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1 Einleitung

Im Rahmen dieser Bachelorarbeit geht es um die Funktion rbsurv, die im Statistik-
Programm R implementiert ist. Die Funktion findet hauptsächlich in der Biologie ihre
Verwendung, genauer gesagt bei der Auswertung von Microarray-Daten. Das Ziel von Aus-
wertungen mit der Funktion rbsurv ist das Entdecken von Genen, welche die Überlebenszeit
von Individuen beeinflussen. Der darin enthaltene Algorithmus basiert dabei hauptsächlich
auf dem Cox proportional hazards model und verspricht laut den Autoren Cho et al. (2009)
eine einfache und praktische Anwendung, die dennoch robuste Schätzungen und Ergeb-
nisse liefert. Um eine auf die Daten angepasste Auswertung vorzunehmen, kann der An-
wender verschiedene Parameter der Funktion nach seinen Bedürfnissen verändern. Um die
Parameter-Einstellungen und ihre Auswirkungen aufzuzeigen, wird ein multizentrischer
Datensatz von Kopf-Hals-Tumor-Patienten verwendet. Pro Patient liegen dafür ca. 1000
Expressionen von Micro-RNA’s vor, die eventuell in Verbindung zu dem Tumor stehen
könnten.

Das Ziel dieser Bachelorarbeit ist die Untersuchung und Bewertung der rbsurv -Funktion
und ihrer Ergebnisse. Dabei steht vor allem die Parameterwahl und die dadurch verursachte
Variablenselektion im Mittelpunkt. Im Zuge dessen wird versucht, ein optimales Modell
durch eine optimale Parametereinstellung zu finden. Als Modellgütekriterium wird hierfür
der Konkordanz-Index nach Harrell et al. (1982) verwendet.

Nach der Einleitung folgt in Kapitel 2 eine kurze Erklärung zur Survival Analyse und ihren
Grundlagen. Hierbei wird unter anderem das Cox proportional hazards model genauer vor-
gestellt, das im R-Paket rbsurv verwendet wird. In Kapitel 3 geht es ausschließlich um das
R-Paket rbsurv. Dabei wird der Algorithmus der rbsurv -Funktion und die dazugehörigen
Parameter genauer betrachtet. Die Analyse folgt in Kapitel 4. Nach der Vorstellung der
Daten und dem angewandten Vorgehen befinden sich hier zwei Simulationsläufe mit jeweils
sechs Iterationen. Die Ergebnisse jener Simulationen im Bezug auf die Variablenselektion
und die Robustheit des R-Paketes rbsurv sind in Kapitel 5 enthalten. Kapitel 6 schließt
die Bachelorarbeit dann mit einem kurzen Fazit ab. Weitere Abbildungen und Tabellen
sind zudem noch im Anhang (Kapitel 7) zu finden.
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2 Survival-Analyse

Die Survival-Analyse (oder auch Überlebenszeitanalyse/Ereigniszeitanalyse) untersucht
die (Lebens-) Zeit unterschiedlicher Abläufe bis ein vorher festgelegtes Ereignis (Event)
auftritt. Verwendung findet die Survival Analyse in der medizinischen und biologischen
Forschung, bei der Entwicklung verschiedener Produkte oder der Analyse von demogra-
phischen Gegebenheiten. Voraussetzung für die Anwendung der Survival Analyse ist, dass
die Objekte innerhalb des Beobachtungszeitraums einem Risiko für das Eintreten eines
Events ausgesetzt sind. Dieses Event kann z.B. der Tod, das Auftreten einer Krankheit
oder der Funktionsverlust eines Gerätes sein (Wollschläger, 2017).

2.1 Zensierte Daten

Survival-Daten liegen oft in zensierter Form vor. Dabei wird zwischen unterschiedlichen
Varianten unterschieden. Am häufigsten tritt die sogenannte Rechts-Zensur auf. Dabei
weisen die Objekte innerhalb des Beobachtungszeitraums kein Event auf, da sie z.B.
aus der Studie ausgeschieden sind oder weiterhin leben bzw. gesund sind. Dennoch kann
die Information der Beobachtungen in die Modellschätzung miteinbezogen werden(Liu,
2012). Zusätzlich gibt es noch Links-zensierte Daten (Event tritt vor dem Beobachtungs-
zeitraum auf) und Intervall-zensierte Daten (Event tritt an unbekannter Stelle innerhalb
eines Zeit-Intervalls auf). ”Wichtig für die Survival-Analyse ist die Annahme, dass der zur
Zensierung führende Mechanismus unabhängig von Einflussgrößen auf die Überlebenszeit
ist”(Wollschläger, 2017, S.351).

2.2 Allgemeine Annahmen

Geht man von einer Stichprobenpopulation von N Individuen aus, so kann entweder
die Zeit bis zu einem Event oder einer Zensierung beobachtet werden. Bei einer rechts-
zensierten Beobachtung weiß man also lediglich, dass die Zeit bis zu einem Event größer
ist als der Beobachtungszeitraum. Die Überlebensfunktion lässt sich darstellen durch:

S(t) = P (T > t), t > 0, (1)

mit
S(t) = Überlebensfunktion
T = pos. Zufallsvariable für den Zeitpunkt eines Events
t = Zeit (Nikulin und Wu, 2016).

Sie ist die Wahrscheinlichkeit dafür, dass ein beliebiges Individuum aus den Daten den
Zeitpunkt t überlebt (Nikulin und Wu, 2016). Folglich ergibt sich die kumulative Ver-
teilungsfunktion der Lebenszeit T mit

F (t) = P (T ≤ t) = 1− S(t) (2)

(Nikulin und Wu, 2016).
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Die Hazard-Funktion drückt letztlich die unmittelbare Ereignisrate einer Beobachtung
zum Zeitpunkt t aus:

λ(t) = lim
∆t→0+

P (t ≤ T < t+ ∆t|T ≥ t)

∆t

= lim
∆t→0+

P (t ≤ T < t+ ∆t)/∆t

P (T > t)

=
f(t)

S(t)
, t ≥ 0

(3)

mit
f(t) = Dichtefunktion der Überlebenszeit T (Wollschläger, 2017).

2.3 Cox proportional hazards model

Die Cox-Regression ist ein nach Sir David Roxbee Cox benanntes Analyseverfahren für
Ereigniszeitdaten. Es handelt sich dabei um ein semi-parametrisches Regressionsmodell,
dessen Modellgleichung sich folgendermaßen ergibt:

λ(t; z) = exp(zTβ)λ0(t), (4)

mit
t = Zeit
z = Vektor der Einflussvariablen
β = Vektor der Parameterschätzer
λ0(t) = baseline hazard (allgemeine Ausfallrate) (Cox, 1972).

Das Modell macht dabei keine Annahmen über die Form des baseline hazard. Falls das
Modell keine Einflüsse enthält (z = 0), so bleibt lediglich der baseline hazard λ0(t) übrig.
Dieser spiegelt das Grundrisiko der Beobachtungen wider. Dabei wird auch für die beob-
achtete Überlebenszeit T keine bestimmte Verteilung angenommen. Stattdessen nimmt
man an, dass die Effekte verschiedener Variablen auf das Überleben über die Zeit kon-
stant sind (Ziegler et al., 2004). Durch diese Annahme ergeben sich sowohl Vor- als auch
Nachteile. Durch die konstanten Effekte über die Zeit hinweg lässt sich der Hazard Ra-
tio, also der Quotient zweier Hazard-Funktionen, eindeutig definieren und interpretieren.
Allerdings ist die Annahme dieser Proportionalität der Hazard-Funktionen nicht immer
korrekt. So kann es in der Realität durchaus eine von der Zeit abhängige Variable geben,
wie z.B. das Gewicht oder das Alter einer Person (Ziegler et al., 2004). Nimmt man bei-
spielsweise an, dass das Cox Modell lediglich eine Einflussvariable besitzt und somit die
folgende Form aufweist:

λ(t; z) = exp(z1β1)λ0(t), (5)

mit
t = Zeit
z1 = Einflussvariable
β1 = Parameterschätzer
λ0(t) = baseline hazard (allgemeine Ausfallrate).
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Dann ist der erwartete Hazard Ratio (Risikoquotient) bei zwei unterschiedlichen Beob-
achtungen A und B

exp(zAβ1)λ0(t)

exp(zBβ1)λ0(t)
= exp((zA − zB)β1), (6)

und damit unabhängig von der Zeit t und dem baseline hazard.

2.3.1 Partielle Likelihood-Funktion

Für die Schätzung und Interpretation eines Modells sind in erster Linie die β-Parameter-
schätzer von Interesse. Dadurch, dass der baseline hazard eine willkürliche Störgröße dar-
stellt, kann man allerdings keine normale Maximum-Likelihood-Methode (ML-Methode)
anwenden. In diesem Zusammenhang schlägt Cox (1972) eine partielle Likelihood-Schätzung
vor. Er argumentiert damit, dass die Zeitintervalle zwischen den Events keine wichtigen
Informationen liefern, da die Störgröße λ0(t) dort vermutlich identisch mit Null ist. Bei
Survival-Daten ohne Bindungen (siehe Abschnitt 2.3.2) reicht es also aus, wenn nur die
Zeitpunkte betrachtet werden, in denen ein Event stattfindet. So ist für ein bestimmtes
Event zum Zeitpunkt t(i), bedingt auf die Risikomenge R(t(i)), die Wahrscheinlichkeit,
dass das Event auch beim beobachteten Individuum auftritt, folgende:

exp{z(i)β}∑
l∈R(t(i))

exp{z(l)β}
(7)

(Cox, 1972).

Aus dem Produkt der einzelnen Beobachtungen ergibt sich damit die partielle Likelihood:

L(β) =
N∏
i=1

exp{z(i)β}∑
l∈R(t(i))

exp{z(l)β}
(8)

bzw. die partielle log-Likelihood:

`(β) =
N∑
i=1

z(i)β −
N∑
i=1

log

 ∑
l∈R(t(i))

exp{z(l)β}

 (9)

(Cox, 1972).

Auch wenn es sich hierbei nicht um eine gewöhnliche Likelihood-Schätzung handelt, so
kann sie doch in den meisten Fällen als eine solche behandelt werden. So besitzt die ML-
Schätzung nach Cox in großen Datenmengen die selben asymptotischen Eigenschaften wie
eine normale ML-Schätzung (Kalbfleisch und Prentice, 2002).
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2.3.2 Bindungen

In den meisten Survival-Daten lassen sich allerdings Bindungen finden. Diese Bindun-
gen enstehen, wenn Beobachtungen die exakt selbe Überlebenszeit besitzen. Würde man
die Zeit auf einer perfekten stetigen Skala messen, würde dieser Fall nie eintreten. Aller-
dings wird in der Realität der Einfachheit halber meist eine diskrete Zeit-Skala verwendet
(Borucka, 2014). Auch durch Zensierungen kann es zu vielen gleichen Überlebenszeiten
kommen. Da bei der partiellen Likelihood-Schätzung nach Cox jedoch die Reihenfolge der
Events von Bedeutung ist, kann dies bei Bindungen zu Problemen führen. Die partielle
Likelihood muss dann dementsprechend angepasst werden. Der natürlichste Weg ist, laut
Kalbfleisch und Prentice (2002), die durchschnittliche Likelihood zu berechnen, die sich
aus allen möglichen Kombinationen aus der Reihenfolge der Events ergibt. Bei einer großen
Anzahl an Bindungen führt diese Methode allerdings zu einem hohen Rechen-, bzw. Zeit-
aufwand. Aufgrund dessen gibt es mehrere approximative Alternativen für die partiel-
le Likelihood, welche bei Bindungen einen geringeren Zeitaufwand versprechen. Die am
häufigsten verwendeten Methoden sind neben der exakten Methode von Kalbfleisch und
Prentice (2002) die Methoden nach Breslow (1974) und Efron (1977). Die resultierenden
Schätzer durch die Methoden von Breslow und Efron können je nach Stichprobengröße
und Anzahl an Bindungen eine Verzerrung aufweisen. Für Datensätze mit geringer Anzahl
an Bindungen erreichen alle drei Schätzer ähnliche Resultate (Kalbfleisch und Prentice,
2002). Auch wenn die Methoden nach Breslow und Efron eine Verzerrung der Schätzer
bewirken können, so werden sie in der Praxis dennoch häufig angewendet, da sie im Ver-
gleich zur exakten Methode von Kalbfleisch und Prentice (2002) einen deutlich geringeren
Rechenaufwand mit sich bringen.

2.4 C-Index

Nachdem ein geeignetes Modell angepasst wurde, stellt sich die Frage, wie gut das Modell
die Wirklichkeit abbildet. Durch falsche Annahmen, fehlende Daten oder durch nicht
miteinbezogene Störvariablen kann es erhebliche Verzerrungen im Modell geben. Der
Konkordanz-Index C (Harrell et al., 1982) ist dabei ein oft verwendetes Validierungswerk-
zeug für Überlebenszeitmodelle. Für unzensierte Daten stellt der Konkordanz-Index C
(c-Index) die relative Häufigkeit von konkordanten Paaren unter allen möglichen Paaren
dar. Dabei wird ein Paar als konkordant bezeichnet, wenn das Individuum mit der gerin-
geren Überlebenszeit auch das höhere Risiko für ein Event besitzt (Gerds et al., 2013). Ist
die vom Modell prognostizierte Überlebenszeit für zwei Individuen identisch, so werden sie
nur zur Hälfte mitberechnet. Besitzen zwei Individuen dagegen die selbe Überlebenszeit,
so gelten sie als unbrauchbar und können nicht verwendet werden (Harrell et al., 1996).
Der c-Index kann Werte zwischen 0 und 1 annehmen. Dabei entspricht ein Wert von
1 einem perfekten Modell bzw. einer perfekten Vorhersage. Nimmt der c-Index einen
Wert von 0.5 an, so ist das Modell nicht besser als eine willkürliche Zufallsentscheidung
(Harrell et al., 1996).
Um die Güte eines Modells durch den c-Index zu berechnen, wird zusätzlich zu den Da-
ten, die für die Modellberechnung verwendet wurden, ein weiterer Datensatz benötigt.
Dieser sollte unabhängig von den anderen Daten sein, um somit die Prognosefähigkeit des
Modelles testen zu können.
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3 R-Paket rbsurv

Dieses Kapitel basiert hauptsächlich auf dem im Januar 2009 von HyungJun Cho et. al.
vorgestellten Artikel im Journal of Statistical Software über ihr neues R-Paket rbsurv
(Cho et al., 2009). Das R-Paket dient dazu multiple Survival-Modelle aus Microarray-
Daten zu bilden. Hierbei wird das Software-Programm R verwendet, das in der Statistik
sehr verbreitet ist. Das Paket bzw. der darin enthaltene Algorithmus basiert auf der Cox-
Regressionsanalyse. Mit Hilfe des Software-Paketes lassen sich Gene finden, die einen
Bezug zur Überlebenszeit eines Individuums besitzen.

3.1 Hintergrund und verwendete Methoden

Bei der Analyse von Microarray-Daten werden häufig Daten mit hoher Dimension und
geringer Stichprobengröße verwendet (Engler und Li, 2009). Um aus dieser hohen Anzahl
an Variablen, die mit dem größten Einfluss herauszufiltern, wurden in der Vergangen-
heit bereits viele verschiedene Verfahren angewendet (vgl. dazu Rosenwald et al., 2002;
Shannon et al., 2002; Gui und Li, 2005). Trotz dieser bereits existierenden Algorithmen
entschieden sich die Autoren für eine neue Variante, die im Software-Programm R ein-
gebunden ist. Der verwendete Algorithmus kann dabei aktiv vom Benutzer verändert
bzw. angepasst werden und verspricht eine robuste Schätzung aufgrund der verwendeten
Kreuzvalidierungstechnik.

3.1.1 Kreuzvalidierung

Die Kreuzvalidierung ist ein statistisches Verfahren, um die Güte eines Modells zu über-
prüfen. Bei der Kreuzvalidierung wird meist der Datensatz in einen Trainings- und einen
Testdatensatz eingeteilt. Dabei ist es oft besser, wenn der Trainingsdatensatz mehr als
50 Prozent der Daten enthält. Verbreitet ist, dass der Trainingsdatensatz zwei Drittel
der Datenmenge enthält (Witten et al., 2016). Der Trainingsdatensatz bildet letztlich die
Grundlage für die Modell- bzw. Parameterschätzung. Mit Hilfe des Testdatensatzes wird
dann die Fehlerrate des Modells berechnet. Verschiedene Modifikationen des Verfahrens
wie z.B. die stratifizierte Kreuzvalidierung bauen auf dem selben Grundprinzip auf.

