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Abstract
Die Korrelation der Entscheidungsbäume eines Random Forests wird unter
anderem durch den Hyperparameter mtry beeinflusst. Dieser bestimmt die
Anzahl an Variablen, die innerhalb eines Baumes als Splitkandidaten berück-
sichtigt werden. Oft finden für diesen Parameter bekannte Defaultwerte wie
mtry =

⌊√
p
⌋

für kategorialen Response und mtry = bp/3c für metrischen
Response Anwendung. Nur wenige Untersuchungen beschäftigen sich über die-
se Defaultwerte hinaus mit dem Hyperparamter mtry. Es besteht allerdings
die Vermutung, dass die genannten Defaultwerte nicht in jeder Datensituation
die beste Wahl darstellen. Daher ist es Ziel dieser Arbeit, anhand einer Si-
mulationsstudie den Einfluss von mtry auf Random Forests zu untersuchen.
Die Analysen konzentrieren sich dabei vor allem auf die Anzahl an relevanten
Kovariablen innerhalb eines Datensatzes und auf verschiedene Korrelations-
strukturen zwischen den Kovariablen. In Bezug darauf ist von Interesse, wie
sich diese Datenstrukturen auf die Modellperformance eines Random Forests
auswirken.
Die Ergebnisse dieser Simulationen zeigen, dass in Situationen mit sehr we-
nigen bzw. vielen ähnlich relevanten Kovariablen innerhalb eines Datensatzes,
das optimale mtry von den Defaultwerten abweicht. Aber auch wenn einige
der Kovariablen korreliert sind, konnte für manche Szenarien abhängig von
der Stärke der Korrelation ein Einfluss auf das optimale mtry festgestellt wer-
den. Bei Auftreten dieser speziellen Datenstrukturen ist es demnach ratsam,
der Wahl von mtry besondere Aufmerksamkeit zu schenken, um einen Random
Forest mit optimaler Modellperformance zu erhalten.
Abschließend konnte anhand zweier Anwendungsbeispiele gezeigt werden, wie
die mtry Wahl durch die Messung der Relevanz von Kovariablen umgesetzt
werden kann.
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1 Einleitung

Die von Breiman (2001) entwickelten Random Forests stellen eine beliebte nichtparame-
trische Klassifikations- bzw. Regressionsmethode dar, insbesondere da sie auch bei kom-
plexen Interaktionen oder hochkorrelierten Kovariablen gute Prädiktionen liefern können.
Ein Random Forest besteht aus vielen dekorrelierten Entscheidungsbäumen. Diese Eigen-
schaft wird unter anderem dadurch beeinflusst, dass für die einzelnen Splits eines Baumes
nicht alle Variablen als Splitkandidaten berücksichtigt werden, sondern nur eine zufällige
Auswahl an Variablen. Damit sinkt die paarweise Korrelation der Entscheidungsbäume.
Um einen Random Forest mit optimaler Prädiktionsgüte zu erhalten, müssen verschiede
Hyperparameter vorab sorgfältig vom Benutzer festgelegt werden. Einer der wichtigsten
ist dabei die angesprochene Anzahl an Variablen, die als Splitkandidaten berücksichtigt
werden, auch mtry genannt. (Hastie et al., 2009, S.587-588)

Eine Untersuchung von Bernard et al. (2009) bestätigte, dass der gebräuchliche Default-
wert mtry =

⌊√
p
⌋

für die Klassifikation im Allgemeinen gute Ergebnisse liefert. Ebenso
zeigte sich dabei allerdings auch, dass in Ausnahmefällen, zum Beispiel bei nur sehr weni-
gen relevanten Kovariablen, mtry deutlich höher als der empfohlene Defaultwert gewählt
werden muss, um einen Random Forest mit bester Prädiktionsgüte zu erhalten. Daher
ist es Ziel dieser Arbeit anhand einer umfangreichen Simulationsstudie den Einfluss des
Hyperparamters mtry auf Random Forests näher zu untersuchen.
Mit den bereits bekannten Ergebnissen von Bernard et al. (2009) liegt es nahe, im ersten
Schritt die Anzahl an relevanten Kovariablen zu variieren und dabei die optimalen mtry

Werte für die verschiedenen Szenarien zu bestimmen. Als Erweiterung zu den Untersu-
chungen von Bernard et al. (2009) werden sowohl Klassifikations- als auch Regresssions-
datensätze betrachtet. Des Weiteren werden aber auch diverse Korrelationsstrukturen der
Kovariablen definiert, da sich für einzelne Korrelationsstrukturen bereits ein beachtlicher
Einfluss auf die Variablenwichtigkeiten eines Random Forest gezeigt hat (Gregorutti et al.,
2016; Strobl et al., 2008), womit sich auch Auswirkungen auf das optimale mtry vermuten
lassen.

1



1 – Einleitung

Im Folgenden befasst sich Kapitel 2 näher mit der statistischen Methodik, die dieser
Arbeit zugrunde liegt. Dazu zählt neben verschiedenen Modellgütemaßen und den soge-
nannten CART-Entscheidungsbäumen auch der im Fokus stehende Random Forest. Die
Unterkapitel 2.3.2 und 2.3.3 geben dabei einen Überblick über die bisherige Forschung zu
den angesprochenen Einflussfaktoren des Parameters mtry.
Das Design der Simulationsstudie, mit den entsprechenden Kovariableneinflüssen und Ko-
varianzstrukturen wird zusammen mit den Ergebnissen in Kapitel 3 dargestellt.
Ziel dieser Arbeit ist es außerdem eine Empfehlung zur mtry Wahl auszusprechen, die auf
Basis der Datenstruktur bestimmt werden kann. Dafür beschreibt Kapitel 4 Möglichkei-
ten zur Messung der Korrelation und Relevanz von Kovariablen und überprüft, ob sich
mit diesem Ansatz das optimale mtry zweier Beispieldatensätze bestimmen lässt.
Abschließend werden die Ergebnisse dieser Arbeit in Kapitel 5 zusammengefasst.

Alle Analysen in dieser Arbeit wurden mit der statistischen Software R durchgeführt
(R Core Team, 2015, Version 3.2.3). Zur Erstellung der Abbildungen wurde dabei das
R-Package ggplot2 (Wickham, 2009, Version 2.2.1) genutzt.
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2 Statistische Methodik

Das folgende Kapitel behandelt die Methodik, die dieser Arbeit zugrunde liegt. Für die
Auswertungen sind unter anderem die vorgestellten Modellgütemaße von Bedeutung, wel-
che auch die Performance eines Random Forests messen können. Neben Klassifikations-
und Regressionsbäumen, welche die Basis eines Random Forest bilden, werden ebenso
Eigenschaften eines Random Forests beschrieben, die unter anderem Grundlage für die
durchgeführte Simulationsstudie waren.

2.1 Modellgütemaße

Modellgütemaße werden verwendet, um die Anpassung eines statistischen Modells an vor-
liegende Daten zu quantifizieren. Dabei liegt der Fokus zumeist auf der Prädiktionsfähig-
keit des Modells. Abhängig vom Response und der gewünschten Struktur, die durch die
Modellierung dargestellt werden soll, können eine Vielzahl verschiedener Maße betrachtet
werden.
Im Weiteren werden vier Maße vorgestellt, die zwei unterschiedliche Strukturen für Reg-
ressions- und Klassifikationsmethoden abbilden. Die Bestimmung der Modellgüte kann
damit zum einen basierend auf den Residuen und zum anderen basierend auf den Rängen
der Beobachtungen erfolgen. Rosset et al. (2006) vergleichen diese beiden Ansätze für
Regressionsmethoden. Residuenbasierte Maße haben demnach den Vorteil, dass sie eine
Likelihood-Interpretation ermöglichen und oft die ”wahren“ Kosten des Prädiktionsfeh-
lers darstellen. Allerdings können in manchen Situationen auch rangbasierte Maße gewisse
Vorteile mit sich bringen, beispielsweise, wenn anstelle der konkret geschätzten Werte ei-
nes Modells eher im Vordergrund steht, ob das Modell die Beobachtungen anhand der
Prädiktionen in ihrer korrekten Reihenfolge anordnet. Außerdem sind diese Maße ein-
fach zu interpretieren und im Vergleich zu residuenbasierten deutlich robuster gegenüber
Ausreißern im Response oder auch in den Kovariablen.

2.1.1 Regression

Vorzugsweise wird die Modellgüte anhand eines Testdatensatzes ermittelt, welcher nicht
zur Modellierung berücksichtigt wurde. Dieser besteht aus N Beobachtungen (xi, yi),

3



2 – Statistische Methodik

i = 1, . . . , N , mit den Kovariablenausprägungen xi und einem Response yi, welcher im
Fall einer Regressionsmethode metrisch skaliert ist.

Weit verbreitet zur Evaluierung der Performance eines Regressionsmodells ist folgendes
additive Fehlermaß, welches mit den Prädiktionen ŷi aus den Residuen ri = yi−ŷi gebildet
wird:

Mittlerer Prädiktionsfehler = 1
N

N∑
i=1

L(ri). (2.1)

Hierbei können verschiedene Verlustfunktionen L(r) zum Einsatz kommen. Zum Beispiel
ergibt sich durch den quadratischen Fehler L(r) = r2, der sehr oft verwendete Mean Squa-
red Error (MSE), wobei ein Modell mit einem möglichst geringen MSE angestrebt wird.
(Rosset et al., 2006)

Eine andere Möglichkeit der Modellevaluierung bieten rangbasierte Maße. Um diese formal
einfach darzustellen wird im Weiteren vorausgesetzt, dass weder im Response noch in den
Kovariablen des Testdatensatzes Bindungen auftreten. Zusätzlich werden die Prädiktionen
des Modells in absteigender Reihenfolge angenommen, also:

ŷ1 > ŷ2 > · · · > ŷN .

Ebenso wird auch der beobachtete Response y im Testdatensatz absteigend angeordnet,
womit sich der ursprüngliche Rang einer Beobachtung i ergibt zu:

si =
∣∣∣{h ≤ N : yi ≤ yh}

∣∣∣. (2.2)

Mithilfe dieser Ränge und der Indikatorfunktion I kann die Anzahl an vertauschten Be-
obachtungspaaren im Modell definiert werden als

T =
∑
i<h

I(si > sh). (2.3)

Dieses Maß wird anschließend transformiert, sodass sich Kendall′s τ ,

τ = 1− 4T
N(N − 1) , (2.4)

ergibt. Die Transformation stellt sicher, dass τ innerhalb des Wertebereichs [−1, 1] liegt.
Denn in einem optimalen Modell ist der beobachtete Response in der gleichen Rangfolge
angeordnet wie die Prädiktionen, das heißt es gilt T = 0, womit τ den Wert 1 annimmt. Im
Gegensatz dazu können aber auch alle möglichen Rangfolgen des beobachteten Responses
vertauscht sein, was einer invertierten Rangfolge entspricht. Dabei gilt für die Anzahl an
vertauschten Beobachtungspaaren T = N(N − 1)/2, womit τ wiederum den Wert −1
annimmt. (Rosset et al., 2006)
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2 – Statistische Methodik

2.1.2 Klassifikation

Auch für Klassifikationsverfahren sollten Testdatensätze zur Modellgütebestimmung her-
angezogen werden. Diese haben die gleiche Definition wie schon bei der Regression, al-
lerdings mit kategorialem Response. Im Weiteren werden zwei Maße speziell für binäre
Ausprägungen des Responses vorgestellt.

Ähnlich zum MSE für die Regression, misst der Brier Score den mittleren quadratischen
Fehler einer Klassifikation. Brier (1950) entwickelte diesen Score ursprünglich um meteo-
rologische mehrkategoriale Vorhersagen auszuwerten, er kann allerdings auch für jedes
andere Klassifikationsproblem herangezogen werden. Für einen binären Response ist der
Brier Score gegeben durch

Brier Score = 1
N

N∑
i=1

(p̂i − yi)2, (2.5)

wobei yi der beobachtete Response ist und p̂i die vom Modell vorhergesagte Wahrschein-
lichkeit, dass für die i-te Beobachtung yi = 1 gilt. Wie schon beim MSE induziert auch
hier ein Brier Score von geringerem Wert eine bessere Prädiktionsgüte für ein Modell.
(Roulston, 2007)

Das AUC ist ein weiteres Gütemaß für Klassifikationsverfahren und entspricht der Fläche
unter der ROC-Kurve. Diese sogenannten Receiver Operating Characteristics Kurven
ermöglichen eine visuelle Darstellung der Modellperformance. Hierfür wird zunächst für
jede Beobachtung die beobachtete Responseausprägung mit der Prädiktion aus dem Mo-
dell verglichen. Dabei können vier verschiedene Fälle auftreten, die in einer sogenannten
Konfusionsmatrix zusammengefasst werden. Tabelle 2.1 stellt solch eine Konfusionsmatrix
allgemein dar.

Beobachtete Klasse y
1 0 ∑

Vorhergesagte 1 richtig positiv (rp) falsch positiv (fp) n1̂

Klasse ŷ 0 falsch negativ (fn) richtig negativ (rn) n0̂∑
n1 n0 N

Tabelle 2.1: Konfusionsmatrix bzw. Kontingenztabelle für den Vergleich eines beobach-
teten binären Responses und einer Modellprädiktion.

Tritt bei einer Beobachtung yi = 1 auf und die Prädiktion stimmt mit dieser Aus-
prägung überein, wird die Beobachtung als richtig positiv klassifiziert bezeichnet. Stimmt
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die Prädiktion jedoch nicht überein, so ist sie falsch negativ klassifiziert. Andererseits,
wenn yi = 0 die wahre Ausprägung ist und ŷi = 0 vorhergesagt wurde, ist die Beob-
achtung richtig negativ klassifiziert, bzw. bei ŷi = 1 falsch positiv. Mithilfe der Anzahl
des Auftretens der einzelnen Fälle können verschiedene Kennzahlen ermittelt werden.
Zwei wichtige Größen für die ROC-Kurve sind dabei die richtig positiv Rate und die
falsch positiv Rate:

richtig positiv Rate = rp

n1
, (2.6)

falsch positiv Rate = fp

n0
. (2.7)

