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Abstract

Abstract

Reinforcement learning is a class of algorithms to solve sequential decision making
problems. While there are many implementations available in Python, there are nearly
no algorithms available in R. This thesis introduces the reinforcelearn package, which
aims to make a range of important reinforcement learning algorithms available for R
users.

The first section describes the reinforcement learning problem and the corresponding
notation, the second section explains algorithms to solve reinforcement learning problems,
the third section then introduces the R package reinforcelearn and how to use it.

Furthermore we introduce Double Q(σ) and Q(σ, λ), two new reinforcement learning
algorithms which subsume Q-Learning, Sarsa and Q(σ).
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Introduction to Reinforcement Learning

1 Introduction to Reinforcement Learning

Machine learning is a field in the intersection of statistics and computer science address-
ing the problem of automated data-driven learning and prediction. Machine learning
techniques can be categorized into three different subfields: supervised learning, unsu-
pervised learning and reinforcement learning. In supervised learning the goal is to learn
the relationship between a set of input variables (also called features or covariates) and
an output variable (also called label or target variable) to predict the output variable
with high accuracy using the features. These classification or regression models are
usually trained on a fixed predefined data set, which provides known values of inputs
and outputs, often under the assumption of independent and identical distributed (i.i.d.)
training examples. In unsupervised learning there is no output variable, instead the
goal is to detect hidden structure between input variables, e.g. by clustering or density
estimation.

1.1 What is Reinforcement Learning?

Reinforcement learning is different from both supervised and unsupervised learning. It
is about sequential decision making and can be formulated as an interaction of an agent
and an environment over a number of discrete time steps. The agent is a goal-driven
learning algorithm. Everything outside the agent’s control is considered as part of the
environment, so the border between agent and environment is not necessarily a physical
border, e.g. between a robot and its surroundings, but can lie inside the robot itself,
i.e. the agent can be a part of a larger control system. Usually the agent has incomplete
knowledge about the environment and tries to learn the best way to behave in this
environment. The approach to learn from direct interaction with the environment, is
very similar to learning of humans and animals (Sutton and Barto 2017).

At each time step t the agent chooses an action At ∈ A(St) and the environment
subsequently returns a state observation St+1 ∈ S and reward Rt+1 ∈ R (Figure 1.1).1

The stream of data consists of a sequence of states, actions and rewards. The state
observation provides some information about the problem, e.g. information about the

1Some authors denote the next reward as Rt instead of Rt+1 and the next state St instead of St+1.
This is just a difference in terms of notation. The notation in this thesis will be the same as the
notation in Sutton and Barto (2017).
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Introduction to Reinforcement Learning

Figure 1.1: Environment agent interaction: The agent is symbolized as a brain, the
environment as a globe. Silver (2015)

position of all pieces on a chess board. The agent can then build its decision making on
this state context. The actions are the possible decisions an agent can make depending
on the current state of the environment. The reward is a scalar number, which quantifies,
how good an action is in an immediate sense. Low or negative rewards correspond to
bad actions and can be interpreted as a punishment, high positive rewards to good
actions. Reinforcement learning is completely based on rewards, this way an agent may
learn to choose actions yielding higher rewards over actions leading to low rewards.
Rewards are often sparse or delayed, for example in a game like chess the only reward
is obtained at the end of the game, whether the game has been won or not and the
reinforcement learning agent needs to figure out which of the moves were important
for the outcome of the game. So the reward of an action might be returned long time
after the action was taken and often underlies stochasticity. States and rewards are
considered as part of the environment, so the agent can therefore influence these solely
by its actions.

In comparison to supervised learning there are no labels telling the agent the correct
action at each time step, instead it has to learn from the sequence of past transitions
(states, actions, rewards), how to receive higher rewards. There is no fixed data set
in the beginning, instead data is gathered over time and the agent can influence the
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Introduction to Reinforcement Learning

subsequent data it receives with its actions. For example a robot wandering around
with a camera would receive a different image of its surrounding, whether it turns left
or right. The camera image is in this case the state observation returned from the
environment and turning left or right could be two possible actions. The data received
at each point in time is usually highly correlated with previous data, e.g. an image
obtained by a camera is probably very similar to the image a second before. Therefore
methods working only with i.i.d. data cannot be applied. Reinforcement learning is also
different from unsupervised learning because it is not used to detect hidden structure
in the data, but to solve a clearly defined optimization problem.

Policy

The agent acts at each time step according to a policy π, a mapping from state to
actions,

π(a|s) = P[At = a|St = s]. (1)

Policies can be deterministic or stochastic and describe a probability distribution over
actions. So for each state the policy describes the probabilities of taking each action.
The agent tries to adapt its policy over time, so to obtain higher rewards. The agent’s
actions influence not only the next reward and state observation, but also subsequent
states and rewards. Therefore the goal is to maximize not only the immediate reward,
but the cumulative reward over the life-time of the agent, which is called the return.

Return

The return is defined by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1, γ ∈ [0, 1]. (2)

where γ is called the discount factor. It is usually considered as part of the problem
and not a tuning parameter of the algorithm. A reward k steps in the future is worth
only γk−1Rt+k, so discounting controls how far-sighted the agent is. For a value of 0 the
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Introduction to Reinforcement Learning

return is equal to the immediate reward, so the agent only cares about the immediate
reward, when γ approaches 1, the agent learns to act more far-sighted. Often future
rewards are discounted with γ < 1, so that rewards in the far future contribute less than
rewards now. This is analogous to human and animal behavior, which shows preferences
for immediate reward compared to delayed reward. Mathematically discounting prevents
infinite returns if the time horizon is infinite as later rewards get a smaller and smaller
weight in the sum.

Exploration-Exploitation trade-off

One important aspect in reinforcement learning is the trade-off between exploration and
exploitation, which does not appear this way in supervised or unsupervised learning.
Because the agent has incomplete knowledge about the environment it needs to explore
which actions are good, e.g. by taking a random action. On the other hand it needs
to exploit the current knowledge to obtain as much reward as possible. Both goals
cannot be achieved at the same time, so the agent faces a dilemma. When exploring,
e.g. by taking a random action, it sacrifices immediate reward, but learns more about
the environment, so it can obtain higher rewards later. When exploiting, i.e. taking the
action, which currently looks best, it probably acts suboptimal, because there might be
an unexplored action, which yields higher rewards. As an analogy to human life you
can think of exploration as trying out a new restaurant and exploitation as visiting
your favorite restaurant (Silver 2015).

Higher exploration in the beginning is often useful because the agent will gain more
reward in the long run while it sacrifices short-term reward. After it has learned the
action values it then should exploit the knowledge and always take the best action.
The optimal trade-off when to explore and when to exploit of course depends on the
problem. In non-stationary problems continued exploration is especially important as
otherwise the algorithm sticks with a solution, which might not be optimal anymore,
when the reward dynamics of the problem have changed.

Finding a good trade-off between exploration and exploitation is therefore one of the
main challenges in reinforcement learning.
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Model

A model is a mathematical representation of the environment’s dynamics. It is used to
predict state transitions and rewards given the agent’s current action. A model might
be known in advance or learned from interaction, e.g. by estimating the transition
probabilities from sampled transitions.

When a model is known, the agent can directly improve the policy using the equations
describing the model and no interaction with the environment is needed. This is known
as planning or model-based reinforcement learning and a class of solution methods are
dynamic programming algorithms presented in Section 2.3. This stands in contrast
to model-free reinforcement learning, which learns from direct interaction with an
environment without constructing a model of the environment’s dynamics. Instead
the policy is improved using samples of states, actions and rewards observed from
interaction with the environment.

A model also allows to sample experiences according to the transition dynamics and
learn from sampled experiences rather than from actual real world experience, which
could be cheaper in many cases. Even if all the dynamics of the environment are known,
it might be easier to treat this as a model-free reinforcement learning task and learn
from samples instead of solving the very complex equations describing the problem
(Sutton and Barto 2017).

In most cases the reinforcement learning model is formulated as a Markov Decision
Process.

1.2 Markov-Decision Process

AMarkov Decision Process (MDP) is a time-discrete stochastic process. State transitions
and rewards are random and can be modeled by a state transition array and a reward
matrix. A (finite) Markov Decision Process is then a tuple (S,A,P ,R, γ) where S is
the (finite) state space, A the (finite) action space, P the state transition array, R the
reward matrix and γ is the discount factor with γ ∈ [0, 1] (Sutton and Barto 2017).

The most important assumption is the Markov Property. It states that the next state
and reward only depend on the current state and action and not on the history of
all the states, actions and rewards before, so the current state already summarizes all
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relevant information about the environment. In other words the future is independent
of the past given the present.

The Markov Property is defined by

P[St+1 = st+1|St = st, At = at] = P[St+1 = st+1|S1 = s1, A1 = a1, ..., St = st, At = at].
(3)

The state transition array P defines the transition probabilities between all states. Pass′
is the probability to transition from state s to state s′ when taking action a,

Pass′ = P[St+1 = s′|St = s, At = a]. (4)

The reward matrix specifies the expected reward when taking action a in state s.
Rewards can be deterministic or stochastic and depend on the previous state and
action.

Ra
s = E[Rt+1|St = s, At = a]. (5)

MDP’s, especially finite MDP’s, build the mathematical fundament of reinforcement
learning. When formulated as a Markov Decision Process the state is fully observable
by the agent. Sometimes not all relevant information is observable by the agent, e.g. in
a card game a player only knows his cards but not the cards of his opponents. In this
case we speak of a partially observable problem, which can be formulated as a Partially
Observable Markov Decision Process (POMDP).

Episodic and continuing tasks

A reinforcement learning task is called an episodic task, if the interaction between agent
and environment breaks down into a sequence of episodes, each consisting of a finite
number of time steps. Then a terminal state exists, for example the end of a game.
When this terminal state is reached, the episode is over and the environment is reset
to a start state, from which a new episode is started. E.g. a game of chess is finished,
when the king is checkmated and a new game always starts with the same position of
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all pieces on the chess board. The start state could also be sampled from a distribution
over possible start states.

Some tasks do not fall into this category, for example a trading agent might be concerned
to maximize financial return in his life-time. This is a continuing task which does not
naturally fall into episodes. Discounting rewards helps in continuing tasks to prevent
infinite returns.

We will see algorithms in Section 2, which can only be applied to episodic problems,
and algorithms, which can also be applied to continuing problems.

Value functions

While rewards are an immediate feedback, values represent the long-term consequences
of actions. The state value function vπ(s) is defined as the expected return following
policy π from state s:

vπ(s) = Eπ[Gt|St = s] (6)

The action value function qπ(s, a) is defined analogous as the expected return of taking
action a in state s and then following policy π:

qπ(s, a) = Eπ[Gt|St = s, At = a] (7)

A value quantifies how good a certain state or state-action pair is. Value functions play
a central role in many reinforcement learning algorithms. A good policy can be found
by optimizing a value function and then deriving the policy from the value function.
Policies based on MDPs are always stationary, i.e. they only depend on the current
state and not on states further back in time.

The action value function is especially useful because it contains the values for each
action in a state. Therefore an agent may choose the action with the highest q value,
because this is the best action in this state.
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Bellman Equations

The Bellman equations define a recursive relationship between values.

A value function can be decomposed into the immediate reward plus the value of the
successor state. This is called the Bellman expectation equation (Sutton and Barto
2017).

vπ(s) = Eπ[Gt|St = s]
= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]
= Eπ[Rt+1 + γ(Rt+2 + γRt+3 + ...)|St = s]
= Eπ[Rt+1 + γvπ(St+1)|St = s]

(8)

Similarly the action value function can be written as

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a]. (9)

The expectation can then be computed using the transition dynamics of the MDP

vπ(s) =
∑
a∈A

π(a|s)
Ra

s + γ
∑
s′∈S
Pass′vπ(s′)

 . (10)

Equation 10 can be thought of as a one-step look-ahead. Starting in a state s each
action is weighted by its probability under policy π. The value of the next state s′

is weighted by the environment’s transition probabilities. Summing this together we
obtain the value of state s.

Similarly for the action value function

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pass′

∑
a′∈A

π(a′|s′) qπ(s′, a′). (11)

When taking action a in state s the environment returns a state according to the
transition probabilities, then the agent chooses a new action a′ from policy π.
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State and action value function can also be expressed in terms of each other. The state
value function is an average over all action values weighted by the probability of taking
that action π(a|s):

vπ(s) =
∑
a∈A

π(a|s) qπ(s, a). (12)

Similarly the action value function can be expressed in terms of the state value function:

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pass′ vπ(s′). (13)

The value of state s and action a is then the expected immediate reward plus the
discounted sum of the values of all successor states s′ weighted by their transition
probabilities.

Optimality

In reinforcement learning the goal is to find the best (=optimal) policy, which achieves
the highest cumulative reward. In finite MDPs there is connection between the optimal
policy and its value function. Therefore it is enough to find the optimal value function,
from which the optimal policy can then be easily derived.

Policies can be sorted according to their value functions. A policy π′ is better than a
policy π (denoted π′ ≥ π) if

vπ′(s) ≥ vπ(s) and qπ′(s, a) ≥ qπ(s, a) ∀s ∈ S and a ∈ A. (14)

The optimal value function is the maximal value function over all policies:

v∗(s) = max
π

vπ(s) and q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S and a ∈ A. (15)

If the optimal action value function q∗(s, a) is known, the problem is solved because the
optimal policy can be obtained by acting greedily with respect to the optimal action
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value function (Sutton and Barto 2017):

π∗(a|s) =
 1, if a = argmaxa∈A q∗(s, a)

0, else.
(16)

All suboptimal actions must have zero probability. If a perfect model of the environment
is known, it is sufficient to know the optimal state value function v∗(s) because the
policy can then be derived from Equation 10.