3.1.2 Akaikes Informationskriterium

Ein Gütekriterium, das auch im R-Paket rbsurv verwendet wird, ist das Akaike Informa-
tionskriterium (AIC ). Das AIC wurde entwickelt, um einen möglichst guten Kompromiss
zwischen einer guten Datenanpassung und einer zu großen Modellkomplexität zu finden
(Fahrmeir et al., 2007). So wird durch die Hinzunahme von (unnötig) vielen Variablen
das Modell überangepasst (engl.: overfitting) und somit eventuell die Prognosefähigkeit
verschlechtert (Fahrmeir et al., 2007). Das AIC lässt sich durch die Formel

AIC = −2l(θ̂) + 2p (10)

darstellen. Es gilt:
θ̂ = p-dimensionaler Parametervektor
l(θ̂) = log-Likelihood der geschätzten Parameter
p = Anzahl der geschätzten Parameter (Fahrmeir et al., 2007).
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Letztlich wird dasjenige Modell bevorzugt, das den geringsten AIC aufweist. Der Term
2p bestraft somit die Modelle proportional zur Anzahl der enthaltenen Parameter p.

3.2 Algorithmus

Um einen effektiven und übersichtlichen Algorithmus für die Analyse von Microarray-
Daten zu ermöglichen, haben sich die Autoren des Paketes rbsurv verschiedene Schritte
überlegt. Dabei sollten die Einflussvariablen bereits normalisiert und entsprechend trans-
formiert worden sein.

1. Beschränkung der Anzahl an Genen

Die meist große Anzahl von Genen in Microarray-Daten führt dementsprechend zu
langen Berechnungszeiten. Um diese Berechnungszeiten möglichst kurz zu halten,
enthält das Software-Programm eine Art Vor-Selektion der wichtigsten Gene. Dafür
werden univariate Überlebenszeitmodelle genutzt, die dann die Anzahl der Gene re-
duzieren ohne wichtige Gene bzw. Informationen zu verlieren. Das bedeutet, es wird
für jedes Gen ein univariates Überlebenszeitmodell gebildet und anschließend wer-
den die Gene ausgewählt, die in den Modellen den kleinsten p-Wert aufweisen. Die
Auswahl der wichtigsten Gene erfolgt, wenn vom Anwender gewünscht, zu Beginn
der Auswertung und wird mit dem Befehl [max.n.genes] übergeben. Nur diese
gewünschte Anzahl an Genen wird dann auch in den Algorithmus miteinbezogen.

2. Robuste Likelihood-Schätzung in Überlebenszeitmodellen

Der Datensatz wird zufällig in einen Trainings- und einen Validierungsdatensatz
eingeteilt. Die Größe der zwei Teil-Datensätze wird mit dem Befehl [n.fold =

1/p] angegeben. Dabei enthält der Trainingsdatensatz N(1 − p) und der Vali-
dierungsdatensatz Np Beobachtungen. Anschließend wird für jedes Gen getrennt
der Maximum-Likelihood-Schätzer β̂0

i auf Grundlage des Trainingsdatensatzes be-
rechnet. Um einen robusten Schätzer zu erhalten ist es von Vorteil, das Modell
durch einen unabhängigen Datensatz zu evaluieren, anstatt mit den Daten, die
zur Parameterschätzung verwendet wurden. Diesen unabhängigen Datensatz stellt
der davor zufällig abgetrennte Validierungsdatensatz dar. Die angepasste partielle
log-Likelihood dient mit der Verwendung des Validierungsdatensatzes damit als
Gütemaß für die Anpassung des Modells.

3. Robuste Genschätzungen

Die Prozedur in Punkt 2 wird anschließend B-mal wiederholt. Dies wird der Funktion
mit Hilfe des R-Befehls [n.iter = B] mitgeteilt. Damit wird das Risiko, dass das
zufällige Einteilen in Trainings- und Validierungsdatensatz eine Verzerrung erzeugt,
minimiert. Aus den, für jedes einzelne Gen, erhaltenen B partiellen log-Likelihoods
wird das Gen mit der größten mittleren partiellen log-Likelihood ausgewählt. Dieses
Gen (hier: g(1)) hat nach diesem Ansatz den größten Einfluss auf die Überlebenszeit.

12



4. Robuste Modellselektion

Nachdem das ausgewählte Gen g(1) dem Modell übergeben wird, werden die Punkte
2 und 3 abermals durchgeführt, um das beste Modell mit zwei Genen als Einfluss-
variablen zu finden. Es wird somit ein Modell gesucht, das zu dem bereits aus-
gewählten Gen g(1) ein bestmögliches zweites Gen g(2) findet. Diese Vorwärts-Selektion
wird so lange durchgeführt, bis es durch fehlende Beobachtungen nicht mehr möglich
ist ein entsprechendes Modell anzupassen oder die maximale Anzahl an Genen er-
reicht ist. Man erhält letztlich K Modelle mit: M1 = g(1), M2 = g(1) + g(2), . . . ,MK =
g(1) + g(2) + · · ·+ g(K).
Um das beste Modell auszuwählen, ist die log-Likelihood nicht geeignet, da sie in
jedem Fall das größte Modell auswählen würde. Um ein overfitting zu vermeiden,
wird das AIC verwendet. Durch den darin enthaltenen Strafterm für die Anzahl der
Variablen wird somit ein Modell mit geringer Variablenzahl bevorzugt. Es wird das
AIC für jedes der Modelle berechnet und das Modell mit dem kleinsten AIC wird
anschließend ausgewählt.

5. Multiple Modelle

Bei der Selektion der Gene für das optimale Modell können aufgrund des Algorithmus
wichtige Gene fehlen. Angenommen zwei Gene haben einen ähnlichen Effekt auf
die Überlebenszeit. Statistisch gesehen reicht es, das stärker assoziierte Gen aus-
zuwählen. Biologisch betrachtet kann das zweite Gen allerdings ebenfalls einen
wichtigen Einfluss auf die Überlebenszeit besitzen. Um dieses Szenario zu verhin-
dern, kann man mehrere optimale Modelle berechnen. Dafür werden die Gene der
ersten Modellberechnung zur Seite genommen und mit den restlichen verbliebe-
nen Variablen ein zweites Modell berechnet. Die Anzahl an Modellberechnungen ist
dem Benutzer überlassen (vorausgesetzt es sind genügend Gene vorhanden). Dem-
entsprechend ist statistisch gesehen das erste Modell das Beste, aber nicht unbedingt
aus der biologischen Sicht. Die Anzahl der berechneten Modelle wird im R-Paket
durch [n.seq = C] angegeben.

3.3 Risikofaktoren

Die Überlebenszeit hängt nicht zwingend nur mit dem untersuchten Genmaterial zusam-
men. So kann es weitere Risikofaktoren wie z.B. das Alter oder der Krankheitsstatus
geben, für die das Modell adjustiert werden sollte. Dadurch könnte eventuell ein Gen ins
Modell aufgenommen werden, welches eigentlich die Risikofaktoren beeinflusst aber nicht
direkt die Überlebenszeit. Um die dadurch entstehenden Verzerrungen zu verhindern,
kann man dem Algorithmus für die likelihood-basierte Modellschätzung zusätzliche Risiko-
faktoren übergeben. Diese Faktoren Z1, Z2, . . . , Zp werden in alle Modell-Anpassungen im
Algorithmus miteinbezogen [rbsurv: z ]. Mit dem Befehl [alpha] kann ein Signifikanzlevel
für die Risikofaktoren angegeben werden (z.B. [alpha = 0.05]). Somit werden lediglich
signifikante Risikofaktoren verwendet. Im Zuge dieser Auswertung sind allerdings keine
weiteren Risikofaktoren gegeben und dementsprechend wurde dieser Parameter auch nicht
weiter betrachtet.
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3.4 Sonstige Argumente in rbsurv

Weitere Argumente der Funktion rbsurv sind (vgl.: Tabelle 1): [method], [gene.ID]

und [seed]. [method] gibt dabei an, welche Berechnungsmethode für Bindungen bei
der Cox-Regression verwendet werden. Hierbei wird unterschieden zwischen ”breslow”,
”efron” und ”exact”. Mit dem Befehl [gene.ID] kann der Benutzer den Genen einen
Namen oder eine Identifikationsnummer zuordnen. Falls dies nicht explizit angegeben
ist, wird die Reihennummer verwendet. Mit [seed] wird der Zufallsgenerator auf einen
festen Startwert gesetzt. Dies bedeutet, dass die zufällige Einteilung in Trainings- und
Validierungsdatensatz im Algorithmus bei gleichem [seed] auch immer gleich ist. Dies ist
nützlich, um die Ergebnisse reproduzieren bzw. die Variabilität der Ergebnisse betrachten
zu können.

Argument Beschreibung

time Vektor mit den Überlebenszeiten
status Vektor mit Status (0 = zensiert, 1 = Event/Krankheit wieder aufgetreten)
x Matrix mit den Einflusswerten (Gene in Reihen, Beobachtungen in Spalten)
z Matrix für die zusätzlichen Risikofaktoren
alpha Signifikanzlevel für die Risikofaktoren
gene.ID Vektor mit den Gen-IDs, ansonsten werden Reihennummern verwendet
method character string um die Methode für Bindungen festzulegen
n.iter Anzahl an Iterationen bei der Genselektion
n.fold Anzahl an Partitionen der Beobachtungen
n.seq Anzahl an multiplen Modellen
seed seed für Einteilung der Beobachtungen
max.n.genes maximale Anzahl an betrachteten Genen

Tabelle 1: Übersicht der Argumente im R-Paket rbsurv
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4 Analyse

Im Hauptteil dieser Bachelorarbeit geht es um den verwendeten Datensatz und die da-
mit durchgeführten Simulationen. Um die Variabilität der Variablenselektion aufgrund
der Parameterwahl aufzuzeigen, wurden die Simulationen nach einem festen Vorgehen
durchgeführt.

4.1 Erklärung der Daten

Der für diese Auswertung verwendete Datensatz stammt aus zwei unabhängigen Kohorten
von strahlentherapeutisch behandelten Kopf-Hals-Tumor-Patienten. Insgesamt enthält
der Datensatz 162 Beobachtungen von Patienten aus Deutschland. Dabei stammen 85
Personen aus einer multizentrischen Kohortenstudie vom Deutschen Konsortium für trans-
lationale Krebsforschung (DKTK) und 77 Personen von einer monozentrischen Kohorte
aus der klinischen Kooperationsgruppe (KKG) der LMU München und der Klinik für
Strahlentherapie und Radioonkologie. Die genaue Aufteilung der Kohortenstudien so-
wie die im weiteren Verlauf verwendeten Abkürzungen finden sich in Tabelle 2. Aus
dem Genmaterial dieser 162 Patienten wurden globale micro-RNA (miRNA) Expres-
sionsanalysen durchgeführt. MiRNA’s sind kleine, hoch konservierte, nicht-kodierende
RNA-Moleküle, die an der Regulation der Genexpression beteiligt sind (MacFarlane und
R Murphy, 2010). Da Änderungen an den miRNA’s Auswirkungen auf einen menschlichen
Tumor haben können (Calin und Croce, 2006), enthält dieser Datensatz 1031 verschiedene
miRNA’s mit den dazugehörigen Expressionen. Hierfür wurden miRNA-Proben mit dem
Fluoreszenzfarbstoff Cy3 markiert. Diese hybridisieren mit den jeweils komplementären
miRNA-Sequenzen auf einem Array und anhand der Intensität des Fluoreszenzsignals wird
dann die Expression der miRNA’s gemessen (Lohaus et al., 2014). Damit könnte man im
Idealfall Rückschlüsse ziehen, welche miRNA’s das Wiederauftreten des hier untersuchten
Kopf-Hals-Tumors begünstigen. Um übersichtliche Abbildungen zu ermöglichen werden
im weiteren Verlauf die Bezeichnungen der miRNA’s durch Identifizierungsnummern ab-
gekürzt. Im Anhang befindet sich dazu in Tabelle 7 die Gegenüberstellung der Namen
und ihrer ID-Nummern. Zusätzlich zu den Expressionen der 1031 miRNA’s liegen noch
die Informationen über den Status der Person und ihre beobachtete Überlebenszeit vor.
Der Status der Patienten ist dabei binär codiert und bedeutet, dass bei dem Patient mit
[Status = 0] bis zum Ende der Studie der Tumor nicht wieder aufgetreten ist. Patienten
mit [Status = 1] dagegen sind dementsprechend Personen, bei welchen der Tumor noch
innerhalb des Studienzeitraumes wieder aufgetreten ist. Die Überlebenszeit ist in diesem
Fall nicht wörtlich zu nehmen. Stattdessen entspricht sie entweder der Zeit bis zum Wie-
derauftreten des Tumors, bis zum Studienende oder bis zum Ausscheiden des Patienten
aus der Studie. Die Überlebenszeit ist dabei in Tagen angegeben und reicht von minimal
56 Tagen bis zu maximal 3002 Tagen.

4.2 Deskription

Aufgrund der Größe des Datensatzes ist es im Rahmen dieser Arbeit nicht möglich, jede
einzelne Variable genauer vorzustellen. Es werden lediglich die Wichtigsten betrachtet.
Dazu gehören sowohl die beobachtete Überlebenszeit, welchen Status sie aufweist und
aus welchem Institut die Person stammt. Zusätzlich werden noch einige repräsentativen
miRNA’s näher betrachtet.
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Kohorte Abkürzung Institutsort
DKTK BER Berlin
DKTK DD Dresden
DKTK EU Essen
DKTK FB Freiburg
DKTK FFM Frankfurt am Main
DKTK HD Heidelberg
DKTK TUE Tübingen
DKTK TUM Technische Universität München, Klinikum rechts der Isar
KKG KKG Klinische Kooperationsgruppe
DKTK DKTK Deutsches Konsortium für Translationale Krebsforschung

Tabelle 2: Erklärung der Abkürzungen für die Institute.

Der Datensatz enthält 162 Beobachtungen, die aus verschiedenen Instituten in Deutsch-
land stammen. Abbildung 1 zeigt dabei die Verteilung auf die insgesamt neun Institute.
Dabei ist eine sehr ungleiche Verteilung zu beobachten. So stammen allein 77 Patienten
aus der klinischen Kooperationsgruppe LMU/Helmholtz Zentrum München, während aus
Berlin und Heidelberg lediglich je zwei Patienten kommen. Da sich die Stichprobe aus
sehr vielen verschiedenen Quellen zusammensetzt, kann es dadurch auch zu Verzerrungen
kommen. So können in den Krankenhäusern z.B. unterschiedliche Standards in der Krebs-
behandlung vorliegen. Auch die Qualität der behandelnden Ärzte ist nicht überall gleich
und kann sich somit auf das Wiederauftreten des Krebs und damit auf die Ergebnisse der
Analyse mit auswirken.
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Abbildung 1: Die Anzahl der Krebspatienten, welche in der Studie beobachtet wurden, pro Institut.

16



0

10

20

30

40

50

60

70

80

BER DD EU FB FFM HD TUE TUM KKG
Institut

A
nz

ah
l B

eo
ba

ch
tu

ng
en

Status

0

1

Status pro Institut

Abbildung 2: Die Anzahl der Krebspatienten, welche in der Studie beobachtet wurden, bei denen der
Krebs zurückkam (Status = 1) und die zensiert wurden (Status = 0).