Mit n0 und n1 werden dabei jeweils die Anzahl an Beobachtungen mit Responseausprägung
y = 0 bzw. y = 1 bezeichnet. Für probabilistische Klassifikationsmethoden, bei denen der
geschätzte Response nicht konkret 0 oder 1 ist, sondern die Wahrscheinlichkeit p̂ für eine
der beiden Klassen, kann die Konfusionsmatrix für verschiedene Schwellenwerte zwischen
0 und 1 aufgestellt werden. Erst wenn die geschätzte Wahrscheinlichkeit p̂ diesen Schwel-
lenwert überschreitet, wird einer Beobachtung die vorhergesagte Klasse ŷ = 1 zugewiesen.
Für jeden Schwellenwert gelten demnach auch andere richtig positiv bzw. falsch posi-
tiv Raten. Diese verschiedenen Raten können zweidimensional gegeneinander abgetragen
werden, wodurch sich die ROC-Kurve ergibt. Dabei liegt die falsch positiv Rate auf der
x-Achse und die richtig positiv Rate auf der y-Achse. In Abbildung 2.1 ist beispielhaft
eine ROC-Kurve dargestellt.
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Abbildung 2.1: ROC-Kurve eines Beispieldatensatzes (In Anlehnung an Fawcett
(2006)). Die grau eingezeichnete Fläche unterhalb der Kurve entspricht
dabei dem AUC. Die ROC-Kurve einer Klassifikationsmethode mit
zufälligen Vorhersagen liegt auf der gestrichelten blauen Linie.
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Liegt die ROC-Kurve auf der Diagonalen spricht dies für ein Modell, das absolut zufällig
eine Klasse vorhersagt. In der Regel befindet sich die ROC-Kurve also oberhalb dieser
Diagonale. Perfekte Performance ist dadurch gekennzeichnet, dass der Kurvenverlauf ver-
tikal ausgehend vom Punkt (0, 0) zu (0, 1) verläuft und anschließend horizontal bei (1, 1)
endet. Die Performance lässt sich nun auch mithilfe einer Maßzahl ausdrücken, indem
die Fläche unterhalb der ROC-Kurve betrachtet wird. Dieses Performancemaß wird als
AUC (Area Under the Curve) bezeichnet und kann durch Integrieren der Funktion, wel-
che die ROC-Kurve beschreibt, ermittelt werden. Theoretisch kann das AUC innerhalb
des Wertebereichs [0, 1] liegen, da jedoch die ROC-Kurve für gewöhnlich oberhalb der
angesprochenen Diagonale liegt, sollte keine realistische Klassifikationsmethode ein AUC
kleiner als 0.5 aufweisen. Es gilt, je größer das AUC, desto größer auch die Performance
des Modells. Eine interessante Eigenschaft des AUC ist außerdem, dass diese Fläche der
Wahrscheinlichkeit entspricht, dass zwei zufällig gezogene Beobachtungen i1 und h0 mit
yi1 = 1 und yh0 = 0 von der Klassifikationsmethode korrekt geordnet werden, das heißt
es gilt AUC = P (p̂i1 > p̂h0). (Fawcett, 2006)
Hanley und McNeil (1982) zeigen, dass das empirische AUC daher äquivalent zur Wilco-
xon Teststatistik W ist und sich auch folgendermaßen berechnen lässt:

AUC = W = 1
n1 · n0

n1∑
i=1

n0∑
h=1

S(p̂i1, p̂h0), (2.8)

mit S(p̂i1, p̂h0) =


1, falls p̂i1 > p̂h0

0.5, falls p̂i1 = p̂h0

0, falls p̂i1 < p̂h0

. (2.9)

Dabei bezeichnen n0 und n1 die jeweilige Anzahl an Beobachtungen, für die y = 0 bzw.
y = 1 gilt, und p̂gk (g ∈ {h, i}, k ∈ {0, 1}) sind die entsprechenden Modellprädiktionen
einer Beobachtung g mit wahrer Klasse y = k.
Das AUC kann damit also ähnlich zu Kendall′s τ aus Gleichung (2.4) auch als rangba-
siertes Maß interpretiert werden.

2.2 CART - Classification and Regression Trees

CART (Classification and Regression Trees) bezeichnet eine Methode, mit der baumba-
sierte Klassifikation und Regression durchgeführt werden kann. Dabei wird der Variablen-
raum rekursiv in verschiedene Partitionen eingeteilt.
Rechts in Abbildung 2.2 ist beispielhaft die Partitionierung eines Datensatzes mit zwei Va-
riablen X1 und X2 dargestellt. Die Unterräume R1, . . . , R5 sind durch wiederholtes Teilen
der Einzelräume in zwei Gruppen entstanden. Dabei wird für jeden Split eine Variable und

7



2 – Statistische Methodik

eine entsprechende Variablenausprägung t gewählt, sodass ein vorab bestimmtes Kriteri-
um optimiert wird. Ebenso wird vorab ein Stopkriterium definiert, welches den Zeitpunkt
festlegt, ab dem keine weiteren Splits mehr durchgeführt werden.
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Abbildung 2.2: CART Beispiel für einen zweidimensionalen Variablenraum, der rekur-
siv binär aufgeteilt wurde. Links der zugehörige Entscheidungsbaum, der
die rechte Partition bildet (In Anlehnung an Hastie et al. (2009, S.
306)).

Links in Abbildung 2.2 ist die gleiche Partitionierung in ihrer Baumstruktur dargestellt,
welche eine einfache Interpretierbarkeit des gruppierten Variablenraums ermöglicht. Der
vollständige Datensatz befindet sich dabei an der Spitze des Baumes und wird an den
jeweiligen Ästen entlang in die Unterräume R1, . . . , R5, die auch Terminal Nodes genannt
werden, aufgesplittet. Um nun auf Basis solch eines Baumes einen Response y vorherzu-
sagen, wird dieser in jeder Terminal Node separat als Konstante modelliert. (Hastie et al.,
2009, S. 305)
Je nachdem, welcher Response mit einem Entscheidungsbaum abgebildet werden soll,
unterscheidet sich diese Modellierung und auch das Splitkriterium. Daher wird im Weite-
ren zwischen Regressionsbäumen für metrischen Response und Klassifikationsbäumen für
kategorialen Response unterschieden.

2.2.1 Regressionsbäume

Ein Regressionsbaum wird bei metrischem Response y angewendet. Dabei sind für N
Beobachtungen sowohl der Response yi, i = 1, . . . , N , als auch die Ausprägungen von p

Kovariablen Xj, j = 1, . . . , p, bekannt. Jeder Beobachtung i kann also ein Vektor (xi, yi)
mit xi = (xi1, . . . , xip) zugeordnet werden.
Bei einer Partitionierung in M Terminal Nodes R1, . . . , RM wird der Response in jeder
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dieser Node als Konstante cm modelliert:

f(x) =
M∑
m=1

cmI(x ∈ Rm). (2.10)

Mit der Quadratsumme ∑(yi − f(xi))2 als Minimierungskriterium ergibt sich daraufhin
der Mittelwert aller yi in einer Terminal Node Rm als optimaler Schätzer für cm, also

ĉm = 1
|Rm|

∑
i|xi∈Rm

yi, (2.11)

wobei |Rm| die Anzahl an Beobachtungen in einer Node Rm angibt.
Um nun die erste Splitvariable j und den optimalen Splitpunkt t zu bestimmen, werden
zwei Halbebenen,

R1(j, t) = {X|Xj ≤ t} und R2(j, t) = {X|Xj > t}, (2.12)

definiert. Die Splitvariable j und der Splitpunkt t sind dann diejenigen, die folgende
Bedingung erfüllen:

min
j,t

min
c1

∑
i|xi∈R1(j,t)

(yi − c1)2 +min
c2

∑
i|xi∈R2(j,t)

(yi − c2)2

 . (2.13)

Die inneren Minimierungen werden dabei für alle j und t mit Gleichung (2.11) und den
in Gleichung (2.12) definierten Halbebenen gelöst, womit sich

ĉ1 = 1
|R1(j, t)|

∑
i|xi∈R1(j,t)

yi und

ĉ2 = 1
|R2(j, t)|

∑
i|xi∈R2(j,t)

yi (2.14)

ergeben. Für jede Splitvariable werden dabei alle beobachteten Ausprägungswerte als
Splitpunkte geprüft, um das beste Paar (j, t) in Bezug auf das Minimierungskriterium zu
finden. Mit diesem Paar werden die Daten in zwei Unterräume gesplittet und in jedem
dieser Unterräume wieder ein binärer Split durchgeführt. Laut Duroux und Scornet (2016)
hat der Response y in den mit diesem Splitkriterium jeweils entstehenden Unterräumen
minimale (empirische) Varianz, was auch in Gleichung (2.13) ersichtlich wird. Dieses Vor-
gehen wird solange rekursiv angewendet bis ein vorab definiertes Abbruchkriterium erfüllt
ist. Meist wird dafür die minimale Anzahl an Beobachtungen in einer Node verwendet,
welche nicht unterschritten werden soll. (Hastie et al., 2009, S. 307)
Zusätzlich gibt es auch die Möglichkeit, einen so aufgestellten Baum T0 zu stutzen. Dafür
kann zum Beispiel das sogenannte cost-complexity pruning angewendet werden. Durch das
Entfernen von einzelnen Ästen in T0 entstehen Unterbäume T ⊂ T0 mit einer geringeren
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Anzahl an Terminal Nodes (=̂|T |). Nun wird das Kosten-Komplexitäts Kriterium

Cα(T ) =
|T |∑
m=1

NmQm(T ) + α|T |, (2.15)

mit Qm(T ) = 1
Nm

∑
i|xi∈Rm

(yi − ĉm)2,

Nm = |Rm|,

ĉm = 1
Nm

∑
i|xi∈Rm

yi

minimiert. Ziel ist das Auffinden eines Unterbaums Tα ⊆ T0 für jedes α. Dabei stellt α
einen Tuningparameter größer oder gleich Null dar, der den Tradeoff zwischen Baum-
größe und der Anpassung an die Daten reguliert. Je größer dabei α, desto kleiner fallen
die Bäume Tα aus. Um Tα zu ermitteln, werden schrittweise diejenigen Nodes m entfernt,
die den kleinsten Anteil zur Summe ∑mNmQm(T ) beitragen. Aus all diesen Unterbäumen
wird dann mithilfe einer Kreuzvalidierung der Wert α̂ für α geschätzt, der die Quadrat-
summe minimiert, womit der finale Baum Tα̂ ist. (Hastie et al., 2009, S. 308)

2.2.2 Klassifikationsbäume

Im Gegensatz zum metrischen Response y für die Regressionsbäume liegt der Response
für einen Klassifikationsbaum als kategoriale Variable mit den Ausprägungen 1, . . . , K
vor. Die Konstruktion solch eines Baumes ähnelt stark der eines Regressionsbaumes, mit
dem einzigen Unterschied im Kriterum Qm(T ), das für einen Split und für das Stutzen
Verwendung findet.
Auch hierbei entstehen UnterräumeRm, denen jeweilsNm Beobachtungen zugeordnet wer-
den. Die Klassenzuordnung dieser Beobachtungen wird dabei über das Mehrheitsverhält-
nis bestimmt. Eine Beobachtung in Node m wird demnach der Klasse k(m) zugeordnet,
welche am häufigsten innerhalb dieser Node auftritt:

k(m) = arg max
k

p̂mk, (2.16)

mit p̂mk = 1
Nm

∑
i|xi∈Rm

I(yi = k). (2.17)

Häufig verwendete Splitkriterien eines Klassifikationsbaumes sind der Missklassifizierungs-
fehler oder der Gini Index. Beide Kriterien sind Maße Qm(T ) für die Unreinheit einer
Node. Dabei misst der Missklassifizierungsfehler den Anteil an Beobachtungen, die durch
das oben beschriebene Mehrheitsverhältnis einer falschen Klasse zugeordnet werden. Der
Gini Index berücksichtigt dagegen für jede Klasse k das Produkt aus Wahrscheinlichkeit
und Gegenwahrscheinlichkeit für eine Klasse.
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Formal lassen sich diese beiden Maße auch folgendermaßen ausdrücken:

Missklassifizierungsfehler: Qm(T ) = 1
Nm

∑
i|xi∈Rm

I(yi 6= k(m)) = 1− p̂mk(m). (2.18)

Gini Index: Qm(T ) =
∑
k 6=k′

p̂mkp̂mk′ =
K∑
k=1

p̂mk(1− p̂mk). (2.19)

Im Klassifikationsbaum wird die Splitvariable j und ensprechende Splitausprägung t ge-
sucht, sodass die Unreinheit in beiden neu entstehenden Unterräumen simultan minimiert
wird. Dafür werden die Unreinheitsmaße Qm(T ) der beiden Unterräume mit der Anzahl
der jeweiligen Beobachtungen N1 und N2 gewichtet. (Hastie et al., 2009, S. 308–310)
Demnach muss für einen Split die Bedingung

min
j,t

[Q1(T ) ·N1 +Q2(T ) ·N2] (2.20)

erfüllt sein. Wie auch schon bei den Regressionsbäumen sind auch hier die Maße Q1(T )
und Q2(T ) abhängig von den zwei definierten Halbebenenen aus Gleichung (2.12) und
somit auch von dem Paar (j, t).
Das Verfahren zum Stutzen eines Baumes verläuft mit dem entsprechend ausgetauschten
Unreinheitsmaß Qm(T ) analog zum Regressionsbaum.

2.3 Random Forests

Ein Random Forest ist eine Abwandlung der Bootstrap Aggregation, kurz auch Bagging
genannt. Beim Bagging wird im Allgemeinen ein Modell auf verschiedene Bootstrap-
Stichproben des Datensatzes angewendet und die resultierenden Schätzer gemittelt. Das
führt zu einer erheblichen Varianzreduktion der Schätzfunktion.
Im Folgenden wird beschrieben, wie sich ein Random Forest auf Basis der vorab vorgestell-
ten Entscheidungsbäume bilden lässt und welche Bedeutung dabei korrelierte Kovariablen
und der Hyperparamter mtry besitzen.

2.3.1 Verfahren

Konkret wird bei einem Random Forest eine große Anzahl an Entscheidungsbäumen
betrachtet. Diese werden auf Basis von Bootstrap-Stichproben (Ziehen mit Zurückle-
gen) der gleichen Größe des ursprünglichen Datensatz gebildet. Ergebnisse aus Entschei-
dungsbäumen können bereits bei kleineren Änderungen in den Daten unterschiedlich
ausfallen. Aus diesem Grund und da besonders tiefe Bäume (zum Beispiel ungestutz-
te Bäume) einen relativ geringen Bias aufweisen, eignen sie sich hervorragend für das
Bagging und profitieren stark von der Mittelwertbildung der Schätzer aus den einzel-
nen Bäumen. Eine Schwachstelle dabei ist allerdings, dass die paarweise Korrelation der
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einzelnen Bäume die Varianzreduktion begrenzt. Dem wird im Random Forest dadurch
entgegengewirkt, dass in jedem Split nicht alle Variablen berücksichtigt werden, sondern
eine zufällige Auswahl einer bestimmten Anzahl (mtry) an Splitkandidaten vorgenommen
wird. Das reduziert die Korrelation zwischen den Bäumen ohne die Varianz des gemittel-
ten Schätzers stark ansteigen zu lassen. Je kleiner mtry dabei gewählt wird, desto geringer
fällt auch die Korrelation zwischen den Bäumen aus. (Hastie et al., 2009, S. 587–588)

Der Algorithmus für einen Random Forest wird von Hastie et al. (2009, S. 588) folgen-
dermaßen zusammengefasst:
Algorithmus 1: Random Forest nach Hastie et al. (2009, S. 588).
Sei B die Anzahl an Bäumen in einem Random Forest.
für b = 1 bis B

(a) Ziehe eine Bootstrap-Stichprobe Z∗ der Größe N aus den Trainingsdaten.

(b) Bilde mit dieser Stichprobe einen Baum Tb, durch rekursive Wiederholung
der folgenden Schritte in jeder Terminal Node, bis nmin, die minimale Anzahl
an Beobachtungen in einer Node erreicht ist.

i. Wähle zufällig mtry Variablen aus den p Kovariablen.

ii. Ermittle die optimale Variable und Variablenausprägung unter den
mtry Variablen.

iii. Splitte die Node in zwei Tochter-Nodes.

Gebe alle Bäume {Tb}B1 zurück.

