.3p | 864 | hsa.miR.6802.5p
177 | hsa.miR.199b.5p 521 | hsa.miR.4660 865 | hsa.miR.6803.5p
178 | hsa.miR.19a.3p 522 | hsa.miR.4664.3p 866 | hsa.miR.6804.3p
179 | hsa.miR.19b.3p 523 | hsa.miR.4665.3p 867 | hsa.miR.6804.5p
180 | hsa.miR.200a.3p 524 | hsa.miR.4665.5p 868 | hsa.miR.6805.5p
181 | hsa.miR.200a.5p 525 | hsa.miR.4667.5p 869 | hsa.miR.6806.5p
182 | hsa.miR.200b.3p 526 | hsa.miR.4668.5p 870 | hsa.miR.6807.5p
183 | hsa.miR.200b.5p 527 | hsa.miR.4669 871 | hsa.miR.6808.5p
184 | hsa.miR.200c.3p 528 | hsa.miR.4672 872 | hsa.miR.6809.5p
185 | hsa.miR.202.3p 529 | hsa.miR.4673 873 | hsa.miR.6812.3p
186 | hsa.miR.203a.3p 530 | hsa.miR.4674 874 | hsa.miR.6812.5p
187 | hsa.miR.204.5p 531 | hsa.miR.4675 875 | hsa.miR.6813.3p
188 | hsa.miR.205.3p 532 | hsa.miR.4676.5p 876 | hsa.miR.6815.5p
189 | hsa.miR.205.5p 533 | hsa.miR.4682 877 | hsa.miR.6817.5p
190 | hsa.miR.206 534 | hsa.miR.4685.5p 878 | hsa.miR.6819.3p
191 | hsa.miR.208a.5p 535 | hsa.miR.4687.3p 879 | hsa.miR.6819.5p
192 | hsa.miR.20a.5p 536 | hsa.miR.4688 880 | hsa.miR.6820.3p
193 | hsa.miR.20b.5p 537 | hsa.miR.4689 881 | hsa.miR.6820.5p
194 | hsa.miR.21.3p 538 | hsa.miR.4690.5p 882 | hsa.miR.6821.5p
195 | hsa.miR.21.5p 539 | hsa.miR.4691.5p 883 | hsa.miR.6824.3p
196 | hsa.miR.210.3p 540 | hsa.miR.4695.3p 884 | hsa.miR.6824.5p
197 | hsa.miR.210.5p 541 | hsa.miR.4695.5p 885 | hsa.miR.6825.3p
198 | hsa.miR.211.3p 542 | hsa.miR.4697.5p 886 | hsa.miR.6825.5p
199 | hsa.miR.2117 543 | hsa.miR.4698 887 | hsa.miR.6826.5p
200 | hsa.miR.212.3p 544 | hsa.miR.4701.3p 888 | hsa.miR.6829.5p
201 | hsa.miR.214.3p 545 | hsa.miR.4701.5p 889 | hsa.miR.6830.5p
202 | hsa.miR.22.3p 546 | hsa.miR.4706 890 | hsa.miR.6831.5p
203 | hsa.miR.221.3p 547 | hsa.miR.4707.3p 891 | hsa.miR.6833.5p
204 | hsa.miR.222.3p 548 | hsa.miR.4707.5p 892 | hsa.miR.6834.3p
205 | hsa.miR.223.3p 549 | hsa.miR.4709.3p 893 | hsa.miR.6836.3p
206 | hsa.miR.224.3p 550 | hsa.miR.4710 894 | hsa.miR.6837.5p
207 | hsa.miR.224.5p 551 | hsa.miR.4713.3p 895 | hsa.miR.6839.5p
208 | hsa.miR.2276.3p 552 | hsa.miR.4715.5p 896 | hsa.miR.6840.3p
209 | hsa.miR.2277.3p 553 | hsa.miR.4716.3p 897 | hsa.miR.6845.5p
210 | hsa.miR.2392 554 | hsa.miR.4717.3p 898 | hsa.miR.6846.5p
211 | hsa.miR.23a.3p 555 | hsa.miR.4721 899 | hsa.miR.6847.5p
212 | hsa.miR.23a.5p 556 | hsa.miR.4725.3p 900 | hsa.miR.6848.3p
213 | hsa.miR.23b.3p 557 | hsa.miR.4725.5p 901 | hsa.miR.6848.5p
214 | hsa.miR.24.3p 558 | hsa.miR.4726.5p 902 | hsa.miR.6849.5p
215 | hsa.miR.2467.3p 559 | hsa.miR.4728.3p 903 | hsa.miR.6850.5p
216 | hsa.miR.25.3p 560 | hsa.miR.4728.5p 904 | hsa.miR.6851.3p
217 | hsa.miR.26a.5p 561 | hsa.miR.4731.3p 905 | hsa.miR.6851.5p