Abbildung 2 zeigt zusätzlich zur Herkunft der Patienten das Verhältnis zwischen Personen
mit dem Wiederauftreten von Krebs (gekennzeichnet mit [Status = 1]) im Gegensatz zu
zensierten Personen (gekennzeichnet mit [Status = 0]). Hierbei ist zu sehen, dass aus
jedem Krankenhaus mindestens eine Person mit Status 1 und eine Person mit Status 0
kommt. Das Verhältnis ist dabei aber nicht immer identisch. Bis auf das Institut der
TUM sind allerdings immer mindestens 50% der Beobachtungen aus den Krankenhäusern
zensiert ([Status = 0]).
Auch die Verteilung der Überlebenszeit (hier: Zeit bis zum Event bzw. bis zur Zensur)
ist von Bedeutung. In Abbildung 3 sind die Zeiten in Form von Boxplots dargestellt. Bis
auf das Krankenhaus HD weisen alle Gruppen einen relativ ähnlichen Mittelwert auf.
Die Länge der Boxen, welche die mittleren 50% der Daten enthalten, ist dagegen sehr
abhängig von der Gruppengröße. Besonders die Krankenhäuser BER, HD und TUM ha-
ben dementsprechend eine geringere Streuung der Überlebenszeiten. Allerdings lässt sich
allein mit dieser Abbildung noch kein Zusammenhang zwischen der Überlebenszeit und
dem Status der Person feststellen.
Abbildung 4 bildet dagegen den Status der Personen in Relation zur Überlebenszeit ab.
Die horizontalen Linien zeigen die jeweiligen Mittelwerte. Dabei ist der große Unter-
schied zwischen den zwei Mittelwerten deutlich wahrnehmbar. So liegt der Mittelwert
für die Beobachtungen mit Status 0 bei circa 1535 Tagen, während er für Beobachtun-
gen mit Status 1 nur bei ca. 432 Tagen liegt. Worin dieser Unterschied begründet liegt,
ist allerdings nicht ersichtlich. Ein möglicher Grund dafür wäre, dass das Risiko für das
Wiederkehren des Kehlkopfkrebses besonders in der Anfangszeit erhöht ist.
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Abbildung 3: Die Verteilung der Überlebenszeiten betrachtet auf die Krankenhäuser der Krebspatienten,
welche in der Studie beobachtet wurden. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen
den jeweiligen Mittelwerten.
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Abbildung 4: Die Verteilung der Überlebenszeiten abhängig vom Status und der Herkunft der Beobach-
tungen. Status = 0 steht für zensierte Beobachtungen und Status = 1 für Beobachtungen bei denen der
Kopf-Hals-Tumor wiederaufgetreten ist. Die horizontalen Linien stellen die jeweiligen Mittelwerte der
Beobachtungen dar.

18



Wie bereits erwähnt ist es nicht möglich alle 1031 Einflussvariablen näher zu betrachten.
Abbildung 5 ermöglicht allerdings einen kleinen Überblick über vier ausgewählte Variablen.
Die dort gezeigten Variablen sind auch diejenigen, die den größten bzw. kleinsten Wert
aufweisen mit ca. 6 und −5.5. Alle Einflussvariablen wurden zudem standardisiert und
besitzen dadurch einen Mittelwert von 0 und eine Varianz von 1.
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Abbildung 5: Die Verteilung einiger ausgewählter Einflussvariablen, die bereits in eine standardisierte
Form gebracht wurden.

4.3 Vorgehen

Um die Auswirkungen der Parameterwahl auf die Variablenselektion zu untersuchen, wird
zunächst nach der optimalen Einstellung der Parameter geschaut. Mit dieser optimalen
Einstellung kann das bestmögliche Modell berechnet werden, welches dann auch die wich-
tigsten Einflussvariablen enthalten sollte. Im Rahmen dieser Arbeit bedeutet bestmöglich,
dass das Modell auf den unabhängigen Validierungsdaten den höchsten c-Index aufweist.
Der Algorithmus der rbsurv -Funktion dient also dazu, die entsprechend wichtigen Varia-
blen herauszufiltern. Mit diesen Variablen wird anschließend ein Cox-Modell auf Grund-
lage des Trainingsdatensatzes berechnet. Dieses wird dann mit dem Validierungsdatensatz
und dem darauf berechneten c-Index bewertet. Im Zuge dieses Prozesses werden dann,
durch unterschiedliche Werte für die einzelnen Parameter, Vergleiche der Modelle und ih-
ren dazugehörigen Variablen möglich. Um mit dem vorhandenen Datensatz ein geeignetes
Modell mit den wichtigsten Variablen zu erhalten, wird folgendermaßen vorgegangen:
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Schritt 1: Die freien Parameter der rbsurv -Funktion werden in einer geeigneten Reihenfolge
geordnet, in welcher sie später dann entsprechend hintereinander optimiert werden.

Schritt 2: Es wird ein Modell mit den Default-Werten der Funktion berechnet. Lediglich
der erste freie Parameter wird verändert. Dabei wird das Modell mit mehreren
verschiedenen Werten für den Parameter berechnet und anschließend wird der Para-
meter auf den besten Wert festgesetzt. Die Kriterien dafür sind hauptsächlich der
c-Index und die Berechnungsdauer.

Schritt 3: Schritt 2 wird für jeden freien Parameter wiederholt. Die zuvor in Schritt 2 gewon-
nenen optimierten Werte werden als neue Default-Werte verwendet.

Schritt 4: Die Schritte 2 und 3 werden mit den davor gewonnenen Werten als neue Default-
Werte nochmals wiederholt.

Diese hier aufgeführten Schritte dienen als Übersicht für das weitere Vorgehen. Die einzel-
nen Schritte und die dadurch gewonnenen Informationen werden im Folgenden ausführlicher
betrachtet.

4.3.1 Schritt 1

In Tabelle 1 kann eine Übersicht aller vorhandenen Parameter gefunden werden. Allerdings
werden diese nicht alle in der Modellfindung benötigt. So ist der Befehl [gene.ID] lediglich
dazu gedacht eine bessere Übersicht über die Daten zu erhalten. Für die Modellanpassung
selbst spielt er aber keine Rolle. Da es in dem vorhandenen Datensatz keine zusätzlichen
Risikofaktoren gibt, werden auch die Befehle [z] und [alpha] nicht benötigt. Zusätzlich
werden die Befehle [time],[status] und [x] nur gemeinsam verändert, da sie ja jeweils
zueinander gehören und nicht getrennt verändert werden können. Sie werden deshalb
im weiteren Verlauf als Parameter [Datensatz] zusammengefasst. Die zur Modellfindung
übriggebliebenen Parameter zusammen mit ihren Default-Einstellungen sind in Tabelle 3
zu finden. Die Default-Einstellung für den Datensatz wurde auf den Teildatensatz DKTK
festgelegt. Der restliche Teil der Daten (KKG) wird somit anschließend zur Validierung
mit Hilfe des c-Indexes verwendet.

Argument Beschreibung Default-Einstellung
Datensatz Datensatz zur Modellberechnung hier: DKTK
method die Methode für Bindungen Methode nach Efron
n.iter Anzahl an Iterationen bei der Genselektion 10
n.fold Anzahl an Partitionen der Beobachtungen 3
n.seq Anzahl an multiplen Modellen 1
seed seed für Einteilung der Beobachtungen 1234
max.n.genes maximale Anzahl an betrachteten Genen hier: Anzahl Beobachtungen

Tabelle 3: Argumente im R-Paket rbsurv, die in den Simulationen verändert werden
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4.3.2 Schritt 2

Dieser Schritt dient dazu den besten Wert eines Parameters herauszufinden. Hierfür wird
der Parameter auf mehrere unterschiedliche Werte festgelegt und für jeden dieser Werte
werden 40 verschiedene Berechnungen getätigt. Diese 40 Berechnungen ergeben sich aus
der zuvor festgelegten Anzahl von 40 verschiedenen seed‘s pro Ausprägung. Für die
Auswahl der möglichen Werte für die Parameter spielten sowohl die Default-Einstellung
der rbsurv -Funktion, die mögliche resultierende Berechnungszeit und die gegebenen Gren-
zen des rbsurv -Algorithmus eine Rolle. Die daraus gewonnenen Berechnungen sind dann
letztlich die Grundlage für die Entscheidung, auf welchen Wert bzw. welche Ausprägung
der Parameter gesetzt wird. Hierfür ist primär der c-Index entscheidend. Dieser ist ein
häufig verwendetes Werkzeug zur Validierung eines Überlebenszeitmodelles. Es wird da-
bei empfohlen, wie bereits in Abschnitt 2.4 erläutert, dass der Datensatz für die Modell-
findung nicht derselbe wie für die Validierung ist. Aufgrund dessen wird lediglich ein Teil-
Datensatz dem Algorithmus der rbsurv -Funktion übermittelt, während der restliche Teil
des Datensatzes zur Validierung mit dem c-Index verwendet wird. Als Default-Einstellung
wird der Algorithmus der rbsurv -Funktion auf dem Datensatz DKTK ausgeführt, für die
Validierung dann der Datensatz KKG. Somit wird die Prognosegüte des Modells auf neue
Daten getestet. Allerdings stellt der c-Index nicht das einzige Kriterium für die Modell-
findung dar. Auch die Berechnungsdauer ist von Bedeutung. Je nach Datensatzumfang
nehmen die Berechnungen einen erheblichen Zeitumfang ein. Deshalb ist es sowohl im
Rahmen dieser Arbeit, wie auch vermutlich in vielerlei anderweitiger Verwendung durch-
aus ein wichtiges Kriterium, um in annehmbaren Zeiten ein ausreichend gutes Modell zu
finden. Bei einem gegensätzlichen Verlauf der Berechnungszeit und der Modellgüte muss
somit von Fall zu Fall entschieden werden. Die in folgenden Abbildungen angegebene
Berechnungszeit dient in erster Linie dazu, die verschiedenen Berechnungszeiten in ein
Verhältnis zueinander zu setzen. Die Zeiten selbst können von Computer zu Computer
variieren und wurden deshalb zur Vergleichbarkeit alle am selben Gerät berechnet.

4.3.3 Schritt 3

Da es nicht ausreicht, lediglich den ersten Parameter gegebenenfalls anzupassen, wird
Schritt 2 für alle weiteren Parameter in einer bestimmten Reihenfolge wiederholt. Diese
Reihenfolge wurde in Schritt 1 festgelegt. Dabei bauen die einzelnen Iterationen auf-
einander auf. Das bedeutet, dass, falls z.B. beim ersten Parameter der Default-Wert
verändert wird, diese Veränderung auch für die folgenden Parametern mit einbezogen
wird. Die Iterationen sind demnach abhängig voneinander.

4.3.4 Schritt 4

Um eine robuste Schätzung zu erlangen, werden die Schritte 2 und 3 nochmals wieder-
holt. Die einzige Veränderung zum ersten Durchgang besteht darin, dass jetzt bereits
neue optimale Werte für die Parameter festgelegt wurden und diese im zweiten Durch-
gang als neue Default-Einstellungen übernommen werden. Somit kann ein Parameter im
zweiten Durchgang auf einen anderen optimalen Wert gesetzt werden als noch im ersten
Durchgang, da die Kombination mit den anderen Parametern verändert wurde.
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4.4 Simulationen

Um aus den vorhandenen Parametern eine geeignete Reihenfolge zu finden, wurden fol-
gende Überlegungen angestellt.

• Der Parameter [seed] kann zwar unterschiedliche Modelle durch unterschiedliche
Werte verursachen, allerdings bedeutet dies lediglich das Eingreifen in einen Zu-
fallsprozess. Dieser wird durch die unterschiedlichen Werte im Parameter [seed]
beeinflusst, aber es bleibt dennoch ein Zufallsprozess. Der Parameter [seed] ist so-
mit kein Parameter, den man z.B. durch Vorwissen oder durch Simulationen auf den
”besten”Wert festlegen kann. Aufgrund dieser Umstände durchläuft der Parameter
[seed] bei jedem einzelnen Simulationsschritt eine gewisse Anzahl an Werten. Durch
die dadurch gewonnene Simulationsstichprobengröße erhöht sich zusätzlich die Ro-
bustheit der aus den Simulationen gewonnenen Erkenntnisse. Um diese Robustheit
entsprechend hoch und die Simulationsdauer entsprechend kurz zu halten, wurde
die Anzahl der verschieden Werte für den Parameter [seed] auf 40 gesetzt.

• Ein wichtiger Punkt in der Simulationsstudie ist die benötigte Rechenzeit. Um diese
möglichst gering zu halten, wurde der Parameter [max.n.genes] als erster Parameter
ausgewählt, da hierbei aufgrund vorheriger Testversuche, die größte Zeitersparnis
vermutet wurde. Die Default-Einstellung entspricht normalerweise der Anzahl der
im Datensatz enthaltenen Gene. Da diese aber in diesem Fall die Anzahl der Beob-
achtungen übersteigen, wird sie auf die Anzahl der Beobachtungen zurückgestuft.
Aufgrund der Festlegung des Datensatzes DKTK als Default-Einstellung, gilt folg-
lich auch die Default-Einstellung [max.n.genes = 85]. Die restlichen Gene werden
zuvor mit Hilfe univariater Modelle (siehe Abschnitt 3.2) aussortiert.

• Da ein Teil der Daten zur späteren Validierung mit dem c-Index benötigt wird,
kann nicht der vollständige Datensatz für den Algorithmus verwendet werden (siehe
hierzu Abschnitt 4.3.2). Wie bereits erwähnt, wird im Rahmen dieser Arbeit der
Teil-Datensatz DKTK als Default-Einstellung verwendet und somit dem rbsurv -
Algorithmus übergeben. Um diese Wahl zu überprüfen, ist der [Datensatz] der
zweite Parameter, der in den Simulationen verändert wird. Der Datensatz für den
Algorithmus sollte im Normalfall größer als 50% der Daten sein (siehe Kapitel 3.1).
Für weitere Varianten des verwendeten Datensatzes wurden die Beobachtungen in
verschiedene Verhältnisse aufgeteilt. Während die Aufteilung DKTK vs. KKG einem
Verhältnis von ca. (52 : 48) Prozent entspricht, enthalten die anderen Varianten
Verhältnisse von (50 : 50) bis zu (80 : 20) Prozent. Eine genaue Übersicht darüber
befindet sich in Tabelle 5.

• Die verbleibenden Parameter wurden aufgrund möglicher Verkürzungen der Berech-
nungszeiten in folgender Reihenfolge verwendet: [method], [n.iter], [n.fold] und
[n.seq].

Die letztlich verwendete Rangfolge ist in Tabelle 4 dargestellt. Zusätzlich sind auch die
unterschiedlichen Ausprägungen vermerkt, die in den Simulationen benutzt wurden.
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Rangfolge Parameter Ausprägungen
1 max.n.genes 10, 20, 30, 50, 85, 100
2 Datensatz DKTK, T 60, T 70 1, T 70 2, T 80 1, T 80 2, 50, 60, 70, 80
3 method efron, breslow, exact
4 n.iter 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
5 n.fold 2, 3, 4, 5, 6, 7, 8, 9, 10
6 n.seq 1, 2, 3

Tabelle 4: Die Rangfolge und ihre Ausprägungen der Argumente im R-Paket rbsurv für die Simulationen

4.4.1 Hintergrund

Um bereits zu Beginn einen Eindruck von der Parameterwahl und ihren Auswirkungen
zu bekommen, wurde beispielhaft der Parameter [n.iter] ausgewählt. Abbildung 6 zeigt
den Unterschied für zwei Berechnungen mit unterschiedlichen Werten für den Parameter
[n.iter] und die daraus resultierenden Variablen in den Modellen. Die Werte der restlichen
Parameter entsprechen den Default-Einstellungen der rbsurv -Funktion. Hierbei lässt sich
bereits gut erkennen, dass die Parameterwahl einen durchaus großen Einfluss auf die
Variablen und damit auch auf die Güte eines Modelles hat. So findet sich in diesem
Beispiel lediglich eine miRNA in beiden Modellen wieder. Im Anhang befindet sich die
Tabelle 7, die den entsprechenden Namen der miRNA’s zur ID-Nummer enthält. Im Fol-
genden werden die verschiedenen Iterationen durchgeführt, die auf Tabelle 4 basieren. Am
Ende des Kapitels 4.4 befindet sich in Tabelle 6 zudem eine Übersicht über den Aufbau
und die Ergebnisse der einzelnen Iterationen.
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Abbildung 6: Die Auswirkungen der Anzahl der Iterationen auf die Variablenselektion. Die übrigen Para-
meter wurden auf die Default-Einstellungen gesetzt.
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4.4.2 Iteration 1.1 bis 1.6

Wie bereits erwähnt, wird der Parameter [seed] in der Auswertung nicht auf einen festen
Wert festgelegt. Stattdessen wird er immer wieder nach dem Zufallsprinzip neu bestimmt,
um dadurch robustere Ergebnisse zu erhalten. Abbildung 7 zeigt allerdings, dass auch der
Parameter [seed] einen relativ großen Einfluss auf die Güte eines Modelles haben kann.
So schwankt allein in dieser kleinen Stichprobe von zehn verschiedenen seed’s der c-Index
um mehr als 0.12. Der c-Index wurde mit Hilfe des Validierungsdatensatzes (hier: KKG)
berechnet. Allerdings ist der mittlere c-Index dieser zehn Berechnungen mit ca. 0.506 auch
nur knapp über 0.5 (gestrichelte Linie) und deutet somit auf keine gute Modellanpassung
hin.
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Abbildung 7: Die Auswirkungen von verschiedenen Werten des Parameters [seed] auf den c-Index. Die
übrigen Parameter entsprechen den Default-Einstellungen.