Dieser Algorithmus lässt sich sowohl für einen Random Forest mit metrischem Response
als auch mit kategorialem Response anwenden. Dabei werden bestimmte Defaultwerte für
mtry und das Abbruchkriterium nmin abhängig vom Response empfohlen. Bei Regressi-
onsproblemen wird hierfür mtry = bp/3c und nmin = 5 vorgeschlagen, bei Klassifikati-
onsproblemen mtry =

⌊√
p
⌋

und nmin = 1. Allerdings weisen Hastie et al. (2009, S. 592)
auch darauf hin, dass diese Parameter abhängig von den vorliegenden Daten sein können
und als Tuningparameter behandelt werden sollten.
Unterschiede treten außerdem auf, wenn die Prädiktion für eine neue Beobachtung mit
Variablenausprägungen x bestimmt werden soll. Im Regressionsfall mit metrischem Re-
sponse wird dieser über den Mittelwert der Prädiktionen ŷb = Tb(x) der einzelnen Bäume
geschätzt:

ŷregr(x) = f̂Brf (x) = 1
B

B∑
b=1

Tb(x). (2.21)
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Dagegen wird bei der Klassifikation die sogenannte majority vote angewendet. Jeder der B
Bäume hat eine eigene Klassenprädiktion Ĉb(x) für eine Beobachtung mit Kovariablen x.
Im Random Forest erhält diese Beobachtung jene Klasse zugewiesen, welche am häufigsten
unter all den Bäumen auftritt, was sich formal darstellen lässt als

ŷklass(x) = ĈB
rf (x) = majority vote {Ĉb(x)}B1 . (2.22)

Eine Besonderheit des Random Forests stellen die out-of-bag (OOB) Prädiktionen einer
Beobachtung dar. Hierfür werden sowohl für Regression als auch für Klassifikation zur
Prädiktion nicht alle B Bäume berücksichtigt, sondern nur diejenigen, deren Bootstrap-
Trainingsdaten die betrachtete Beobachtung nicht enthalten. Mit diesen OOB-Prädik-
tionen lässt sich dann auch der OOB-Fehler des Random Forests schätzen. Sobald sich
dieser stabilisiert, gibt er einen Anhaltspunkt, dass keine weiteren Iterationen bzw. Bäume
für den Forest nötig sind. (Hastie et al., 2009, S. 588–593) Außerdem ist durch die An-
wendung des OOB-Fehlers kein zusätzlicher Testdatensatz nötig, da der OOB-Fehler bei
ausreichend hoher Anzahl an Bäumen genauso präzise ist, wie der Fehler eines Testda-
tensatzes mit gleicher Anzahl an Beobachtungen wie der Trainingsdatensatz. Ein weiterer
Vorteil ist die Rechengeschwindigkeit, denn anders als zum Beispiel bei einer k-fachen
Kreuzvalidierung, müssen nicht k Random Forests konstruiert werden, sondern nur einer,
aus diesem der OOB-Fehler ermittelt werden kann. Zudem können die OOB-Prädiktio-
nen zum Beispiel auch für die Bestimmung der Variablenwichtigkeiten eingesetzt werden.
(Breiman, 2001)

Es gibt verschiedene Möglichkeiten die Variablenwichtigkeit zu messen. Ein simpler An-
satz ist zu zählen, wie häufig eine Variable als Splitkandidat in den einzelnen Bäumen
eines Forests ausgewählt wurde. Etwas aufwendiger ist es dagegen das (gewichtete) Mittel
aus den einzelnen Verbesserungen des Splitkriteriums durch jede Variable zu bestimmen.
Dabei beschreibt zum Beispiel die Gini Importance die Verbesserung des Gini Index durch
jede Variable. Häufig wird jedoch die Permutation Accuracy Importance, im Weiteren oft
auch nur Permutation Importance genannt, angewendet, welche auf den OOB-Schätzern
beruht. Dazu wird folgende Prozedur für jeden Baum und jede der p Kovariablen Xj

wiederholt:

1. Der ursprüngliche Zusammenhang zwischen Xj und dem Response wird durch zufälli-
ge Permutation von Xj aufgehoben.

2. Auf Basis der übrigen Kovariablen und der permutierten Variable Xj werden die
OOB-Prädiktionen des Responses erstellt und damit die Prädiktionsgüte (OOB-
Fehler) ermittelt.
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3. Die Prädiktionsgüte aus 2. wird mit der Prädiktionsgüte vor der Permutation durch
die Differenz der beiden verglichen.

Die Wichtigkeit einer Variable Xj entspricht anschließend dem Mittelwert der Prädikti-
onsgüte-Differenzen (aus 3.) aller Bäume des Random Forests. Bei einem hohen Einfluss
von Xj auf den Response, wird davon ausgegangen, dass die Prädiktionsgüte deutlich
sinkt, wenn die permutierte Kovariable zur Prädiktion verwendet wird, was damit eine
hohe Ausprägung der Variablenwichtigkeit zur Folge hat. (Strobl et al., 2007)
Bei der Wahl des Maßes für die Prädiktionsgüte können zum Beispiel die in Kapitel
2.1 vorgestellten Modellgütemaße zum Einsatz kommen. Wie der Name der Permutation
Accuracy Importance jedoch schon vermuten lässt, wird für die Klassifikation meist die
Accuracy verwendet, welche den Anteil an korrekt klassifizierten Beobachtungen inner-
halb der Daten angibt. Für die Regression kommt dagegen überwiegend der MSE zum
Einsatz.

2.3.2 Korrelierte Variablen

Vor allem im Zusammenhang mit der Variablenwichtigkeit werden häufig auch korrelierte
Kovariablen im Random Forest untersucht.

Eine Studie von Strobl et al. (2008) definiert dafür einen Simulationsdatensatz mithilfe
eines linearen Modells, der neben dem Response noch weitere zwölf Kovariablen beinhal-
tet. Die festgelegten Kovariableneinflüsse können Tabelle 2.2 entnommen werden. Zudem
erhalten die ersten vier Variablen X1, . . . ,X4 eine starke Blockkorrelation, während die
restlichen Kovariablen unkorreliert sind. Eine detailliertere Beschreibung eines ähnlichen
Simulationsvorgehens wird in Kapitel 3.1 gegeben. Es sei darauf hingewiesen, dass die fol-
genden Ergebnisse sowohl für den Regressionsfall als auch für die Klassifikation gelten und
zudem anhand eines Anwendungsbeispiels überprüft wurden. Außerdem kommen für die
Konstruktion der Forests nicht wie üblich CART-Entscheidungsbäume zum Einsatz, son-
dern Conditional Inference Trees, die basierend auf bedingten Teststatistik-Verteilungen
den Zusammenhang zwischen Response und Kovariablen messen, was ein etwas anderes
Vorgehen im Splitprozess zur Folge hat (Näheres dazu in Hothorn et al. (2006)).

Xj X1 X2 X3 X4 X5 X6 X7 X8 . . . X12

βj 5 5 2 0 −5 −5 −2 0 . . . 0

Tabelle 2.2: Regressionskoeffizienten zur Datengenerierung der Simulationsstudie von
Strobl et al. (2008).
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Neben den korrelierten Variablen analysieren Strobl et al. (2008) auch den Einfluss von
mtry auf die Auswahlhäufigkeiten der Variablen für einen Baumsplit. Dabei zeigt sich,
dass gemittelt über alle Splits der Bäume für mtry 6= 1 die korrelierten Variablen mit
schwachem oder fehlendem Einfluss (X3 und X4) häufiger ausgewählt werden als die
gleichstarken unkorrelierten Variablen (X7 und X8). Dieses Phänomen lässt sich dadurch
erklären, dass auch wenn eine Variable keinen oder nur einen geringen Einfluss auf den
Response hat, jedoch hochkorreliert mit einer anderen Einflussvariable ist, diese bei der
Splitwahl als ebenso guter Splitkandidat wie die Variable mit tatsächlichem Einfluss er-
scheint. Für steigendes mtry sinken die Auswahlhäufigkeiten für X3 und X4 jedoch, da
damit auch die Wahrscheinlichkeit steigt, dass eine tatsächlich relevante Variable ebenfalls
als Splitkandidat betrachtet wird.
Diese Beobachtungen haben auch Auswirkung auf die Schätzung der Variablenwichtig-
keit: Die Permutation Importance aus Kapitel 2.3.1 spiegelt nicht die durch die Regres-
sionskoeffizienten festgelegte Struktur wider. Die Variablenwichtigkeiten der korrelierten
Kovariablen werden dabei deutlich überschätzt, was zum Beispiel fast dreimal so hohe
Variablenwichtigkeiten für die Kovariablen X1 und X2 im Vergleich zu den gleichstar-
ken Kovariablen X5 und X6 zur Folge hat. Für kleine mtry-Werte ist dieser Effekt sogar
stärker ausgeprägt als für große, da die Chance, dass eine korrelierte Variable in einem
Baum früh als Splitkandidat ausgewählt wird, höher ist, wenn die restlichen korrelierten
Kovariablen nicht als Splitkandidaten berücksichtig werden. Allerdings stellen Strobl et al.
(2008) auch fest, dass für höhere mtry-Werte die Variablilität der Variablenwichtigkeit
steigt. Um diese Problematiken zu umgehen, schlagen Strobl et al. (2008) die Verwen-
dung der sogenannten Conditional Permutation Importance vor. Außerdem erwähnen sie,
dass für kleine mtry-Werte eine höhere Prädiktionsgüte erwartet werden kann, wobei ein
Nachweis hierzu nicht angeführt wird.

Ähnliche, allerdings etwas komplexere, Simulationsdesigns verwenden auch Toloşi und
Lengauer (2011). Dabei besitzen die blockkorrelierten Variablen die gleiche bzw. ähnliche
Einflussstärke auf einen ausschließlich binären Response. Neben zwei verschiedenen Si-
mulationsdesigns werden auch zwei reale Datensätze betrachtet. Aus dieser Analyse kann
eine wesentliche Erkenntnis geschlossen werden: Die geschätzten Variablenwichtigkeiten
sind verzerrt, was in diesem Fall bedeutet, dass je mehr Kovariablen blockkorreliert sind,
desto kleiner werden deren Variablenwichtigkeiten. Dadurch können Kovariablen, die zwar
einen starken Einfluss auf den Response haben, jedoch mit sehr vielen anderen Kovariablen
hochkorreliert sind, mithilfe der Variablenwichtigkeit nicht als relevante Variablen erkannt
werden. Der Grund für diese Verzerrung im Random Forest liegt dabei in der Randomisie-
rung der einzelnen Bäume durch zum einen die Bootstrap-Stichproben und zum anderen
die Auswahl von mtry Variablen im Splitprozess. Das hat zur Folge, dass die korrelierten

15



2 – Statistische Methodik

Variablen untereinander austauschbar als Splitkandidat eingesetzt werden können. Zu-
dem ist intuitiv nachvollziehbar, dass sich bei der Berechnung der Variablenwichtigkeiten
durch die Permutation einer relevanten korrelierten Kovariable keine deutlich schlechtere
Prädiktionsgüte ergibt, da in diesem Fall zur Vorhersage die anderen korrelierten Kova-
riablen herangezogen werden können, welche ähnliche Informationen wie die permutierte
Kovariable tragen.

Auch Genuer et al. (2008) untersuchen den Effekt von stark korrelierten Kovariablen im
Random Forest. Allerdings verwenden Sie einen hochdimensionalen Simulationsdatensatz
für Klassifikation, dem zusätzliche korrelierte Replikationen der relevanten Variablen hin-
zugefügt werden. Dabei wird, wie auch von Toloşi und Lengauer (2011), ein Sinken der
Variablenwichtigkeit der relevanten Kovariablen beobachtet, je größer die Gruppe der kor-
relierten Kovariablen ist.

Eine aktuelle Zusammenfassung zu bisherigen Forschungen im Bereich der Korrelation
bei Random Forests und deren Auswirkung auf die Variablenwichtigkeit geben Gregorutti
et al. (2016). Außerdem werden theoretische Herleitungen für den Zusammenhang zwi-
schen korrelierten Kovariablen und der Permutation Importance in einem additiven Re-
gressionsmodell aufgestellt. Diese zeigen, dass die Variablenwichtigkeit sehr sensibel auf
Korrelationen zwischen den Kovariablen reagiert. Im Folgenden werden nur die Ergebnis-
se dieser Herleitungen dargestellt. Dabei werden fünf Fälle von Korrelationen zwischen
Kovariablen unterschieden, wobei die positive Korrelation zwischen diesen Variablen mit
c bezeichnet ist:
Fall 1 - Zwei korrelierte Kovariablen X1 und X2 und Korrelation τ0 mit dem Response.
Damit gilt (X1,X2,Y) ∼ N3 (0,Σ), mit

Σ =


1 c τ0

c 1 τ0

τ0 τ0 1

 . (2.23)

N3 entspricht hier einer 3-dimensionalen Normalverteilung mit der Kovarianzmatrix Σ
und 0 = (0, 0, 0), dem Vektor der Erwartungswerte.
Für steigende positive Korrelationen c sinkt die Variablenwichtigkeit der beiden Kovaria-
blen X1 und X2.

Fall 2 - Zwei korrelierte Kovariablen und eine von diesen Variablen unabhängige Kovaria-
ble X3, deren Korrelation mit dem Response sich von τ0 unterscheidet.
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Damit gilt (X1,X2,X3,Y) ∼ N4 (0,Σ), mit

Σ =


1 c 0 τ0

c 1 0 τ0

0 0 1 τ3

τ0 τ0 τ3 1

 . (2.24)

Wenn c ausreichend groß ist, kann die Variablenwichtigkeit von X3 die Variablenwichtig-
keiten von X1 und X2 übersteigen, auch wenn τ3 < τ0 gilt.

Fall 3 - Alle p Kovariablen sind blockkorreliert und haben Korrelation τ0 mit dem Re-
sponse.
Damit gilt (X1, . . . ,Xp,Y) ∼ Np+1 (0,Σ), mit

Σ =



1 c · · · c τ0

c 1 · · · c τ0
... ... . . . ... ...
c c · · · 1 τ0

τ0 τ0 · · · τ0 1


. (2.25)

Je größer die Anzahl an Kovariablen p, desto schneller sinken die Variablenwichtigkeiten
der Kovariablen gegen 0.
Die Fälle 2 und 3 entsprechen damit den Beobachtungen von Toloşi und Lengauer (2011).

Fall 4 - p blockkorrelierte Kovariablen und q Kovariablen unabhängig von diesen, deren
Korrelation mit dem Response sich untereinander und von τ0 unterscheidet.
Damit gilt (X1, . . . ,Xp,Xp+1, . . . ,Xp+q,Y) ∼ Np+q+1 (0,Σ), mit

Σ =



1 · · · c 0 · · · 0 τ0
... . . . ... ... . . . ... ...
c · · · 1 0 · · · 0 τ0

0 · · · 0 1 · · · 0 τp+1
... . . . ... ... . . . ... ...
0 · · · 0 0 · · · 1 τp+q

τ0 · · · τ0 τp+1 · · · τp+q 1


. (2.26)

Auch hierbei können die unabhängigen Variablen Xp+1, . . . ,Xp+q stärkere Variablenwich-
tigkeiten als die untereinander korrelierten Kovariablen X1, . . . ,Xp aufweisen, auch wenn
τp+1, . . . , τp+q < τ0 gilt.
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Fall 5 - Zwei negativ korrelierte Kovariablen X1 und X2, diese Korrelation wird mit −ρ
bezeichnet.
Damit gilt (X1,X2,Y) ∼ N3 (0,Σ), mit

Σ =


1 −ρ τ0

−ρ 1 τ0

τ0 τ0 1

 . (2.27)

Für steigendes ρ, was einer stärkeren negativen Korrelation entspricht, steigt auch die
Variablenwichtigkeit von X1 und X2. Der Grund dafür liegt in der entgegengesetzten
Wirkrichtung der Variablen, wodurch beide Variablen zur Erklärung von Y im Modell
benötigt werden.