95




218 | hsa.miR.26b.5p 562 | hsa.miR.4732.5p 906 | hsa.miR.6855.5p
219 | hsa.miR.27a.3p 563 | hsa.miR.4733.5p 907 | hsa.miR.6856.5p
220 | hsa.miR.27b.3p 564 | hsa.miR.4734 908 | hsa.miR.6857.5p
221 | hsa.miR.28.3p 565 | hsa.miR.4738.3p 909 | hsa.miR.6858.3p
222 | hsa.miR.28.5p 566 | hsa.miR.4739 910 | hsa.miR.6858.5p
223 | hsa.miR.2861 567 | hsa.miR.4740.5p 911 | hsa.miR.6859.5p
224 | hsa.miR.296.5p 568 | hsa.miR.4741 912 | hsa.miR.6860
225 | hsa.miR.298 569 | hsa.miR.4743.5p 913 | hsa.miR.6861.3p
226 | hsa.miR.29a.3p 570 | hsa.miR.4745.5p 914 | hsa.miR.6861.5p
227 | hsa.miR.29b.3p 571 | hsa.miR.4746.3p 915 | hsa.miR.6862.5p
228 | hsa.miR.29¢.3p 572 | hsa.miR.4746.5p 916 | hsa.miR.6865.3p
229 | hsa.miR.29¢.5p 573 | hsa.miR.4748 917 | hsa.miR.6865.5p
230 | hsa.miR.301a.3p 574 | hsa.miR.4749.3p 918 | hsa.miR.6867.5p
231 | hsa.miR.302c.5p 575 | hsa.miR.4749.5p 919 | hsa.miR.6869.5p
232 | hsa.miR.30a.5p 576 | hsa.miR.4750.3p 920 | hsa.miR.6870.3p
233 | hsa.miR.30b.3p 577 | hsa.miR.4750.5p 921 | hsa.miR.6870.5p
234 | hsa.miR.30b.5p 578 | hsa.miR.4753.5p 922 | hsa.miR.6871.5p
235 | hsa.miR.30c.1.3p | 579 | hsa.miR.4755.3p 923 | hsa.miR.6872.3p
236 | hsa.miR.30c.2.3p | 580 | hsa.miR.4758.3p 924 | hsa.miR.6872.5p
237 | hsa.miR.30c.5p 581 | hsa.miR.4758.5p 925 | hsa.miR.6873.5p
238 | hsa.miR.30d.5p 582 | hsa.miR.4763.3p 926 | hsa.miR.6875.3p
239 | hsa.miR.30e.3p 583 | hsa.miR.4763.5p 927 | hsa.miR.6875.5p
240 | hsa.miR.30e.5p 584 | hsa.miR.4767 928 | hsa.miR.6876.5p
241 | hsa.miR.31.3p 585 | hsa.miR.4768.3p 929 | hsa.miR.6877.3p
242 | hsa.miR.31.5p 586 | hsa.miR.4769.3p 930 | hsa.miR.6877.5p
243 | hsa.miR.3121.3p 587 | hsa.miR.4769.5p 931 | hsa.miR.6879.5p
244 | hsa.miR.3122 588 | hsa.miR.4773 932 | hsa.miR.6880.3p
245 | hsa.miR.3124.5p 589 | hsa.miR.4776.5p 933 | hsa.miR.6880.5p
246 | hsa.miR.3125 590 | hsa.miR.4778.5p 934 | hsa.miR.6881.5p
247 | hsa.miR.3127.5p 591 | hsa.miR.4783.3p 935 | hsa.miR.6882.5p
248 | hsa.miR.3130.5p 592 | hsa.miR.4784 936 | hsa.miR.6885.3p
249 | hsa.miR.3131 593 | hsa.miR.4785 937 | hsa.miR.6886.3p
250 | hsa.miR.3132 594 | hsa.miR.4787.3p 938 | hsa.miR.6886.5p
251 | hsa.miR.3135b 595 | hsa.miR.4787.5p 939 | hsa.miR.6887.5p
252 | hsa.miR.3137 596 | hsa.miR.4788 940 | hsa.miR.6889.3p
253 | hsa.miR.3138 597 | hsa.miR.4792 941 | hsa.miR.6889.5p
254 | hsa.miR.3141 598 | hsa.miR.4793.3p 942 | hsa.miR.6890.3p
255 | hsa.miR.3147 599 | hsa.miR.4793.5p 943 | hsa.miR.6890.5p
256 | hsa.miR.3150b.3p | 600 | hsa.miR.4800.3p 944 | hsa.miR.6891.5p
257 | hsa.miR.3150b.5p | 601 | hsa.miR.4800.5p 945 | hsa.miR.6892.5p
258 | hsa.miR.3151.3p 602 | hsa.miR.483.3p 946 | hsa.miR.6893.5p
259 | hsa.miR.3154 603 | hsa.miR.483.5p 947 | hsa.miR.6894.5p
260 | hsa.miR.3155b 604 | hsa.miR.484 948 | hsa.miR.6895.5p
261 | hsa.miR.3156.5p 605 | hsa.miR.486.5p 949 | hsa.miR.7.5p
262 | hsa.miR.3158.5p 606 | hsa.miR.487b.3p 950 | hsa.miR.708.5p
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263 | hsa.miR.3161 607 | hsa.miR.487b.5p 951 | hsa.miR.7106.5p
264 | hsa.miR.3162.3p 608 | hsa.miR.489.3p 952 | hsa.miR.7107.5p
265 | hsa.miR.3162.5p 609 | hsa.miR.490.5p 953 | hsa.miR.7108.3p
266 | hsa.miR.3163 610 | hsa.miR.492 954 | hsa.miR.7108.5p
267 | hsa.miR.3173.3p 611 | hsa.miR.493.3p 955 | hsa.miR.7109.3p
268 | hsa.miR.3174 612 | hsa.miR.494.3p 956 | hsa.miR.7109.5p
269 | hsa.miR.3176 613 | hsa.miR.497.5p 957 | hsa.miR.711