• Iteration 1.1

Im ersten Schritt zum optimalen Modell wird der Parameter [max.n.genes] fest-
gelegt. Hierfür wurden die Default-Einstellungen der rbsurv -Funktion übernommen
und kombiniert mit jeweils verschiedenen Werten für [max.n.genes]. Jede dieser
Kombinationen wurde dann mit 40 verschiedenen Werten für den Parameter [seed]
berechnet. Abbildung 8 zeigt den Vergleich der Berechnungen im Hinblick auf den
c-Index. Hierbei lassen sich bereits deutliche Unterschiede erkennen. So schneidet
die Default-Einstellung von 85 miRNA’s mit einem durchschnittlichen c-Index von
0.516 relativ schlecht ab. Der durchschnittlich beste c-Index wurde dagegen mit der
Einstellung [max.n.genes = 20] erreicht. Zusätzlich liegen hier auch die mittleren
50% der Daten am engsten beieinander und weisen somit die geringste Streuung in
diesem Bereich auf.
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Abbildung 8: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf den
c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 9: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf die
Berechnungsdauer. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Zudem lässt sich eine hohe positive Korrelation von ca. 0.999 (nach Pearson) zwischen
der Berechnungsdauer und dem Parameter [max.n.genes] beobachten, wie auch in
Abbildung 9 zu sehen ist. Aufgrund des deutlich besseren, da höheren c-Index und
der relativ geringen Berechnungsdauer werden die weiteren Berechnungen mit der
Parameterwahl [max.n.genes = 20] fortgeführt.

• Iteration 1.2

Die zweite Iteration beinhaltet das Festlegen des Parameters [Datensatz]. Die bis
hierhin verwendete Default-Einstellung war der Datensatz DKTK. Die ersten vier
Teil-Datensätze wurden zufällig aus dem vollständigen Datensatz gebildet. Es wurde
dabei also nicht auf die Gruppen- bzw. Institutszugehörigkeit geachtet. Bei den
letzten sechs Teil-Datensätze wurde darauf geachtet, dass die einzelnen Institute mit
ihren dazugehörigen Beobachtungen nicht getrennt wurden. Die weiteren getesteten
Teil-Datensätze und ihre Zusammensetzung sind in Tabelle 5 zu finden.

Bezeichnung Umfang (proz. Anteil) enthaltene Datensätze
50 81 (50%) zufällig gebildet aus vollständigem Datensatz
60 97 (60%) zufällig gebildet aus vollständigem Datensatz
70 113 (70%) zufällig gebildet aus vollständigem Datensatz
80 130 (80%) zufällig gebildet aus vollständigem Datensatz
DKTK 85 (52%) DD, FB, EU, FFM, TUE, TUM, BER, HD
T 60 97 (60%) KKG, FB, TUM
T 70 1 113 (70%) KKG, DD, FFM
T 70 2 113 (70%) KKG, DD, TUE
T 80 1 130 (80%) KKG, DD, FB, FFM
T 80 2 130 (80%) KKG, DD, FB, TUE

Tabelle 5: Die verwendeten Trainings-Datensätze und ihre Zusammenstellung

Betrachtet man die Auswirkung der verschiedenen Teil-Datensätze zur Modellwahl
in Abbildung 10, so sind durchaus Unterschiede erkennbar. Der c-Index der jeweiligen
Teil-Datensätze unterscheidet sich dabei sowohl im Mittelwert als auch in der Streu-
ung deutlich. Dabei ist aber keine Tendenz auszumachen, dass ein größerer Teil-
Datensatz zu einem besseren Ergebnis führen würde. Da sich die jeweiligen Berech-
nungszeiten der Teil-Datensätze nicht beträchtlich voneinander unterscheiden (siehe
Anhang: Abbildung 34), wird der Parameter [Datensatz] weiterhin auf DKTK ge-
setzt. Zwar weist der Teildatensatz 60 einen minimal höheren mittleren c-Index
auf, allerdings ist die Bildung dieses Teildatensatzes sehr vom Zufall geprägt und
dementsprechend weniger aussagekräftig.

Im Vergleich des c-Index der beiden Teildatensätze 60 und DKTK ist also kein
großer Unterschied zu bemerken. Schauen wir uns allerdings das relative Vorkommen
der miRNA’s in den Modellen an, so basieren die jeweiligen Modelle fast ausschließ-
lich auf unterschiedlichen Variablen. In Abbildung 11 sind die 15 am häufigsten
vorkommenden miRNA’s zu sehen. Lediglich die Nummer 973 ist in beiden Modell-
gruppen sehr häufig zu finden. Ansonsten gibt es fast keine Überschneidungen.
Aufgrund der Übersichtlichkeit befinden sich auch in den weiteren Abbildungen
des selben Musters lediglich die 15 am häufigsten vorkommenden miRNA’s. Die
vollständigen Abbildungen befinden sich im digitalen Anhang.
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Abbildung 10: Die verschiedenen Trainings-Datensätze und ihre Auswirkungen auf den c-Index. Die roten
Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 11: Vergleich zweier Teil-Datensätze und das relative Vorkommen der 15 am häufigsten auf-
tretenden miRNA’s in den zugehörigen Modellen. Es wurden pro Teil-Datensatz 40 Modelle berechnet.
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• Iteration 1.3

In Iteration 1.3 geht es um die verwendete Berechnungsmethode bei Bindungen.
Hierfür stellt das Paket drei verschiedene Optionen bereit. Zusätzlich zur Default-
Einstellung [method = efron] gibt es noch die exakte Berechnung nach Kalbfleisch
und Prentice (2002) und die Methode nach Breslow (1974). Vergleichen wir die drei
Methoden im Hinblick auf den c-Index (siehe Abbildung 12), so sind keine großen
Unterschiede zu bemerken. Dies lässt sich auch damit begründen, dass die Daten
insgesamt relativ wenig Bindungen enthalten. Wären überhaupt keine Bindungen
vorhanden, so würden sich für alle drei Methoden die gleichen Ergebnisse ergeben.
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Abbildung 12: Die verschiedenen Methoden für die Berechnung der Likelihood und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

Die Ursache für die geringen Unterschiede im c-Index rühren daher, dass sich die
Modelle kaum unterscheiden. Bei der Betrachtung der enthaltenen miRNA’s in Ab-
bildung 13 fällt auf, dass die drei Modellgruppen fast immer zu gleichen Anteilen die
miRNA’s enthalten. Da sich die verschiedenen Methoden im vorhandenen Daten-
satz kaum unterschiedlich bemerkbar machen, wird vorerst die Default-Einstellung
[method = efron] beibehalten.
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Abbildung 13: Vergleich dreier Methoden für die Berechnung der Likelihood bei vorhandenen Bindungen
und das relative Vorkommen der 15 am häufigsten auftretenden miRNA’s in den zugehörigen Modellen.
Es wurden pro Methode 40 Modelle berechnet.

• Iteration 1.4

Der Parameter [n.iter] dient in der rbsurv -Funktion dazu robustere Schätzungen
für die berechneten Parameter zu erlangen. Bei Betrachtung der Abbildung 14 mit
verschiedenen Werten für diesen Parameter, kann keine positive Korrelation erkannt
werden. Tatsächlich ist die Korrelation des Parameter [n.iter] und des c-Index mit
−0.19 (Pearson) leicht negativ, was somit für eine geringe Anzahl an Iterationen
spricht. Auffällig ist zudem, dass die Größe der Boxen im Boxplot mit zunehmender
Anzahl an Iterationen ebenfalls ansteigt. Dies spricht dafür, dass Modelle, welche
mit einer hohen Anzahl an Iterationen berechnet wurden, eine höhere Schwankung
der Modellgüte vorweisen.

Um festzustellen, welche Auswirkungen der Parameter auf die Variablenselektion
hat, schauen wir uns zusätzlich Abbildung 15 an. Die drei repräsentativen Werte für
den Parameter zeigen, dass relativ viele miRNA’s in allen Modellgruppen zumindest
zum Teil vorkommen. Die Modelle setzen sich also vermutlich zum Großteil aus
demselben Pool an miRNA’s zusammen, allerdings ist die Zusammenstellung der
einzelnen miRNA’s bei Modellen mit hoher Anzahl an Iterationen im Durchschnitt
schlechter.

Der hohe Anstieg der Berechnungsdauer (siehe Anhang: Abbildung 35) und der
zusätzlich beste mittlere c-Index sprechen dafür, den Parameter [n.iter] auf fünf
Iterationen festzulegen.
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Abbildung 14: Die verschiedene Anzahl an Iterationen in der rbsurv -Funktion und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 15: Vergleich dreier verschiedener Anzahlen an Iterationen in der rbsurv -Funktion und das
relative Vorkommen der 15 am häufigsten auftretenden miRNA’s in den zugehörigen Modellen. Es wurden
pro Wert 40 Modelle berechnet.
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• Iteration 1.5

Die fünfte Iteration behandelt den Parameter [n.fold]. Dessen Default-Einstellung
liegt hierbei bei [n.fold = 3]. Das bedeutet, dass innerhalb der rbsurv -Funktion
eine Einteilung der Daten zu zwei Drittel zum Trainingsdatensatz und zu einem
Drittel zum Validierungsdatensatz erfolgt. Diese Einteilung erfolgt ausschließlich im
Algorithmus der Funktion und hat nichts mit der anschließenden Validierung zur
Gewinnung des c-Index zu tun. Diese basiert auf den Daten, die nicht im Algorith-
mus verwendet wurden.
Setzt man den Parameter beispielsweise auf [n.fold = 5], so teilt der Algorithmus
die Daten so ein, dass der Trainingsdatensatz vier Fünftel und der Validierungs-
datensatz ein Fünftel der Daten enthält. Diese Einteilung wird mehrmals gemäß der
Einstellung des Parameters [n.iter] durchgeführt (siehe Abschnitt 3.2).
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Abbildung 16: Die unterschiedlichen Werte des Parameters [n.fold] in der rbsurv -Funktion und der
dazugehörige c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mit-
telwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

In Abbildung 16 ist der c-Index für neun verschiedene Werte des Parameters [n.fold]
abgebildet. Dabei entsprechen die Einstellungen [n.fold = 2] und [n.fold = 10]
dem Minimum bzw. dem Maximum der möglichen Werte. Damit auch der Validierungs-
datensatz ausreichend Informationsgehalt besitzt, achtet der Algorithmus darauf,
dass die folgende Formel eingehalten wird:

n1 > 3 ∗ [nfold], (11)

mit
n1 = Summe der Beobachtungen im Datensatz mit Status = 1 (Cho et al., 2009).
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Da für den Teil-Datensatz DKTK n1 = 32 gilt, ist die größte ganze Zahl, welche
die Gleichung erfüllt, die 10. Für das Minimum des Parameters ist die 2 zudem eine
sinnvolle Wahl, da somit gewährleistet ist, dass mindestens die Hälfte der Daten als
Trainingsdatensatz genutzt werden können. Werden die möglichen Einstellungen
für den Parameter [n.fold] im Blick auf den c-Index in Abbildung 16 betrachtet,
so fällt auf, dass die Default-Einstellung von [n.fold = 3] im Mittel am schlech-
testen abschneidet. Der beste mittlere c-Index berechnet sich auf der Grundlage
[n.fold = 10], was bedeutet, dass der Trainingsdatensatz 90% der verwendeten
Daten enthält. Allerdings liegen die Mittelwerte alle relativ eng beieinander und es
ist keine klare Tendenz zu erkennen. Zudem besitzt der Parameter [n.fold] keinen
großen Einfluss auf die Berechnungszeit (siehe Anhang: Abbildung 36) und wird
deshalb auf [n.fold = 10] gesetzt.

• Iteration 1.6

Der letzte Parameter im ersten Durchlauf ist der Parameter [n.seq], der dazu dient
multiple Modelle zu bilden. Setzt man den Parameter beispielsweise auf [n.seq = 3],
so bildet der Algorithmus drei eigenständige Modelle, die insofern voneinander
abhängig sind, dass sie keine Überschneidungen in den enthaltenen miRNA’s be-
sitzen. Zur besseren Vergleichbarkeit wurden im Zuge dieser Auswertung bei der
Bildung multipler Modelle anschließend alle ausgewählten Variablen in ein Modell
übergeben. Dies kann dazu führen, dass die Modelle statistisch gesehen nicht opti-
mal sind, da es zwischen den Einflussvariablen durchaus hohe Korrelationen geben
kann. Allerdings können sie dadurch, aus biologischer Sicht, mehr wichtige Einfluss-
variablen enthalten, die sonst eventuell nicht beachtet worden wären.

Aus Gründen der Berechnungszeit sind in dieser Auswertung lediglich maximal drei
verschiedene Modelle berechnet worden. In Abbildung 17 sind diese Modellgruppen
zu sehen. Hierbei ist die Einstellung [n.seq = 3] die mit dem besten mittleren
c-Index. Betrachten wir dazu die verwendete Berechnungszeit in Abbildung 18, so
lässt sich auch hier ein großer Zusammenhang erkennen (Korrelationskoeffizient nach
Pearson: 0.874).
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Abbildung 17: Unterschiedliche Anzahlen an multiplen Modellen und der dazugehörige c-Index. Die roten
Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 18: Unterschiedliche Anzahlen an multiplen Modellen und ihre Auswirkungen auf die Berech-
nungsdauer. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 19 zeigt die verwendeten miRNA’s in den Modellen. Hier lässt sich
kein großer Unterschied erkennen, was auch darin begründet ist, dass bei multi-
plen Modellen lediglich neue miRNA’s zum bereits vorhandenen Modell hinzugefügt
werden. Dadurch kann der Anteil an auftretenden miRNA’s in den Modellen mit
zunehmender Anzahl an multiplen Modellen ebenfalls nur zunehmen oder gleich
bleiben.

0.00

0.25

0.50

0.75

1.00

973 880 739 410 738 9 122 5 68 885 197 762 926 320 729
ID der miRNA's

su
m

m
ie

rt
e 

re
la

tiv
e 

H
äu

fig
ke

it

Anzahl Modelle

1

2

3

Auftreten der miRNA's in den Modellen

Abbildung 19: Vergleich dreier verschiedener Anzahlen an multiplen Modellen in der rbsurv -Funktion
und das relative Vorkommen der 15 am häufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40
Modelle berechnet.

Obwohl der mittlere c-Index bei drei Modellberechnungen am höchsten ist, wird der
Parameter aufgrund der Berechnungszeit auf [n.seq = 1] belassen. Um allerdings
ein optimales Modell mit hoher Prognosegüte zu erhalten, wäre es durchaus sinnvoll
auch multiple Modelle zu verwenden.
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4.4.3 Iteration 2.1 bis 2.6

Der zweite Durchgang optimiert die einzelnen Parameter in der gleichen Reihenfolge wie
im ersten Durchgang. Die im ersten Durchgang bereits optimierten Parameter werden
weiterhin als neue Default-Einstellungen verwendet. Um eine bessere Vergleichbarkeit
zwischen den zwei Durchgängen zu ermöglichen, wurden innerhalb der Parameter immer
die selben seed’s verwendet. Das bedeutet, dass sich sowohl in Iteration 1.1 als auch in
Iteration 2.1 dieselben seed’s finden. Das gleiche gilt für Iteration 1.2 und Iteration 2.2,
usw. .