2.3.3 Hyperparameter mtry

Wie bereits erwähnt, kann mithilfe des Hyperparameters mtry die Stärke der Randomi-
sierung innerhalb der Bäume eines Random Forests gesteuert werden. Je kleiner mtry
gewählt wird, desto größer der Randomisierungseffekt bei der Splitwahl. Dieser Parame-
ter hat damit Einfluss auf eine der wichtigsten Eigenschaften des Random Forest. Oft
werden die empfohlenen Defaultwerte bp/3c für Regressionsmodelle und

⌊√
p
⌋

für Klassi-
fikationsmodelle verwendet. Allerdings ist es fragwürdig, ob diese Werte im Allgemeinen
tatsächlich eine gute Wahl darstellen.

Letzteres und das Fehlen eines theoretischen Konzepts zur mtry-Wahl beanstanden auch
Bernard et al. (2009) und führen eine Analyse mit Klassifikationsforests durch. Dabei
werden zwölf verschiedene reale Datensätze mit variierender Anzahl an Beobachtungen
und Variablen betrachtet, welche auch mehrkategoriale Responses beinhalten. Die Ergeb-
nisse zeigen, dass in dreiviertel der Datensätze die Modellgüte mit dem Defaultwert für
mtry sehr nahe an der optimalen Modellgüte liegt. Als Modellgütemaß wurde hierbei die
Accuracy gewählt. Allerdings wurde dabei nicht getestet, ob der optimale mtry Wert
im Vergleich zum Defaultwert zu einer signifikanten Verbesserung der Accuracy beiträgt.
Damit stellt der Defaultwert jedoch nicht in allen Fällen die beste Wahl dar.
Ein möglicher Indikator für die mtry-Wahl ist laut Bernard et al. (2009) die Anzahl an
relevanten Variablen innerhalb der Daten. Der Parameter mtry wirkt als Trade-Off zwi-
schen der Performance und der Diversität der einzelnen Bäume eines Random Forests.
Existieren nur wenige relevante Variablen so sinkt die Performance durch die Randomi-
sierung im Splitprozess enorm, was den Trade-Off schwächt. Dagegen bewirken viele stark
relevante Variablen, dass sich die Prädiktionen der einzelnen Bäume sehr ähneln und der
Randomisierungseffekt bei der Splitwahl nachlässt. Je weniger relevante Variablen also,
desto größer fällt der optimale Wert für mtry aus, womit die Wahrscheinlichkeit steigt,
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dass im Splitprozess die unwichtigen Variablen herausgefiltert werden.

Auch Dı́az-Uriarte und de Andrés (2006) untersuchen den Effekt verschiedener Hyperpa-
ramter des Random Forests auf den OOB-Fehler. Dabei liegt der Fokus auf Microarray
Daten, die in Genexpressionsstudien vorliegen. Meist wird dabei versucht, aus der Viel-
zahl von Genen diejenigen wenigen zu identifizieren, die einen Zusammenhang mit einem
Response, zum Beispiel einem bestimmtem Krankheitsbild, aufweisen. Genexpressionsda-
ten sind sehr speziell, weswegen viele Standardmethoden oft nicht anwendbar sind. Zum
einen kann die große Anzahl an Noise Variablen problematisch sein und zum anderen be-
stehen diese Daten meist aus deutlich mehr Variablen als Beobachtungen, welche oft auch
miteinander interagieren oder korreliert sind. All diese Besonderheiten können jedoch von
einem Random Forest berücksichtigt werden, womit er auch hier als Klassifikationsme-
thode eingesetzt werden kann. Die Variablenwichtigkeit bietet hierbei beispielsweise eine
Möglichkeit die relevanten Genvariablen zu ermitteln. Auch Dı́az-Uriarte und de Andrés
(2006) beobachten, dass der Defaultwert für mtry in Bezug auf die OOB Fehlerrate oft,
jedoch nicht immer, eine gute Wahl darstellt. Neben der Anwendung des Random Forests
auf vier reale Datensätze wurde auch eine sehr umfangreiche Simulationsstudie durch-
geführt. Hierbei fallen die Simulationsdatensätze mit wenigen relevanten Genen auf, da
bei diesen ein steigendes mtry die Fehlerrate etwas sinken lässt. Stomit stützen also auch
diese Genexpressionsdaten die vorab genannten Thesen von Bernard et al. (2009).

Ähnliche Beobachtungen schildern auch Genuer et al. (2008), die sowohl für Regressions-
als auch für Klassifikationsforests zwischen Standardproblemen (n >> p) und hochdi-
mensionalen Problemen (n << p) unterscheiden und den OOB-Fehler für unterschiedliche
mtry-Werte betrachten.
Für die untersuchten Standard-Regressionsdatensätze ist der Defaultwert für mtry oft
nicht optimal, besonders wenn bp/3c = 1 gilt. Für die simulierten hochdimensionalen Re-
gressionsdatensätze sinkt der OOB-Fehler mit steigendem mtry, weshalb der Defaultwert
für mtry auch hier meist nicht optimal gewählt ist.
Im Vergleich dazu liefert der mtry-Default für Standard-Klassifikationsdatensätze nahe-
zu minimale OOB-Fehler, was allerdings nicht für hochdimensionale Klassifikationsda-
tensätze gilt. Hierbei raten auch Genuer et al. (2008) mtry meist deutlich größer als

⌊√
p
⌋

zu wählen, um bei einer hohen Anzahl an Variablen p mit einer größeren Wahrscheinlich-
keit die relevanten Variablen im Splitprozess auszuwählen.
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3 Simulationsstudie

Im Weiteren soll untersucht werden, ob sich die in Kapitel 2.3.3 vorgestellten Beobachtun-
gen auch in einer Simulationsstudie nachbilden und erweitern lassen. Die Grundidee des
Simulationsaufbaus stammt von Hapfelmeier et al. (2012) und wurde in abgewandelter
Form übernommen. Dabei ist vor allem von Interesse, wie der optimale mtry Wert von
verschiedenen Eigenschaften eines Datensatzes abhängt.
Keine der in Kapitel 2.3.3 vorgestellten Studien verwendet Datensätze, die sowohl für
Regressions- als auch für Klassifikationsmodelle vergleichbar sind. Daher beruht das Si-
mulationsdesign in dieser Arbeit für beide Modellarten auf einem sehr ähnlichen Prinzip,
welches nun detailliert beschrieben wird. Abschließend werden die Ergebnisse dieser Si-
mulationen vorgestellt.

3.1 Simulationsdesign

3.1.1 Datensätze

Wie bereits erwähnt wurden sowohl Regressionsmodelle wie auch Klassifikationsmodelle
untersucht. Die benötigten Datensätze unterscheiden sich hier lediglich in der Definition
des Responses, die Kovariablen werden für beide Modelle auf die gleiche Art und Weise
generiert.

Ein Datensatz besteht aus einem Response Y und p Kovariablen X1, . . . ,Xp für insgesamt
N Beobachtungen. Diese Kovariablen werden zufällig aus einer multivariaten Normalver-
teilung mit einem Erwartungswertvektor µ = 0 der Länge p und Kovarianzmatrix Σ
gezogen, es gilt also

(X1, . . . ,Xp) ∼ Np(0,Σ).

Jede der Variablen erhält eine Varianz gleich 1, womit alle Einträge auf der Diagonale der
p × p Kovarianzmatrix Σ gleich 1 sind. Nach Hapfelmeier et al. (2012) entsprechen die
jeweiligen Kovarianzen in diesem Fall den Korrelationen der Kovariablen, auf welche in
Kapitel 3.1.3 näher eingegangen wird.
Der Einfluss jeder Kovariable auf den Response wird mithilfe eines Koeffizientenvektors
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β = (β1, . . . , βp) bestimmt. Die verwendeten Spezifikationen können im Detail dem fol-
genden Kapitel 3.1.2 entnommen werden.

Ein stetiger Response für eine Beobachtung i wird daraufhin auf Basis eines linearen
Modells mit den generierten Kovariablen xi = (xi1, . . . , xip) definiert:

yi = xTi βββ + εi, ∀ i = 1, . . . , N. (3.1)

ε = (ε1, . . . , εN) entspricht dabei einem Vektor mit Fehlertermen, der einer Normalvertei-
lung mit Erwartungswert 0 und Varianz 0.5 folgt.

Ein binärer Response für eine Beobachtung i mit den Ausprägungen 0 oder 1 wird dagegen
auf Basis eines Logitmodells definiert:

πi = P (Y = 1|X = xi) =
exp(xTi βββ)

1 + exp(xTi βββ), womit gilt

yi ∼ B(πi). (3.2)

Der Response einer Beobachtung i kann demnach zufällig aus einer Bernoulliverteilung
mit Wahrscheinlichkeit πi gezogen werden.

3.1.2 Kovariableneinflüsse

Aus Kapitel 2.3.3 geht hervor, dass die Relevanz der einzelnen Kovariablen innerhalb
eines Datensatzes einen starken Einfluss auf die Wahl von mtry hat. Durch die Anwen-
dung realer Datensätze ist es Bernard et al. (2009) allerdings nicht möglich die Anzahl an
tatsächlich relevanten Kovariablen exakt zu bestimmen und Genuer et al. (2008) stellen
nur für hochdimensionale Daten den Bezug zwischen mtry und den relevanten Kovaria-
blen her. Um diese These detaillierter zu untersuchen, wurde in dieser Arbeit die Anzahl
an relevanten Kovariablen eines Datensatzes durch verschiedene Koeffizientenvektoren
β gesteuert. Dabei induziert βj = 0, j ∈ {1, . . . , p}, dass die Variable Xj keinen Ein-
fluss auf den Response hat. Insgesamt wurden sieben verschiedene Koeffizientenvektoren
abhängig von der Anzahl an Variablen p definiert, welche in Tabelle 3.1 zusammengefasst
sind.

Für β1 und β2 wurde eine feste Anzahl von ein bzw. zwei Kovariablen gewählt, die einen
Einfluss auf den Response besitzen, alle restlichen Kovariablen sind für die Generierung
des Responses irrelevant. Gleiches gilt auch für die Koeffizientenvektoren β3 und β4, wobei
fünf relevante Kovariablen definiert wurden. Im Gegensatz zu β4 haben diese Kovariablen
mit β3 allerdings nicht alle den gleichen Einfluss, sondern unterscheiden sich geringfügig,
sodass zwei Kovariablen eine starke Relevanz aufweisen und drei eine moderate Relevanz.
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Koeffizientenvektor β = (β1, . . . , βp) Beschreibung

β1 = (7, 0, . . . , 0) Eine relevante und p− 1 irrelevante Kovaria-
blen.

β2 = (7, 8, 0, . . . , 0) Zwei relevante und p−2 irrelevante Kovaria-
blen.

β3 = (7, 7, 7, 20, 20, 0, . . . , 0) Fünf Kovariablen mit unterschiedlicher Rele-
vanz und p− 5 irrelevante Kovariablen.

β4 = (7, 7, 7, 7, 7, 0, . . . , 0) Fünf Kovariablen mit gleicher Relevanz und
p− 5 irrelevante Kovariablen.

β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18) Viele Kovariablen mit geringer Relevanz und
nur wenige stark relevante.

β6 = (2, . . . , 2, 15, . . . , 15, 18, . . . , 18) Viele Kovariablen mit starker Relevanz und
nur wenige schwach relevante.

β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4) Alle Kovariablen mit ähnlicher Relevanz.

Tabelle 3.1: Definition von sieben verschiedenen Koeffizientenvektoren für die Datenge-
nerierung.
Die Häufigkeiten der drei verschiedenen Koeffizientenausprägungen für
β5−β7 sind abhängig von der Anzahl an Variablen p. Dabei gilt für p = 10:
3, 4, 3; für p = 20: 5, 10, 5; und für p = 50: 13, 24, 13.

Demgegenüber stehen drei weitere Koeffizientenvektoren, für die jede einzelne Kovariable
einen Beitrag zur Generierung des Responses leistet. Durch Anwendung von β5 existieren
hauptsächlich Kovariablen mit ähnlich schwachen Einflussstärken und nur wenige stark
relevante Kovariablen. Die Häufigkeit des Auftretens der Koeffizienten 2, 3 und 18 unter-
scheidet sich dabei je nach Anzahl der insgesamt definierten Variablen. Gilt p = 10, so
werden jeweils drei Kovariablen mit einer Einflussstärke von 2 und 18 definiert und vier
Kovariablen erhalten eine Einflussstärke von 3. Für p = 20 bzw. p = 50 gelten ähnliche
Verhältnisse: Die Einflussstärken 2 und 18 treten jeweils bei fünf bzw. 13 Kovariablen
auf und die Einflussstärke 3 bei zehn bzw. 24 Kovariablen. Diese Häufigkeitsverhältnisse
wurden auch für die drei verschiedenen Koeffizientenausprägungen von β6 und β7 ange-
wendet.
Für β6 wurde die Einflussstärke 3 in β5 durch 15 ersetzt, womit vor allem stark relevante
Kovariablen definiert werden und nur wenige, die kaum einen Einfluss auf den Response
besitzen.
Mit β7 können Datensätze generiert werden, deren Kovariablen mit den Koeffizienten-
ausprägungen 2, 3 und 4 alle einen ähnlich starken Einfluss auf den Response erkennen
lassen.
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Damit nimmt also die Anzahl an stark relevanten Kovariablen innerhalb der Koeffizien-
tenvektoren von β1 bis β7 zu. Wobei für p = 10 eine einzige Ausnahme gilt, denn mit β5

werden zwei stark relevante Kovariablen weniger definiert als mit β4 .

3.1.3 Korrelationsstrukturen

Einige Studien haben gezeigt (siehe dazu Kapitel 2.3.2), dass korrelierte Kovariablen einen
erheblichen Einfluss auf den Splitprozess eines Random Forests haben können. Zudem tre-
ten auch in realen Datensätzen meist Korrelationsstrukturen auf. Deshalb wurde für die
Simulationsdatensätze versucht, die von Gregorutti et al. (2016) beschriebenen Korre-
lationsfälle zu übernehmen. Jedoch sind die ersten beiden Fälle und der fünfte Fall für
maximal drei Kovariablen ausgelegt, weswegen in dieser Arbeit nur die Fälle 3 und 4
berücksichtigt wurden. Zusätzlich wurden noch drei weitere Kovarianzmatrizen Σ defi-
niert, wovon eine den Fall 4 umkehrt, und die zwei anderen an das Beispiel von Strobl
et al. (2008) angelehnt sind. Die fünf betrachteten Korrelationsstrukturen für die Koef-
fizientenvektoren β3, β5. und β7 sind in Tabelle 3.2 zusammengefasst und werden im
Folgenden ausführlicher beschrieben.

Kovarianz Koeff.-Vektor Beschreibung

Σ1 β7 Alle Kovariablen ähnlich relevant und blockkorreliert.

Σ2 β5
Nur die weniger relevanten Kovariablen mit Koeffizien-
tenausprägung 2 und 3 sind blockkorreliert.

Σ3 β5
Nur die stark relevanten Kovariablen mit Koeffizienten-
ausprägung 18 sind blockkorreliert.

Σ4 β3
Jeweils eine Kovariable mit Koeffizientenausprägung 20
und 0 ist blockkorreliert.

Σ5 β3
Jeweils eine Kovariable mit Koeffizientenausprägung 20,
7 und 0 ist blockkorreliert.

Tabelle 3.2: Definition der verschiedenen Kovarianzstrukturen für die Datengenerierung
mit korrelierten Kovariablen und den Koeffizientenvektoren β3, β5 und β7.