270 | hsa.miR.3177.3p 614 | hsa.miR.498 958 | hsa.miR.7110.5p
271 | hsa.miR.3180.3p 615 | hsa.miR.5001.5p 959 | hsa.miR.7111.3p
272 | hsa.miR.3180.5p 616 | hsa.miR.5003.3p 960 | hsa.miR.7111.5p
273 | hsa.miR.3185 617 | hsa.miR.5003.5p 961 | hsa.miR.7113.5p
274 | hsa.miR.3187.3p 618 | hsa.miR.5006.5p 962 | hsa.miR.7114.3p
275 | hsa.miR.3188 619 | hsa.miR.5008.5p 963 | hsa.miR.7114.5p
276 | hsa.miR.3189.3p 620 | hsa.miR.500a.3p 964 | hsa.miR.7150
277 | hsa.miR.3189.5p 621 | hsa.miR.500a.5p 965 | hsa.miR.7151.3p
278 | hsa.miR.3190.3p 622 | hsa.miR.501.3p 966 | hsa.miR.7152.3p
279 | hsa.miR.3194.5p 623 | hsa.miR.501.5p 967 | hsa.miR.7152.5p
280 | hsa.miR.3195 624 | hsa.miR.5010.5p 968 | hsa.miR.7155.3p
281 | hsa.miR.3196 625 | hsa.miR.504.3p 969 | hsa.miR.7155.5p
282 | hsa.miR.3197 626 | hsa.miR.508.5p 970 | hsa.miR.7156.3p
283 | hsa.miR.3198 627 | hsa.miR.5088.5p 971 | hsa.miR.7157.5p
284 | hsa.miR.3200.5p 628 | hsa.miR.509.3.5p | 972 | hsa.miR.7159.5p
285 | hsa.miR.3202 629 | hsa.miR.509.5p 973 | hsa.miR.7161.3p
286 | hsa.miR.320a 630 | hsa.miR.5090 974 | hsa.miR.7162.3p
287 | hsa.miR.320b 631 | hsa.miR.5093 975 | hsa.miR.718