• Iteration 2.1

In der ersten Iteration des zweiten Durchgangs wird der Parameter [max.n.genes]
zum zweiten Mal optimiert. Bei der Betrachtung des c-Index für verschiedene maxi-
male Anzahlen an miRNA’s in den Modellen in Abbildung 20 lässt sich ein ähnlicher
Verlauf wie im ersten Durchgang (siehe Abbildung 8) erkennen. Es fällt zudem auf,
dass der mittlere c-Index für jeden Wert des Parameters [max.n.genes] gestiegen
ist. Dies ist auf die im ersten Durchgang optimierten Parameter zurückzuführen.
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Abbildung 20: Die verschiedenen Werte des Parameters [max.n.genes] und ihre Auswirkungen auf den
c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

Der höchste mittlere c-Index wird hier durch Werte von zehn bzw. 20 erreicht.
Aufgrund dessen, dass eine Beschränkung von über 1000 miRNA’s auf nur maximal
zehn miRNA’s, die in das Modell mitaufgenommen werden können, relativ stark
eingrenzt, wird der Parameter weiterhin auf [max.n.genes = 20] festgelegt.
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Abbildung 21: Vergleich dreier Anzahlen an maximalen miRNA’s in der rbsurv -Funktion und das relative
Vorkommen der 15 am häufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40 Modelle berechnet.
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Abbildung 22: Vergleich dreier Anzahlen an maximalen miRNA’s in der rbsurv -Funktion und das relative
Vorkommen der 15 am häufigsten auftretenden miRNA’s. Es wurden pro Gruppe 40 Modelle berechnet.
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In Abbildung 21 und 22 ist ein Vergleich der Variablenselektionen zwischen dem
ersten und zweiten Durchgang zu sehen. Hierbei wurden jeweils verschiedene Werte
für den Parameter [max.n.genes] betrachtet und die dazugehörigen Variablen, die
dadurch in die Modelle mit aufgenommen wurden. Elf von den 15 am häufigsten
vorgekommenen miRNA’s im ersten Durchgang finden sich auch im zweiten Durch-
gang unter den Top 15 der miRNA’s wieder. Ebenfalls auffällig ist das Ansteigen
der summierten relativen Häufigkeit. Zwar steigt die summierte relative Häufigkeit
nicht für jede miRNA an, allerdings ist das Niveau insgesamt höher. Die vorkom-
menden miRNA’s im zweiten Durchgang treten dementsprechend öfters vermehrt in
den Modellen auf als noch im ersten Durchgang. So kommt beispielsweise im ersten
Durchgang die am 15. häufigste auftretende miRNA mit der ID 860 auf 16 Modelle,
in welchen sie auftritt. Im zweiten Durchgang ist die am 15. häufigste auftretende
miRNA (ID: 148) in 26 Modellen vertreten. Dieser Vergleich zeigt auf, dass durch die
optimierten Parameter häufiger dieselben und vermutlich auch wichtigeren miRNA’s
für die Modelle ausgewählt werden und die Variabilität der Variablenselektion da-
durch geringer wird.

• Iteration 2.2

Der Parameter [Datensatz] wurde im ersten Durchgang nicht verändert und ist
unverändert auf die Default-Einstellung DKTK eingestellt. Die Simulationen im
zweiten Durchgang zeigen jedoch deutliche Veränderungen gegenüber dem ersten
Durchgang. Bei der Betrachtung des mittleren c-Index in Abbildung 23 lässt sich
gut erkennen, dass der Datensatz T 80 2 den höchsten c-Index besitzt. Besonders
der Unterschied zwischen dem Datensatz T 80 2 und dem zufällig gebildeten Da-
tensatz 80 ist auffällig. Obwohl beide Datensätze jeweils 80% der gesamten Daten
enthalten, weisen sie doch deutliche Unterschiede im mittleren c-Index auf. Aller-
dings kann man daraus keine allgemeine Aussage ableiten, da dies lediglich auf
diese zwei Datensätze zutrifft. Der Datensatz 60, der noch im ersten Durchgang den
höchsten c-Index aufweisen konnte (siehe Abbildung 10), ist dagegen lediglich im
Mittelfeld der hier aufgeführten Datensätze zu finden. Die Berechnungsdauer hat
keine entscheidende Bedeutung (siehe Anhang: Abbildung 37). Für die weiteren Si-
mulationen wurde die Einstellung [Datensatz = T 80 2] übernommen.

• Iteration 2.3

In Iteration 2.3 wird der Parameter [method] nochmals genauer betrachtet. Ab-
bildung 24 zeigt hierbei ein ähnliches Bild wie bereits im ersten Durchgang (siehe
Abbildung 12). So haben die unterschiedlichen Methoden für die Berechnung der
partiellen Likelihood hier keinen großen Einfluss auf den c-Index. Die Parameterein-
stellung [method = exact] weist zwar einen etwas höheren Median für den c-Index
auf, aber die Mittelwerte sind jeweils fast identisch. Allerdings ist zu beobachten,
dass auch hier der mittlere c-Index durch die optimierten Parameter im Vergleich
zum ersten Durchgang angestiegen ist.
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Abbildung 23: Die verschiedenen Trainings-Datensätze und ihre Auswirkungen auf den c-Index. Die roten
Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.

Vergleicht man allerdings die enthaltenen miRNA’s in den Modellen, so ergeben
sich große Unterschiede. In Abbildung 25 sind die 15 am häufigsten vorkommenden
miRNA’s in den Modellen zum Parameter [method] zu sehen. Vergleicht man diese
mit Abbildung 13, so sind bis auf die miRNA mit der ID 973 keine Gemeinsamkeiten
zu erkennen. Auch die vollständige Auflistung aller in den Modellen vorkommenden
miRNA’s liefert dasselbe Ergebnis (siehe digitaler Anhang). Das bedeutet, dass die
gebildeten Modelle im ersten und im zweiten Durchgang bis auf die miRNA mit
der ID 973 völlig unterschiedliche Einflussvariablen besitzen. Dieser große Unter-
schied ist vermutlich damit zu begründen, dass in der vorherigen Iteration 2.2 der
Trainings-Datensatz geändert wurde. Die Verhältnisse zwischen den unterschied-
lichen Methoden und dem Vorkommen der einzelnen miRNA’s scheinen relativ
konstant proportional zueinander zu sein und bestätigen somit den Eindruck aus
Abbildung 25, dass die Methode für Bindungen hier keinen großen Einfluss auf die
Modelle hat. Dadurch wird auch im weiteren Verlauf der Parameter auf der Default-
Einstellung [method = efron] belassen.
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Abbildung 24: Die verschiedenen Methoden für die Berechnung der Likelihood und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 25: Vergleich dreier Methoden für die Berechnung der Likelihood bei vorhandenen Bindungen
und das relative Vorkommen der 15 am häufigsten auftretenden miRNA’s in den zugehörigen Modellen.
Es wurden pro Methode 40 Modelle berechnet.
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• Iteration 2.4

Der Parameter [n.iter] wurde im ersten Durchgang von der Default-Einstellung
[n.iter = 10] auf [n.iter = 5] optimiert. Durch Abbildung 26 bestätigt sich diese
Optimierung auch im zweiten Durchgang, da auch hier die Einstellung [n.iter = 5]
den höchsten mittleren c-Index aufweist. Der Korrelationskoeffizient des Parameter
[n.iter] und des c-Index ist mit −0.19 (Pearson) leicht negativ und entspricht ziem-
lich exakt dem gleichen Korrelationskoeffizienten wie noch im ersten Durchgang. Die
Berechnungsdauern, die in Abbildung 27 zu finden sind, steigen proportional zur An-
zahl der Iterationen deutlich an. So ist auch hier eine geringe Anzahl an Iterationen
im Algorithmus zu befürworten und dementsprechend wird auch im zweiten Durch-
gang der Parameter auf [n.iter = 5] festgelegt.
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Abbildung 26: Die verschiedene Anzahl an Iterationen in der rbsurv -Funktion und ihre Auswirkungen auf
den c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 27: Die verschiedene Anzahl an Iterationen in der rbsurv -Funktion und ihre Auswirkungen
auf die Berechnungsdauer. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen
Mittelwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

• Iteration 2.5

Um den Parameter [n.fold] ein weiteres Mal zu optimieren, wurden dieselben Werte
für den Parameter simuliert wie bereits in Iteration 1.5. Der Überblick über den
jeweils dazugehörigen mittleren c-Index befindet sich in Abbildung 28. Auch hier
bestätigt sich der Eindruck aus dem ersten Durchgang, dass sich ein hoher Wert für
den Parameter [n.fold] positiv auf den c-Index auswirkt.

Die Berechnungsdauer ist für jeden der einzelnen Werte so gut wie identisch (siehe
Anhang: Abbildung 38) und spielt somit keine Rolle für die Optimierung des Para-
meters. Aufgrund des höchsten c-Index wird dieser weiterhin auf [n.fold = 10]
gesetzt.
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Abbildung 28: Die unterschiedlichen Werte des Parameters [n.fold] in der rbsurv -Funktion und der
dazugehörige c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mit-
telwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.

• Iteration 2.6

Der letzte Iterationsschritt hat wieder den Parameter [n.seq] im Blick. Dieser dient
zur Überprüfung, ob die Bildung mehrerer Modelle eventuell einen höheren c-Index
bewirkt. In Abbildung 29 wird dieser Eindruck verstärkt. So steigt der c-Index mit
steigender Anzahl an Modellen. Die erhöhte Prognosegüte durch multiple Modelle
hat allerdings auch eine deutlich längere Berechnungsdauer zur Folge. Abbildung 30
zeigt, dass die Berechnungsdauer von einem Modell auf drei Modelle um fast 50%
zunimmt. Da es sich hierbei um die letzte Iteration handelt, wird der Parameter
ungeachtet der längeren Berechnungsdauer auf [n.seq = 3] gesetzt.
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Abbildung 29: Unterschiedliche Anzahlen an multiplen Modellen und der dazugehörige c-Index. Die roten
Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es wurden pro Gruppe
40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 30: Unterschiedliche Anzahlen an multiplen Modellen und ihre Auswirkungen auf die Berech-
nungsdauer. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Übersicht

In Tabelle 6 befindet sich der Überblick über die einzelnen Iterationsschritte. Auch das
abschließende Modell mit den optimierten Parametern befindet sich darin.

Iteration max.n.genes Datensatz method n.iter n.fold n.seq
Start 85 DKTK efron 10 3 1
1.1 x DKTK efron 10 3 1
1.2 20 x efron 10 3 1
1.3 20 DKTK x 10 3 1
1.4 20 DKTK efron x 3 1
1.5 20 DKTK efron 5 x 1
1.6 20 DKTK efron 5 10 x
2.1 x DKTK efron 5 10 1
2.2 20 x efron 5 10 1
2.3 20 T 80 2 x 5 10 1
2.4 20 T 80 2 efron x 10 1
2.5 20 T 80 2 efron 5 x 1
2.6 20 T 80 2 efron 5 10 x

Ende 20 T 80 2 efron 5 10 3

Tabelle 6: Die einzelnen Simulationsschritte und die dazugehörige Parameterwahl. Die Variable x steht
dafür, dass diese Variable mit mehreren Ausprägungen in die Simulation einfließt.

4.4.4 Auswirkungen der optimierten Parameterwahl

Vergleicht man das Modell mit den Default-Parametereinstellungen mit dem optimierten
Modell, so lassen sich deutliche Unterschiede erkennen. Bis auf den Parameter [method]
wurden dabei alle Parameter im Laufe der Iterationsschritte optimiert (siehe Tabelle 6).
Vergleicht man den durchschnittlichen c-Index der beiden Modelle, so schneidet das opti-
mierte Modell deutlich besser ab. Abbildung 31 zeigt die Verteilung des c-Index für je 40
Modelle pro Gruppe. Hierbei lässt sich eine Differenz des mittleren c-Index von ca. 0.15
feststellen. Auch die Varianz des c-Index mit den Default-Einstellungen ist mit ca. 0.0023
mehr als doppelt so hoch wie die Varianz des c-Index mit den optimierten Parametern
(ca. 0.0011).

Betrachtet man die dazugehörige Berechnungsdauer in Abbildung 32, so lässt sich auch
hier ein großer Unterschied erkennen. Die durchschnittliche Berechnungszeit der Default-
Einstellung beträgt mit ca. 156 Sekunden mehr als sechs Mal so viel wie die durch-
schnittliche Berechnungszeit mit den optimierten Parametern (23.5 Sekunden). Dieser
enorme Zeitgewinn durch die optimierten Parameter wird hauptsächlich durch die Ver-
ringerung der maximalen Anzahl an miRNA’s im Modell verursacht. So konnte bereits in
Abbildung 9 der große Unterschied zwischen den verschiedenen Werten für den Parameter
[max.n.genes] ausgemacht werden.

Obwohl das optimierte Modell deutliche Verbesserungen hinsichtlich des c-Index und der
Berechnungsdauer vorweist, ist keinesfalls gegeben, dass es sich dabei um die optimalen
Parameter-Einstellungen handelt.

44



0.517

0.667

0.5

0.6

0.7

Default−Einstellungen optimierte Parameter
Modell

c−
In

de
x

Vergleich der Modelle

Abbildung 31: Der Vergleich zwischen den Default-Einstellungen und dem optimierten Modell bzgl. dem
c-Index. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten. Es
wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 32: Der Vergleich zwischen den Default-Einstellungen und dem optimierten Modell bzgl. der
Berechnungsdauer. Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Betrachtet man die summierte relative Häufigkeit der 15 am häufigsten vorkommenden
miRNA’s im optimierten Modell, so sind die zehn häufigsten miRNA’s in über 75% der
Modelle enthalten. Dadurch, dass das optimierte Modell sich allerdings aus multiplen
Modellen zusammensetzt, steigt die Summe der enthaltenen miRNA’s automatisch an.
Aus den 40 verschiedenen Modellen mit den optimierten Parametereinstellungen besitzt
das beste Modell einen c-Index von ca. 0.7181 mit dem dazugehörigen Konfidenzintervall
[0.5614; 0.8749]. Die ID-Nummern der elf enthaltenen miRNA’s sind: 147, 194, 196, 443, 626,
627, 723, 801, 963, 973 und 1000.
Das schlechteste Modell der 40 Modelle mit den optimierten Parametereinstellungen be-
sitzt einen c-Index von ca. 0.5907 (Konfidenzintervall: [0.3930; 0.7884]). Dieser Unter-
schied liegt an den unterschiedlichen Werten für den Parameter [seed] und der damit
verbundenen zufälligen Aufteilung in Trainings- und Validierungsdatensatz innerhalb der
Kreuzvalidierung.
Interessanterweise ist das beste Modell mit den optimierten Parametereinstellungen nicht
das beste Modell, welches in den Simulationsschritten zu finden war. So gab es innerhalb
der Iterationsschritte Modelle, die einen höheren c-Index aufweisen können. Das beste da-
bei gefundene Modell ist in Iterationsschritt 2.5 berechnet worden. Im Unterschied zur op-
timierten Parametereinstellung wurden hier die Parameter [n.fold = 8] und [n.seq = 1]
angewendet. Dadurch ergab sich ein Modell mit neun miRNA’s und einem c-Index von
ca. 0.7606 (Konfidenzintervall: [0.6213; 0.8999]).
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Abbildung 33: Das relative Vorkommen der 15 am häufigsten vorkommenden miRNA’s in den Modellen
mit optimierten Parametern. Es wurden 40 Modelle berechnet.
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5 Ergebnisse

Die vorangegangene Auswertung brachte verschiedene Erkenntnisse zu Tage. Mit Hilfe
von Simulationen wurden viele verschiedene Modelle mit dem R-Paket rbsurv berechnet
und ausgewertet. Dadurch wurde die Variabilität der Funktion rbsurv und den darin
enthaltenen Parametern aufgezeigt. Die Simulationen führten letztlich zu einem Modell
mit optimierten Parametern, das deutliche Verbesserungen gegenüber dem Modell mit den
Default-Parametereinstellungen aufweist. Zudem konnten Erkenntnisse für eine allgemeine
optimale Parametereinstellung gewonnen werden.