Im Fall 3 von Gregorutti et al. (2016) besitzen alle Kovariablen den gleichen Einfluss
auf den Response und sind untereinander mit Korrelation c blockkorreliert. Diese Vorga-
ben werden mit dem Koeffizientenvektor β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4) und der p × p
Kovarianzmatrix

Σ1 =



1 c · · · c

c 1 . . . ...
... . . . . . . c

c · · · c 1

 ,
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bis auf die gering unterschiedlichen Koeffizientenausprägungen erfüllt. Die positive Kor-
relation zwischen den Kovariablen wird hierbei und im Weiteren mit c bezeichnet.
Im Fall 4 von Gregorutti et al. (2016) werden diejenigen Kovariablen mit den größten Ko-
effizientenausprägungen blockkorreliert und die restlichen relevanten Kovariablen nicht.
Um diesen Fall umzukehren, müssen die weniger relevanten Kovariablen blockkorelliert
sein. Diese beiden Korrelationsstrukturen können mit dem Koeffizientenvektor β5 und
den Kovarianzmatrizen Σ2 und Σ3 realisiert werden. Dabei gilt für den umgekehrten Fall

Σ2 =



βββ5 (2, . . . , 3, 18, . . . , 18)

1 · · · c 0 · · · 0
... . . . ... ... . . . ...

c · · · 1 0 · · · 0

0 · · · 0 1 · · · 0
... . . . ... ... . . . ...

0 · · · 0 0 · · · 1


(3.3)

und angelehnt an den Fall 4 kann Σ3 verwendet werden:

Σ3 =



βββ5 (2, . . . , 3, 18, . . . , 18)

1 · · · 0 0 · · · 0
... . . . ... ... . . . ...

0 · · · 1 0 · · · 0

0 · · · 0 1 · · · c
... . . . ... ... . . . ...

0 · · · 0 c · · · 1


. (3.4)

Strobl et al. (2008) definieren einen Simulationsdatensatz für den stark relevante, weniger
relevante und irrelevante Kovariablen blockkorreliert werden. Zur Rekonstruktion dieser
Variante bietet sich also β3 = (7, 7, 7, 20, 20, 0, . . . , 0) an. Um zunächst den tatsächlichen
Einfluss der Korrelation einer stark relevanten und irrelevanten Kovariable zu untersuchen,
wird mit der Kovarianzmatrix

Σ4 =



βββ3 (7, 7, 7, 20, 20, 0, 0, . . . , 0)

1 0 0 0 0 0 0 · · · 0

0 1 0 0 0 0 ... · · · ...

0 0 1 0 0 0 ... · · · ...

0 0 0 1 0 c
... · · · ...

0 0 0 0 1 0 ... · · · ...

0 0 0 c 0 1 0 · · · 0

0 · · · · · · · · · · · · 0 1 · · · 0
... ... ... ... ... ... ... . . . ...

0 · · · · · · · · · · · · 0 0 · · · 1



(3.5)
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nur eine stark relevante mit einer irrelevanten Kovariable korreliert. Dabei wird im Koeffi-
zientenvektor jeweils die erste Variable mit der entsprechenden Ausprägung als korrelierte
Kovariable gewählt. Aber auch die Blockkorellation von Strobl et al. (2008) kann auf glei-
che Weise mit

Σ5 =



βββ3 (7, 7, 7, 20, 20, 0, 0, . . . , 0)

1 0 0 c 0 c 0 · · · 0

0 1 0 0 0 0 ... · · · ...

0 0 1 0 0 0 ... · · · ...

c 0 0 1 0 c
... · · · ...

0 0 0 0 1 0 ... · · · ...

c 0 0 c 0 1 0 · · · 0

0 · · · · · · · · · · · · 0 1 · · · 0
... ... ... ... ... ... ... . . . ...

0 · · · · · · · · · · · · 0 0 · · · 1



(3.6)

simuliert werden.

Die beschriebenen fünf Kovarianzmatrizen sind sehr verschieden, weswegen die Möglich-
keit besteht, dass sie keine eindeutigen Interpretationen in Bezug auf den Einfluss der
Korrelationen auf mtry zulassen. Daher wurden zusätzlich noch weitere Kovarianzmatri-
zen für die Koeffizientenvektoren mit einer (β1) bzw. fünf (β4) relevanten Kovariablen
definiert, welche in Tabelle 3.3 aufgelistet sind. Mit diesen Kovarianzmatrizen kann un-
ter anderem explizit untersucht werden, welche Auswirkungen die Blockkorrelation von
irrelevanten Kovariablen hat.

Kovarianz Koeff.-Vektor Beschreibung

Σ6 a β1, β4
Die relevanten und eine bestimmte Anzahl an a irrele-
vanten Kovariablen sind blockkorreliert.

Σ7 β1, β4 Nur die irrelevanten Kovariablen sind blockkorreliert.

Σ8 β4
Die Hälfte der relevanten und die Hälfte der irrelevanten
Kovariablen sind blockkorreliert.

Tabelle 3.3: Definition der verschiedenen Kovarianzstrukturen für die Datengenerierung
mit korrelierten Kovariablen und den Koeffizientenvektoren β1 und β4.

Mit Σ6 a wird neben den relevanten Kovariablen in β1 und β4 zusätzlich eine bestimm-
te Anzahl an a irrelevanten Kovariablen blockkorreliert. Für a kann jeder ganzzahlige
Wert größer oder gleich 0 gewählt werden. Zum Beispiel ist Σ6 2 mit β1 folgendermaßen
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definiert:

Σ6 2 =



βββ1 (7, 0, 0, 0, . . . , 0)

1 c c 0 · · · 0

c 1 c
... . . . ...

c c 1 0 · · · 0

0 · · · 0 1 · · · 0
... . . . ... ... . . . ...

0 · · · 0 0 · · · 1


. (3.7)

Werden nur die irrelevanten Kovariablen blockkorreliert, ergibt sich auch für β1 und β4

mit der Kovarianzmatrix Σ7 die gleiche Darstellungsweise wie bereits für Σ3 in Definition
(3.4), allerdings mit einem geringeren Anteil an unkorrelierten Variablen.
Die letzte Kovarianzmatrix Σ8 ist ähnlich zu Σ5, bei der eine irrelevante Kovariable zusätz-
lich zu zwei unterschiedlich relevanten Kovariablen blockkorreliert wird. Für Σ8 werden
jedoch zwei gleich relevante Kovariablen und die Hälfte aller irrelevanten Kovariablen des
Koeffizientenvektors β4 blockkorreliert. Entspricht die Hälfte einer ungeraden Zahl, wird
die nächstkleinere ganze Zahl angewendet, womit sich Σ8 für zehn Kovariablen beispiels-
weise zu

Σ8 =



βββ4 (7, 7, 7, 7, 7, 0, 0, 0, 0, 0)

1 c 0 0 0 c c 0 0 0

c 1 0 0 0 c c
... ... ...

0 0 1 0 0 0 0 ... ... ...

0 0 0 1 0 0 0 ... ... ...

0 0 0 0 1 0 0 ... ... ...

c c 0 0 0 1 c 0 ... ...

c c 0 0 0 c 1 0 ... ...

0 · · · · · · · · · · · · · · · 0 1 0 ...

0 · · · · · · · · · · · · · · · · · · 0 1 0

0 · · · · · · · · · · · · · · · · · · · · · 0 1



(3.8)

ergibt.
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3.1.4 Implementierung

Alle Analysen wurden mit der statistischen Software R, Version 3.2.3, durchgeführt (R
Core Team, 2015). Die Datensätze wurden wie vorab beschrieben generiert. Dabei variiert
die Anzahl an Beobachtungen N zwischen 500 und 1000, wobei anzumerken ist, dass durch
eine zu geringe Anzahl an Beobachtungen, wie zum Beispiel N = 100, die definierten
Kovarianzstrukturen nicht ausreichend exakt eingehalten werden können. Die Anzahl an
Variablen p wurde auf 10, 20 und 50 festgelegt. Außerdem wurden für jedes Szenario 500
Datensätze erstellt und die Auswertungen dieser jeweils gemittelt. Ein Szenario ist dabei
durch die Responseart, die Anzahl an Beobachtungen N , die Anzahl an Kovariablen p,
den Koeffizientenvektor β und die Kovarianzmatrix Σ mit entsprechender Korrelation c

definiert.
Es wurde darauf verzichtet hochdimensionale Daten mit n << p zu definieren, da Dı́az-
Uriarte und de Andrés (2006) bereits eine detaillierte Simulationsstudie dazu durchgeführt
haben, bei der ebenfalls der OOB-Fehler in Abhängigkeit von mtry dokumentiert ist.

Charakteristik Ausprägungen Bedingung

Responseart metrisch, binär

Koeffizientenvektor β β1 - β7

Anzahl an Kovariablen p 10, 20, 50

Anzahl an Beobachtungen N 500, 1000

Kovarianzmatrix Σ

Σ1 β7

Σ2, Σ3 β5

Σ4, Σ5 β3

Σ6 0 β4

Σ6 2 β1, β4

Σ6 4, Σ6 7 β1, p = 10
Σ6 9, Σ6 15 β1, p = 20
Σ6 24, Σ6 39 β1, p = 50

Σ7 β1, β4

Σ8 β4

Korrelation c
0, 0.3, 0.9

0.6 Σ6, Σ7, Σ8

Tabelle 3.4: Charakteristiken eines Szenarios und die gewählten Ausprägungen für die
durchgeführte Simulationsstudie. Einige Ausprägungen für die Kovarianz-
matrizen und Korrelationen wurden nur für bestimmte Szenarien verwen-
det, diese sind in der letzten Spalte gekennzeichnet.
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Tabelle 3.4 fasst die gewählten Charakteristiken der Szenarien zusammen und zusätzlich
gibt Tabelle 3.5 Aufschluss über die Anzahl an Szenarien für eine Responseart unter ver-
schiedenen Bedingungen. So wurden zum Beispiel mit allen sieben Koeffizientenvektoren
aus Tabelle 3.1 Datensätze ohne Korrelation zwischen den Kovariablen ermittelt, was für
jede Responseart zu 42 verschiedenen Szenarien für die Bedingung c = 0 führt.

Bedingung
# Ausprägungen je Charakteristik

# Szenarien
p N β β + Σ c

c = 0 3 2 7 - - 42

Σ1 - Σ5 3 2 - 5 2 60

Σ6 - Σ8 3 2 - 8 3 144

Gesamtanzahl Szenarien für eine Responseart 246

Tabelle 3.5: Anzahl an Szenarien für eine Responseart unter verschiedenen Bedingungen
der Charakteristiken.

Für die Kovarianzmatrizen und deren entsprechende Korrelationen wurden etwas kom-
plexe Kombinationen der verschiedenen Ausprägungen angewendet, welche im Weiteren
zwar angesprochen, deren Bedeutungen jedoch erst bei den Auswertungen in Kapitel 3.2
deutlich werden.
Die Korrelation c aller Kovarianzmatrizen wurde auf die Werte 0.3 und 0.9 festgelegt,
wobei für Σ6 bis Σ8 noch zusätzlich c = 0.6 hinzugenommen wurde. Wie bereits im
vorherigen Kapitel angesprochen, wurde nicht jede Kovarianzmatrix auf jeden Koeffizi-
entenvektor angewendet. Um nicht nochmals auf jede einzelne dieser Kombinationen ein-
zugehen, sei auf Tabelle 3.4 verwiesen. Dabei stellt die Kovarianzmatrix Σ6 a allerdings
eine Besonderheit dar, da mit ihr nicht nur eine feste Anzahl an irrelevanten Kovariablen
zusätzlich zu den relevanten Kovariablen blockkorreliert wird, sondern diese Anzahl auch
abhängig von p gewählt wurde. So werden hierbei immer 50 bzw. 80 Prozent aller irre-
levanten Kovariablen für den Koeffizientenvektor β1 zusätzlich blockkorreliert. Dies muss
berücksichtigt werden, wenn die Anzahl an Szenarien für Σ6 - Σ8 in Tabelle 3.5 bestimmt
wird. Insgesamt sind acht Kombinationen aus β + Σ für jedes p definiert worden, da
die Kovarianzmatrizen Σ6 4 - Σ6 39 für die einzelnen p nur jeweils zwei Ausprägungen
darstellen. Damit wurden für eine Responseart 144 verschiedene Szenarien mit den Kova-
rianzmatrizen Σ6 - Σ8 erstellt. Dies führt zu insgesamt 246 verschiedenen Szenarien für
eine Responseart.
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Aufgrund der hohen Anzahl an zu untersuchenden Datensätzen wurden die Berechnun-
gen parallel auf einem Server durchgeführt, wofür das Package parallelMap (Bischl und
Lang, 2015, Version 1.3) verwendet wurde. Der kombinierte multiple rekursive Zufallszah-
lengenerator von L’Ecuyer (1999) stellt dabei während der Seedspezifikation die Repro-
duzierbarkeit der Ergebnisse sicher. Ergänzend dazu ist es mit dem Package mlr (Bischl
et al., 2016, Version 2.11) allgemein möglich, diverse maschinelle Lernverfahren (soge-
nannte Learner) in R zu nutzen. Die Verfahren können mit den darin bereitgestellten
Funktionen auf relativ einfache Weise auch parallel implementiert und ausgewertet wer-
den. Dabei übersteigt die Funktionalität des mlr-Packages oft die der zugrundeliegenden
Basisfunktionen, so sind zum Beispiel auch Parametertuning oder Variablenselektion be-
nutzerfreundlich umsetzbar.

Für die Regressions- und Klassifikationsforest wurden die zwei Learner regr.ranger und
classif.ranger verwendet. Diese greifen auf das Package ranger (Wright und Ziegler, 2017,
Version 0.8.0) zu, welches die schnellste und speicherplatzeffizienteste Implementierung
eines Random Forests bereitstellt. Es wurden damit Random Forests mit 500 Bäum-
en gebildet, da Probst und Boulesteix (2017) gezeigt haben, dass sich die Struktur des
OOB-Fehlers mit einer höheren Anzahl an Bäumen nicht mehr beachtlich ändert. Für
alle Parameter außer mtry wurden die Defaultwerte verwendet. Das bedeutet unter an-
derem, dass sich in jeder Node eines Baumes mindestens eine (Klassifikation) bzw. fünf
(Regression) Beobachtungen befinden. Außerdem wird als Splitkriterium der Gini Index
(Klassifikation) bzw. die minimale Varianz des Response in den entstehenden Unterräum-
en (Regression) angewendet. Für jeden mtry Wert zwischen 1 und p wurde daraufhin ein
Random Forest gebildet und die mittlere OOB-Prädiktionsgüte aus den 500 Wiederho-
lungen für jedes Szenario ermittelt. Diese Prädiktionsgüte kann dann in Abhängigkeit von
mtry als Kurve dargestellt werden, welche im Weiteren als OOB-Kurve bezeichnet wird.
Um eine möglichst glatte Schätzung der OOB-Prädiktionsgüte zu erzielen, ist es nötig die
Anzahl der Wiederholungen ausreichend groß zu wählen. In Abbildung A.1 kann beispiel-
haft für ein Szenario der Kurvenverlauf bei 50, 500 und 1000 Wiederholungen verglichen
werden. Damit wurde überprüft, dass 500 Wiederholungen eine gute Wahl sind, denn mit
1000 Wiederholungen ergibt sich kein glatterer Kurvenverlauf.