The Bellman optimality equations define a relationship between the optimal value
functions:

v∗(s) = max
a∈A

q∗(s, a) (17)

v∗(s) = max
a∈A

Ra
s + γ

∑
s′∈S
Pass′ v∗(s′)

 (18)

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pass′ max

a′∈A
q∗(s′, a′) (19)

With this knowledge of Markov Decision Processes we can understand the algorithms
presented in Section 2. We will see that the Bellman equations can be turned into
iterative updates to improve the value function estimates.
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2 Algorithms

Reinforcement learning algorithms can be categorized into different subfields depending
on their task and update procedure. Generally two tasks can be differentiated, the
prediction and the control task. In the prediction problem the policy is fixed and the
goal is to estimate the value function of this policy. In the control task the goal is to
find the optimal policy and the policy evolves over time.

Another distinction can be made between model-based and model-free algorithms.
Model-based algorithms use a model of the environment to update the value function,
i.e. a representation of state transition probabilities and reward dynamics. Model-
based dynamic programming algorithms will be introduced in Section 2.3. Model-
free reinforcement learning in contrast learns from sampled transitions without any
knowledge of the underlying model. Temporal-difference (TD) learning is a class
of model-free algorithms which update the value function after each step using the
estimated value of the successor state and will be explained in Section 2.4.

Model-free reinforcement learning can also be grouped into on-policy and off-policy
algorithms. The policy used to generate samples by interacting with the environment
is called behavior policy, while the policy which is optimized for is called target policy.
For on-policy algorithms behavior and target policy are identical, in the off-policy case
both policies are different, e.g. the behavior policy could be an exploratory policy like
ε-greedy, while the target policy is the greedy policy (this is the well-known Q-Learning
algorithm). Of course on-policy can then be seen as a special case of off-policy learning,
when target and behavior policy are identical.

First we will cover tabular solution methods, where value function and policy are
represented as a table. Each entry of the table is then the value of a state or state-action
pair. In contrast to that approximate solution methods approximate the value function
or policy using a function approximator, e.g. a linear combination of features or a neural
network and will be introduced in Section 2.5.

Value-based methods try to learn a value function, e.g. the state value function V or the
action value function Q. The optimal policy can then be derived implicitly by finding
the maximal values. Policy-based methods directly parametrize the policy and try to
find the optimal policy without constructing a value function. Algorithms that use
both value function and policy are called actor critic and will be treated in Section 2.6.
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2.1 Multi-armed Bandit

A multi-armed bandit is a simplified reinforcement learning problem, where each episode
consists of only one time step. After taking an action the agent receives a numerical
reward from the environment. The goal is to maximize the expected total return over a
number of action selections (= episodes), which usually involves some trade-off between
exploration and exploitation. Formally bandits can be formulated as Markov Decision
Processes with one state.

The expected return of each action, which is the value of the action, can be expressed as

qt(a) = E[Rt|At = a]. (20)

The true action values qt(a) are usually unknown in the beginning and must be estimated
by trying out actions and observing the corresponding rewards. In the following we
will use capital letters V and Q to denote estimated value functions in contrast to the
true value functions q and v.Note that in the simplest form the action values do not
depend on states, respectively there is only one state, so it can be neglected. The time
index t now corresponds to the episodes. So the return of each episode is equal to the
immediate reward and there is no discounting.

The action values can then be estimated by taking the mean of all rewards observed in
the t episodes,

Qt(a) = 1
t

t∑
i=1

Ri I{Ai=a}, (21)

and the computationally advantageous incremental update equation is

Qt(a) = Qt−1 + 1
t

[Rt −Qt−1] . (22)

Greedy Action Selection

An agent which acts according to a greedy policy always chooses the action with the
highest action value.
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At = argmax
a∈A

Qt(a) (23)

A problem with greedy action selection is that it does not explore, which is problematic
because the action value estimates are uncertain and an action with a low estimate
might have a high true value but is never chosen.

Optimistic Initial Values

A simple trick to get better results using a greedy action selection is to initialize the Q
values to high values which might be overly optimistic. Then the greedy strategy will
choose an action and is “disappointed” from the result, hence the action value of this
action will be decreased and next time one of the other actions is chosen. This way all
actions are chosen many times until the value of the best action is found. Higher initial
values lead to a slower decrease of the action values and therefore to more exploration
as the actual observed rewards have a lower weight.

ε-greedy Action Selection

ε-greedy is a very simple but often effective algorithm trading off exploration and
exploitation. With probability 1− ε the greedy action is chosen, with probability ε a
random action:

At =
 argmaxa∈AQt(a) with probability 1− ε

a random action a ∈ A with probability ε
(24)

Therefore higher values of ε lead to more exploration. Usually the value of ε is decreased
over time to ensure more exploration in the beginning and then start to act more
and more greedily. ε-greedy action selection is also useful if the environment is non-
stationary, i.e. the reward distribution changes over time. By taking a random action
once in a time the algorithm can discover a change in the reward distribution and adapt
its Q values accordingly.

14



Reinforcement Learning Algorithms

Upper-Confidence-Bounds (UCB)

While the simple ε-greedy action selection works well for many problems, sometimes
a more sophisticated approach to balance exploration and exploitation is useful. One
disadvantage of the ε-greedy approach is that all non-greedy actions will be chosen
with the same probabilities, invariant to the fact that some are close in action value
to the greedy action and are therefore more likely to be better, while others are far
off. Secondly ε-greedy does not keep track of the number of times an action has been
chosen, though it would be preferable to give actions which have been chosen scarcely a
higher weight while sampling, because the action values are more uncertain.

Using an Upper-Confidence-Bound Action Selection actions are selected greedily with
respect to a term consisting of the action value Q(a), therefore giving higher weight
to actions with high action value, and a second term reflecting the uncertainty of the
estimated value making it more likely to choose an action with uncertain value,

At = argmax
a∈A

Qt(a) +

√√√√C log(t)
Nt(a)

 , (25)

where Nt(a) denotes the number of times action a has been chosen. Initially all
Nt(a) = 0, in this case an action with Nt(a) = 0 is given highest priority, so first all
actions are taken at least once, before actions are selected according to Equation 25.
The term under the root is the uncertainty term and is increased at each time step for
all actions which have not been selected and decreased for the action which has been
selected due to an increased number of selections of this action Nt(a).

Gradient Bandit Algorithm

A different approach to solve a multi-armed bandit problem is to use a gradient-based
method, which does not use an action value function. Instead of an action value
a numerical preference Ht(a) will be stored for each action. Probabilities can then
be computed using the softmax formula Pt(a) = exp(Ht)∑

a
exp(Ht(a)) . Actions are sampled

according to these probabilities. The average reward is computed and compared to
the observed reward of a chosen action, so the average reward is used as a baseline. If
the reward exceeds the average reward, the preference and therefore the probability of
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choosing this action is increased and for all other actions decreased. (Sutton and Barto
2017)

2.2 Generalized Policy Iteration

Generalized policy iteration is a framework to find the optimal policy in a reinforcement
learning environment based on value functions. This is used by nearly all algorithms
presented in the following. It iterates between two steps: policy evaluation and policy
improvement. In the policy evaluation step the goal is to estimate the value functions
vπ or qπ for a policy π. In the policy improvement step the goal is to improve upon the
current policy π to find a better policy π′. Ultimately the goal is to find the optimal
value functions vπ∗ and qπ∗ and the optimal policy π∗.

Policy Evaluation

We will see different approaches to evaluate a policy used in the different algorithms. The
value-based methods presented in the following mainly differ by their policy evaluation
procedure. Policy evaluation can be done until the true values qπ and vπ of policy π
are approximated closely, but often only one step of policy evaluation is done, so the
value function is updated only once and then the policy is immediately updated using
a policy improvement step. This is called value iteration.

Policy Improvement

A policy improvement step improves the current policy π towards a better policy π′ as
defined in Equation 14. But how do we obtain a better policy?

For each state we consider the action values qπ(s, a) ∀a ∈ A. If qπ(s, a) > vπ(s) then it
is better to select a in s instead of following policy π. Then the new policy is better
than the old policy. For every state we can select the action with the highest action
value qπ to obtain a better policy, in other words to act greedily with respect to the
action value function. The resulting new policy π′ will then be at least as good as the
previous policy π according to the policy improvement theorem (Sutton and Barto
2017).

16



Reinforcement Learning Algorithms

(a) Generalized Policy Iteration using the state
value function V and a greedy policy improve-
ment. This iteration procedure can be used
when the model of the MDP is known.

(b) Generalized Policy Iteration using the
action value function Q and an ε-greedy
policy improvement. This is used in model-
free reinforcement learning.

Figure 2.1: Generalized Policy Iteration. Sutton & Barto (2017)

When a model of the MDP is known a better policy can be obtained using the state
value function V with a one-step look-ahead at the values of the successor states using
the transition probabilities, so the policy improvement becomes

π′(a|s) =
 1, if a = argmaxa∈A(Ra

s + γP a
ss′ V (s′))

0, else.
(26)

But when the model is unknown a greedy policy is not useful, because it does not explore.
Instead the idea is to use an ε-greedy policy, which acts greedily with probability 1− ε,
but takes a random action with probability ε. Furthermore because the transition
dynamics are unknown in a model-free setting, we need to use the action value function
Q instead of the state value function V . The policy improvement update is then

π′(a|s) =
 1− ε+ ε

m
, if a = argmaxa∈AQ(s, a)

ε
m
, else.

(27)

The update cycle in generalized policy iteration is then π0 → Qπ0 → π1 → Qπ1 →
... → π∗ → Qπ∗ using the action value function. Figure 2.1 visualizes the principle of
generalized policy iteration for model-based and model-free reinforcement learning.
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2.3 Dynamic Programming

Dynamic programming is a class of solution methods to find the optimal policy π∗ using
a model of the environment. A Markov Decision Process with a finite state and action
space is assumed, which is fully determined by the state transition probabilities and
reward dynamics. When a perfect model of the environment is known no actual or
simulated experience sampled from interaction with the environment is needed. Instead
the Bellman equations can be turned into iterative update procedures of the value
function. In each iteration all state values are updated using the values of all successor
states. This is called a full-backup. This stands in contrast to sample backups used in
model-free reinforcement learning, which update a state value using the value of only
one sampled successor state.

Iterative Policy Evaluation

Using dynamic programming a policy can be evaluated iteratively by turning the
Bellman expectation equation (Equation 10) into an iterative update.

vk+1(s) =
∑
a∈A

π(a|s)
Ra

s + γ
∑
s′∈S
Pass′vk(s′)

 (28)

vk+1(s) =
∑
a∈A

π(a|s) qk(s, a). (29)

A new state value estimate vk+1(s) is obtained by weighting the action values qk(s, a)
by the probability of taking that action under policy π. The action values itself are
computed as the sum of the expected immediate reward plus the values of all successor
states weighted by the probability of a transition to them.

At each iteration all state values are updated towards the value of their successor states.
Of course these values are at first random, but by using the knowledge about the true
reward and transition dynamics, the estimates will get better over time and are proofed
to converge to the true state value function vπ. (Sutton and Barto 2017)

Usually the iteration process (Equation 29) will be performed until a stop criterion is
met, e.g. until a predefined number of steps is exhausted or the difference between two
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subsequent value functions is less than a given threshold.

Policy Iteration

With the knowledge of how to evaluate a policy the next step is how to improve the
policy and find the optimal policy π∗. To find the optimal policy we will iterate between
iterative policy evaluation and a greedy policy improvement step as in Equation 26.

The update cycle is then π1 → vπ1 → π2 → vπ2 → ... → π∗ → vπ∗ .

Each policy will be evaluated until one of the stop criteria is met. Then a greedy update
in all states improves the policy. Then the new policy will be evaluated and so forth.
At each iteration the policy evaluation will start with the value function of the previous
policy and because the value function is relatively stable from one policy to the next,
this will increase the speed of convergence. This iteration process is proven to converge
to the optimal policy π∗ (Sutton and Barto 2017).

Value Iteration

Value iteration in contrast to policy iteration evaluates each policy only once and then
immediately improves the current policy by acting greedily. Therefore the intermediate
value functions may not correspond to any policy. Often the greedy policy with respect
to a value function does not change anymore after a few steps of policy evaluation. This
is why value iteration will typically converge much faster than policy iteration, because
it does not need to wait until a policy is fully evaluated, but can use new information
after just one evaluation step.

The update rule can be directly derived from the Bellman optimality equation (Equation
18),

Vk+1(s)← max
a∈A

Ra
s + γ

∑
s′∈S
Pass′Vk(s′)

 . (30)
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(a) Dynamic programming updates the value of
a state using the values of all successor states
weighted by the transition probabilities ("full
backup"). It can therefore be only applied if a
model of the environment is known.

(b) Model-free reinforcement learning
(here temporal-difference learning) up-
dates state values using the value of a sam-
pled successor state ("sample backup"). It
can therefore be applied without knowl-
edge of the underlying model.

Figure 2.2: Silver (2015)

2.4 Temporal-difference learning

Dynamic programming can only be applied if the model of the environment is fully
known. In most interesting problems this is not the case. The solution is to learn
from sampled experience from interaction with the environment, either from real-world
interaction or from simulated experience sampled from a model. Often it is much easier
to obtain samples from some probability distribution than to obtain the equations
describing the probability distribution (Sutton and Barto 2017).

In the following agent and environment interact over a number of discrete time steps, so
that a sequence of states, rewards and actions is obtained. The policy used to interact
with the environment is also called behavior policy. It is usually an exploratory policy,
e.g. ε-greedy, to ensure that all states and actions are visited to obtain a good value
function estimate. ε-greedy action selection is a common choice to trade off exploration
and exploitation.

When the goal is to estimate a fixed policy we can evaluate the policy’s state value
function Vπ or action value function Qπ. When optimizing the policy to find the optimal
way to behave, the action value function Q must be used, because the best action in a
state can be easily found by taking the maximum over the Q values. The idea is to
estimate the expectations in
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vπ(s) = Eπ[Gt|St = s] or qπ(s, a) = Eπ[Gt|St = s, At = a], (31)

instead of directly computing them as in dynamic programming.

Temporal-difference (TD) learning is a widely used class of model-free reinforcement
learning algorithms. It can be applied to continuing problems, because the value
function is updated after each step (on-line learning).