5.1 Bestes Modell

Durch die zwei Simulations-Durchgänge und die darin enthaltenen Iterationsschritte wurde
ein bestes Modell mit optimierter Parametereinstellung gefunden. Der Vergleich in Kapitel
4.4.4 zeigt, dass das optimierte Modell in der Prognosegüte und der Berechnungszeit deut-
liche Vorteile gegenüber dem Modell mit den Default-Einstellungen besitzt. Allerdings ist
auch bei den optimierten Parametereinstellungen noch eine relativ große Varianz bezüglich
des Parameters [seed] zu beobachten. Zudem gab es im Zuge der Auswertung bessere
Modelle bezogen auf den c-Index. Aufgrund der Schwankungen durch den Parameter
[seed] können somit andere Parametereinstellungen zu noch besseren Modellen führen.
Die durch die Iterationen festgelegten Parameter versprechen somit nicht das beste einzel-
ne Modell, sondern den im Durchschnitt höchsten c-Index, der hier berechneten Modelle.
Durch die Verwendung von zufälligen und damit meist unterschiedlichen Werten für den
Parameter [seed] wird der Vergleich zwischen den verschiedenen Modellen zusätzlich er-
schwert. Es ist dadurch nicht ersichtlich, ob der Grund für den Unterschied zwischen den
Modellen die Parametereinstellung oder der Parameter [seed] ist.
Die in Abbildung 33 vorkommenden miRNA’s sind nach dem optimierten Modell die wich-
tigsten miRNA’s für das Wiederauftreten des Kopf-Hals-Tumors. Um ein gutes Modell zu
finden empfiehlt es sich, mehrere Modelle mit den optimierten Parametern zu berechnen.
Aus diesen sollte dann das beste Modell ausgesucht werden. Damit kann der Einfluss von
der zufälligen Schwankung der Modellgüte durch den Parameter [seed] verringert werden.

5.2 Empfehlung für die Parametereinstellung

Da die erhaltenen Erkenntnisse und Ergebnisse alle auf einem einzelnen, relativ kleinen
Datensatz basieren, ist es schwer daraus allgemeine Grundsätze für die Parameterwahl zu
schließen. Dennoch lassen sich verschiedene Aussagen für die Parameter aus den Simula-
tionen treffen.

1. Parameter [seed]

Der Parameter [seed] ist der einzige Parameter, der sich nicht optimieren lässt. Den-
noch zeigt z.B. Abbildung 20 die unterschiedlichen Auswirkungen, die der Parameter
(abhängig von den anderen Parametern) auf die Ergebnisse hat. In Abbildung 31 ist
allerdings zu sehen, dass die Varianz des c-Index durch die optimierten Parameter
deutlich kleiner geworden ist. Dementsprechend liegt die Vermutung nahe, dass eine
gute Einstellung der Parameter auch die Variabilität durch den Parameter [seed]
verringert.
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2. Parameter [max.n.genes]

Der Parameter [max.n.genes] ist per Default-Einstellung auf die Anzahl der miRNA’s
festgelegt. Wird er nicht explizit angegeben, werden alle miRNA’s auch im Algo-
rithmus verwendet und es werden davor keine miRNA’s durch univariate Modelle
aussortiert. Bei der Verwendung der DKTK-Daten als Trainingsdatensatz wird die
Default-Einstellung auf die Anzahl der Beobachtungen zurückgestuft, die dann 85
beträgt.
Betrachtet man die Simulationsschritte 1.1 und 2.1, so wurde der höchste c-Index
mit 10 bzw. 20 miRNA’s erreicht. Ab [max.n.genes = 30] wurde der c-Index mit
steigender Anzahl an miRNA’s immer niedriger. Ebenso steigt die Berechnungsdauer
der Modelle mit steigender Anzahl von miRNA’s deutlich an. Es scheint sich hier
tatsächlich zu lohnen, den Parameter manuell an die Daten anzupassen. Es wurde in
den hier berechneten Simulationen durch eine niedrige Einstellung des Parameters
[max.n.genes] nicht nur ein höherer c-Index, sondern auch eine deutlich geringere
Berechnungsdauer erzielt.

3. Parameter [Datensatz]

Als Default-Einstellung für den Parameter [Datensatz] wurde hier der Teildatensatz
DKTK verwendet. Im Iterationsschritt 2.2 wurde diese Entscheidung zugunsten des
Teildatensatzes T 80 2 verändert. Die Simulationen lassen allerdings keine Schlüsse
auf eine optimale Einstellung bei multizentrischen Daten zu. So konnte weder eine
Tendenz beobachtet werden, dass ein größerer Trainingsdatensatz zu besseren Er-
gebnissen führt, noch dass das Beibehalten der Institutsgruppen im Vergleich zu
einer zufälligen Zuordnung einen positiven Unterschied ausmacht. Dementsprechend
kann man allein auf der Basis dieser Daten keine Empfehlungen für den Umgang
mit multizentrischen Daten aussprechen.

4. Parameter [method]

Der Parameter [method] legt fest, nach welcher Methode Bindungen im Datensatz
bei der Berechnung der Likelihood behandelt werden. Neben der Default-Einstellung
von Efron (1977) gibt es noch die exakte Berechnungsmethode von Kalbfleisch
und Prentice (2002) und die Methode nach Breslow (1974). Im Zuge dieser Aus-
wertung blieb der Parameter über die gesamte Zeit bei der Default-Einstellung
[method = efron]. Ein großer Unterschied zwischen den Methoden konnte aber
nicht festgestellt werden. Der Grund hierfür ist die geringe Anzahl an Bindungen
im vorhandenen Datensatz. Bei einer höheren Anzahl an Bindungen verspricht die
exakte Methode nach Kalbfleisch und Prentice (2002) zwar die besten (genaues-
ten) Ergebnisse, allerdings steigt die Berechnungszeit proportional zur Anzahl der
Bindungen deutlich an. Ist die Berechnungszeit für den Anwender von hoher Be-
deutung, dann ist auch bei einer hohen Zahl an Bindungen die Default-Einstellung
[method = efron] zu empfehlen.
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5. Parameter [n.iter]

Betrachtet man die Simulationsschritte 1.4 und 2.4, so wurde der Parameter [n.iter]
zweimal auf den kleinsten Wert mit [n.iter = 5] gesetzt. Im Vergleich zur Default-
Einstellung von [n.iter = 10] wurde der Wert also nochmals herabgestuft. Die
Vermutung, dass sich durch eine höhere Anzahl an Iterationen robustere Ergeb-
nisse erzielen lassen können, ist durch diese Auswertung nicht zu belegen. Statt-
dessen nimmt vor allem in Simulationsschritt 1.4 die Variabilität des c-Index mit
steigender Anzahl an Iterationen immer mehr zu. Es scheint dementsprechend oft
ausreichend, wenn der Parameter [n.iter] relativ klein gehalten wird. Die Default-
Einstellung von [n.iter = 10] scheint hierbei eine gute Wahl zu sein, da somit auch
die Berechnungszeit in Grenzen gehalten wird.

6. Parameter [n.fold]

Der Parameter [n.fold] dient dazu, innerhalb des Algorithmus eine Aufteilung in
Trainings- und Validierungsdatensatz vorzunehmen. Diese Aufteilung erfolgt aus-
schließlich innerhalb des Algorithmus und hat nichts mit dem in dieser Auswertung
verwendeten Validierungsdatensatz für den c-Index zu tun. Die Auswertungen er-
gaben dabei zweimal die Empfehlung, dass der Parameter auf [n.fold = 10] gesetzt
werden solle. Es ließ sich mit steigenden Werten für den Parameter [n.fold] jeweils
eine leicht positive Tendenz des c-Index beobachten. Dies legt die Vermutung nahe,
dass sich ein großer interner Trainingsdatensatz positiv auf den c-Index bemerkbar
macht. Da diese Einteilungen keine nennenswerten Auswirkungen auf die Berech-
nungszeit besitzen, ist es empfehlenswert, die Default-Einstellung [n.fold = 3] zu
verändern. Vorsicht ist allerdings geboten, da es, je nach Datensatz, unterschiedliche
Möglichkeiten zur Einstellung des Parameters gibt (siehe Formel 11).

7. Parameter [n.seq]

Der Parameter [n.seq] dient in erster Linie dazu, voneinander unabhängige, sich
ergänzende multiple Modelle zu bilden. Im Rahmen dieser Bachelorarbeit wur-
den bei der Bildung multipler Modelle die Einflussvariablen alle in ein Modell
übernommen. Dadurch ergab sich ein höherer c-Index, allerdings nahm auch die Be-
rechnungszeit deutlich zu. Die Einstellung dieses Parameters hängt dementsprechend
stark von den Zielen des Anwenders ab. Ist ein Modell mit einer hohen Prognosegüte
oder das Auffinden aller eventuell relevanter miRNA’s gewünscht, so ist die Bildung
multipler Modelle zu empfehlen. Das aus statistischer Sicht gesehen beste Modell
(nach dem AIC) ist aber meist mit der Einstellung [n.seq = 1] zu erreichen. Auch
die erhöhte Berechnungszeit bei der Bildung multipler Modelle kann eine Rolle für
den Anwender spielen.
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6 Fazit

In dieser Bachelorarbeit wurden die Auswirkungen der Parameterwahl im R-Paket rbsurv
auf die Variablenselektion untersucht. Hierfür wurde ein multizentrischer Datensatz vom
Deutschen Konsortium für translationale Krebsforschung und ein monozentrischer Daten-
satz der klinischen Kooperationsgruppe der LMU München und der Klinik für Strahlen-
therapie und Radioonkologie verwendet.

Im Zuge der Auswertung wurde ein Modell mit optimierten Parametereinstellungen ge-
sucht. Dazu wurden zwei Durchgänge mit jeweils sechs Iterationen durchgeführt. Inner-
halb einer Iteration wurde, bei Festhalten aller anderen Parameter, ein Parameter mit
verschiedenen Werten geprüft und auf den besten Wert festgelegt. Als Gütekriterium
wurde dabei der c-Index verwendet, der auf einem vom Modell unabhängigen Validie-
rungsdatensatz ermittelt wurde. Als weiteres Gütekriterium wurde die Berechnungsdauer
der Modelle herangezogen.
Das durch die Iterationsschritte gewonnene, optimierte Modell weißt deutliche Verbes-
serungen hinsichtlich des c-Index und der Berechnungsdauer auf. So konnte der durch-
schnittliche c-Index im Vergleich zu dem Modell mit den Default-Einstellungen deutlich
erhöht werden und die mittlere Berechnungsdauer deutlich gesenkt werden. Werden die
einzelnen Parameter betrachtet, so haben sie alle eine mehr oder weniger große Wirkung
auf die Variablenselektion und die damit verbundene Modellgüte. Ausgenommen werden
muss dabei der Parameter [method], der durch die geringe Anzahl an Bindungen im vor-
liegenden Datensatz kaum einen Einfluss hat. Eine optimale Einstellung der Parameter
kann allerdings nicht pauschal angeben werden. Die Parameter und ihre optimale Ein-
stellung hängt insbesondere auch vom verwendeten Datensatz ab und ist somit für jede
Auswertung unterschiedlich. Allerdings gab es innerhalb dieser Auswertung Tendenzen zu
sehen, für welche Einstellungen die Parameter die besten Ergebnisse erzielten. Da im Zuge
dieser Auswertung auch verschiedene Teil-Datensätze als Trainings-Datensatz verwendet
wurden, können Vermutungen angestellt werden, dass diese Tendenzen auch für andere
Datensätze gelten. Um für eine neue Auswertung die richtigen Parameter-Einstellungen
zu finden, ist es dennoch zu empfehlen, individuelle Simulationen zu den einzelnen Para-
metern durchzuführen. Trotz dieser optimierter Einstellungen ist der Parameter [seed]
für eine gewisse Variabilität in den Ergebnissen verantwortlich. Durch eine Optimierung
der Parameter konnte diese zwar verringert, aber nicht vollständig verhindert werden.

Abschließend ist festzuhalten, dass das R-Paket rbsurv eine gute und individuell anpassbare
Möglichkeit bietet, um Micro-Array-Daten zu analysieren. Allerdings kann es durchaus
aufwendig und schwierig sein die richtigen bzw. optimalen Parametereinstellungen zu fin-
den. Die Default-Einstellungen der Funktion dienen lediglich als Ausgangspunkt und sind
keineswegs für alle Datensätze auch die optimalen Einstellungen. Mit einer optimierten
Parametereinstellung kann somit nicht nur die Modellgüte und die Berechnungsdauer
verbessert, sondern auch die Variabilität durch den Parameter [seed] verringert werden.
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7 Anhang

Im Anhang befindet sich weiteres Material zu dieser Bachelorarbeit. Dazu gehören sowohl
weitere Abbildungen und Tabellen, wie auch die verwendeten R-Codes.

7.1 Abbildungen und Tabellen

Hier finden sich alle im vorhergehenden Text erwähnten Abbildungen und Tabellen.