Wie schon in Kapitel 2.3.1 angesprochen, kann die OOB-Prädiktionsgüte eines Random
Forests mit verschiedenen Maßen bestimmt werden. Das Package mlr hat neben den in
Kapitel 2.1 vorgestellten Modellgütemaßen eine Vielzahl an weiteren Maßen implemen-
tiert. Um herauszufinden, welches Maß unter diesen ein möglichst eindeutiges optimales
mtry extrahieren kann, wurden verschiedene relevante Maße auf zwei Szenarien angewen-
det. Beispiele für die unterschiedlichen maßabhängigen Kurven der OOB-Prädiktionsgüte
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liefern die Abbildungen in Anhang A.2. Dabei zeigt sich, dass sich die Performancemaße
anhand ihrer OOB-Kurvenverläufe und den damit verbundenen optimalen mtry Werten
in zwei Gruppen einteilen lassen. In der ersten Gruppe hat der Random Forest die opti-
malste Prädiktionsgüte meist für einen kleinen Wert von mtry. Das Optimum lässt sich
bei diesen Performancemaßen durch einen relativ eindeutigen ”Knick“ im Kurvenverlauf
erkennen. Das AUC und Kendall′s τ wurden repräsentativ für diese Maße ausgewählt
und im Weiteren verwendet. In der zweiten Gruppe ist dieser Knick im Kurvenverlauf
nicht mehr zu erkennen. Damit lässt sich das Optimum dieser Performancemaße auch
nicht mehr so eindeutig anhand des Kurvenverlaufs bestimmen und die optimale Prädik-
tionsgüte liegt meist bei höheren mtry Werten als mit Maßen aus der ersten Gruppe. Der
Brier Score und der MSE wurden repräsentativ für diese Gruppe von Performancema-
ßen ausgewählt und im Weiteren verwendet.
Welches Modellgütemaß verwendet wird, sollte spezifisch anhand der vorliegenden Da-
ten entschieden werden, da keine allgemein gültigen Richtlinien existieren, in welchen
Situationen welches Maß Verwendung finden sollte. Eine grobe Vorgabe zur Auswer-
tung von Klassifikationsmethoden mit dem BrierScore oder dem AUC geben allerdings
Hernández-Orallo et al. (2012): Demnach müssen für eine konkrete Wahl aus verschie-
denen Performancemaßen zwei Faktoren berücksichtigt werden. Das sind zum einen die
Einsatzbedingungen des Modells wie Missklassifizierungskosten und/oder Klassenvertei-
lungen und zum anderen auf welche Art und Weise die Klassenzuteilung stattfindet(zum
Beispiel ab welchem Schwellenwert der Prädiktionswahrscheinlichkeit eine Beobachtung
y = 1 zugewiesen bekommt). Wenn allerdings keine Informationen über die Einsatzbe-
dingungen zur Verfügung stehen, sollte auf das AUC zurückgegriffen werden. Oft sind
diese Bedingungen jedoch voraussichtlich nach der Evaluierung, wenn das Modell im Ein-
satz ist und unter Umständen weiterentwickelt wird, bekannt. In diesem Fall und wenn
zusätzlich davon ausgegangen werden kann, dass das Modell zuverlässige Prädiktionen
ermittelt, wird der Brier Score empfohlen. Möglicherweise lassen sich die theoretischen
Herleitungen von Hernández-Orallo et al. (2012) auch auf die in Kapitel 2.1.1 vorgestellten
Modellgütemaße für die Regression übertragen. Dazu bedarf es allerdings einer genaueren
Untersuchung, auf die im Rahmen dieser Arbeit nicht eingegangen werden kann.

Die für diese Arbeit generierten Datensätze berücksichtigen nur lineare Einflussgrößen
(siehe Kapitel 3.1.2). Es wurde allerdings auch überprüft, ob sich das Verhalten der OOB-
Prädiktionsgüte in Abhängigkeit von mtry ändert, wenn nicht-lineare Kovariablen aufge-
nommen werden. Hierfür gibt es verschiedene Möglichkeiten diese zu definieren, die zwei
verwendeten Ansätze werden nun kurz vorgestellt.
Zum einen stellt das R-Package mlbench (Leisch und Dimitriadou, 2010, Version 2.1-1)
eine Funktion zur Verfügung, mit der Daten für das sogenannte Friedman 1 Regressions-
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problem generiert werden können. Dabei werden zehn unabhängige Kovariablen aus einer
Gleichverteilung auf dem Intervall [0, 1] gezogen, wobei nur fünf von diesen den Response
y auf folgende Weise definieren:

y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + εεε.

Dabei gilt für die Fehlerterme ε ∼ N(0, σ). Die damit generierten Datensätze beinhalten
somit drei nicht-lineare, zwei lineare und fünf irrelevante Einflussgrößen. Sowohl σ, die
Varianz der Fehlerterme, als auch die Anzahl an Beobachtungen werden vom Benutzer
festgelegt.
Zum anderen wurden Datensätze ähnlich wie in Kapitel 3.1.2 definiert. Die generierten
Kovariablen x1, . . . ,xp wurden lediglich vor der Responsebildung mit einer Polynomfunk-
tion 3. Grades transformiert. In den Modellgleichungen (3.1) und (3.2) werden somit die
einzelnen Kovariablen xi, i = 1, . . . , p, nur durch (xi)3 ersetzt. Diese Transformation kann
daher für Regressions- und auch für Klassifikationsdatensätze durchgeführt werden.
Anhang A.3 zeigt eine Auswahl der betrachteten OOB-Kurven für diese beiden Ansätze
und ermöglicht einen Vergleich mit den analogen Szenarien auf Basis linearer Einfluss-
größen. Dabei wird deutlich, dass sich der Verlauf und auch die optimalen mtry Werte
nicht wesentlich unterscheiden, weswegen diese zusätzliche Eigenschaft innerhalb der Da-
ten nicht weiter verfolgt wurde.

Das genaue Vorgehen für die Simulation eines Szenarios wird in Algorithmus 2 als Pseu-
docode für W = 500 Wiederholungen zusammengefasst.
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Algorithmus 2: Erstellung einer OOB-Kurve für ein Szenario.
für Response ∈ {metrisch, binär}

für mtry = 1 bis p
für w = 1 bis 500

1. Generiere einen Datensatz entsprechend N, p, β, Σ und c.

2. Definiere einen mlr-Task abhängig vom Response.

3. Bilde mit diesem Task einen entsprechenden Random Forest Learner.

4. Trainiere auf Basis des Learners einen Random Forest mit mtry als An-
zahl zufällig ausgewählter Variablen in jedem Baumsplit und extrahiere die
OOB-Prädiktionen des Forest.

5. Ermittle die gewünschten Performancemaße aus diesen OOB-Prädiktionen
(AUC und Brier Score für Klassifikation bzw. Kendall′s τ und MSE für
Regression).

6. Gebe die Performancemaße zurück.

Ermittle für jedes Performancemaß individuell den Mittelwert über alle
Wiederholungen und die einzelnen mtry Werte.

Stelle die erhaltenen mittleren Performancemaße als OOB-Kurve dar, dabei liegen
die mtry Werte auf der x-Achse und die Performancemaße auf der y-Achse.

3.2 Ergebnisse

Im Folgenden werden die wichtigsten Erkenntnisse aus der Simulation der verschiedenen
Szenarien dargestellt. Dabei werden die Ergebnisse aus den generierten Datensätzen mit
metrischem Response getrennt von den Ergebnissen der Datensätze mit binärem Response
betrachtet. Zudem wird innerhalb dieser Szenarien nach der Korrelationsstruktur der
Kovariablen unterschieden.

3.2.1 Regression

Unkorrellierte Kovariablen

Die OOB-Kurven für die verschiedenen Regressionsszenarien wurden wie in Algorithmus 2
beschrieben ermittelt.
Beispielhaft zeigt Abbildung 3.1 den Verlauf der gemittelten PerformancemaßeKendall′s τ
und MSE in Abhängigkeit des Parameters mtry für zwei verschiedene Szenarien, die sich
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nur durch ihren Koeffizientenvektor unterscheiden. Hierbei werden diejenigen Random
Forests verglichen, welche die wenigsten (β1) und die meisten (β7) relevanten Kovaria-
blen in den Daten beinhalten. Die simulierten Datensätze der Szenarien bestehen aus
N = 1000 Beobachtungen und p = 10 Kovariablen, wobei diese unkorreliert sind und
damit die Kovarianzmatrix Σ als Einheitsmatrix mit Dimension 10× 10 definiert ist. Die
Quadrate markieren das Optimum der jeweiligen Maße und die gestrichelte graue Linie
den Defaultwert für mtry bei dieser Konfiguration.
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Abbildung 3.1: OOB-Kurven der Performancemaße Kendall′s τ und MSE für Regres-
sionsszenarien mit 1000 Beobachtungen, 10 unkorrelierten Kovariablen
und zwei verschiedene Koeffizientenvektoren β1 (eine relevante Kova-
riable) und β7 (nur relevante Kovariablen).

Zunächst fällt auf, dass der Defaultwert von mtry in diesen beiden Beispielen nicht die
beste Wahl darstellt, denn die mtry Werte an den Optima weichen teilweise deutlich davon
ab. Außerdem ist gut zu erkennen, dass für einen bestimmten Koeffizientenvektor je nach
Performancemaß auch verschiedene mtry Parameter gewählt werden sollten, um einen
Random Forest mit optimaler Performance zu erhalten. Für β1 ist dieser Unterschied
nur gering, nachdem Kendall′s τ durch ein mtry von 8 optimal ausfällt und der MSE

für mtry = 10. Für β7 fällt der Unterschied jedoch etwas größer aus, da Kendall′s τ für
mtry = 1 optimal ist und der MSE für mtry = 5.
Es muss jedoch auch erwähnt werden, dass zum Beispiel für Kendall′s τ im Szenario mit
β1 das Maximum nicht so eindeutig ausgeprägt ist wie mit β7. Mit β1 liefern alle Random
Forests mit einem mtry größer oder gleich 6 eine sehr ähnliche Performance. Da Gleiches
auch am Kurvenverlauf des MSE zu erkennen ist, ist es empfehlenswert den besten mtry
Wert nicht am Kurvenoptimum zu wählen, sondern eine geringfügige Anpassung vorzu-
nehmen.
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Im Weiteren wird daher der kleinste mtry Wert, für den das Perfomancemaß eine Abwei-
chung von maximal 0.5 % zum Optimum hat, als optimales mtry bezeichnet. Sei p die
Anzahl an Kovariablen und Pmtry die Performance eines Random Forests mit Parameter
mtry, mtry ∈ [1, p]. Um mithilfe dieser Werte das optimale mtry zu bestimmen, wurden
folgende zwei Schritte durchgeführt:

1. Je nachdem, ob das Performancemaß minimiert oder maximiert werden soll, wird
für jede Ausprägung Pmtry, mtry ∈ [1, p], folgendes Verhältnis ermittelt

vmtry =


Popt

Pmtry
, falls Popt = min(P1, . . . , Pp)

Pmtry

Popt
, falls Popt = max(P1, . . . , Pp).

(3.9)

2. Daraufhin wird jenes optimale mtry gesucht, das die Gleichung

mtryopt = min {mtry | 0.995 ≤ vmtry ≤ 1} (3.10)

erfüllt.

Falls demnach keines der Performancemaße eine Abweichung von 0.5 % einhält, wird der
mtry Wert am Optimum Popt gewählt. Außerdem wird durch die Einschränkung, dass das
Verhältnis vmtry kleiner oder gleich 1 sein muss, sichergestellt, dass das optimale mtry
nicht größer gewählt wird als der mtry Wert am Optimum der Kurve. Insgesamt liefert
diese Anpassung natürlich etwas kleinere Werte für mtry als das Optimum, jedoch birgt
das den Vorteil, dass somit rechensparsamere Modelle bevorzugt werden, die trotzdem
eine ähnlich gute Performance liefern. Der gewählte Schwellenwert für die untere Inter-
vallgrenze von vmtry sollte zwischen 0 und 1 liegen und nicht zu klein gewählt werden,
damit die optimalen mtry Werte nicht zu stark geschrumpft werden. Ein Wert von 0.995
erschien bei Betrachtung der resultierenden optimalen mtry Werte für die Regressionss-
zenarien als sinnvoll.

Für die eben vorgestellten Szenarien ergeben sich nur leicht veränderte optimale mtry
Werte wie Abbildung 3.2 zeigt. Da der MSE im Vergleich zu Kendall′s τ einen relativ
großen Wertebereich besitzt, ist es hierbei selten der Fall, dass eine Abweichung kleiner
0.5 % vom Optimum eintritt. Deswegen bringt die Anpassung für den MSE nur für ei-
ne hohe Anzahl an Kovariablen deutliche Unterschiede im optimalen mtry mit sich. Die
analogen Abbildungen der OOB-Kurven aller betrachteten Szenarien können im elektro-
nischen Anhang, im Unterordner ”Zusätzliche Grafiken“, aufgerufen werden.
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Abbildung 3.2: OOB-Kurven der Performancemaße Kendall′s τ und MSE für Regres-
sionsszenarien mit 1000 Beobachtungen, 10 unkorrelierten Kovariablen
und zwei verschiedenen Koeffizientenvektoren β1 (eine relevante Kova-
riable) und β7 (nur relevante Kovariablen). Zusätzlich sind die mtry
Werte am Optimum und nach der Anpassung gekennzeichnet.

Nun ist von Interesse, wie das optimale mtry für die verschiedenen Szenarien ohne kor-
relierte Kovariablen ausfällt. Abbildung 3.3 fasst diese zusammen und unterscheidet auch
hier wieder zwischen Kendall′s τ und dem MSE als Performancemaß.
Durch die vorab beschriebene Anpassung des optimalen mtrys konnte erreicht werden,
dass auch für den MSE deutlichere Strukturen für die verschiedenen Koeffizientenvekto-
ren zu erkennen sind und die optimalen mtry Werte nicht für fast alle Koeffizientenvek-
toren bei p liegen (Abbildung A.7 zeigt die entsprechenden mtry Werte an den Optima
der OOB-Kurven).
Da die Anzahl an Kovariablen innerhalb der Szenarien zwischen 10, 20 und 50 variiert,
ist hier zur besseren Vergleichbarkeit nicht der absolute mtry Wert auf der y-Achse an-
getragen, sondern der relative. Die Reihenfolge der Koeffizientenvektoren in der Legende
entspricht der Anzahl an stark relevanten Variablen innerhalb der Datensätze mit p = 50,
von den wenigsten am Anfang bis zu den meisten am Ende der Liste. Da sich für einige
der Koeffizientenvektoren Änderungen im optimalen mtry über N überdecken, wurde den
Verbindungslinien in der Höhe eine geringe zufällige Variation aufaddiert, wodurch diese
besser sichtbar sind.
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Abbildung 3.3: Optimale relative mtry Werte für alle 42 betrachteten Regressionsszena-
rien ohne korrelierte Kovariablen getrennt nach den verwendeten Per-
formancemaßen und der Anzahl an Variablen p.
Die Tabelle rechts gibt die Anzahl an stark relevanten Kovariablen für
die einzelnen Koeffizientenvektoren in Abhängigkeit von p an.