Similar to dynamic programming TD learning corrects the estimate of a state towards
the estimate of a successor state by a one-step look-ahead. But in contrast to dynamic
programming a state value is not updated towards the value of all successor states but
only towards the value of a sampled successor state (Figure 2.2).

In temporal-difference learning the policy evaluation step usually contains an update of
the form

V (St)← V (St) + α δt (32)
Q(St, At)← Q(St, At) + α δt, (33)

where the current estimate of the value function is shifted by the step size α (also
called learning rate) in the direction of the so called TD error δt. The TD error is the
difference between a newly computed target value and the old estimate of the value
function.

TD(0)-Algorithm

The simplest TD algorithm for policy evaluation is TD(0), which uses a TD error of
the form

δt = Rt+1 + γV (St+1)− V (St). (34)

This is again the Bellman expectation equation, which decomposes the return Gt into
the immediate reward plus the discounted value of the next state. In comparison to
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iterative policy evaluation in dynamic programming (Equation 29) the expectation is
now approximated using the value of a sampled successor state St+1, instead of looking
ahead at all possible successor states.

Sarsa

Sarsa (Rummery and Niranjan 1994) is a temporal-difference algorithm for control. At
each time step an action is sampled according to an ε-greedy policy with respect to Q
as defined in Equation 27. After taking this action the following reward and next state
are observed. Then a successor action At+1 is sampled from the same policy.

Using Equation 33 the action value function is then updated using the following TD
error,

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At). (35)

Using the bellman expectation equation for Q (Equation 11) the old estimate Q(St, At)
is backed up by the reward plus the discounted value of the value of the successor state
Q(St+1, At+1).

Sarsa is an on-policy algorithm, i.e. the TD target consists of Q(St+1, At+1), where At+1

is sampled using the same policy as At. In general the behavior policy used to sample
state and actions can be different from the target policy π, which is used to compute the
TD target. If behavior and target policy are different this is called off-policy learning.

Q-Learning

Q-Learning (Watkins 1989) is an off-policy control algorithm, i.e. behavior and target
policy are different. Like Sarsa experiences are generated using an ε-greedy behavior
policy. But the value estimates for the sampled state-action pairs are then updated by
taking the maximum value of all possible next actions. The TD error can be derived
from the Bellman optimality equation,

δt = Rt+1 + γmax
a∈A

Q(St+1, a)−Q(St, At). (36)
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Expected Sarsa

Expected Sarsa (Seijen et al. 2009) is an extension of the Sarsa algorithm. Unlike Sarsa,
which samples the next action and uses its value Q(St+1, At+1) as an update, Expected
Sarsa does not sample the next action, instead it takes an expectation over all possible
successor actions. All actions are weighted by their probabilities π(a|St+1).

The TD error of Expected Sarsa is therefore

δt = Rt+1 + γEπ[Q(St+1, At+1)|St]−Q(St, At) (37)
δt = Rt+1 + γ

∑
a∈A

π(a|St+1)Q(St+1, a)−Q(St, At) (38)

The updates in Expected Sarsa are computationally more complex than the updates in
Sarsa, but they eliminate the variance due to the second action selection in Sarsa, the
sampling of At+1, and can therefore perform better in stochastic environments (Seijen
et al. 2009). Expected Sarsa can be used both as an on-policy or off-policy algorithm.
Expected Sarsa is an off-policy algorithm when the target policy π used in Equation 38
is different than the policy used to sample At. If the target policy π is the greedy policy
with respect to Q and the behavior policy is an exploratory policy, e.g. the ε-greedy
policy, then Expected Sarsa is exactly Q-Learning.

Q(σ)-Algorithm

The Q(σ) algorithm (Asis et al. 2017) generalizes the temporal-difference control
methods presented so far. It subsumes Sarsa as well as Expected Sarsa and therefore
also Q-Learning. Instead of full sampling as in Sarsa and pure expectation as in Expected
Sarsa the Q(σ) algorithm has a parameter σ, which controls the sampling ratio. Q(1)
is equivalent to Sarsa, Q(0) is equivalent to Expected Sarsa. For intermediate values of
σ new algorithms are obtained. The TD target is therefore a weighted average of the
sarsa and expected sarsa targets.

The TD error of Q(σ) is
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δt = Rt+1 + γ

(
σQ(St+1, At+1) + (1− σ)

∑
a∈A

π(a|St+1)Q(St+1, a)
)
−Q(St, At). (39)

Double Learning

Double Q-Learning (H. V. Hasselt 2010) is a strategy to avoid the overestimation of
action values, which can be problematic when using Q-Learning in stochastic environ-
ments. Q-Learning uses the maximum value as an estimate of the maximum expected
value, which can lead to a high positive bias in the action values and therefore poor
performance on some tasks. This is called maximization bias. The idea behind this is
that due to the stochasticity of reward or state transitions the estimates of action values
are uncertain and some estimates might be higher than their true value. In some sense
Q-Learning chooses the action, which is most wrong in an upward direction, because
the estimate is to high.

Double Q-Learning is a method to avoid this bias by decoupling action selection (which
action is the best one?) and evaluating this best action (what is the value of this
action?). The implementation is simple, instead of using only one value function Q it
stores two different action value functions QA and QB. States and actions are sampled
using an ε-greedy policy with respect to QA +QB. To update the values at each step it
is randomly determined, which of the two value functions is updated. If QA is updated
the TD error is

δt = Rt+1 + γQB(St+1, argmax
a∈A

QA(St+1, a))−QA(St, At), (40)

else if QB is updated it is

δt = Rt+1 + γQA(St+1, argmax
a∈A

QB(St+1, a))−QB(St, At). (41)

Double Learning can also be used with Sarsa and Expected Sarsa. Using Double Learning
these algorithms can be more robust and perform better in stochastic environments
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(Ganger, Duryea, and Hu 2016). The decoupling of action selection and action evaluation
is weaker than in Double Q-Learning because the next action At+1 is selected according
to an ε-greedy behavior policy using QA + QB and evaluated either with QA or QB.
For Expected Sarsa the policy used in Equation 38 could be the ε-greedy behavior
policy as proposed by Ganger, Duryea, and Hu (2016), but it is probably better to use
a policy according to QA, then it can also be used off-policy with Double Q-Learning
as a special case, if π is the greedy policy with respect to QA.

To extend the Q(σ)-Algorithm to Double Learning we propose a new algorithm called
Double Q(σ), which would have the following TD error when QA is selected,

δt = Rt+1 +γ
(
σQB(St+1, At+1) + (1− σ)

∑
a

π(a|St+1)QB(St+1, a)
)
−QA(St, At) (42)

and analogous with interchanged roles for QB. Because Q(σ) subsumes Q-Learning and
Expected Sarsa as a special case, the new algorithm Double Q(σ) subsumes Double
Q-Learning and Double Expected Sarsa as special cases. While the behavior policy is the
ε-greedy policy according to QA +QB, the target policy π in Equation 42 is computed
with respect to QA and evaluated using QB. More details on this new algorithm can be
found in the Appendix.

Eligibility Traces

The algorithms presented so far in this section are one-step methods, i.e. they update
only one state-action pair at each step. This is not data-efficient. All the previous
states and actions influenced the current TD error and therefore the TD error should
be assigned backwards to all previously visited states and action, which can result in
much faster learning (Sutton and Barto 2017). This can be achieved using eligibility
traces. A motivating example is visualized in Figure 2.3.

An eligibility trace Et(s) (or Et(s, a)) is a scalar numeric value for each state (or
state-action pair). Whenever a state is visited its eligibility is increased, if not, the
eligibility fades away over time with an exponential decrease. Therefore states visited
more often will have a higher eligibility trace than those visited less frequently and
states visited recently will have a higher eligibility than those visited a long time ago.
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Figure 2.3: Action values increased by one-step Sarsa and Sarsa(λ) in a gridworld task.
Using Sarsa(λ) all state-action pairs are updated according to their share on the current
TD error, which is assigned backwards to all predecessor states and actions. Sutton &
Barto (2017)

Figure 2.4: Comparison between accumulating and replacing eligibility trace for state
values. Values are increased, whenever a state is visited, then they fade away over time.
Singh and Sutton (1996)

In the following action value eligibility traces Et(s, a) are used, but the equations for
state value eligibility traces Et(s) can be obtained analogously.

Types of Eligibility Traces

Different types of eligibility traces have been proposed in the literature. Two kinds are
especially commonly used: the accumulating trace and the replacing trace (Singh and
Sutton 1996), which are visualized in Figure 2.4.

At the beginning of each episode all eligibility traces are reset to 0. Then at each time
step the eligibility of the current state-action pair (St, At) is increased. For accumulating
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traces the update is

Et(St, At) = Et−1(St, At) + 1 (43)

and for replacing traces

Et(St, At) = 1. (44)

Recently a different eligibility trace has been introduced, the so called Dutch trace,
which is a weighted average between accumulating and replacing traces (Seijen et al.
2015):

Et(St, At) = (1− ψ)Et−1(St, At) + 1 (45)

The factor ψ controls if accumulate or replace traces are used with ψ = 0 being the
regular accumulate trace update and ψ = 1 being the regular replace trace update. For
intermediate values a mixture of both traces is used.

Comparing the different types of eligibility traces the following can be noted: Replacing
traces are bounded with an upper bound of 1, while accumulating traces can become
larger than 1. The latter can be a problem, when a state-action pair is revisited often
during a long episode and the discount factor and λ value are high. Then the eligibility
trace and value updates can become very large resulting in instable learning and possibly
divergence (Singh and Sutton 1996).

After the eligibility trace of the current state-action pair has been increased, the values
of all state-action pairs are then updated towards the TD error weighted by their
eligibility

Q(s, a)← Q(s, a) + α δtEt(s, a) ∀s ∈ S, ∀a ∈ A. (46)

Afterwards the eligibility traces of all states and actions are decreased exponentially
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Et+1(s, a) = γλEt(s, a) ∀s ∈ S,∀a ∈ A, (47)

where the trace decay parameter λ controls the speed of the decay. When λ = 0 the
eligibility traces of all state-action pairs except the current state-action pair are 0,
so only the value of this state-action pair is updated and we obtain again a one-step
algorithm. For higher λ values the error is passed to all previously visited state-action
pairs.

The algorithms using eligibility traces are called TD(λ), Sarsa(λ) and so on.

Eligibility Traces for off-policy Learning

There are different approaches to use eligibility traces with off-policy algorithms like
Q-Learning. The so called “naive” approach is to use Equations 43 - 47 without changes,
ignoring the fact, that actions are sampled due to an ε-greedy behavior policy and
not due to the target policy (e.g. the greedy policy). Another approach to Q-Learning
with eligibility traces called Watkin’s Q(λ) uses the same Equations as long as the
greedy action is chosen by the behavior policy, but sets the Q values to 0, whenever
a non-greedy action is chosen. It assigns credit only to state-action pairs the agent
would actually have visited if following the target policy π and not the behavior policy
µ. This can be generalized for other target policies by weighting the eligibility by the
target policy’s probability of the next action.

The eligibility is then decreased by

Et+1(s, a) = γλEt(s, a) π(At+1|St+1) ∀s ∈ S,∀a ∈ A. (48)

Whenever an action occurs, which is unlikely in the target policy, the eligibility traces
are decreased sharply. If the target policy is the greedy policy, the eligibility traces will
be set to 0 for the complete history if a non-greedy action is chosen.

We propose a new algorithm called Q(σ, λ) which extends Q(σ) to an on-line multi-step
algorithm using eligibility traces. As Q(σ) is a combination between on-policy Sarsa and
off-policy Expected Sarsa, the natural idea is to combine the eligibility trace updates in
Equation 47 and 48 in the same way.
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The new update equation is then

Et+1(s, a) = γλ(σ + (1− σ)π(At+1|St+1))Et(s, a) ∀s ∈ S,∀a ∈ A. (49)

When Q(1, λ) is equal to Sarsa(λ) and the eligibility update is equal to Equation 47.
For Q(0, λ) is equal to Expected Sarsa and the eligibility update is equal to Equation
48. More details on the new Q(σ, λ) algorithm can be found in the Appendix.

2.5 Value Function Approximation

Until now tabular solution methods have been presented, which use a table to store the
value function. For the state value function the table needs n entries, for the action
value function n x m entries, when n is the number of states and m is the number
of actions. This quickly becomes difficult if there are many states and / or actions.
It can be impractical to store the table in memory and it is inefficient and slow to
update states individually. But most importantly tables cannot be used if the state
or action space is continuous. In the following we will introduce the idea of function
approximation to deal with continuous state spaces. Continuous action spaces are
especially difficult to handle, because algorithms using an ε-greedy policy improvement,
e.g. Q-Learning, need to do a maximization over the action space to find the best action.
With a continuous action space this becomes a difficult optimization problem (Sutton
and Barto 2017). When the problem has a continuous action space it is therefore often
better to use a policy gradient algorithm (Section 2.6).

State Aggregation

A first approach when dealing with a continuous state space could be to discretize the
state space and then apply a tabular solution method. A simple approach is grid tiling,
which aggregates the state space with a grid. Each state observation falls into one of
the grid cells, so the tabular value function would then have one entry for each grid cell.
Generalization occurs across all states, which fall into the same grid cell. An extension
of this idea is to overlay the state space with multiple grid tilings all offset from each
other. Then a state observation falls into one tile per tiling, so the value function has
then a number of rows equal to the number of tilings multiplied with the number of
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Figure 2.5: Grid tiling in a two-dimensional state space (black) with two tilings (orange
and blue), each with 4 tiles. A state (black point) generalizes over all points which fall
into the same tiles.

tiles per tiling. The value of a state is then simply the sum of all values of active tiles.
Figure 2.5 visualizes a possible grid tiling for a two-dimensional state space.

Value Function Approximation

A different approach is to approximate the value function

v̂(s, w) ≈ vπ(s) (50)
q̂(s, a, w) ≈ qπ(s, a), (51)

where w are the real-valued parameters (also called weights) of the function approxima-
tor, e.g. the weights of a neural network. Usually the number of weights is much smaller
than the number of states, so the function approximator has to generalize across the
state space. When a state is visited the parameters of the model are updated which
usually effect the values of many states.