ID miRNA ID miRNA ID miRNA
1 hsa.let.7a.5p 345 hsa.miR.3692.5p 689 hsa.miR.605.5p
2 hsa.let.7b.3p 346 hsa.miR.370.3p 690 hsa.miR.6068
3 hsa.let.7b.5p 347 hsa.miR.3713 691 hsa.miR.6069
4 hsa.let.7c.5p 348 hsa.miR.371a.5p 692 hsa.miR.6073
5 hsa.let.7d.3p 349 hsa.miR.371b.5p 693 hsa.miR.6074
6 hsa.let.7d.5p 350 hsa.miR.373.5p 694 hsa.miR.6075
7 hsa.let.7e.5p 351 hsa.miR.374a.5p 695 hsa.miR.6076
8 hsa.let.7f.5p 352 hsa.miR.374b.5p 696 hsa.miR.6083
9 hsa.let.7g.3p 353 hsa.miR.376a.3p 697 hsa.miR.6084
10 hsa.let.7g.5p 354 hsa.miR.376c.3p 698 hsa.miR.6085
11 hsa.let.7i.5p 355 hsa.miR.378a.3p 699 hsa.miR.6086
12 hsa.miR.1.3p 356 hsa.miR.378b 700 hsa.miR.6087
13 hsa.miR.100.5p 357 hsa.miR.378c 701 hsa.miR.6088
14 hsa.miR.101.3p 358 hsa.miR.378d 702 hsa.miR.6089
15 hsa.miR.103a.3p 359 hsa.miR.378e 703 hsa.miR.6090
16 hsa.miR.106b.5p 360 hsa.miR.378f 704 hsa.miR.610
17 hsa.miR.107 361 hsa.miR.378g 705 hsa.miR.6124
18 hsa.miR.10a.5p 362 hsa.miR.378i 706 hsa.miR.6125
19 hsa.miR.10b.3p 363 hsa.miR.381.3p 707 hsa.miR.6126
20 hsa.miR.10b.5p 364 hsa.miR.3907 708 hsa.miR.6127
21 hsa.miR.1180.3p 365 hsa.miR.3911 709 hsa.miR.6129
22 hsa.miR.1181 366 hsa.miR.3917 710 hsa.miR.6131
23 hsa.miR.1182 367 hsa.miR.3922.5p 711 hsa.miR.6132
24 hsa.miR.1183 368 hsa.miR.3925.5p 712 hsa.miR.6133
25 hsa.miR.1185.1.3p 369 hsa.miR.3926 713 hsa.miR.6134
26 hsa.miR.1185.2.3p 370 hsa.miR.3934.3p 714 hsa.miR.614
27 hsa.miR.1199.5p 371 hsa.miR.3934.5p 715 hsa.miR.615.3p
28 hsa.miR.1202 372 hsa.miR.3935 716 hsa.miR.616.3p
29 hsa.miR.1203 373 hsa.miR.3937 717 hsa.miR.6165
30 hsa.miR.1207.5p 374 hsa.miR.3940.3p 718 hsa.miR.617
31 hsa.miR.1208 375 hsa.miR.3940.5p 719 hsa.miR.619.5p
32 hsa.miR.1224.5p 376 hsa.miR.3944.5p 720 hsa.miR.622
33 hsa.miR.1225.5p 377 hsa.miR.3945 721 hsa.miR.623
34 hsa.miR.1226.5p 378 hsa.miR.3960 722 hsa.miR.628.3p
35 hsa.miR.1227.3p 379 hsa.miR.3972 723 hsa.miR.629.3p
36 hsa.miR.1227.5p 380 hsa.miR.3976 724 hsa.miR.630
37 hsa.miR.1228.3p 381 hsa.miR.422a 725 hsa.miR.631
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38 hsa.miR.1228.5p 382 hsa.miR.423.3p 726 hsa.miR.636
39 hsa.miR.1229.3p 383 hsa.miR.423.5p 727 hsa.miR.638
40 hsa.miR.1229.5p 384 hsa.miR.424.3p 728 hsa.miR.639
41 hsa.miR.1233.5p 385 hsa.miR.424.5p 729 hsa.miR.640
42 hsa.miR.1234.3p 386 hsa.miR.425.3p 730 hsa.miR.642a.3p
43 hsa.miR.1236.5p 387 hsa.miR.425.5p 731 hsa.miR.642b.3p
44 hsa.miR.1237.3p 388 hsa.miR.4251 732 hsa.miR.645
45 hsa.miR.1237.5p 389 hsa.miR.4253 733 hsa.miR.648
46 hsa.miR.1238.3p 390 hsa.miR.4257 734 hsa.miR.650
47 hsa.miR.1238.5p 391 hsa.miR.4259 735 hsa.miR.6500.3p
48 hsa.miR.1246 392 hsa.miR.4260 736 hsa.miR.6500.5p
49 hsa.miR.1247.3p 393 hsa.miR.4261 737 hsa.miR.6507.5p
50 hsa.miR.1249.3p 394 hsa.miR.4269 738 hsa.miR.6508.5p
51 hsa.miR.1249.5p 395 hsa.miR.4270 739 hsa.miR.6509.5p
52 hsa.miR.1254 396 hsa.miR.4271 740 hsa.miR.6510.5p
53 hsa.miR.125a.3p 397 hsa.miR.4274 741 hsa.miR.6511a.3p
54 hsa.miR.125a.5p 398 hsa.miR.4280 742 hsa.miR.6511a.5p
55 hsa.miR.125b.1.3p 399 hsa.miR.4281 743 hsa.miR.6511b.3p
56 hsa.miR.125b.2.3p 400 hsa.miR.4282 744 hsa.miR.6511b.5p
57 hsa.miR.125b.5p 401 hsa.miR.4284 745 hsa.miR.6512.5p
58 hsa.miR.126.3p 402 hsa.miR.4286 746 hsa.miR.6515.3p
59 hsa.miR.126.5p 403 hsa.miR.429 747 hsa.miR.6516.3p
60 hsa.miR.1260a 404 hsa.miR.4291 748 hsa.miR.6516.5p
61 hsa.miR.1260b 405 hsa.miR.4294 749 hsa.miR.652.5p
62 hsa.miR.1261 406 hsa.miR.4298 750 hsa.miR.654.5p
63 hsa.miR.1266.3p 407 hsa.miR.4299 751 hsa.miR.658
64 hsa.miR.1268a 408 hsa.miR.4300 752 hsa.miR.659.3p
65 hsa.miR.1268b 409 hsa.miR.4304 753 hsa.miR.660.5p
66 hsa.miR.127.3p 410 hsa.miR.4306 754 hsa.miR.662
67 hsa.miR.1273c 411 hsa.miR.431.5p 755 hsa.miR.663a
68 hsa.miR.1273d 412 hsa.miR.4311 756 hsa.miR.663b
69 hsa.miR.1273e 413 hsa.miR.4312 757 hsa.miR.664a.3p
70 hsa.miR.1273f 414 hsa.miR.4313 758 hsa.miR.664a.5p
71 hsa.miR.1273g.3p 415 hsa.miR.4314 759 hsa.miR.664b.3p
72 hsa.miR.1273g.5p 416 hsa.miR.4317 760 hsa.miR.664b.5p
73 hsa.miR.1273h.3p 417 hsa.miR.432.5p 761 hsa.miR.665
74 hsa.miR.1273h.5p 418 hsa.miR.4322 762 hsa.miR.668.3p
75 hsa.miR.1275 419 hsa.miR.4323 763 hsa.miR.671.3p
76 hsa.miR.1276 420 hsa.miR.4324 764 hsa.miR.671.5p
77 hsa.miR.128.1.5p 421 hsa.miR.4327 765 hsa.miR.6716.5p
78 hsa.miR.128.3p 422 hsa.miR.4417 766 hsa.miR.6717.5p
79 hsa.miR.1281 423 hsa.miR.4418 767 hsa.miR.6718.5p
80 hsa.miR.1285.3p 424 hsa.miR.4419a 768 hsa.miR.6720.3p
81 hsa.miR.1285.5p 425 hsa.miR.4419b 769 hsa.miR.6720.5p
82 hsa.miR.1287.5p 426 hsa.miR.4421 770 hsa.miR.6722.3p
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83 hsa.miR.1288.3p 427 hsa.miR.4425 771 hsa.miR.6722.5p
84 hsa.miR.129.5p 428 hsa.miR.4428 772 hsa.miR.6723.5p
85 hsa.miR.1290 429 hsa.miR.4429 773 hsa.miR.6724.5p
86 hsa.miR.1291 430 hsa.miR.4430 774 hsa.miR.6726.5p
87 hsa.miR.1295a 431 hsa.miR.4433a.3p 775 hsa.miR.6727.5p
88 hsa.miR.1295b.3p 432 hsa.miR.4433a.5p 776 hsa.miR.6728.5p
89 hsa.miR.1296.5p 433 hsa.miR.4433b.3p 777 hsa.miR.6729.5p
90 hsa.miR.1299 434 hsa.miR.4436a 778 hsa.miR.6730.3p
91 hsa.miR.1301.5p 435 hsa.miR.4436b.3p 779 hsa.miR.6730.5p
92 hsa.miR.1303 436 hsa.miR.4436b.5p 780 hsa.miR.6731.3p
93 hsa.miR.1304.3p 437 hsa.miR.4441 781 hsa.miR.6732.3p
94 hsa.miR.1305 438 hsa.miR.4442 782 hsa.miR.6732.5p
95 hsa.miR.1306.3p 439 hsa.miR.4443 783 hsa.miR.6734.5p
96 hsa.miR.1307.3p 440 hsa.miR.4444 784 hsa.miR.6736.5p
97 hsa.miR.1307.5p 441 hsa.miR.4446.3p 785 hsa.miR.6737.3p
98 hsa.miR.130a.3p 442 hsa.miR.4447 786 hsa.miR.6737.5p
99 hsa.miR.130b.3p 443 hsa.miR.4448 787 hsa.miR.6738.5p
100 hsa.miR.132.3p 444 hsa.miR.4449 788 hsa.miR.6739.5p
101 hsa.miR.1321 445 hsa.miR.4450 789 hsa.miR.6740.5p
102 hsa.miR.1323 446 hsa.miR.4451 790 hsa.miR.6741.5p
103 hsa.miR.133a.3p 447 hsa.miR.4453 791 hsa.miR.6743.3p
104 hsa.miR.133b 448 hsa.miR.4455 792 hsa.miR.6743.5p
105 hsa.miR.134.5p 449 hsa.miR.4458 793 hsa.miR.6745
106 hsa.miR.1343.5p 450 hsa.miR.4459 794 hsa.miR.6746.5p
107 hsa.miR.135a.3p 451 hsa.miR.4462 795 hsa.miR.6747.5p
108 hsa.miR.135b.5p 452 hsa.miR.4463 796 hsa.miR.6748.5p
109 hsa.miR.138.2.3p 453 hsa.miR.4465 797 hsa.miR.6749.5p
110 hsa.miR.139.3p 454 hsa.miR.4466 798 hsa.miR.6751.3p
111 hsa.miR.140.3p 455 hsa.miR.4468 799 hsa.miR.6752.3p
112 hsa.miR.140.5p 456 hsa.miR.4470 800 hsa.miR.6752.5p
113 hsa.miR.141.3p 457 hsa.miR.4472 801 hsa.miR.6753.3p
114 hsa.miR.142.3p 458 hsa.miR.4475 802 hsa.miR.6753.5p
115 hsa.miR.142.5p 459 hsa.miR.4476 803 hsa.miR.6754.5p
116 hsa.miR.143.3p 460 hsa.miR.4478 804 hsa.miR.6756.3p
117 hsa.miR.144.3p 461 hsa.miR.4481 805 hsa.miR.6756.5p
118 hsa.miR.145.5p 462 hsa.miR.4482.3p 806 hsa.miR.6757.5p
119 hsa.miR.1469 463 hsa.miR.4484 807 hsa.miR.6758.5p
120 hsa.miR.146a.5p 464 hsa.miR.4485.3p 808 hsa.miR.6759.3p
121 hsa.miR.146b.5p 465 hsa.miR.4485.5p 809 hsa.miR.6760.3p
122 hsa.miR.1470 466 hsa.miR.4486 810 hsa.miR.6760.5p
123 hsa.miR.1471 467 hsa.miR.4487 811 hsa.miR.6762.5p
124 hsa.miR.148a.3p 468 hsa.miR.4488 812 hsa.miR.6763.3p
125 hsa.miR.148b.3p 469 hsa.miR.4489 813 hsa.miR.6763.5p
126 hsa.miR.149.3p 470 hsa.miR.4494 814 hsa.miR.6765.3p
127 hsa.miR.149.5p 471 hsa.miR.4496 815 hsa.miR.6765.5p
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128 hsa.miR.150.3p 472 hsa.miR.4497 816 hsa.miR.6766.3p
129 hsa.miR.150.5p 473 hsa.miR.4498 817 hsa.miR.6767.5p
130 hsa.miR.151a.3p 474 hsa.miR.4499 818 hsa.miR.6768.5p
131 hsa.miR.151a.5p 475 hsa.miR.449b.3p 819 hsa.miR.6769a.5p
132 hsa.miR.151b 476 hsa.miR.4502 820 hsa.miR.6769b.5p
133 hsa.miR.152.3p 477 hsa.miR.4505 821 hsa.miR.6771.5p
134 hsa.miR.1539 478 hsa.miR.4506 822 hsa.miR.6772.5p
135 hsa.miR.155.5p 479 hsa.miR.4507 823 hsa.miR.6774.5p
136 hsa.miR.1587 480 hsa.miR.4508 824 hsa.miR.6775.3p
137 hsa.miR.15a.5p 481 hsa.miR.4510 825 hsa.miR.6775.5p
138 hsa.miR.15b.5p 482 hsa.miR.4513 826 hsa.miR.6776.5p
139 hsa.miR.16.5p 483 hsa.miR.4514 827 hsa.miR.6777.3p
140 hsa.miR.17.3p 484 hsa.miR.4515 828 hsa.miR.6777.5p
141 hsa.miR.17.5p 485 hsa.miR.4516 829 hsa.miR.6778.5p
142 hsa.miR.181a.5p 486 hsa.miR.4518 830 hsa.miR.6779.3p
143 hsa.miR.181b.5p 487 hsa.miR.4519 831 hsa.miR.6779.5p
144 hsa.miR.181d.5p 488 hsa.miR.451a 832 hsa.miR.6780a.5p
145 hsa.miR.1825 489 hsa.miR.452.5p 833 hsa.miR.6780b.5p
146 hsa.miR.183.3p 490 hsa.miR.4522 834 hsa.miR.6781.5p
147 hsa.miR.184 491 hsa.miR.4526 835 hsa.miR.6782.5p
148 hsa.miR.185.5p 492 hsa.miR.4530 836 hsa.miR.6784.3p
149 hsa.miR.186.5p 493 hsa.miR.4531 837 hsa.miR.6784.5p
150 hsa.miR.187.5p 494 hsa.miR.4532 838 hsa.miR.6785.3p
151 hsa.miR.188.5p 495 hsa.miR.4533 839 hsa.miR.6785.5p
152 hsa.miR.18a.5p 496 hsa.miR.4534 840 hsa.miR.6786.5p
153 hsa.miR.1908.3p 497 hsa.miR.4535 841 hsa.miR.6787.3p
154 hsa.miR.1909.5p 498 hsa.miR.4538 842 hsa.miR.6787.5p
155 hsa.miR.191.3p 499 hsa.miR.4539 843 hsa.miR.6788.5p
156 hsa.miR.1910.3p 500 hsa.miR.455.3p 844 hsa.miR.6789.5p
157 hsa.miR.1910.5p 501 hsa.miR.4632.5p 845 hsa.miR.6790.3p
158 hsa.miR.1913 502 hsa.miR.4633.5p 846 hsa.miR.6790.5p
159 hsa.miR.1914.3p 503 hsa.miR.4634 847 hsa.miR.6791.5p
160 hsa.miR.1915.3p 504 hsa.miR.4636 848 hsa.miR.6792.3p
161 hsa.miR.193a.3p 505 hsa.miR.4640.5p 849 hsa.miR.6792.5p
162 hsa.miR.193a.5p 506 hsa.miR.4642 850 hsa.miR.6793.5p
163 hsa.miR.193b.3p 507 hsa.miR.4644 851 hsa.miR.6794.5p
164 hsa.miR.193b.5p 508 hsa.miR.4646.5p 852 hsa.miR.6795.5p
165 hsa.miR.194.3p 509 hsa.miR.4647 853 hsa.miR.6796.3p
166 hsa.miR.195.3p 510 hsa.miR.4648 854 hsa.miR.6796.5p
167 hsa.miR.195.5p 511 hsa.miR.4649.3p 855 hsa.miR.6797.3p
168 hsa.miR.196a.5p 512 hsa.miR.4651 856 hsa.miR.6797.5p
169 hsa.miR.196b.5p 513 hsa.miR.4653.3p 857 hsa.miR.6798.3p
170 hsa.miR.197.3p 514 hsa.miR.4654 858 hsa.miR.6798.5p
171 hsa.miR.197.5p 515 hsa.miR.4655.3p 859 hsa.miR.6799.5p
172 hsa.miR.1972 516 hsa.miR.4655.5p 860 hsa.miR.6800.3p
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173 hsa.miR.1973 517 hsa.miR.4656 861 hsa.miR.6800.5p
174 hsa.miR.198 518 hsa.miR.4657 862 hsa.miR.6801.3p
175 hsa.miR.199a.3p 519 hsa.miR.4659a.3p 863 hsa.miR.6801.5p
176 hsa.miR.199a.5p 520 hsa.miR.4659b.3p 864 hsa.miR.6802.5p
177 hsa.miR.199b.5p 521 hsa.miR.4660 865 hsa.miR.6803.5p
178 hsa.miR.19a.3p 522 hsa.miR.4664.3p 866 hsa.miR.6804.3p
179 hsa.miR.19b.3p 523 hsa.miR.4665.3p 867 hsa.miR.6804.5p
180 hsa.miR.200a.3p 524 hsa.miR.4665.5p 868 hsa.miR.6805.5p
181 hsa.miR.200a.5p 525 hsa.miR.4667.5p 869 hsa.miR.6806.5p
182 hsa.miR.200b.3p 526 hsa.miR.4668.5p 870 hsa.miR.6807.5p
183 hsa.miR.200b.5p 527 hsa.miR.4669 871 hsa.miR.6808.5p
184 hsa.miR.200c.3p 528 hsa.miR.4672 872 hsa.miR.6809.5p
185 hsa.miR.202.3p 529 hsa.miR.4673 873 hsa.miR.6812.3p
186 hsa.miR.203a.3p 530 hsa.miR.4674 874 hsa.miR.6812.5p
187 hsa.miR.204.5p 531 hsa.miR.4675 875 hsa.miR.6813.3p
188 hsa.miR.205.3p 532 hsa.miR.4676.5p 876 hsa.miR.6815.5p
189 hsa.miR.205.5p 533 hsa.miR.4682 877 hsa.miR.6817.5p
190 hsa.miR.206 534 hsa.miR.4685.5p 878 hsa.miR.6819.3p
191 hsa.miR.208a.5p 535 hsa.miR.4687.3p 879 hsa.miR.6819.5p
192 hsa.miR.20a.5p 536 hsa.miR.4688 880 hsa.miR.6820.3p
193 hsa.miR.20b.5p 537 hsa.miR.4689 881 hsa.miR.6820.5p
194 hsa.miR.21.3p 538 hsa.miR.4690.5p 882 hsa.miR.6821.5p
195 hsa.miR.21.5p 539 hsa.miR.4691.5p 883 hsa.miR.6824.3p
196 hsa.miR.210.3p 540 hsa.miR.4695.3p 884 hsa.miR.6824.5p
197 hsa.miR.210.5p 541 hsa.miR.4695.5p 885 hsa.miR.6825.3p
198 hsa.miR.211.3p 542 hsa.miR.4697.5p 886 hsa.miR.6825.5p
199 hsa.miR.2117 543 hsa.miR.4698 887 hsa.miR.6826.5p
200 hsa.miR.212.3p 544 hsa.miR.4701.3p 888 hsa.miR.6829.5p
201 hsa.miR.214.3p 545 hsa.miR.4701.5p 889 hsa.miR.6830.5p
202 hsa.miR.22.3p 546 hsa.miR.4706 890 hsa.miR.6831.5p
203 hsa.miR.221.3p 547 hsa.miR.4707.3p 891 hsa.miR.6833.5p
204 hsa.miR.222.3p 548 hsa.miR.4707.5p 892 hsa.miR.6834.3p
205 hsa.miR.223.3p 549 hsa.miR.4709.3p 893 hsa.miR.6836.3p
206 hsa.miR.224.3p 550 hsa.miR.4710 894 hsa.miR.6837.5p
207 hsa.miR.224.5p 551 hsa.miR.4713.3p 895 hsa.miR.6839.5p
208 hsa.miR.2276.3p 552 hsa.miR.4715.5p 896 hsa.miR.6840.3p
209 hsa.miR.2277.3p 553 hsa.miR.4716.3p 897 hsa.miR.6845.5p
210 hsa.miR.2392 554 hsa.miR.4717.3p 898 hsa.miR.6846.5p
211 hsa.miR.23a.3p 555 hsa.miR.4721 899 hsa.miR.6847.5p
212 hsa.miR.23a.5p 556 hsa.miR.4725.3p 900 hsa.miR.6848.3p
213 hsa.miR.23b.3p 557 hsa.miR.4725.5p 901 hsa.miR.6848.5p
214 hsa.miR.24.3p 558 hsa.miR.4726.5p 902 hsa.miR.6849.5p
215 hsa.miR.2467.3p 559 hsa.miR.4728.3p 903 hsa.miR.6850.5p
216 hsa.miR.25.3p 560 hsa.miR.4728.5p 904 hsa.miR.6851.3p
217 hsa.miR.26a.5p 561 hsa.miR.4731.3p 905 hsa.miR.6851.5p
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218 hsa.miR.26b.5p 562 hsa.miR.4732.5p 906 hsa.miR.6855.5p
219 hsa.miR.27a.3p 563 hsa.miR.4733.5p 907 hsa.miR.6856.5p
220 hsa.miR.27b.3p 564 hsa.miR.4734 908 hsa.miR.6857.5p
221 hsa.miR.28.3p 565 hsa.miR.4738.3p 909 hsa.miR.6858.3p
222 hsa.miR.28.5p 566 hsa.miR.4739 910 hsa.miR.6858.5p
223 hsa.miR.2861 567 hsa.miR.4740.5p 911 hsa.miR.6859.5p
224 hsa.miR.296.5p 568 hsa.miR.4741 912 hsa.miR.6860
225 hsa.miR.298 569 hsa.miR.4743.5p 913 hsa.miR.6861.3p
226 hsa.miR.29a.3p 570 hsa.miR.4745.5p 914 hsa.miR.6861.5p
227 hsa.miR.29b.3p 571 hsa.miR.4746.3p 915 hsa.miR.6862.5p
228 hsa.miR.29c.3p 572 hsa.miR.4746.5p 916 hsa.miR.6865.3p
229 hsa.miR.29c.5p 573 hsa.miR.4748 917 hsa.miR.6865.5p
230 hsa.miR.301a.3p 574 hsa.miR.4749.3p 918 hsa.miR.6867.5p
231 hsa.miR.302c.5p 575 hsa.miR.4749.5p 919 hsa.miR.6869.5p
232 hsa.miR.30a.5p 576 hsa.miR.4750.3p 920 hsa.miR.6870.3p
233 hsa.miR.30b.3p 577 hsa.miR.4750.5p 921 hsa.miR.6870.5p
234 hsa.miR.30b.5p 578 hsa.miR.4753.5p 922 hsa.miR.6871.5p
235 hsa.miR.30c.1.3p 579 hsa.miR.4755.3p 923 hsa.miR.6872.3p
236 hsa.miR.30c.2.3p 580 hsa.miR.4758.3p 924 hsa.miR.6872.5p
237 hsa.miR.30c.5p 581 hsa.miR.4758.5p 925 hsa.miR.6873.5p
238 hsa.miR.30d.5p 582 hsa.miR.4763.3p 926 hsa.miR.6875.3p
239 hsa.miR.30e.3p 583 hsa.miR.4763.5p 927 hsa.miR.6875.5p
240 hsa.miR.30e.5p 584 hsa.miR.4767 928 hsa.miR.6876.5p
241 hsa.miR.31.3p 585 hsa.miR.4768.3p 929 hsa.miR.6877.3p
242 hsa.miR.31.5p 586 hsa.miR.4769.3p 930 hsa.miR.6877.5p
243 hsa.miR.3121.3p 587 hsa.miR.4769.5p 931 hsa.miR.6879.5p
244 hsa.miR.3122 588 hsa.miR.4773 932 hsa.miR.6880.3p
245 hsa.miR.3124.5p 589 hsa.miR.4776.5p 933 hsa.miR.6880.5p
246 hsa.miR.3125 590 hsa.miR.4778.5p 934 hsa.miR.6881.5p
247 hsa.miR.3127.5p 591 hsa.miR.4783.3p 935 hsa.miR.6882.5p
248 hsa.miR.3130.5p 592 hsa.miR.4784 936 hsa.miR.6885.3p
249 hsa.miR.3131 593 hsa.miR.4785 937 hsa.miR.6886.3p
250 hsa.miR.3132 594 hsa.miR.4787.3p 938 hsa.miR.6886.5p
251 hsa.miR.3135b 595 hsa.miR.4787.5p 939 hsa.miR.6887.5p
252 hsa.miR.3137 596 hsa.miR.4788 940 hsa.miR.6889.3p
253 hsa.miR.3138 597 hsa.miR.4792 941 hsa.miR.6889.5p
254 hsa.miR.3141 598 hsa.miR.4793.3p 942 hsa.miR.6890.3p
255 hsa.miR.3147 599 hsa.miR.4793.5p 943 hsa.miR.6890.5p
256 hsa.miR.3150b.3p 600 hsa.miR.4800.3p 944 hsa.miR.6891.5p
257 hsa.miR.3150b.5p 601 hsa.miR.4800.5p 945 hsa.miR.6892.5p
258 hsa.miR.3151.3p 602 hsa.miR.483.3p 946 hsa.miR.6893.5p
259 hsa.miR.3154 603 hsa.miR.483.5p 947 hsa.miR.6894.5p
260 hsa.miR.3155b 604 hsa.miR.484 948 hsa.miR.6895.5p
261 hsa.miR.3156.5p 605 hsa.miR.486.5p 949 hsa.miR.7.5p
262 hsa.miR.3158.5p 606 hsa.miR.487b.3p 950 hsa.miR.708.5p
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263 hsa.miR.3161 607 hsa.miR.487b.5p 951 hsa.miR.7106.5p
264 hsa.miR.3162.3p 608 hsa.miR.489.3p 952 hsa.miR.7107.5p
265 hsa.miR.3162.5p 609 hsa.miR.490.5p 953 hsa.miR.7108.3p
266 hsa.miR.3163 610 hsa.miR.492 954 hsa.miR.7108.5p
267 hsa.miR.3173.3p 611 hsa.miR.493.3p 955 hsa.miR.7109.3p
268 hsa.miR.3174 612 hsa.miR.494.3p 956 hsa.miR.7109.5p
269 hsa.miR.3176 613 hsa.miR.497.5p 957 hsa.miR.711
270 hsa.miR.3177.3p 614 hsa.miR.498 958 hsa.miR.7110.5p
271 hsa.miR.3180.3p 615 hsa.miR.5001.5p 959 hsa.miR.7111.3p
272 hsa.miR.3180.5p 616 hsa.miR.5003.3p 960 hsa.miR.7111.5p
273 hsa.miR.3185 617 hsa.miR.5003.5p 961 hsa.miR.7113.5p
274 hsa.miR.3187.3p 618 hsa.miR.5006.5p 962 hsa.miR.7114.3p
275 hsa.miR.3188 619 hsa.miR.5008.5p 963 hsa.miR.7114.5p
276 hsa.miR.3189.3p 620 hsa.miR.500a.3p 964 hsa.miR.7150
277 hsa.miR.3189.5p 621 hsa.miR.500a.5p 965 hsa.miR.7151.3p
278 hsa.miR.3190.3p 622 hsa.miR.501.3p 966 hsa.miR.7152.3p
279 hsa.miR.3194.5p 623 hsa.miR.501.5p 967 hsa.miR.7152.5p
280 hsa.miR.3195 624 hsa.miR.5010.5p 968 hsa.miR.7155.3p
281 hsa.miR.3196 625 hsa.miR.504.3p 969 hsa.miR.7155.5p
282 hsa.miR.3197 626 hsa.miR.508.5p 970 hsa.miR.7156.3p
283 hsa.miR.3198 627 hsa.miR.5088.5p 971 hsa.miR.7157.5p
284 hsa.miR.3200.5p 628 hsa.miR.509.3.5p 972 hsa.miR.7159.5p
285 hsa.miR.3202 629 hsa.miR.509.5p 973 hsa.miR.7161.3p
286 hsa.miR.320a 630 hsa.miR.5090 974 hsa.miR.7162.3p
287 hsa.miR.320b 631 hsa.miR.5093 975 hsa.miR.718
288 hsa.miR.320c 632 hsa.miR.5096 976 hsa.miR.7515
289 hsa.miR.320d 633 hsa.miR.5100 977 hsa.miR.758.5p
290 hsa.miR.320e 634 hsa.miR.512.3p 978 hsa.miR.760
291 hsa.miR.324.3p 635 hsa.miR.513a.5p 979 hsa.miR.762
292 hsa.miR.324.5p 636 hsa.miR.513b.5p 980 hsa.miR.7641
293 hsa.miR.328.3p 637 hsa.miR.513c.3p 981 hsa.miR.765
294 hsa.miR.328.5p 638 hsa.miR.513c.5p 982 hsa.miR.766.3p
295 hsa.miR.330.3p 639 hsa.miR.514b.5p 983 hsa.miR.769.3p
296 hsa.miR.331.3p 640 hsa.miR.516a.5p 984 hsa.miR.770.5p
297 hsa.miR.338.5p 641 hsa.miR.516b.5p 985 hsa.miR.7704
298 hsa.miR.339.3p 642 hsa.miR.5187.5p 986 hsa.miR.7845.5p
299 hsa.miR.33b.3p 643 hsa.miR.5189.5p 987 hsa.miR.7846.3p
300 hsa.miR.342.3p 644 hsa.miR.518a.5p 988 hsa.miR.7847.3p
301 hsa.miR.345.3p 645 hsa.miR.5190 989 hsa.miR.7851.3p
302 hsa.miR.345.5p 646 hsa.miR.5194 990 hsa.miR.7854.3p
303 hsa.miR.34a.5p 647 hsa.miR.5195.3p 991 hsa.miR.7974
304 hsa.miR.34b.5p 648 hsa.miR.5195.5p 992 hsa.miR.7975
305 hsa.miR.34c.3p 649 hsa.miR.5196.5p 993 hsa.miR.7977
306 hsa.miR.3605.5p 650 hsa.miR.519e.5p 994 hsa.miR.8052
307 hsa.miR.3607.3p 651 hsa.miR.520b 995 hsa.miR.8055
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308 hsa.miR.3607.5p 652 hsa.miR.520e 996 hsa.miR.8060
309 hsa.miR.3609 653 hsa.miR.526b.5p 997 hsa.miR.8063
310 hsa.miR.361.3p 654 hsa.miR.532.5p 998 hsa.miR.8064
311 hsa.miR.361.5p 655 hsa.miR.542.5p 999 hsa.miR.8069
312 hsa.miR.3610 656 hsa.miR.548q 1000 hsa.miR.8071
313 hsa.miR.3614.5p 657 hsa.miR.550a.3.5p 1001 hsa.miR.8072
314 hsa.miR.3617.3p 658 hsa.miR.550a.5p 1002 hsa.miR.8073
315 hsa.miR.3617.5p 659 hsa.miR.550b.2.5p 1003 hsa.miR.8075
316 hsa.miR.3620.3p 660 hsa.miR.551b.5p 1004 hsa.miR.8078
317 hsa.miR.3620.5p 661 hsa.miR.557 1005 hsa.miR.8085
318 hsa.miR.3621 662 hsa.miR.5572 1006 hsa.miR.8087
319 hsa.miR.3622a.5p 663 hsa.miR.5580.3p 1007 hsa.miR.8088
320 hsa.miR.3622b.3p 664 hsa.miR.5581.5p 1008 hsa.miR.8089
321 hsa.miR.3622b.5p 665 hsa.miR.5585.3p 1009 hsa.miR.8485
322 hsa.miR.3646 666 hsa.miR.5587.5p 1010 hsa.miR.874.3p
323 hsa.miR.3648 667 hsa.miR.564 1011 hsa.miR.877.5p
324 hsa.miR.3651 668 hsa.miR.566 1012 hsa.miR.885.5p
325 hsa.miR.3652 669 hsa.miR.5684 1013 hsa.miR.887.3p
326 hsa.miR.3653.3p 670 hsa.miR.5685 1014 hsa.miR.892b
327 hsa.miR.3654 671 hsa.miR.5696 1015 hsa.miR.921
328 hsa.miR.3656 672 hsa.miR.5699.5p 1016 hsa.miR.92a.3p
329 hsa.miR.3659 673 hsa.miR.5703 1017 hsa.miR.92b.3p
330 hsa.miR.365a.3p 674 hsa.miR.5708 1018 hsa.miR.93.5p
331 hsa.miR.365a.5p 675 hsa.miR.572 1019 hsa.miR.933
332 hsa.miR.365b.5p 676 hsa.miR.5739 1020 hsa.miR.934
333 hsa.miR.3660 677 hsa.miR.574.3p 1021 hsa.miR.936
334 hsa.miR.3663.3p 678 hsa.miR.574.5p 1022 hsa.miR.937.5p
335 hsa.miR.3663.5p 679 hsa.miR.575 1023 hsa.miR.939.3p
336 hsa.miR.3665 680 hsa.miR.5787 1024 hsa.miR.939.5p
337 hsa.miR.3666 681 hsa.miR.583 1025 hsa.miR.940
338 hsa.miR.3667.5p 682 hsa.miR.584.5p 1026 hsa.miR.9500
339 hsa.miR.3678.3p 683 hsa.miR.590.5p 1027 hsa.miR.96.5p
340 hsa.miR.3679.5p 684 hsa.miR.595 1028 hsa.miR.98.5p
341 hsa.miR.3680.3p 685 hsa.miR.596 1029 hsa.miR.99a.5p
342 hsa.miR.3682.3p 686 hsa.miR.598.5p 1030 hsa.miR.99b.3p
343 hsa.miR.3689a.5p 687 hsa.miR.601 1031 hsa.miR.99b.5p
344 hsa.miR.3689f 688 hsa.miR.602