Werden zum Beispiel die relativen optimalen mtry Werte der einzelnen Szenarien mit
Kendall′s τ verglichen wird deutlich, dass die mtry Werte über die Anzahl an Beob-
achtungen hinweg vergleichsweise konstant ausfallen. Allerdings ist die Anzahl an stark
relevanten Kovariablen ein Einflussfaktor auf das optimale mtry. Die Reihenfolge der Ko-
effizientenvektoren in der Grafik entspricht fast exakt der Reihenfolge in der Legende, was
bedeutet, je größer die Anzahl an stark relevanten Kovariablen ist, desto kleiner wird das
relative optimale mtry.
Eine Ausnahmen stellt allerdings der Koeffizientenvektor β1 mit nur einer relevanten Ko-
variable dar. Für diesen ist das optimale mtry kleiner als für β2 mit zwei relevanten
Kovariablen. Um diese Tatsache näher zu untersuchen, vergleicht Abbildung 3.4 den Ver-
lauf der einzelnen OOB-Kurven der ersten vier Koeffizientenvektoren für Kendall′s τ und
den MSE. Hierbei ist zu erkennen, dass sich Kendall′s τ über mtry hinweg zwischen β1

und β2 sehr ähnlich verhält. Erst wenn eine höhere Anzahl an relevanten Kovariablen
berücksichtigt wird, wie mit β3 oder β4, ändert sich der Verlauf der Kurve, was zur Folge
hat, dass sich ein eindeutigeres Optimum an einem geringeren mtry ausbildet. Der MSE

zeigt dazu im Vergleich für β1 und β2 nur einen geringen Unterschied in den Kurven-
verläufen, sodass daraus geschlossen werden kann, dass es für die Wahl von mtry nicht
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von Bedeutung ist, ob nun ein oder zwei relevante Kovariablen existieren. Aus diesem
Grund und weil die Rangfolge der beiden Vektoren β1 und β2 die einzige Ausnahme für
Kendall′s τ darstellt, kann trotzdem davon ausgegangen werden, dass je größer die An-
zahl an stark relevanten Kovariablen ist, desto kleiner ist auch das optimale mtry.
Dies ist keine überraschende Erkenntnis, da bereits Bernard et al. (2009) empfohlen ha-
ben, mtry bei nur sehr wenigen relevanten Kovariablen höher zu setzen, um die Wahr-
scheinlichkeit zu steigern, dass auch die wenigen wichtigen Kovariablen im Splitprozess
Berücksichtigung finden.
Jedoch sind nicht nur die stark relevanten Kovariablen von Bedeutung, sondern auch
die weniger relevanten, wie β2 = (7, 8, 0, . . . , 0) und β3 = (7, 7, 7, 20, 20, 0, . . . , 0) zeigen.
Durch drei zusätzliche, weniger relevante Kovariablen stellt sich für β3 ein deutlich gerin-
gerer optimaler mtry Wert heraus, als für β2.
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Abbildung 3.4: OOB-Kurven der Performancemaße Kendall′s τ und MSE für Regres-
sionsszenarien mit 500 Beobachtungen, 20 unkorrelierten Kovariablen
und den Koeffizientenvektoren β1 bis β4.

Die ersten vier Koeffizientenvektoren besitzen über p hinweg alle die gleiche Anzahl an re-
levanten Kovariablen. Dabei lässt sich mit Kendall′s τ als Performancemaß gut erkennen,
dass der relative optimale mtry Wert über p hinweg sehr ähnlich ist. Denn ob nun, wie bei
β2, zwei aus zehn Kovariablen relevant sind oder zwei aus 20 Kovariablen, führt in beiden
Fällen zu einem relativen mtry von ca. 0.5. Das heißt, bei nur sehr wenigen relevanten
Kovariablen innerhalb der Daten scheint anhand dieser Ergebnisse die absolute Anzahl
an stark relevanten Kovariablen eine wichtige Rolle zu spielen und nicht unbedingt deren
Anteil innerhalb der p Kovariablen.
Vergleichbares zeigt sich auch an β5 und β6: Je größer dabei die Anzahl an Variablen
p, desto mehr stark relevante Kovariablen werden berücksichtigt, diese stellen allerdings
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jeweils einen ähnlichen Anteil innerhalb der p Kovariablen dar. In Abbildung 3.3 ist für
diese beiden Koeffizientenvektoren mit ähnlichem Anteil an relevanten Kovariablen das
optimale relative mtry nicht konstant für alle p, sondern sinkt mit steigendem p und da-
mit mit steigender Anzahl an stark relevanten Kovariablen.

Werden die optimalen mtry Werte für Kendall′s τ und für den MSE verglichen, können
auf Basis dieser Szenarien zwei Unterschiede ausgemacht werden: Zum einen liegt das
optimale mtry mit dem MSE als Performancemaß immer über dem Defaultwert, was für
Kendall′s τ nicht gilt. Zum anderen variieren die mtry Werte mit dem MSE für einzelne
Koeffizientenvektoren in Abhängigkeit der Anzahl an Beobachtungen. Diese Variationen
belaufen sich allerdings auf maximal 10%, was absolut gesehen nur einer mtry-Änderung
zwischen 1 (p = 10) und 5 (p = 50) entspricht. Diese kleinen Unterschiede zwischen
verschiedenen N kommen für den MSE vor allem durch das Fehlen eines eindeutigen
Optimums zustande, was bereits Abbildung 3.4 gezeigt hat. Damit sind auch leichte Ab-
weichungen vom optimalen mtry für den MSE denkbar, mit denen sich trotzdem eine
vergleichbare Modellperformance ergibt. Die fehlenden eindeutigen Optima für den MSE,
können auch für die insgesamt vergleichsweise hohen optimale mtry Werte verantwortlich
sein.
Wie auch schon mit Kendall′s τ entspricht auch hierbei die Reihenfolge der Koeffizien-
tenvektoren nahezu der Reihenfolge in der Legende, also der Anzahl an stark relevanten
Kovariablen, wobei für β3, β4 und β5 einzelne Abweichungen zu erkennen sind.

Korrellierte Kovariablen mit Σ1 - Σ5

Wenn im Weiteren von Szenarien mit (block)korrelierten Kovariablen gesprochen wird,
ist im Allgemeinen nicht gemeint, dass alle Kovariablen miteinander korreliert sind, son-
dern, dass eine Kovarianzmatrix ungleich der Einheitsmatrix definiert wurde. Da diese
Korrelationen unter anderem auch Einfluss auf die Variablenwichtigkeit haben (siehe Ka-
pitel 2.3.2) werden auch einige Grafiken dazu vorgestellt. Wie dabei die mittlere relative
Variablenwichtigkeit bestimmt und die entsprechenden mtry Werte ausgewählt wurden
beschreibt Anhang A.4.

Ähnlich zu den vorhergehenden Datensätzen mit unkorrelierten Kovariablen stellt Ab-
bildung 3.5 die optimalen mtry Werte der Szenarien für die Koeffizientenvektoren β3,
β5 und β7 mit den Kovarianzmatrizen Σ1 bis Σ5 dar. Da die Verläufe kaum von der
Anzahl an Variablen p beeinflusst werden, sind diese beispielhaft nur für p = 20 darge-
stellt, die weiteren Abbildungen können dem Anhang A.6 entnommen werden. Mit diesen
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Abbildungen kann zum einen untersucht werden, wie sich das optimale mtry für verschie-
dene Korrelationsstärken verhält und zum anderen aber auch, ob Unterschiede zwischen
den Performancemaßen existieren. Die einzelnen Koeffizientenvektoren unterscheiden sind
farblich und je nach verwendeter Kovarianzmatrix sind die Szenarien durch eine niedrigere
Farbintensität von der Ausgangssituation ohne Korrelationen abgesetzt.
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Abbildung 3.5: Optimale mtry Werte für alle 20 betrachteten Regressionsszenarien mit
p = 20, β3, β5 oder β7 und korrelierten Kovariablen getrennt nach
den verwendeten Performancemaßen und Korrelationen c. In der linken
Spalte sind zum Vergleich die optimalen mtry Werte für die analogen
Szenarien ohne korrelierte Kovariablen angetragen.
Die Definitionen der einzelnen Koffizientenvektoren und Kovarianzma-
trizen sind in den Tabellen 3.1 und 3.2 zusammengefasst.

Beginnend mit dem Koeffizientenvektor β3 = (7, 7, 7, 20, 20, 0, . . . 0) ist für c = 0.3 mit
keiner der beiden Kovarianzmatrizen und für keines der Performancemaße eine deutliche
Veränderung des optimalen mtry zu erkennen (im Vergleich zum analogen Szenario mit
unkorrelierten Kovariablen). Das ändert sich jedoch, wenn die Korrelation auf c = 0.9 an-
steigt. Diese Korrelation bewirkt laut Strobl et al. (2008), dass vor allem für kleinere mtry
die korrelierten Kovariablen als Splitkandidaten bevorzugt werden und dadurch die Varia-
blenwichtigkeiten von weniger relevanten oder gar irrelevanten Kovariablen überschätzt
werden. Wie in Abbildung 3.3 beobachtet, gilt für Szenarien mit unkorrelierten Kova-
riablen: Je mehr relevante Kovariablen existieren, desto kleiner wird das optimale mtry.
Wenn nun durch Korrelation innerhalb der Daten mehr Kovariablen als relevant erkannt
werden, könnte vermutet werden, dass das optimale mtry im Vergleich zum unkorrelierten
Szenario kleiner ausfällt. Dies bestätigt sich allerdings nicht. Denn für Σ4, wenn also nur
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eine stark relevante und eine irrelevante Kovariable korreliert sind, bleibt das optimale
relative mtry für Kendall′s τ zwar noch konstant, steigt aber fast auf das Doppelte an,
sobald noch eine weniger relevante Kovariable zusätzlich blockkorreliert wird (Σ5). Der
MSE hingegen steigt für diese beiden Korrelationsstrukturen nur geringfügig an. Diese
Beobachtungen widersprechen somit auch Strobl et al. (2008), die für das Szenario mit
Σ5 und einem kleinen mtry eine höhere Prädiktionsgüte erwartet hätten. Möglicherweise
lassen sich allerdings die Erkenntnisse aus genannter Studie nicht direkt auf Random Fo-
rests basierend auf CART-Entscheidungsbäume wie in dieser Arbeit anwenden.
Wie Abbildung 3.6 der Variablenwichtigkeiten für diese Szenarien zeigt, können tatsächlich
Abweichungen für die Variablenwichtigkeiten der drei korrelierten Kovariablen (1, 4 und
6) im Vergleich zum unkorrelierten Szenario ausgemacht werden. Die Abweichungen der
Variablen 1 und 6 können jedoch durch ein größeres mtry verringert werden. Warum
erst die Hinzunahme einer weniger relevanten korrelierten Kovariable (Σ5) das optima-
le mtry ansteigen lässt, kann anhand der beschriebenen Szenarien und Random Forest
Eigenschaften nicht sicher geklärt werden.
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Abbildung 3.6: Mittlere relative Permutation Importance über 500 Wiederholungen mit
den Spezifikationen: Metrischer Response, β3 = (7, 7, 7, 20, 20, 0, . . . , 0),
N = 500, 20 unkorrelierte Kovariablen bzw. Kovarianzmatrizen Σ4 und
Σ5 mit c = 0.9. Die dabei jeweils blockkorrelierten Kovariablen sind im
Titel gekennzeichnet. Die verschiedenen mtry Werte je Szenario ent-
sprechen dem Defaultwert und den optimalen mtry Werten für die Per-
formancemaße Kendall′s τ und MSE.

Auch für den Koeffizientenvektor β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18) wurden zwei verschie-
dene Kovarianzmatrizen verwendet. Σ2 blockkorreliert dabei die 15 weniger relevanten Ko-
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variablen. Das hat zur Folge, dass bereits bei einer Korrelation von 0.3 ein etwas höherer
mtry Wert (im Vergleich zum unkorreliertem Szenario) die optimale Modellperformance
in Bezug auf Kendall′s τ liefert. Dieser Effekt verstärkt sich sogar deutlich für c = 0.9. Ist
dagegen nur eine Blockkorrelation der stark relevanten Kovariablen mit der Kovarianz-
matrix Σ3 definiert, hat dies für Kendall′s τ kaum Auswirkungen auf das optimale mtry,
unabhängig von der Stärke der Korrelation. Da dies dem Fall 4 von Gregorutti et al. (2016)
entspricht, wird erwartet, dass die Variablenwichtigkeit der unkorrelierten, weniger rele-
vanten Kovariablen überschätzt werden könnte. Abbildung 3.7 vergleicht die zugehörigen
Variablenwichtigkeiten für das unkorrelierte Szenario und die beiden Korrelationsszenari-
en. Entgegen den Erwartungen steigen die Variablenwichtigkeiten der weniger relevanten
Kovariablen mit Σ3 für keines der betrachteten mtry an. Sind jedoch nur die weniger
relevanten Kovariablen blockkorreliert (Σ2), ist für alle betrachteten mtry eine deutliche
Überschätzung dieser Variablenwichtigkeiten zu erkennen, wobei diese Überschätzung für
ein großes mtry am kleinsten ist. Dies könnte auch Grund für das etwas größere optimale
mtry für dieses Szenario sein.
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Abbildung 3.7: Mittlere relative Permutation Importance über 500 Wie-
derholungen mit den Spezifikationen: metrischer Response,
β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18), N = 500, 20 unkorrelierte
Kovariablen bzw. Kovarianzmatrizen Σ2 und Σ3 mit c = 0.9. Die dabei
jeweils blockkorrelierten Kovariablen sind im Titel gekennzeichnet. Die
verschiedenen mtry Werte je Szenario entsprechen dem Defaultwert
und den optimalen mtry Werten für die Performancemaße Kendall′s τ
und MSE.

Im Gegensatz zu Kendall′s τ nimmt der optimale mtry Wert mit dem MSE für eine
steigende Korrelation c ab, wenn nur die stark relevanten Kovariablen blockkorreliert sind
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(Σ3). In diesem Fall nähern sich die Variablenwichtigkeiten für das kleinste mtry = 2 am
stärksten an die Variablenwichtigkeiten des unkorrelierten Szenarios an, was vielleicht das
kleinere optimale mtry für den MSE induziert. Wohingegen die Korrelation der weniger
relevanten Kovariablen, wie auch schon mit Kendall′s τ , ebenfalls einen Anstieg des
optimalen mtry in Bezug auf den MSE verursacht. Dieses Verhalten führt auch dazu, dass
sich die optimalen mtry mit den beiden Performancemaßen für diesen Koeffizientenvektor
und c = 0.9 nicht mehr so stark unterscheiden.
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Abbildung 3.8: Mittlere relative Permutation Importance über 500 Wie-
derholungen mit den Spezifikationen: metrischer Response,
β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4), N = 500, 20 unkorrelierte Kovaria-
blen bzw. Kovarianzmatrix Σ1 mit c = 0.9. Die dabei blockkorrelierten
Kovariablen sind sind im Titel gekennzeichnet. Die verschiedenen mtry
Werte je Szenario entsprechen dem Defaultwert und den optimalen
mtry Werten für die Performancemaße Kendall′s τ und MSE.

Für den letzten betrachteten Koeffizientenvektor β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4) wurde
nur eine Korrelationsstruktur mit der Kovarianzmatrix Σ1 berücksichtigt. Dabei werden
alle Kovariablen, welche in diesem Fall eine ähnliche Einflussstärke besitzen, blockkorre-
liert. Durch die leicht verschiedenen Koeffizientenausprägungen wird nicht exakt der Fall
3 von Gregorutti et al. (2016) abgebildet, weswegen hier zu erwarten ist, dass die Varia-
blenwichtigkeiten der Kovariablen mit Koeffizientenausprägungen 2 wie im Fall 4 etwas
überschätzt werden. Gleichzeitig wird aber auch die Variablenwichtigkeit der Kovariablen
mit Koeffizientenausprägungen 4 unterschätzt, wodurch sich die Auswahlhäufigkeiten aller
Kovariablen angleichen. Siehe dazu auch Abbildung 3.8 der simulierten Variablenwichtig-
keiten. Allerdings sollten diese Unterschiede in den Auswahlhäufigkeiten im Vergleich zum
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unkorrelierten Szenario für die sehr ähnlichen Koeffizientenausprägungen keinen gravie-
renden Einfluss auf die Modellperformance haben, wodurch ein ähnliches optimales mtry
erwartet wird. Für Kendall′s τ trifft diese Theorie auch bei steigender Korrelation c zu,
denn das optimale mtry bleibt konstant bei einem Wert von 1. Jedoch ist für den MSE

mit steigendem c ein deutlich kleineres mtry als im unkorrelierten Szenario zu bevor-
zugen, wodurch sich bei hoher Korrelation in diesem Szenario wieder ähnliche optimale
mtry Werte für beide Performancemaße ergeben.