For the action value function there are two slightly different implementations. Either
the function approximator takes the state as an input and returns the values for each
action, or the function approximator receives a state-action pair and returns the value
of this state-action pair.

The idea is to train the function approximator on examples (input-output pairs) from
the function we would like to approximate. This is similar to the approach in supervised
learning, e.g. regression. The challenge in reinforcement learning is that no fixed data
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set exists, over which multiple passes can be made, but the model must be able to learn
on-line while interacting with an environment. So it needs to learn from incrementally
acquired data.

To measure the performance we have to define a loss function. A natural choice for the
loss function is the Mean Squared Value Error (MSVE),

MSVE(w) = Eπ
[
(vπ(St)− v̂(St, w))2

]
(52)

MSVE(w) = Eπ
[
(qπ(St, At)− q̂(St, At, w))2

]
(53)

The MSVE expresses how much the estimated values differ from the true values under
policy π. Usually it is not possible to achieve a global optimum, i.e. MSVE(w∗) ≤
MSVE(w)∀w, only a local optimum and often there are no convergence guarantees at
all (Sutton and Barto 2017).

Stochastic Gradient Descent

Gradient descent is a widely used optimization method and well-suited for the on-line
nature of reinforcement learning. For a differentiable function J(w) the gradient is
defined by

∇J(w) =


∂J(w)
∂w1...
∂J(w)
∂wn

 . (54)

The idea is to iteratively update the weights using the gradient of the MSVE. At each
time step at t = 0, 1, 2, ... the weights are adjusted by a small step in the negative
direction of the gradient to minimize the MSVE. Stochastic gradient descent is a variant
of gradient descent which trains only on one training example at each time step,
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wt+1 = wt −
1
2α∇w

[
(vπ(St)− v̂(St, w))2

]
(55)

= wt + α [vπ(St)− v̂(St, w)]∇wv̂(St, w). (56)
(57)

Equations for q̂(St, At, w) can be obtained similarly.

The negative gradient defines the direction in which the error falls most rapidly. The
step size α controls how large the step in this direction is. Using a high learning rate we
can reduce the error on the current training example, but this will make other training
examples probably more incorrect, so a small learning rate may be advantageous.

In practice the true values vπ(St) are unknown, so we must substitute a target for them.
We can use the targets of any of the algorithms presented so far. For example the
update for TD(0) is

wt+1 = wt + α[Rt+1 + γv̂(St+1, w)− v̂(St, w)]∇wv̂(St, w)

and the update for Sarsa(0) is

wt+1 = wt + α[Rt+1 + γq̂(St+1, At+1, w)− q̂(St, At, w)]∇wq̂(St, At, w).

More general the update rule becomes

wt+1 = wt + α δt∇wq̂(St, At, w),

where δt is the TD error at time step t.

Though the target value also depends on the current weight vector w we ignore its effect
in the gradient, therefore these are no true gradient descent, but only semi-gradient
descent methods (Sutton and Barto 2017).
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Eligibility Traces for Function Approximation

The idea of eligibility traces can be easily extended to function approximation. Instead
of storing one eligibility trace per entry of a table, one eligibility trace per weight is
used.

The Equations 43 - 47 can be modified for function approximation. For accumulating
traces the update of the weights of the action value function would then be

Et(w) = Et(w) +∇wq̂(St, At, w). (58)

The weights are then updated by multiplying the TD error by their eligibility trace

wt+1 = wt + α δtEt(w). (59)

A great variety of regression models can be used for function approximation in rein-
forcement learning. In the following two of the most popular ones will be presented.

Linear Function Approximation

A common choice for approximate reinforcement learning is linear function approxima-
tion. The state observation is represented by a feature vector x(St). The state value
can then be represented as a linear combination of these features:

v̂(St, w) = x(St)Tw =
n∑
j=1

xj(St)wj (60)

The loss function is then quadratic in w:

MSVE(w) = Eπ
[
(vπ(St)− x(St)Tw)2

]
(61)

The gradient ∇wv̂(St, w) is then simply the feature vector x(St). The update rule is
therefore
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wt+1 = wt + α δt x(St). (62)

The weights are adjusted in the direction of the TD error times the value of the feature.
When observing a large positive TD error, e.g. the action is better than expected, the
weights corresponding to features with a high value will be updated more, so these
features will get most of the credit for the error.

Table-look-up is a special case of linear function approximation using a one-hot repre-
sentation of the state as a feature vector:

v̂(St, w) =
(
I{St=s1} . . . I{St=sn}

) 
w1
...
wn

 (63)

For each state (state-action pair) there is one entry in the feature vector and at each
time step only one of those is active, so the feature vector consists of a 1 for this feature
and 0 elsewhere. There are as many weights as there were entries in the table and at
each step only the weight corresponding to the active feature is updated.

The equations for q̂(s, a, w) can be derived analogous.

Deep Reinforcement Learning

Deep reinforcement learning is a field of reinforcement learning, which uses deep neural
networks as function approximators. A neural network is a statistical model used
for regression or classification tasks which can approximate nonlinear functions. The
simplest neural network is the feed-forward neural network. It consists of multiple layers,
each consisting of multiple units. Inputs are processed layer-wise and passed through
the network, so that a more advanced representation of the input is created. The value
of each unit is computed as a sum of all connected units from the preceding layer and
then transformed by some activation function. The last layer is called the output layer,
layers between input and output layer are called hidden layers. A neural network with
more than one hidden layer is typically called a deep neural network. There are other
neural network types used for different tasks, e.g. convolutional neural networks for
image data and recurrent neural networks for sequential data (e.g. language processing).
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Figure 2.6: A feed-forward neural network with two hidden layers and two output units.
Sutton and Barto (2017)

With the use of neural networks the handcrafting of meaningful features is not so
important anymore. The combination of reinforcement learning algorithms with deep
neural networks as value function approximators achieved great results on different
tasks, e.g. learning to play different Atari games on human-level directly from raw pixels
and rewards (Mnih et al. 2015) or solving the game of Go (Silver et al. 2016). These
results were achieved using Q-Learning with a deep neural network, a so called Deep
Q-Network (DQN).

Instability of Learning with Function Approximation

Reinforcement learning can be instable whenever the following three components are
combined: function approximation, temporal-difference learning and off-policy training
(Sutton and Barto 2017). This is called the “deadly triad”. When only two of these
three components are present, this is usually not a problem, but the presence of all
three can cause instability and even divergence.

There are a number of challenges arising with reinforcement learning which are not
present in supervised learning. In supervised learning models are usually trained on lots
of labeled training examples. Reinforcement learning in comparison learns from a scalar
reward, which can be sparse, noisy and delayed (Mnih et al. 2013). The consequences
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of actions can be observed sometimes thousands of time steps later. Furthermore
data is received consecutively over time and therefore often highly correlated, which is
problematic as most models assume independent training examples. Finally the value
function, which is approximated, changes over time as the behavior of the agent, the
policy, changes. Therefore the distribution generating the observed transitions changes
over time and is not stationary, so the transitions are not identically distributed.

Experience Replay

When training a reinforcement learning agent data is received consecutively over time.
This data is usually highly correlated and makes training difficult. Experience replay is
a technique which solves this problem (Mnih et al. 2013).

Experience Replay consists of the following steps:

• add transition to replay memory
• sample mini-batch from replay memory
• train model on mini-batch

You can think of the replay memory as a list storing every transition the agent expe-
riences. Each entry consists of state, action, reward and the following state. At each
step the agent trains on a number of examples (called mini-batch) randomly sampled
from the replay memory. Because the agent does not train on the transitions the way
it experiences them, but in a random sequence, this breaks the correlation, which we
face when training on consecutive experiences. Experience replay makes reinforcement
learning more like supervised learning. Training the neural network on a mini-batch of
data points is usually more data efficient than training on-line on a single data point.
When training on-line the data is used only once at the current time step and then
disregarded. Using experience replay one data point can be replayed more than once.

Schaul et al. (2015) propose to sample experiences not uniformly from the replay
memory but to prioritize experiences with a high TD error because the model could
not predict these experiences well. They propose a proportional prioritization as well
as a rank-based prioritization, where the latter is shown to be more robust. Using a
proportional prioritization each entry in the replay memory has a transition priority
pi. The current transition (St, At, Rt+1, St+1) is stored in replay memory replacing the

36



Reinforcement Learning Algorithms

oldest entry and is set to maximal priority pt = maxi pi. Then a mini-batch is sampled
according to their transition probabilities

j ∼ P (j) =
pαj∑
i p

α
i

, α ∈ [0, 1].

The model is then trained on the sampled transitions and the transition probabilities
are updated using the observed TD errors. To prevent that experiences with a TD error
of 0 are never replayed, a small positive constant will be added to all priorities pi.

2.6 Policy Gradient Methods

The algorithms presented so far in this section have been using a value function,
from which a policy was derived by acting greedily or ε-greedily. Now we present
policy gradient methods, which directly parametrize the policy. Actor-critic algorithms
combine value-based and policy gradient algorithms.

The idea of a policy-based algorithm is to directly parametrize the policy

π(a|s, θ) = P(At|St, θ). (64)

Two common choices for policies are the softmax policy, which is used with discrete
action spaces, and the Gaussian policy used for continuous action spaces.

The softmax policy is

π(a|s, θ) = exp(h(s, a, θ))∑
b∈A exp(h(s, b, θ)) . (65)

The h(s, a, θ) are numerical preferences for each state-action pair and using the softmax
formula these are then converted into probabilities. The preferences itself could be
represented using e.g. a table or a linear combination of features

h(s, a, θ) = θT x(s, a), (66)

using a feature vector x(s, a).
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A Gaussian policy is well suited for continuous actions, the policy is then the density of
the normal distribution

π(a|s, θ) = 1
σ(s, θ)

√
2π

exp(−(a− µ(s, θ))2

2σ(s, θ)2 ), (67)

where the mean could be parametrized as a linear function and the standard deviation
as the exponential of a linear function (to ensure that σ > 0)

µ(s, θ) = θTµx(s) and σ(s, θ) = exp(θTσ x(s)). (68)

To make the policy better a performance measure needs to be defined. A typical choice
is to use the value of the starting state as a performance measure

J(θ) = vπθ(S0).

The policy parameters are then updated using gradient ascent

θt+1 = θt + α∇θJ(θt), (69)

Then, according to the policy gradient theorem (Sutton and Barto 2017), the gradient
of J(θ) is equal to

∇θJ(θ) = Eπ
[
γtqπ(St, At)∇θlogπ(At|St, θ)

]
. (70)

Often it is advantageous to include a baseline term in the gradient, which tells the agent
how much better the action is in comparison to the average action value, e.g.

∇θJ(θ) = Eπ
[
γt(qπ(St, At)− vπ(St))∇θlogπ(At|St, θ)

]
. (71)

The term qπ(St, At)−vπ(St) is often called the advantage function Aπ(St, At). Aπ(St, At)
can be approximated by the error of TD(0),
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Aπ(St, At) ≈ Rt+1 + γv̂(St+1, w)− v̂(St, w).

This algorithm is called an actor critic. It combines value-based and policy-based
reinforcement learning using a parametrized policy πθ and a parametrized value function
vw or qw. The policy is the actor, which defines which actions to take. The value
function is the critic, which evaluates the actions.

The agent takes an action At according to its policy π(a|St, θ). Then the TD error δt is
computed

δt = Rt+1 + γ v̂(St+1, w)− v̂(St, w)

The parameters of the critic are then updated by

wt+1 = wt + βδt∇wv̂(St, w)

and the policy’s parameter by

θt+1 = θt + αγtδt∇θ log π(At|St, θ).

α is here the learning rate for the policy and β the learning rate for the value function.
When the TD error is positive the parameters of the value are adjusted, so it predicts a
higher value for that state. The policy’s parameters are then adjusted as to make the
action leading to this positive error more likely.

Combination with eligibility traces is straightforward, just use one eligibility trace per
weight of the actor and critic

Et(w) = γλEt−1(w) + γt∇wv̂(St, w) (72)
Et(θ) = γλEt−1(θ) + γt∇θlogπ(At|St, θ) (73)

and update the parameters accordingly
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wt+1 = wt + βγtδtEt(w) (74)
θt+1 = θt + αγtδtEt(θ). (75)

A comparison of value-based and policy-based methods

Depending on the problem, it can be easier to approximate the value function or the
policy. Policy-based methods are effective in high-dimensional and continuous action
spaces, e.g. using a Gaussian policy, whereas value-based methods are not so effective
there, because they need to do a maximization operation, which can be an expensive
optimization problem itself. Policy gradient algorithms adjust the policy parameters
smoothly, while an ε-greedy policy can change dramatically for a small change in the
value function, i.e. if this changes which action has the highest action value. Policy-based
methods can also find a stochastic optimal policy and are therefore useful in partially
observable MDPs. Value-based methods can only output a (nearly) deterministic policy,
e.g. the ε-greedy policy with respect to Q. (Sutton and Barto 2017)
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3 R Package reinforcelearn

3.1 Installation

R is a language for statistical computations (R: A Language and Environment for
Statistical Computing 2016). Functionality in R lives in packages, which needs to be
installed and loaded. The goal of the reinforcelearn package is to make reinforcement
learning available to R users.

The package is located at Github, from where it can be installed in R using the package
devtools (Wickham and Chang 2017).

install.packages("devtools")
devtools::install_github("markdumke/reinforcelearn")

Then the package can be loaded.

library(reinforcelearn)
# Set a seed for reproducibility

set.seed(1)

3.2 How to create an environment?

What is an environment in reinforcelearn?

Environments in reinforcelearn are implemented as R6 classes with certain methods
and attributes. The environment can then be passed on to the algorithms using the
envir argument.

There are some attributes of the R6 class, which are essential for the interaction between
environment and agent:

• state: The current state observation of the environment. Depending on the
problem this can be anything, e.g. a scalar integer, a matrix or a list.