Tabelle 7: Die einzelnen miRNA’s zusammen mit ihren ID-Nummern
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Abbildung 34: Die verschiedenen Trainings-Datensätze und ihre dazugehörige Berechnungsdauer
(Iter.: 1.2). Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 35: Die verschiedenen Werte für die Anzahl an Iterationen und ihre dazugehörige Berech-
nungsdauer (Iter.: 1.4). Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen
Mittelwerten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 36: Die verschiedenen Werte für den Parameter [n.fold] und ihre dazugehörige Berechnungs-
dauer (Iter.: 1.5). Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 37: Die verschiedenen Trainings-Datensätze und ihre dazugehörige Berechnungsdauer
(Iter.: 2.2). Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittelwerten.
Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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Abbildung 38: Die verschiedenen Werte für den Parameter [n.fold] und ihre dazugehörige Berechnungs-
dauer (Iter.: 2.5). Die roten Punkte sowie die dazugehörigen Zahlen entsprechen den jeweiligen Mittel-
werten. Es wurden pro Gruppe 40 Modelle mit unterschiedlichen seed’s berechnet.
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7.2 Digitaler Anhang

Diese CD enthält den digitalen Anhang dieser Bachelorarbeit. Darin befinden sich so-
wohl alle geschriebenen R-Codes, die verwendeten Abbildungen und die Bachelorarbeit
im PDF-Format. Zusätzlich sind weitere Abbildungen vorhanden, die aus Zeitgründen
nicht in der Bachelorarbeit verwendet wurden. Mit Hilfe der R-Codes lassen sich zudem
weitere Auswertungen und Abbildungen relativ leicht verwirklichen.
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