288 | hsa.miR.320c 632 | hsa.miR.5096 976 | hsa.miR.7515
289 | hsa.miR.320d 633 | hsa.miR.5100 977 | hsa.miR.758.5p
290 | hsa.miR.320e 634 | hsa.miR.512.3p 978 | hsa.miR.760

291 | hsa.miR.324.3p 635 | hsa.miR.513a.5p 979 | hsa.miR.762

292 | hsa.miR.324.5p 636 | hsa.miR.513b.5p 980 | hsa.miR.7641
293 | hsa.miR.328.3p 637 | hsa.miR.513c.3p 981 | hsa.miR.765

294 | hsa.miR.328.5p 638 | hsa.miR.513c.5p 982 | hsa.miR.766.3p
295 | hsa.miR.330.3p 639 | hsa.miR.514b.5p | 983 | hsa.miR.769.3p
296 | hsa.miR.331.3p 640 | hsa.miR.516a.5p 984 | hsa.miR.770.5p
297 | hsa.miR.338.5p 641 | hsa.miR.516b.5p 985 | hsa.miR.7704
298 | hsa.miR.339.3p 642 | hsa.miR.5187.5p 986 | hsa.miR.7845.5p
299 | hsa.miR.33b.3p 643 | hsa.miR.5189.5p 987 | hsa.miR.7846.3p
300 | hsa.miR.342.3p 644 | hsa.miR.518a.5p 988 | hsa.miR.7847.3p
301 | hsa.miR.345.3p 645 | hsa.miR.5190 989 | hsa.miR.7851.3p
302 | hsa.miR.345.5p 646 | hsa.miR.5194 990 | hsa.miR.7854.3p
303 | hsa.miR.34a.5p 647 | hsa.miR.5195.3p 991 | hsa.miR.7974
304 | hsa.miR.34b.5p 648 | hsa.miR.5195.5p 992 | hsa.miR.7975
305 | hsa.miR.34c.3p 649 | hsa.miR.5196.5p 993 | hsa.miR.7977
306 | hsa.miR.3605.5p 650 | hsa.miR.519e.5p 994 | hsa.miR.8052
307 | hsa.miR.3607.3p 651 | hsa.miR.520b 995 | hsa.miR.8055
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308 | hsa.miR.3607.5p 652 | hsa.miR.520e 996 | hsa.miR.8060
309 | hsa.miR.3609 653 | hsa.miR.526b.5p 997 | hsa.miR.8063
310 | hsa.miR.361.3p 654 | hsa.miR.532.5p 998 | hsa.miR.8064
311 | hsa.miR.361.5p 655 | hsa.miR.542.5p 999 | hsa.miR.8069
312 | hsa.miR.3610 656 | hsa.miR.548q 1000 | hsa.miR.8071
313 | hsa.miR.3614.5p 657 | hsa.miR.550a.3.5p | 1001 | hsa.miR.8072
314 | hsa.miR.3617.3p 658 | hsa.miR.550a.5p 1002 | hsa.miR.8073
315 | hsa.miR.3617.5p 659 | hsa.miR.550b.2.5p | 1003 | hsa.miR.8075
316 | hsa.miR.3620.3p 660 | hsa.miR.551b.5p 1004 | hsa.miR.8078
317 | hsa.miR.3620.5p 661 | hsa.miR.557 1005 | hsa.miR.8085
318 | hsa.miR.3621 662 | hsa.miR.5572 1006 | hsa.miR.8087
319 | hsa.miR.3622a.5p | 663 | hsa.miR.5580.3p 1007 | hsa.miR.8088
320 | hsa.miR.3622b.3p | 664 | hsa.miR.5581.5p 1008 | hsa.miR.8089
321 | hsa.miR.3622b.5p | 665 | hsa.miR.5585.3p 1009 | hsa.miR.8485
322 | hsa.miR.3646 666 | hsa.miR.5587.5p 1010 | hsa.miR.874.3p
323 | hsa.miR.3648 667 | hsa.miR.564 1011 | hsa.miR.877.5p
324 | hsa.miR.3651 668 | hsa.miR.566 1012 | hsa.miR.885.5p
325 | hsa.miR.3652 669 | hsa.miR.5684 1013 | hsa.miR.887.3p
326 | hsa.miR.3653.3p 670 | hsa.miR.5685 1014 | hsa.miR.892b
327 | hsa.miR.3654 671 | hsa.miR.5696 1015 | hsa.miR.921
328 | hsa.miR.3656 672 | hsa.miR.5699.5p 1016 | hsa.miR.92a.3p
329 | hsa.miR.3659 673 | hsa.miR.5703 1017 | hsa.miR.92b.3p
330 | hsa.miR.365a.3p 674 | hsa.miR.5708 1018 | hsa.miR.93.5p
331 | hsa.miR.365a.5p 675 | hsa.miR.572 1019 | hsa.miR.933
332 | hsa.miR.365b.5p | 676 | hsa.miR.5739 1020 | hsa.miR.934
333 | hsa.miR.3660 677 | hsa.miR.574.3p 1021 | hsa.miR.936
334 | hsa.miR.3663.3p 678 | hsa.miR.574.5p 1022 | hsa.miR.937.5p
335 | hsa.miR.3663.5p 679 | hsa.miR.575 1023 | hsa.miR.939.3p
336 | hsa.miR.3665 680 | hsa.miR.5787 1024 | hsa.miR.939.5p
337 | hsa.miR.3666 681 | hsa.miR.583 1025 | hsa.miR.940
338 | hsa.miR.3667.5p 682 | hsa.miR.584.5p 1026 | hsa.miR.9500
339 | hsa.miR.3678.3p 683 | hsa.miR.590.5p 1027 | hsa.miR.96.5p
340 | hsa.miR.3679.5p 684 | hsa.miR.595 1028 | hsa.miR.98.5p
341 | hsa.miR.3680.3p 685 | hsa.miR.596 1029 | hsa.miR.99a.5p
342 | hsa.miR.3682.3p 686 | hsa.miR.598.5p 1030 | hsa.miR.99b.3p
343 | hsa.miR.3689a.5p | 687 | hsa.miR.601 1031 | hsa.miR.99b.5p
344 | hsa.miR.3689f 688 | hsa.miR.602