• reward: The current reward of the environment. It is always a scalar numeric
value.

• done: A logical flag specifying whether an episode is finished.
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• n.steps: Number of steps in the current episode. Will be reset to 0 when reset
is called. Each time step is called it is increased by 1.

The interaction between agent and environment is done via the reset and step methods:

• reset(): Resets the environment, i.e. it sets the state attribute to a starting
state and sets the done flag to FALSE. It is usually called at the beginning of an
episode.

• step(action): The basic interaction function between agent and environment.
step is called with an action as an argument. It then takes the action and alters
the state and reward attributes of the R6 class. If the episode is done, e.g. a
terminal state reached, the done flag is set to TRUE.

Note: All states and actions are numerated starting with 0!

The makeEnvironment function provides different ways to create an environment. It
takes care of the creation of an R6 class with the above mentioned attributes and
methods.

Markov Decision Process

A Markov Decision Process (MDP) is a stochastic process, which is commonly used
for reinforcement learning environments. When the problem can be formulated as a
MDP, all you need to pass to makeEnvironment is the state transition array P a

ss′ and
reward matrix Ra

s of the MDP. The state transition array describes the probability of a
transition from state s to state s′ when taking action a. It is a 3-dimensional array with
dimensions [number of states x number of states x number of actions], so for each action
there is one state transition matrix. The reward matrix has the dimensions [number of
states x number of actions], each entry is the expected reward obtained from taking
action a in a state s.

We can create a simple MDP with 2 states and 2 actions with the following code.

# State transition array

P = array(0, c(2, 2, 2))
P[, , 1] = matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow = TRUE)
P[, , 2] = matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow = TRUE)
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print(P)
#> , , 1

#>

#> [,1] [,2]

#> [1,] 0.5 0.5

#> [2,] 0.8 0.2

#>

#> , , 2

#>

#> [,1] [,2]

#> [1,] 0.0 1.0

#> [2,] 0.1 0.9

# Reward matrix

R = matrix(c(5, 10, -1, 2), 2, 2, byrow = TRUE)
print(R)
#> [,1] [,2]

#> [1,] 5 10

#> [2,] -1 2

env = makeEnvironment(transitions = P, rewards = R)
#> Warning in self$initializeMDP(transitions, rewards, initial.state, reset, :

#> There are no terminal states in the MDP!

We will get a warning that there are no terminal states in the MDP, i.e. an episode
never ends in this MDP. Some algorithms assume that there is a terminal state, so we
have to be careful, when we want to solve this. A terminal state has a probability of 1
remaining in this state. Here is an example.

P = array(0, c(2, 2, 2))
P[, , 1] = matrix(c(0.5, 0.5, 0, 1), 2, 2, byrow = TRUE)
P[, , 2] = matrix(c(0.1, 0.9, 0, 1), 2, 2, byrow = TRUE)
print(P)
#> , , 1

#>

#> [,1] [,2]

#> [1,] 0.5 0.5

#> [2,] 0.0 1.0
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#>

#> , , 2

#>

#> [,1] [,2]

#> [1,] 0.1 0.9

#> [2,] 0.0 1.0

env = makeEnvironment(transitions = P, rewards = R)
print(env$terminal.states)
#> [1] 1

Every episode starts in some starting state. There are different ways to pass on the
starting state in makeEnvironment. The simplest is to specify the initial.state
argument with a scalar integer or an integer vector. When initial.state is a scalar
every episode will start in this state. If initial.state is a vector then the starting
state will be uniformly sampled from all elements of the vector. As a default the initial
state will be sampled randomly from all non-terminal states.

env = makeEnvironment(transitions = P, rewards = R, initial.state = 0)
env$reset()
print(env)
#> Number of steps: 0

#> State: 0

#> Reward:

#> Done: FALSE

A different possibility is to specify a custom reset function, which takes no arguments
and returns the starting state. This is a way to specify a custom probability distribution
over starting states. If the starting state is a terminal state you will get a warning!

# Specify a custom probability distribution for the starting state.

reset = function() {
p = c(0.2, 0.8)
sample(0:1, prob = p, size = 1)

}
env = makeEnvironment(transitions = P, rewards = R, reset = reset)
env$reset()
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#> Warning in env$reset(): The starting state is a terminal state!

print(env)
#> Number of steps: 0

#> State: 1

#> Reward:

#> Done: TRUE

The reward argument can also be a three-dimensional array, i.e. the reward can also
depend on the next state.

R = array(0, c(2, 2, 2))
R[, 1, ] = 1
R[2, 2, 2] = 10
print(R)
#> , , 1

#>

#> [,1] [,2]

#> [1,] 1 0

#> [2,] 1 0

#>

#> , , 2

#>

#> [,1] [,2]

#> [1,] 1 0

#> [2,] 1 10

env = makeEnvironment(transitions = P, rewards = R)

env$reset()
env$step(1)
print(env)
#> Number of steps: 1

#> State: 1

#> Reward: 0

#> Done: TRUE
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Instead of specifying a reward array you can also pass on a function sampleReward,
which takes three arguments, the current state, action and next state and returns a
scalar numeric reward. This way the reward of taking an action can be stochastic. Here
is a simple example, where the reward is either 0 or sampled from a normal distribution
depending on the next state and action.

sampleReward = function(state, action, n.state) {
if (n.state == 0 & action == 1L) {

0
} else {

rnorm(1)
}

}
env = makeEnvironment(transitions = P, sampleReward = sampleReward)
env$reset()
env$step(0)
print(env)
#> Number of steps: 1

#> State: 0

#> Reward: 1.3297992629225

#> Done: FALSE

Gridworlds

A gridworld is a simple navigation task with a discrete state and action space. The
agent has to move through a grid from a start state to a goal state. Each episode starts
in the start state and terminates if the agent reaches a goal state. States are always
numerated row-wise starting with 0. Possible actions are the standard moves (left,
right, up, down) or could also include the diagonal moves (leftup, leftdown, rightup,
rightdown).

If an action would take the agent off the grid, the next state will be the nearest cell
inside the grid. For each step the agent gets a reward, e.g. - 1, until it reaches a goal
state, then the episode is done.

Gridworlds with different shapes, rewards and transition dynamics can be created with
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the function makeGridworld. It computes the state transition array and reward matrix
of the specified gridworld (because a gridworld is a MDP) and then internally calls
makeEnvironment. Arguments from makeEnvironment can be passed on via the ...
argument, e.g. initial.state.

Here is an example of a 4x4 gridworld (Sutton and Barto 2017, Example 4.1) with the
4 standard actions and two terminal states in the lower right and upper left of the grid.
Rewards are - 1 for every transition until reaching a terminal state.

The following code creates this gridworld. This example gridworld is already included
in the package and can be created with gridworld().

# Gridworld Environment (Sutton & Barto (2017) Example 4.1)

env = makeGridworld(shape = c(4, 4), goal.states = c(0, 15))
print(env$states)
#> [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

print(env$actions)
#> [1] 0 1 2 3

# Identical to the above call

env = gridworld()

# Same gridworld, but with diagonal moves

env = makeGridworld(shape = c(4, 4), goal.states = c(0, 15),
diagonal.moves = TRUE)

print(env$actions)
#> [1] 0 1 2 3 4 5 6 7

In this gridworld actions will deterministically change the state, e.g. when going left
from state 5 the new state will always be 4. A stochastic gridworld can be specified via
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the stochasticity argument. Then the next state will be randomly sampled from all
eight successor state with a probability stochasticity.

# Gridworld with 10% random transitions

env = makeGridworld(shape = c(4, 4), goal.states = c(0, 15), stochasticity = 0.1)

The cliff walking gridworld (Sutton and Barto 2017, Example 6.6) has a cliff in the
lower part of the grid. Stepping into this cliff will result in a high negative reward of
-100 and a transition back to the starting state in the lower left part of the grid. So the
agent has to learn to avoid stepping into this cliff. Other transitions have the usual
reward of -1. The optimal path is directly above the cliff, while the safe path runs at
the top of the gridworld far away from the dangerous cliff.

In makeGridworld we can specify a cliff via the cliff.states argument and the reward
when stepping into the cliff via reward.cliff. The states to which the agent transitions,
when stepping into the cliff can be specified via cliff.transition.states.

# Cliff Walking (Sutton & Barto (2017) Example 6.6)

env = makeGridworld(shape = c(4, 12), goal.states = 47,
cliff.states = 37:46, reward.step = - 1, reward.cliff = - 100,
cliff.transition.states = 36, initial.state = 36)

# Identical to the above call

env = cliff()
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The windy gridworld (Sutton and Barto 2017, Example 6.5) is a gridworld with shape
7x10. The agent will be pushed up a number of cells when transitioning into a column
with an upward wind. The wind argument specifies the strength of this wind. It is an
integer vector with the same size as the number of columns in the grid. E.g. going right
from the state directly left to the goal, will push the agent to a state two cells above
the goal. The reward for each step is -1.

# Windy Gridworld (Sutton & Barto (2017) Example 6.5)

env = makeGridworld(shape = c(7, 10), goal.states = 37,
reward.step = - 1, wind = c(0, 0, 0, 1, 1, 1, 2, 2, 1, 0), initial.state = 30)

# Identical to the above call

env = windyGridworld()

OpenAI Gym Environments

OpenAI Gym (Brockman et al. 2016) is a toolkit for developing and comparing
reinforcement learning algorithms. It provides a set of environments, which can be
used as benchmark problems. The environments are implemented in python and can
be acessed via the OpenAI Gym API. Have a look at https://gym.openai.com/envs
for possible environments. To use this in R you need to install the dependencies listed
here. You also need to install the R package gym (Hendricks 2016).

Then it is simple to use one of the existing OpenAI Gym environments. First
you need to start the python server. Open a terminal and manually start the file
gym_http_server.py inside the gym_http_api folder. You can also start the python
server from R, here using a copy of the file included in the reinforcelearn package.

# Create an OpenAI Gym environment.
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# Make sure you have Python and Gym installed.

# Start server from within R.

package.path = system.file(package = "reinforcelearn")
path2pythonfile = paste0(package.path, "/gym_http_server.py")
system2("python", args = path2pythonfile, stdout = NULL,

wait = FALSE, invisible = FALSE)

env = makeEnvironment("MountainCar-v0")

The render argument specifies whether to render the environment. If render = TRUE
a python window will open showing a graphical interface of the environment when
calling the step method.

The reset, step and close method can then be used to sample experience. Here is an
example running a random agent for 200 steps on the mountain car task.

env$reset()
for (i in 1:200) {

action = sample(env$actions, 1)
env$step(action)

}
env$close()

You should see a window opening showing the graphical interface.
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Create your own environment

Some reinforcement learning problems cannot be formulated in the above way. Then it
is necessary to create the environment yourself and pass it on to the algorithms. Make
sure, that the environment is an R6 class with the necessary attributes and methods.

Here is a full list describing all attributes of the R6 class created by makeEnvironment.
Depending on the algorithm different of these attributes and methods may be necessary,
e.g. terminal.states, rewards and transitions for model-based dynamic program-
ming or step, reset, state, previous.state, n.steps, reward and done, if using a
model-free algorithm.

Attributes:

• state: The current state observation of the environment. Depending on the
problem this can be anything, e.g. a scalar integer, a matrix or a list.

• reward: The current reward of the environment. It is always a scalar numeric
value.

• done: A logical flag specifying whether an episode is finished.

• n.steps: Number of steps in the current episode. Will be reset to 0 when reset
is called. Each time step is called it is increased by 1.

• previous.state: The previous state of the environment. This is often the state
which is updated in a reinforcement learning algorithm.

• state.space: One of Discrete or Box.

• state.shape: Number of state variables in a continuous state space.

• state.space.bounds: The bounds of a boxed state space, a list with lower and
upper bound for each state variable as one list element.

• states: States (in a discrete state space). Numerated starting with 0.

• terminal.states: Terminal states in a Markov Decision Process. Will be derived
from the transition argument in makeEnvironment.

• n.states: Number of states (for a discrete state space).

• action.space: One of Discrete or Box.
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• action.shape: Number of action variables in a continuous action space.

• action.space.bounds: The bounds of a boxed action space, a list with lower
and upper bound for each action variable as one list element.

• actions: Actions (in a discrete action space). Numerated starting with 0.

• n.actions: Number of actions (for a discrete action space).

• transitions: A state transition array (n.states x n.states x n.actions).

• rewards: A state reward matrix (n.states x n.actions).

Methods:

• reset(): Resets the environment, i.e. it sets the state attribute to a starting
state and sets the done flag to FALSE. It is usually called at the beginning of an
episode.

• step(action): The basic interaction function between agent and environment.
step is called with an action as an argument. It then takes the action and alters
the state and reward attributes of the R6 class. If the episode is done, e.g. a
terminal state reached, the done flag is set to TRUE.

• done(): When using an OpenAI Gym environment this method closes the python
window. Else it returns the R6 class object unchanged, i.e. self$close =
function() {invisible(self)}.

Mountain Car

The Mountain Car problem (Sutton and Barto 2017) is a simple episodic reinforcement
learning task with a continuous state space and discrete action space. The goal is to drive
an underpowered car up a steep slope. Because the car cannot accelerate fast enough,
the optimal strategy consists of first going backwards to build enough momentum
and then drive up the slope. The two-dimensional state space is characterized by the
position and velocity of the car. These are updated due to the following equations:
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positiont+1 ← bound[positiont + velocityt+1] (76)
velocityt+1 ← bound[velocityt + 0.001(At − 1)− 0.0025 cos(3 ∗ positiont)]. (77)

The position is bounded in [−1.2, 0.5], the velocity in [−0.07, 0.07]. When reaching the
left position bound, the velocity will be set to 0. Each episode starts from a random
position in the valley (position ∈ [−0.6,−0.4]) and a velocity of 0.

The original formulation of the problem has three actions: “push left”, “no push” and
“push right”, which are encoded as 0, 1 and 2. The reward for each step is - 1 until the
terminal state at the right mountain summit is reached.

Here is an example implementation of the mountain car environment.

mountainCar = R6::R6Class("MountainCar",
public = list(

action.space = "Discrete",
actions = 0:2,
n.actions = 3,
state.space = "Box",
state.space.bounds = list(c(-1.2, 0.5), c(-0.07, 0.07)),
done = FALSE,
n.steps = 0,
state = NULL,
previous.state = NULL,
reward = NULL,
velocity = NULL,
position = NULL,

reset = function() {
self$n.steps = 0
self$previous.state = NULL
self$done = FALSE
self$position = runif(1, - 0.6, - 0.4)
self$velocity = 0
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self$state = matrix(c(self$position, self$velocity), ncol = 2)
invisible(self)

},

step = function(action) {
self$previous.state = self$state
self$n.steps = self$n.steps + 1

self$velocity = self$velocity + 0.001 * (action - 1) -
0.0025 * cos(3 * self$position)

self$velocity = min(max(self$velocity, self$state.space.bounds[[2]][1]),
self$state.space.bounds[[2]][2])

self$position = self$position + self$velocity
if (self$position < self$state.space.bounds[[1]][1]) {

self$position = self$state.space.bounds[[1]][1]
self$velocity = 0

}

self$state = matrix(c(self$position, self$velocity), ncol = 2)
self$reward = - 1
if (self$position >= 0.5) {

self$done = TRUE
self$reward = 0

}
invisible(self)

}
)

)

We can then create a new instance of the mountain car class and pass this on the an
algorithm. Here we will sample random actions and interact with the environment.

m = mountainCar$new()
set.seed(123456)
m$reset()
while (!m$done) {
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action = sample(m$actions, 1)
m$step(action)

}
print(paste("Episode finished after", m$n.steps, "steps."))
#> [1] "Episode finished after 787 steps."

Note: The mountain car implementation above is already included in the package and
can be called with the mountainCar function.

# The classical mountain car problem.

m = mountainCar()
m$reset()
m$step(1)
print(m)
#> Number of steps: 1

#> State: -0.454482559330265 -0.000518469774599052

#> Reward: -1

#> Done: FALSE

There is also a variant with a continuous action space (bounded in [−1, 1])

# Mountain car with a continuous action space

m = mountainCar(action.space = "Continuous")
m$reset()
print(m)
#> Number of steps: 0

#> State: -0.454710142640397 0

#> Reward:

#> Done: FALSE

m$step(0.27541)
print(m)
#> Number of steps: 1

#> State: -0.454810022373572 -9.98797331752701e-05

#> Reward: -1

#> Done: FALSE
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3.3 How to solve an environment?

Q-Learning, Sarsa, Expected Sarsa and Q(sigma)

Q(sigma), Q-Learning, Expected Sarsa and Sarsa build a family of reinforcement
learning algorithms, which can be used to find the optimal action value function using
the principle of generalized policy iteration.

In reinforcelearn you can use the qlearning, sarsa, expectedSarsa and qSigma
functions. In the following we will train on a simple gridworld navigation task. The first
argument of these algorithms is called envir, where the environment can be specified.
The number of episodes can be specified via n.episodes.

# Gridworld environment

env = makeGridworld(shape = c(4, 4), goal.states = 15, initial.state = 0)

res = qlearning(env, n.episodes = 20)
# Note: to find a good policy we need to run more episodes.

These functions return the action value function Q (here a matrix).

print(round(res$Q1, 2))
#> [,1] [,2] [,3] [,4]

#> [1,] -1.81 -1.82 -1.92 -1.75

#> [2,] -1.52 -1.47 -1.41 -1.44

#> [3,] -1.22 -1.20 -1.18 -1.22

#> [4,] -1.06 -1.18 -1.19 -1.09

#> [5,] -1.41 -1.44 -1.46 -1.38

#> [6,] -1.30 -1.24 -1.32 -1.26

#> [7,] -1.08 -1.12 -1.06 -1.08

#> [8,] -0.95 -1.01 -0.95 -0.99

#> [9,] -1.20 -1.18 -1.14 -1.21

#> [10,] -1.05 -1.05 -1.10 -1.10

#> [11,] -0.86 -0.87 -0.89 -0.89

#> [12,] -0.67 -0.78 -0.69 -0.65

#> [13,] -1.10 -1.09 -1.08 -1.02

#> [14,] -0.93 -0.98 -0.98 -1.02
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#> [15,] -0.69 -0.65 -0.68 -0.80

#> [16,] 0.00 0.00 0.00 0.00

We can then find a policy by acting greedily with respect to the action value function.

# Values of each grid cell

state.values = matrix(apply(res$Q1, 1, max), ncol = 4, byrow = TRUE)
print(round(state.values, 1))
#> [,1] [,2] [,3] [,4]

#> [1,] -1.8 -1.4 -1.2 -1.1

#> [2,] -1.4 -1.2 -1.1 -1.0

#> [3,] -1.1 -1.0 -0.9 -0.7

#> [4,] -1.0 -0.9 -0.7 0.0

# Policy: Subtract 1 to be consistent with action numeration in env

policy = max.col(res$Q1) - 1
print(matrix(policy, ncol = 4, byrow = TRUE))
#> [,1] [,2] [,3] [,4]

#> [1,] 3 2 2 0

#> [2,] 3 1 2 0

#> [3,] 2 1 0 3

#> [4,] 3 0 1 1

They also return some statistics about learning behavior, e.g. the number of steps and
returns per episode.

print(res$steps)
#> [1] 60 57 13 43 59 11 56 31 80 66 11 8 48 9 37 17 63 9 10 14

Expected Sarsa can be used as an on-policy or an off-policy algorithm depending on
the target.policy argument, which can be "greedy" or "egreedy" for ε-greedy.

# This is equivalent to qlearning(env):

res = expectedSarsa(env, target.policy = "greedy", n.episodes = 20)

# Expected Sarsa with an epsilon-greedy target policy:

res = expectedSarsa(env, target.policy = "egreedy", n.episodes = 20)

The Q(σ) algorithm (Asis et al. 2017) generalizes Sarsa, Expected Sarsa and Q-Learning.
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Its parameter σ controls a weighting between Sarsa and Expected Sarsa. Q(1) is equal
to Sarsa and Q(0) to Expected Sarsa.

res = qSigma(env, sigma = 0.5, n.episodes = 20)

# This is equivalent to Sarsa:

res = qSigma(env, sigma = 1, n.episodes = 20)

# This is equivalent to Q-Learning:

res = qSigma(env, sigma = 0, target.policy = "greedy", n.episodes = 20)

The hyperparameters of the algorithms can be specified as arguments, e.g. the discount
factor γ via discount, the learning rate α via learning.rate and the exploration
factor ε via the epsilon argument. These parameters can also be adjusted over time
by specifying an update function, e.g. updateEpsilon. The update function takes
two arguments, the old value of the parameter and the number of episodes finished. It
returns the updated parameter, e.g. a decreased learning rate. The update functions
are called after each episode is finished.

res = qlearning(env, epsilon = 0.2, learning.rate = 0.5,
discount = 0.99, n.episodes = 20)

# Decay epsilon over time. Every 10 episodes epsilon will be halfed.

decayEpsilon = function(epsilon, i) {
if (i %% 10 == 0) {

epsilon = epsilon * 0.5
}
epsilon

}

res = qlearning(env, epsilon = 0.5, n.episodes = 20,
updateEpsilon = decayEpsilon)

The action value function will be initialized to 0. But you can also pass on an initial
value function via the initial.value argument.

Q = matrix(100, nrow = env$n.states, ncol = env$n.actions)
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res = qlearning(env, n.episodes = 5, initial.value = Q)

# After 5 episodes the Q values will still be similar to 100.

print(matrix(round(apply(res$Q1, 1, max), 1), ncol = 4, byrow = TRUE))
#> [,1] [,2] [,3] [,4]

#> [1,] 99.4 99.5 99.6 99.6

#> [2,] 99.5 99.6 99.7 99.8

#> [3,] 99.6 99.7 99.8 99.9

#> [4,] 99.7 99.7 99.8 100.0

Function Approximation

So far the value function has been represented as a table (number of states x number
of actions). In many interesting problems there are lots of states and actions or the
space is continuous. Then it is impractical to store a tabular value function and to
slow to update state-action pairs individually. The solution is to approximate the value
function with a function approximator, e.g. a linear combination of features.

In the following we will have a look at the mountain car problem, where the goal is
to drive an underpowered car up a steep hill. The state space is continuous in two
dimensions, the position and velocity of the car, each bounded in some interval. There
are three different actions: push back (0), do nothing (1) and push forward (2).

env = mountainCar()
print(env$state.space)
#> [1] "Box"

print(env$state.space.bounds)
#> [[1]]

#> [1] -1.2 0.5

#>

#> [[2]]

#> [1] -0.07 0.07

env$reset()
print(env$state)
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#> [,1] [,2]

#> [1,] -0.5105886 0

We will solve this environment using linear function approximation. With linear function
approximation the action value function is represented as

q̂(St, At, w) = x(St)Tw =
n∑
j=1

xj(St)wj

and updated by gradient descent. There is a distinct weight vector per action.

Preprocessing the state

The raw state observation returned from the environment must be preprocessed using
the preprocessState argument. This function takes the state observation as input and
returns a preprocessed state which can be directly used by the function approximator. To
use a tabular value function preprocessState must return an integer value between [0,
number of states - 1]. For linear function approximation the output of preprocessState
must be a matrix with one row. For a neural network you have to make sure that
the dimensions of the preprocessed state and the neural network match, so that
model$predict(preprocessState(envir$state)) works.

But how to get a good feature vector from the state observation? One idea is to use
grid tiling (Sutton and Barto 2017) to aggregate the state space. Each tiling is a grid
which overlays the state space. A state observation then falls into one tile per tiling
and we will use as many weights as there are tiles. The feature vector is then just a
one-hot vector of all active tiles.
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We can define a function, which takes the original state observation as an input and
returns a preprocessed state observation.

# Define preprocessing function (we use grid tiling)

n.tilings = 8
max.size = 4096
iht = IHT(max.size)

position.max = env$state.space.bounds[[1]][2]
position.min = env$state.space.bounds[[1]][1]
velocity.max = env$state.space.bounds[[2]][2]
velocity.min = env$state.space.bounds[[2]][1]
position.scale = n.tilings / (position.max - position.min)
velocity.scale = n.tilings / (velocity.max - velocity.min)

# Scale state first, then get active tiles and return n hot vector

gridTiling = function(state) {
state = c(position.scale * state[1], velocity.scale * state[2])
active.tiles = tiles(iht, 8, state)
makeNHot(active.tiles, max.size, out = "vector")

}
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We can then pass this function to the preprocessState argument in qlearning. Via
the fun.approx argument we tell the algorithm to use a linear combination of features
to approximate the value function. Currently fun.approx supports table, linear and
neural.network.

res = qlearning(env, fun.approx = "linear",
preprocessState = gridTiling, n.episodes = 20)

print(res$steps)
#> [1] 658 1117 538 610 326 347 218 299 269 400 222 295 234 228

#> [15] 328 155 270 252 223 185

Neural Network

To use a neural network you have to specify a keras model. Here is an example:

env = makeGridworld(c(4, 4), goal.states = 15, initial.state = 0)

# A one-hot feature vector

makeOneHot = function(state) {
one.hot = matrix(rep(0, env$n.states), nrow = 1)
one.hot[1, state + 1] = 1
one.hot

}

# Define keras model

library(keras)
model = keras_model_sequential()
model %>% layer_dense(units = env$n.actions, activation = 'linear',

input_shape = c(env$n.states))

res = qSigma(env, fun.approx = "neural.network", model = model,
preprocessState = makeOneHot, n.episodes = 20)

Note that neural network training can be slow because at each step the Keras API is
called.
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Extensions

There are several extensions of the algorithms, which can improve learning behavior.

Eligibility Traces

Eligibility traces assign credit for the error back to all previously visited states and
actions (Sutton and Barto 2017). The trace decay parameter λ and the type of the
eligibility trace can be specified as arguments.

If eligibility.type = 1 a replacing trace is used, if eligibility.type = 0 an
accumulating trace (Singh and Sutton 1996). Intermediate values are also possible.

env = makeGridworld(c(4, 4), goal.states = 15, initial.state = 0)

# Sarsa with replacing traces

res = sarsa(env, lambda = 0.9, eligibility.type = 1, n.episodes = 20)
print(res$steps)
#> [1] 60 73 17 26 10 28 16 15 32 18 24 38 23 16 8 11 20 6 8 12

Double Learning

The idea of double learning (H. V. Hasselt 2010) is to decouple action selection and
action evaluation.

To use Double Learning with qSigma, qlearning, sarsa and expectedSarsa just pass
double.learning = TRUE to the algorithm.

res = expectedSarsa(env, double.learning = TRUE, n.episodes = 20)
print(res$steps)
#> [1] 61 14 31 58 60 58 40 28 106 12 39 32 30 12 104 14 42

#> [18] 11 30 55

Experience Replay

When using function approximation in reinforcement learning training can be instable
because subsequent state observations are often highly correlated and we train on these
states the order they are experienced. Experience replay (Mnih et al. 2013) is a simple
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idea to break these correlations and stabilize learning. Instead of training on a simple
observation at each time step the algorithm trains now on more than one observation
sampled randomly from a replay memory, which stores all previously visited states and
actions. Because the observations are trained on in a random order correlations are
much smaller .

In reinforcelearn experience replay can be used by passing on a list of experiences
to the replay.memory argument. Each list entry is itself a list with the entries state,
action, reward and next.state. state and next.state should have been prepro-
cessed, e.g. by calling preprocessState(state). A different possibility is to specify
the replay.memory.size argument, which will then be initialized with experiences
generated by a random policy. The number of experiences trained on at each step is
controled via the batch.size argument.

When experiencing a new transition the algorithm replaces the oldest entry in the
replay memory by the new transition.