Tabelle 7: Die einzelnen miRNA’s zusammen mit ihren ID-Nummern
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Auswirkungen des Parameters [Datensatz]
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Abbildung 34: Die verschiedenen Trainings-Datenséitze und ihre dazugehorige Berechnungsdauer
(Tter.: 1.2). Die roten Punkte sowie die dazugehérigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 35: Die verschiedenen Werte fiir die Anzahl an Iterationen und ihre dazugehorige Berech-
nungsdauer (Iter.: 1.4). Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen
Mittelwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Auswirkungen des Parameters [n.fold]
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Abbildung 36: Die verschiedenen Werte fiir den Parameter [n.fold] und ihre dazugehorige Berechnungs-
dauer (Iter.: 1.5). Die roten Punkte sowie die dazugehorigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Auswirkungen des Parameters [Datensatz]
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Abbildung 37: Die verschiedenen Trainings-Datenséitze und ihre dazugehorige Berechnungsdauer
(Tter.: 2.2). Die roten Punkte sowie die dazugehérigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 38: Die verschiedenen Werte fiir den Parameter [n.fold] und ihre dazugehorige Berechnungs-
dauer (Iter.: 2.5). Die roten Punkte sowie die dazugehérigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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7.2 Digitaler Anhang

Diese CD enthélt den digitalen Anhang dieser Bachelorarbeit. Darin befinden sich so-
wohl alle geschriebenen R-Codes, die verwendeten Abbildungen und die Bachelorarbeit
im PDF-Format. Zusétzlich sind weitere Abbildungen vorhanden, die aus Zeitgriinden
nicht in der Bachelorarbeit verwendet wurden. Mit Hilfe der R-Codes lassen sich zudem
weitere Auswertungen und Abbildungen relativ leicht verwirklichen.
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