# Fill a replay memory of size 100 on the gridworld task.

memory = vector("list", length = 100)
env$reset()
for (i in 1:100) {

if (env$done) {
env$reset()

}
action = sample(env$actions, size = 1)
env$step(action)
memory[[i]] = list(state = env$previous.state, action = action,

reward = env$reward, next.state = env$state)
}
print(memory[[1]])
#> $state

#> [1] 0

#>

#> $action

#> [1] 2

#>
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#> $reward

#> [1] -1

#>

#> $next.state

#> [1] 0

# Pass on replay memory.

res = sarsa(env, replay.memory = memory, batch.size = 32, n.episodes = 20)

# Specify replay memory size, replay memory will be filled internally.

res = sarsa(env, replay.memory.size = 100, batch.size = 32, n.episodes = 20)
print(res$steps)
#> [1] 55 24 20 17 10 8 9 6 6 6 12 11 14 13 23 11 8 13 6 14

As a default experiences will be randomly sampled from the replay memory. A prioritized
experience replay prioritizes experiences with a high error (Schaul et al. 2015).

When α = 0 (the default) experiences are sampled with equal probability else experiences
with a high error have a higher probability of being sampled. A small positive constant
θ is added to each priority to prevent that experiences with an error of 0 are never
replayed.

# Prioritized experience replay

res = sarsa(env, replay.memory.size = 100, batch.size = 32,
n.episodes = 20, alpha = 0.5, theta = 0.01)

print(res$steps)
#> [1] 16 40 64 6 7 6 10 18 12 6 6 8 7 6 9 14 6 6 7 7

There are other algorithms implemented in the package which will be described in the
following.

TD(lambda)

The TD(lambda) algorithm is used to evaluate a fixed policy. In reinforcelearn td
can be used with a tabular or linear function approximation and with eligibility traces.

td takes a policy argument, which is the policy to evaluate. In the tabular case this
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is just a matrix (number of states x number of actions) with the probabilities of each
action given a state. For the linear function approximation policy must be a function,
which returns an action given a preprocessed state observation. You can specify a
maximal number of steps or episodes, so td can be used with both continuing and
episodic environments.

Here we will solve a random walk task (Sutton and Barto 2017, Example 6.2).

# Random Walk Task (Sutton & Barto Example 6.2)

P = array(dim = c(7, 7, 2))
P[, , 1] = matrix(c(rep(c(1, rep(0, 6)), 2), c(0, 1, rep(0, 5)),

c(0, 0, 1, rep(0, 4)), c(rep(0, 3), 1, rep(0, 3)), c(rep(0, 4), 1, rep(0, 2)),
c(rep(0, 6), 1)), ncol = 7, byrow = TRUE)

P[, , 2] = matrix(c(c(1, rep(0, 6)), c(0, 0, 1, rep(0, 4)),
c(rep(0, 3), 1, rep(0, 3)), c(rep(0, 4), 1, rep(0, 2)),
c(rep(0, 5), 1, 0), c(rep(0, 6), 1), c(rep(0, 6), 1)), ncol = 7, byrow = TRUE)

R = matrix(c(rep(0, 12), 1, 0), ncol = 2)
env = makeEnvironment(transitions = P, rewards = R, initial.state = 3)

# Uniform random policy

random.policy = matrix(1 / env$n.actions, nrow = env$n.states,
ncol = env$n.actions)

# Estimate state value function with TD(0)

res = td(env, random.policy, n.episodes = 20, lambda = 0.5)
print(res$V)
#> [1] 0.0000000 0.0334874 0.1075444 0.1840309 0.3581764 0.5554538 0.0000000

Dynamic Programming

Dynamic programming (Sutton and Barto 2017) is a class of solution methods solving a
MDP not by interaction but by iterative computations using the state transition array
and reward matrix. It can therefore only be applied when the model of the MDP is
known.

In R we can evaluate a policy with dynamic programming with the following code:
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# Set up gridworld problem

env = gridworld()

# Define uniform random policy, take each action with equal probability

random.policy = matrix(1 / env$n.actions, nrow = env$n.states,
ncol = env$n.actions)

# Evaluate this policy

res = evaluatePolicy(env, random.policy, precision = 0.01)
print(round(matrix(res$v, ncol = 4, byrow = TRUE)))
#> [,1] [,2] [,3] [,4]

#> [1,] 0 -14 -20 -22

#> [2,] -14 -18 -20 -20

#> [3,] -20 -20 -18 -14

#> [4,] -22 -20 -14 0

In theory it converges to the true values, but in practise we have to stop iteration before
that. You can either specify a maximal number of iterations via the n.iter argument
or a precision term, then the evaluation stops if the change in two subsequent values
is less than precision for every state. You can specify an initial value function via the
v argument. Note that the values of all terminal states must be 0 else the algorithm
does not work.

Policy iteration tries to find the best policy in the MDP by iterating between evaluating
and improving a policy.

# Find optimal policy using Policy Iteration

res = iteratePolicy(env)
print(round(matrix(res$v, ncol = 4, byrow = TRUE)))
#> [,1] [,2] [,3] [,4]

#> [1,] 0 -1 -2 -3

#> [2,] -1 -2 -3 -2

#> [3,] -2 -3 -2 -1

#> [4,] -3 -2 -1 0

You can specify an initial policy else the initial policy will be the uniform random
policy.
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iteratePolicy stops if the policy does not change in two subsequent iterations or
if the specified number of iterations is exhausted. For the policy evaluation step
in policy iteration the same stop criteria as in evaluatePolicy are applied via the
precision.eval and n.iter.eval can be passed on.

Value iteration evaluates each policy only once and then immediately improves the
policy by acting greedily.

# Find optimal policy using Value Iteration

res = iterateValue(env, n.iter = 100)
print(round(matrix(res$v, ncol = 4, byrow = TRUE)))
#> [,1] [,2] [,3] [,4]

#> [1,] 0 -1 -2 -3

#> [2,] -1 -2 -3 -2

#> [3,] -2 -3 -2 -1

#> [4,] -3 -2 -1 0

iterateValue runs until the improvement in the value function in two subsequent steps
is smaller than the given precision in all states or if the specified number of iterations
is exhausted.

evaluatePolicy, iteratePolicy and iterateValue return a list with state value
function, action value function and policy.

Actor Critic

An actor critic is a policy-based reinforcement learning algorithm, which parametrizes
value function and policy (Sutton and Barto 2017). In reinforcelearn a simple
advantage actor critic is implemented, which uses the td error of the state value function
as a critic.

The policy can be a softmax policy for discrete actions or a gaussian policy for a
continuous action space.

There are now two learning rates α and β, one for the critic and one for the actor.

env = mountainCar()
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# Linear function approximation and softmax policy

res = actorCritic(env, fun.approx = "linear",
preprocessState = gridTiling, n.episodes = 20)

print(res$steps)
#> [1] 1166 532 378 227 314 236 244 245 199 155 164 155 230 185

#> [15] 195 156 153 154 127 222

With a gaussian policy we can also solve problems with a continuous action space.

Here we will solve a continuous version of the mountain car problem, where the action
is a real number.

# Mountain Car with continuous action space

env = mountainCar(action.space = "Continuous")

# Linear function approximation and gaussian policy

set.seed(123)
res = actorCritic(env, fun.approx = "linear", policy = "gaussian",

preprocessState = gridTiling, n.episodes = 20)
print(res$steps)
#> [1] 780 319 317 157 149 194 153 132 106 151 106 136 110 98 96 101 144

#> [18] 96 103 165

The actor critic can be used with eligibility traces, then there are separate eligibility
traces for the policy parameters and the value function parameters, which can be
decayed by a different factor λ.

# Cliff walking environment

rewardFun = function(state, action, n.state) {
if (n.state %in% 37:46) {

return(- 100)
} else {

return(- 1)
}

}
env = makeGridworld(shape = c(4, 12), goal.states = 47,

cliff.states = 37:46, reward.step = - 1, reward.cliff = - 100,

69



R Package reinforcelearn

cliff.transition.done = TRUE, initial.state = 36, sampleReward = rewardFun)

res = actorCritic(env, n.episodes = 20, lambda.actor = 0.5, lambda.critic = 0.8)

Multi-armed Bandit

There are also solution methods for simple multi-armed bandit problems.

In the following we will consider an example bandit with four different actions. For each
action the reward will be sampled from a probability distribution. The reward of the
first action is sampled from a normal distribution with mean 1 and standard deviation
1, the second action from a normal distribution with mean 2 and standard deviation 4,
the third action from a uniform distribution with minimum 0 and maximum 5 and the
fourth action from an exponential distribution with rate parameter 0.25. Therefore the
fourth action is the best with an expected reward of 4.

To solve this bandit problem we need to specify the reward function,

# Define reward function

rewardFun = function(action) {
if (action == 0) {

reward = rnorm(1, mean = 1, sd = 1)
}
if (action == 1) {

reward = rnorm(1, mean = 2, sd = 4)
}
if (action == 2) {

reward = runif(1, min = 0, max = 5)
}
if (action == 3) {

reward = rexp(1, rate = 0.25)
}
reward

}

To solve the bandit, i.e. to find out, which action returns the highest reward, we can use
the bandit function. There are several different action selection methods implemented,
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e.g. greedy, epsilon-greedy, UCB and gradient-bandit.

# Greedy action selection.

bandit(rewardFun, n.actions = 4, n.episodes = 1000,
action.selection = "greedy")

#> [1] -0.1976585 -1.3866575 2.1102407 3.9465064

# Epsilon-greedy action selection.

bandit(rewardFun, n.actions = 4, n.episodes = 1000,
action.selection = "egreedy", epsilon = 0.2)

#> [1] 1.032849 1.929346 2.711898 4.041045

# Upper-confidence bound action selection.

bandit(rewardFun, n.actions = 4, n.episodes = 1000,
action.selection = "UCB", C = 2)

#> [1] 0.4598108 1.1766058 2.4985695 1.4298745

# Gradient-bandit algorithm.

bandit(rewardFun, n.actions = 4, n.episodes = 10000,
action.selection = "gradientbandit", alpha = 0.1)

#> [1] 5.379818e-05 3.348153e-05 2.775565e-04 9.996352e-01

In the bandit function we can specify the argument initial.value which sets all
Q values initially to this number. Additionally we can assign a confidence to this
initial value via the initial.visits argument. A value of 10 for example means that
the algorithm has already seen 10 rewards for each action with an average value of
initial.value.

# Greedy action selection with optimistic initial values.

bandit(rewardFun, n.actions = 4, n.episodes = 1000,
action.selection = "greedy",
initial.value = 5, initial.visits = 100)

#> [1] 3.987659 3.984982 3.988113 4.005252
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3.4 Comparison with other packages

In this section we compare the reinforcelearn package with other packages available
on the web.

MDPtoolbox

From the description file of the MDPtoolbox package (Chades et al. 2017):

The Markov Decision Processes (MDP) toolbox proposes functions related
to the resolution of discrete-time Markov Decision Processes: finite horizon,
value iteration, policy iteration, linear programming algorithms with some
variants and also proposes some functions related to Reinforcement Learning.

The following algorithms can be found in both packages and will be compared in the
following:

• Dynamic Programming: Iterative Policy Evaluation, Policy Iteration, Value
Iteration

• Reinforcement Learning: TD(0), Q-Learning

In the MDPtoolbox the transition array and reward array must be passed on to the
algorithms. Here is a comparison of functions in both packages on a simple example
MDP.

library(MDPtoolbox)
library(reinforcelearn)

# MDP

P = array(0, c(2,2,2))
P[, , 1] = matrix(c(0.5, 0.5, 0.8, 0.2), 2, 2, byrow = TRUE)
P[, , 2] = matrix(c(0, 1, 0.1, 0.9), 2, 2, byrow = TRUE)
R = matrix(c(5, 10, -1, 2), 2, 2, byrow = TRUE)

env = makeEnvironment(transitions = P, rewards = R)

# Iterative Policy Evaluation
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mdp_eval_policy_iterative(P, R, 0.8, policy = c(2, 1),
epsilon = 0, max_iter = 1000, V0 = c(0, 0))

evaluatePolicy(env, policy = matrix(c(0, 1, 1, 0), ncol = 2),
discount = 0.8, n.iter = 1000)

# Policy Iteration

mdp_policy_iteration(P, R, discount = 0.9,
max_iter = 1000, policy0 = c(1, 1), eval_type = 1)

iteratePolicy(env, n.iter = 1000, discount = 0.9,
policy = matrix(c(1, 1, 0, 0), ncol = 2))

# Value Iteration

mdp_value_iteration(P, R, discount = 0.9, max_iter = 1000, epsilon = 0)
iterateValue(env, discount = 0.9, n.iter = 1000)

# TD(0)

mdp_eval_policy_TD_0(P, R, discount = 0.9, policy = c(1, 2), N = 10000)
td(env, discount = 0.9, policy = matrix(c(1, 0, 0, 1), ncol = 2),

n.steps = 10000)

Policies in MDPtoolbox are always deterministic, while policies in reinforcelearn can
be stochastic. Therefore policies in MDPtoolbox are represented as an integer vector
(which action to take in a state), while a policy in reinforcelearn is always a matrix
(n.states x n.actions), where each entry is the probability of this action in this state.

TD(0) and Q-Learning are implemented in MDPtoolbox in their basic form without
eligibility traces, double learning and other extensions.

ReinforcementLearning

From the description file of the ReinforcementLearning package (Proellochs and
Feuerriegel 2017):

Performs model-free reinforcement learning in R. This implementation en-
ables the learning of an optimal policy based on sample sequences consisting
of states, actions and rewards. In addition, it supplies multiple predefined
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reinforcement learning algorithms, such as experience replay.

data = sampleGridSequence(1000)

# Setting reinforcement learning parameters

control = list(alpha = 0.1, gamma = 0.1, epsilon = 0.1)

# Performing reinforcement learning

model = ReinforcementLearning(data, s = "State", a = "Action",
r = "Reward", s_new = "NextState", control = control)

The package ReinforcementLearning implements a reinforcement learning algorithm
based on experience replay. The data must be a sequence of states, actions and rewards
and must be specified as an argument to the function. It is not a full reinforcement
learning agent, but just one step of experience replay, which might be used with
an online performing agent. It is unclear from the documentation of the package
ReinforcementLearning, which algorithmic procedure is used (Q-Learning?). This is
the main difference to the reinforcelearn package, where a full reinforcement learning
agent can be trained sequentially, while interacting with an environment, e.g. using an
experience replay update at each time step.
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Abstract

Temporal-difference (TD) learning is an important field in reinforcement learning. The
most used TD control algorithms are probably Sarsa and Q-Learning. While Sarsa is
an on-policy algorithm, Q-Learning learns off-policy. The Q(σ) algorithm (Sutton
and Barto (2017)) unifies both. This paper extends the Q(σ) algorithm to an on-line
multi-step algorithm Q(σ, λ) using eligibility traces and introduces Double Q(σ) as the
extension of Q(σ) to double learning.

1 Introduction

Reinforcement Learning is a field of machine learning addressing the problem of sequential decision
making. It is formulated as an interaction of an agent and an environment over a number of discrete
time steps t. At each time step the agent chooses an action At based on the environment’s state St. The
environment takes At as an input and returns the next state observation St+1 and reward Rt+1, a scalar
numeric feedback signal.

The agent is thereby following a policy π, which is the behavior function mapping a state to action
probabilities

π(a|s) = P (At = a|St = s). (1)

The agent’s goal is to maximize the return Gt which is the sum of discounted rewards,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

T−1∑
k=0

γkRt+1+k, (2)

where γ ∈ [0, 1] is the discount factor and T is the length of the episode or infinity for a continuing task.
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While rewards are short-term signals about the goodness of an action, values represent the long-term
value of a state or state-action pair. The action value function qπ(s, a) is defined as the expected return
taking action a from state s and thereafter following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a]. (3)

Value-based reinforcement learning is concerned with finding the optimal action value function q∗ =
maxπ qπ . Temporal-difference learning is a class of model-free methods which estimates qπ from sample
transitions and iteratively updates the estimated values using observed rewards and estimated values of
successor actions. At each step an update of the following form is applied:

Q(St, At)← Q(St, At) + α δt, (4)

where Q is an estimate of qπ , α is the learning rate (also called step size) and δt is the TD error, the
difference between our current estimate and a newly computed target value. The following TD control
algorithms can all be characterized by their different form of TD error.

When the action values Q are represented as a table we call this tabular reinforcement learning, else we
speak of approximate reinforcement learning, e.g. when using a neural network to compute the action
values. For sake of simplicity the following analysis is done for tabular reinforcement learning but can
be easily extended to function approximation.

2 TD control algorithms: From Sarsa to Q(σ)

Sarsa (Rummery and Niranjan (1994)) is a temporal-difference learning algorithm which samples states
and actions using an epsilon-greedy policy and then updates the Q values using Equation 4 with the
following TD error

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At). (5)

The term Rt+1 + γQ(St+1, At+1) is called the TD target and consists of the reward plus the discounted
value of the next state and next action.

Sarsa is an on-policy method, i.e. the TD target consists ofQ(St+1, At+1), whereAt+1 is sampled using
the current policy. In general the policy used to sample the state and actions - the so called behaviour-
policy µ - can be different from the target policy π, which is used to compute the TD target. If behaviour
and target policy are different we call this off-policy learning. An example for an off-policy TD control
algorithm is the well known Q-Learning algorithm proposed by Watkins (1989). As in Sarsa states and
actions are sampled using an exploratory behaviour policy, e.g. an ε-greedy policy, but the TD target is
computed using the greedy policy with respect to the current Q values. The TD error of Q-Learning is

δt = Rt+1 + γmax
a′

Q(St+1, a
′)−Q(St, At). (6)

Expected Sarsa generalizes Q-Learning to arbitrary target policies. The TD error is

δt = Rt+1 + γ
∑
a′

π(a′|St+1)Q(St+1, a
′)−Q(St, At). (7)
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The current state-action pair is updated using the expectation of all subsequent action values with respect
to the action value. You can easily see that Q-Learning is just a special case of Expected Sarsa if π is the
greedy policy with respect to Q:

π(a|s) =
{
1 if a = argmaxaQ(s, a)

0 otherwise
(8)

Then
∑
a′ π(a

′|St+1)Q(St+1, a
′) is equal to maxa′ Q(St+1, a

′) because all non-greedy actions will
have a probability of 0 and the sum reduces to the Q value of the greedy action, which is the maximum
Q value.

Of course Expected Sarsa could also be used as an on-policy algorithm if the target policy is chosen to
be the same as the behaviour policy (Van Seijen et al. (2009)).

Sutton and Barto (2017) propose a new TD control algorithm called Q(σ) which unifies Sarsa and Ex-
pected Sarsa. The TD target of this new algorithm is a weighted mean of the Sarsa and Expected Sarsa
TD targets, where the parameter σ controls the weighting. When σ = 1 Q(σ) is equal to Sarsa, when
σ = 0 Q(σ) is equal to Expected Sarsa and when using σ = 0 and a greedy target policy Q(σ) is
equal to Q-Learning. For intermediate values of σ new algorithms are obtained, which can have better
performance (Asis et al. (2017)).

The TD error of Q(σ) is

δt = Rt+1 + γ(σQ(St+1, At+1) + (1− σ)
∑
a′

π(a′|St+1)Q(St+1, a
′))−Q(St, At). (9)

3 Q(σ, λ): An on-line multi-step algorithm

The TD methods presented so far are one-step methods, which use only rewards and values from the
next step t+1. These can be extended to use eligibility traces to incorporate data of multiple time steps.

An eligibility trace is a scalar numeric value for each state-action pair. Whenever a state-action pair is
visited its eligibility is increased, if not, the eligibility fades away over time. State-action pairs visited
often will have a higher eligibility than those visited less frequently and state-action pairs visited recently
will have a higher eligibility than those visited long time ago.

The accumulating eligibility trace (Singh and Sutton (1996)) uses an update of the form

Et+1(s, a) =

{
γλEt(s, a) + 1, if At = a, St = s

γλEt(s, a), otherwise.
(10)

Whenever taking action At in state St the eligibility of this pair is increased by 1 and for all states and
actions decreased by a factor γλ, where λ is the trace decay parameter.

Then all state-action pairs are updated according to their eligibility trace

Q(s, a)← Q(s, a) + αδtEt(s, a) (11)

The corresponding algorithm using the one-step Sarsa TD error and an update using eligibility traces is
called Sarsa(λ). Though it looks like a one-step algorithm, it is in fact a multi-step algorithm, because the
current TD error is assigned back to all previously visited states and actions weighted by their eligibility.
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For off-policy algorithms like Q-Learning different eligibility updates have been proposed. Watkin’s
Q(λ) uses the same updates as long as the greedy action is chosen by the behaviour policy, but sets the Q
values to 0, whenever a non-greedy action is chosen assigning credit only to state-action pairs we would
actually have visited if following the target policy π and not the behaviour policy µ. More generally the
eligibility is weighted by the target policy’s probability of the next action. The update rule is then

Et+1(s, a) =

{
γλEt(s, a)π(At+1|St+1) + 1, if At = a, St = s

γλEt(s, a)π(At+1|St+1), otherwise.
(12)

Whenever an action occurs, which is unlikely in the target policy, the eligibility of all previous states is
decreased sharply. If the target policy is the greedy policy, the eligibility will be set to 0 for the complete
history.

In this paper we introduce a new kind of eligibility trace update to extend the Q(σ) algorithm to an on-line
multi-step algorithm, which we will call Q(σ, λ). Recall that the one-step target of Q(σ) is a weighted
average between the on-policy Sarsa and off-policy Expected Sarsa targets weighted by the factor σ:

δt = Rt+1 + γ(σQ(St+1, At+1) + (1− σ)
∑
a′

π(a′|St+1)Q(St+1, a
′))−Q(St, At) (13)

In this paper we propose to weight the eligibility accordingly with the same factor σ. The eligibility is
then a weighted average between the on-policy eligibility used in Sarsa(λ) and the off-policy eligibility
used in Q(λ). The eligibility trace is updated at each step by

Et+1(s, a) =

{
γλEt(s, a)(σ + (1− σ)π(At+1|St+1)) + 1, if At = a, St = s

γλEt(s, a)(σ + (1− σ)π(At+1|St+1)), otherwise.
(14)

When σ = 0 the one-step target of Q(σ) is equal to the Sarsa one-step target and therefore the eligibility
update reduces to the standard accumulate eligibility trace update. When σ = 1 the one-step target
of Q(σ) is equal to the Expected Sarsa target and accordingly the eligibility is weighted by the target
policy’s probability of the current action. For intermediate values of σ the eligibility is weighted in the
same way as the TD target. Asis et al. (2017) showed that a dynamic value of σ can outperform the
classical TD control algorithms Q-Learning and Sarsa. By extending this algorithm to an on-line multi-
step algorithm we can make use of the good initial performance of Sarsa(λ) combined with the good
asymptotic performance of Q(λ). In comparison to the n-step Q(σ) algorithm (Asis et al. (2017)) the
new Q(σ, λ) algorithm can learn on-line and is therefore likely to learn faster.

Pseudocode for tabular episodic Q(σ, λ) is given in Algorithm 2. This can be easily extended to contin-
uing tasks and to function approximation using one eligibility per weight of the function approximator.

4 Double Q(σ) Algorithm

Double learning is another extension of the basic algorithms. It has been mostly studied with Q-Learning
Hasselt (2010) and prevents the overestimation of action values when using Q-Learning in stochastic
environments. The idea is to use decouple action selection (which action is the best one?) and action
evaluation (what is the value of this action?). The implementation is simple, instead of using only one
value function we will use two value functions QA and QB . Actions are sampled due to an ε-greedy
policy with respect to QA + QB . Then at each step either QA or QB is updated, e.g. if QA is selected
by
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Algorithm 1 Q(σ, λ)
Initialize Q(s, a) ∀s ∈ S, a ∈ A
Repeat for each episode:

E(s, a)← 0 ∀s ∈ S, a ∈ A
Initialize S0 6= terminal
Choose A0, e.g. ε-greedy from Q(S0, .)

Loop for each step of episode:
Take action At, observe reward Rt+1 and next state St+1

Choose next action At+1, e.g. ε-greedy from Q(St+1, .)
δ = Rt+1+γ (σQ(St+1, At+1)+(1−σ)

∑
a′ π(a

′|St+1) Q(St+1, a
′))−Q(St, At)

E(St, At)← E(St, At) + 1
Q(s, a)← Q(s, a) + α δ E(s, a) ∀s ∈ S, a ∈ A
E(s, a)← γλE(s, a)(σ + (1− σ)π(At+1|St+1)) ∀s ∈ S, a ∈ A
At ← At+1, St ← St+1

If St is terminal: Break

QA(St, At)← QA(St, At) + α(Rt+1 + γQB(argmax
a∈A

QA(St+1, a))−QA(St, At)) (15)

QB(St, At)← QB(St, At) + α(Rt+1 + γQA(argmax
a∈A

QB(St+1, a))−QB(St, At)) (16)

Double learning can also be used with Sarsa and Expected Sarsa as proposed by Michael Ganger and
Hu (2016). Using double learning these algorithms can be more robust and perform better in stochastic
environments. The decoupling of action selection and action evaluation is weaker than in Double Q-
Learning because the next action At+1 is selected according to an ε-greedy behavior policy using QA +
QB and evaluated either with QA or QB . For Expected Sarsa the policy used for the target in Equation 7
could be the ε-greedy behavior policy as proposed by Michael Ganger and Hu (2016), but it is probably
better to use a policy according to QA (if updating QA), because then it can also be used off-policy with
Double Q-Learning as a special case, if π is the greedy policy with respect to QA.

In this paper we propose the extension of double learning to Q(σ) - Double Q(σ) - to obtain a new
algorithm with the good learning properties of double learning, which generalizes (Double) Q-Learning,
(Double) Expected Sarsa and (Double) Sarsa. Of course double Q(σ) can also be used with eligibility
traces.

Double Q(σ) has the following TD error when QA is selected,

δt = Rt+1 + γ

(
σQB(St+1, At+1) + (1− σ)

∑
a

π(a|St+1)QB(St+1, a)

)
−QA(St, At) (17)

and

δt = Rt+1 + γ

(
σQA(St+1, At+1) + (1− σ)

∑
a

π(a|St+1)QA(St+1, a)

)
−QB(St, At) (18)
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if QB is selected. The target policy π is computed with respect to the value function which is updated,
i.e. with respect to QA in Equation 17 and with respect to QB in Equation 18.

Pseudocode for Double Q(σ) is given in Algorithm 2.

Algorithm 2 Double Q(σ)
Initialize QA(s, a) and QB(s, a) ∀s ∈ S, a ∈ A
Repeat for each episode:

Initialize S0 6= terminal
Choose A0, e.g. ε-greedy from QA(S0, .) +QB(S0, .)

Loop for each step of episode:
Take action At, observe reward Rt+1 and next state St+1

Choose next action At+1, e.g. ε-greedy from QA(St+1, .) +QB(St+1, .)
Randomly update either QA:
δ = Rt+1 + γ(σQB(St+1, At+1)+

(1− σ)
∑
a

π(a|St+1)QB(St+1, a))−QA(St, At)

QA(St, At)← QA(St, At) + α δ

or update QB :
δ = Rt+1 + γ(σQA(St+1, At+1)+

(1− σ)
∑
a

π(a|St+1)QA(St+1, a))−QB(St, At)

QB(St, At)← QB(St, At) + α δ
At ← At+1, St ← St+1

If St is terminal: Break

5 Conclusions

This paper has presented two extensions to the Q(σ) algorithm, which unifies Q-Learning, Expected
Sarsa and Sarsa. Q(σ, λ) extends the algorithm to an on-line multi-step algorithm using eligibility traces
and Double Q(σ) extends the algorithm to double learning.

Dynamically varying the value of σ allows to combine the good initial performance of Sarsa with the
good asymptotic performance of Expected Sarsa to obtain new state of the art results.
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