Für die Unterschiede zwischen Kendall′s τ und dem MSE muss allerdings auch berück-
sichtigt werden, dass sich mit Kendall′s τ im Vergleich zum MSE bereits für die un-
korrelierten Szenarien kleinere optimale mtry Werte ergeben, womit natürlich für dieses
Performancemaß keine großen Veränderungen hinsichtlich eines noch kleineren mtry be-
obachtet werden können. Allerdings lassen sich die sinkenden optimalen mtry Werte mit
dem MSE zum Beispiel für β5 und Σ3 oder β7 und Σ1 mit den betrachteten Random
Forest Eigenschaften nicht mit Sicherheit erklären. Denn es gilt beispielsweise für β5 und
Σ3 nicht, dass in diesem Szenario eine höhere Anzahl an relevanten Kovariablen erkannt
wird, weswegen ein kleines mtry nachvollziehbar wäre.
Jedoch haben diese Analysen gezeigt, dass die Theorien von Gregorutti et al. (2016) und
Strobl et al. (2008) eine guten Ansatz liefern und verschiedene Kovarianzstrukturen auch
einen Einfluss auf das optimale mtry besitzen können. Möglicherweise existieren durch
die Korrelation einiger Kovariablen noch weitere Effekte, die bisher nicht berücksichtigt
wurden und anhand der vorliegenden Szenarien nicht deutlich werden.

Korrellierte Kovariablen mit Σ6 - Σ8

Für die Koeffizientenvektoren β1 = (7, 0 . . . , 0) und β4 = (7, 7, 7, 7, 7, 0, . . . , 0) wurden
noch weitere Szenarien mit verschiedenen Kovarianzmatrizen definiert, um etwas struktu-
rierter zu untersuchen, ob ein eindeutiger Effekt der Korrelation irrelevanter Kovariablen
auf das optimale mtry nachgewiesen werden kann.
Für β1 und 20 Kovariablen sind dies die Kovarianzmatrizen Σ6 2, Σ6 9 und Σ6 15, mit
denen neben der relevanten Kovariable jeweils 2, 9 bzw. 15 der irrelevanten Kovariablen
zusätzlich blockkorreliert werden. Außerdem kann mit Σ7 überprüft werden, wie sich das
optimale mtry verhält, wenn nur die irrelevanten Kovariablen blockkorreliert sind. Ab-
bildung 3.9 stellt die optimalen mtry in Abhängigkeit der verwendeten Korrelationen
c ∈ {0.3, 0.6, 0.9} und der Performancemaße Kendall′s τ und MSE für p = 20 dar. Die
optimalen mtry Werte für p = 10 und p = 50 sind im Anhang A.7.1 zu finden.
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Abbildung 3.9: Optimale mtry Werte für Regressionsszenarien mit β1 und p = 20 kor-
relierten Kovariablen getrennt nach den verwendeten Performancema-
ßen und Korrelationen c. Zusätzlich sind in jeder Grafik die optimalen
mtry Werte für die analogen Szenarien ohne korrelierte Kovariablen
ergänzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.

Mit Kendall′s τ ist für diese Szenarien durch die Hinzunahme von blockkorrelierten, irre-
levanten Kovariablen nur ein geringfügiger Anstieg des optimalen mtry im Vergleich zum
unkorrelierten Szenario (c = 0) zu erkennen. Dabei kann jedoch kein deutlicher Unter-
schied zwischen den einzelnen Kovarianzmatrizen Σ6 ausgemacht werden. Die Korrelati-
on der irrelevanten Kovariablen (Σ7) bewirkt dagegen keine Veränderung des optimalen
mtry im Vergleich zum unkorrelierten Szenario. Die Mehrzahl der optimalen mtry mit
dem MSE liegt bei 20, womit sich auch hier kein Einfluss der Kovarianzmatrizen erken-
nen lässt. Die einzelnen OOB-Kurven für Kendall′s τ und den MSE in Abbildung 3.10
verstärken diesen Eindruck, denn für keine der genannten Kovarianzstrukturen mit Kor-
relation c = 0.9 tritt eine Änderung im Kurvenverlauf ein.
Bei nur einer relevanten Kovariable in den Daten ist demnach der Einfluss der Korrelation
sehr gering und zeigt keine bedeutenden Auswirkungen auf das optimale mtry.
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Abbildung 3.10: OOB-Kurven der Performancemaße Kendall′s τ und MSE für Re-
gressionsszenarien mit 500 Beobachtungen, 20 korrelierte Kovariablen
(c = 0.9) und Koeffizientenvektor β1.

Andere Erkenntnisse liefern dagegen die Korrelationsstrukturen des Koeffizientenvektors
β4 mit fünf relevanten Kovariablen. Hierbei wurden ebenfalls vier verschiedene Kovari-
anzmatrizen angewendet: Mit Σ6 0 werden nur die relevanten Kovariablen blockkorreliert.
Diese Struktur wird durch zwei weitere irrelevante Kovariablen ergänzt, indem Σ6 2 an-
gewendet wird. Mit Σ7 können nur die irrelevanten Kovariablen blockkorreliert definiert
werden und Σ8 kombiniert die Korrelation von relevanten und irrelevanten Kovariablen,
wobei jeweils die Hälfte der relevanten (=̂ 2 Kovariablen) und die Hälfte der irrelevan-
ten Kovariablen (=̂ 7 Kovariablen für p = 20) blockkorreliert werden. Die dabei mit den
Performancemaßen Kendall′s τ und MSE resultierenden optimalen mtry sind für die
Szenarien mit p = 20 Kovariablen und verschiedenen Korrelationen c in Abbildung 3.11
dargestellt. Die optimalen mtry für die analogen Szenarien mit p = 10 und p = 50 sind
im Anhang A.7.1 dargestellt.
Mit Kendall′s τ ist für eine steigende Korrelation kaum eine Änderung im optimalen
mtry im Vergleich zum unkorrelierten Szenario zu erkennen, wenn nur die relevanten
(Σ6 0) oder auch zusätzlich dazu noch zwei weitere irrelevante Kovariablen (Σ6 2) block-
korreliert sind. Auch die alleinige Korrelation der irrelevanten Kovarialben (Σ7) lässt das
optimale mtry nur für eine sehr starke Korrelation von c = 0.9 geringfügig anwachsen.
Sind jedoch jeweils die Hälfte der relevanten als auch die Hälfte der irrelevanten Kovaria-
blen blockkorreliert (Σ8) wird das optimale mtry für eine steigende Korrelation deutlich
größer. Liegt es im unkorrelierten Szenario noch bei mtry = 4, so ist es zum Beispiel mit
c = 0.9 und N = 500 bei mtry = 14.
Für den MSE ergeben sich allerdings andere Effekte für die einzelnen Kovarianzmatrizen:
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So sinkt das optimale mtry deutlich, wenn nur die relevanten (Σ6 0) oder auch zusätzlich
dazu noch zwei weitere irrelevante Kovariablen (Σ6 2) blockkorreliert sind. Dagegen ändert
es sich kaum, wenn nur die irrelevanten (Σ7) oder auch jeweils die Hälfte der irrelevanten
und relevanten (Σ8) Kovariablen korreliert sind.
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Abbildung 3.11: Optimale mtry Werte für Regressionsszenarien mit β4 und p = 20 kor-
relierten Kovariablen getrennt nach den verwendeten Performancema-
ßen und Korrelationen c. Zusätzlich sind in jeder Grafik die optimalen
mtry Werte für die analogen Szenarien ohne korrelierte Kovariablen
ergänzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.

Werden noch die Variablenwichtigkeiten der 500 Wiederholungen berücksichtigt, welche
Abbildung 3.12 darstellt, so sind die Variablenwichtigkeiten der fünf korrelierten Kovaria-
blen mit Σ6 0 und dem kleinsten mtry = 3 am größten. Dies kann vielleicht eine mögliche
Ursache für das gesunkene optimale mtry mit dem MSE sein. Theoretisch wird dage-
gen ein ähnliches optimales mtry wie im unkorrelierten Szenario erwartet, denn auch im
unkorrelierten Fall werden die relevanten Kovariablen am häufigsten ausgewählt und die-
se Auswahlhäufigkeiten sollten sich durch die Blockkorrelation nicht stark ändern. Die
Variablenwichtigkeiten mit Σ7 ähneln sich für alle betrachteten mtry, allerdings ist mit
einem relativ geringem mtry = 6 eine leichte Überschätzung der korrelierten irrelevan-
ten Kovariablen zu erkennen. Werden jeweils die Hälfte der relevanten und irrelevanten
Kovarialben blockkorreliert (Σ8), so führt das dazu, dass die Variablenwichtigkeiten der
unkorrelierten relevanten Kovariablen etwas unterschätzt werden und dagegen die kor-
relierten irrelevanten Kovariablen überschätzt werden. Diese Überschätzung fällt für ein
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größeres mtry jedoch kleiner aus, was für das höhere optimale mtry spricht.
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Abbildung 3.12: Mittlere relative Permutation Importance über 500 Wie-
derholungen mit den Spezifikationen: metrischer Response,
β4 = (7, 7, 7, 7, 7, 0, . . . , 0), N = 500, 20 unkorrelierte Kovaria-
blen bzw. Kovarianzmatrizen Σ6 bis Σ8 mit c = 0.9. Die dabei
blockkorrelierten Kovariablen sind in den Titeln gekennzeichnet. Die
verschiedenen mtry Werte je Szenario entsprechen dem Default-
wert und den optimalen mtry Werten für die Performancemaße
Kendall′s τ und MSE.

3.2.2 Klassifikation

Unkorrellierte Kovariablen

Auf gleiche Weise wie für die Regressionsszenarien wurden auch die OOB-Kurven für
die verschiedenen Klassifikationsszenarien nach Algorithmus 2 ermittelt. Da sich die all-
gemeinen Interpretationen für die optimalen mtry zwischen den beiden Responsearten
stark ähneln werden im Weiteren vor allem Auffälligkeiten angesprochen.

In Abbildung 3.13 sind beispielhaft für zwei Szenarien die OOB-Kurven auf Basis des
AUC und des Brier Scores dargestellt. Dabei werden wie auch schon für die Regressi-
onsszenarien diejenigen Random Forests verglichen, welche die wenigsten (β1) und die
meisten (β7) relevanten Kovariablen in den Daten beinhalten. Ebenso bestehen die Da-
tensätze dieser beiden Szenarien aus N = 1000 Beobachtungen und p = 10 unkorrelierten
Kovariablen. Das angetragene optimale mtry wurde hierbei wieder über die Anpassung
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aus den Gleichungen (3.9) und (3.10) ermittelt (Abbildung A.8 fasst für alle Koeffizien-
tenvektoren die mtry Werte ohne Anpassung, also am Optimum, zusammen). Mit einem
unteren Schwellenwert von 0.995 für das Verhältnis vmtry in (3.10) werden jedoch die op-
timalen mtry Werte besonders für das AUC etwas zu stark geschrumpft. Daher wurde
dieser Wert für die Klassifikationsszenarien auf 0.999 angehoben, womit nun das kleinste
mtry, dessen Performancemaß eine Abweichung von maximal 0.1% zum Optimum besitzt,
als optimales mtry bezeichnet wird.
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Abbildung 3.13: OOB-Kurven der Performancemaße AUC und Brier Score für
binären Response mit 1000 Beobachtungen, 10 unkorrelierten Kovaria-
blen und zwei verschiedenen Koeffizientenvektoren β1 (eine relevante
Kovariablen und β7 (nur relevante Kovariablen).

Je nach residuen- oder rangbasiertem Performancemaß ähneln die Kurvenverläufe da-
bei stark den Regressionsverläufen. Die Abweichungen der optimalen mtry Werte vom
Defaultwert fallen jedoch für die beiden betrachteten Szenarien nicht besonders groß aus.
Das liegt daran, dass die optimalen mtry Werte mit dem AUC alle sehr klein sind und na-
he am Defaultwert liegen und β1 für den Brier Score eine Ausnahme darstellt, was beides
in Abbildung 3.14 deutlich wird. Hier sind die optimalen mtry für alle sieben betrachte-
ten Koeffizientenvektoren dargestellt. Die Unterschiede im optimalen mtry zwischen den
einzelnen Koeffizientenvektoren sind mit dem AUC teilweise sehr gering. Trotzdem ist
eine Tendenz zu erkennen, denn bei ein oder zwei relevanten Kovariablen (β1 und β2) ist
das optimale mtry am größten und dagegen ist es für eine große Anzahl an relevanten
Kovarialben (β6 und β7) sehr klein. Damit gilt auch für diese Szenarien, je mehr relevante
Kovariablen existieren, desto kleiner wird das optimale mtry.
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Abbildung 3.14: Optimale relative mtry Werte für alle 42 betrachteten Klassifikations-
szenarien ohne korrelierte Kovariablen getrennt nach den verwendeten
Performancemaßen und der Anzahl an Variablen p.
Die Tabelle rechts gibt die Anzahl an stark relevanten Kovariablen für
die einzelnen Koeffizientenvektoren in Abhängigkeit von p an.

Im Vergleich dazu fällt es in Abbildung 3.14 schwer mit dem Brier Score solch ein-
deutige Aussagen zu treffen. Eine Erklärung für die stark schwankenden optimale mtry
Werte liefert Abbildung 3.15. Denn hier ist gut zu erkennen, dass sich der grundsätzliche
Kurvenverlauf der OOB-Kurven mit dem Brier Score für keinen der vier betrachteten Ko-
effizientenvektoren gravierend ändert. Dagegen ist mit dem AUC bereits bei zwei stark
relevanten und drei weniger relevanten Kovariablen (β3) ein konkretes Optimum aus-
zumachen. Dadurch, dass dieses Optimum jedoch für ein verhältnismäßig kleines mtry
angenommen wird, ergibt sich für dieses Szenario mit dem AUC kein Unterschied im
optimalen mtry zu β4 mit fünf stark relevanten Kovariablen.

Insgesamt kann also für diese Klassifikationsszenarien nicht so augenscheinlich wie für die
Regressionsszenarien nachgewiesen werden, welche Auswirkung die Relevanz der einzelnen
Kovariablen auf das optimale mtry besitzt. Jedoch ist die gleiche Tendenz zu erkennen:
Die optimalen mtry sind für Szenarien mit wenigen relevanten Kovariablen meist höher
als für Szenarien mit vielen ähnlich relevanten Kovariablen.
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Abbildung 3.15: OOB-Kurven der Performancemaße AUC und Brier Score für Klas-
sifikationsszenarien mit 500 Beobachtungen, 20 unkorrelierten Kova-
riablen und den Koeffizientenvektoren β1 bis β4.

Korrellierte Kovariablen mit Σ1 - Σ5

Auch für die Klassifikationsszenarien wurden die Kovarianzmatrizen Σ1 bis Σ5 für die
Koeffizientenvektoren β3, β5 und β7 angewendet. Die dabei resultierenden optimalen
mtry für p = 20 sind in Abbildung 3.16 dargestellt. Auch hier sind in der linken Spalte die
Szenarien ohne korrelierte Kovariablen abgebildet und die verwendeten Kovarianzmatrizen
sind durch verschiedene Farbintensitäten den jeweiligen Koeffizientenvektoren zuordenbar.
Die Abbildungen für p = 10 und p = 50 sind im Anhang A.6.2 zu finden.
Abhängig von den verwendeten rang- bzw. residuenbasierten Performancemaßen zeigen
sich mit diesen Kovarianzstrukturen innerhalb der Daten bei steigender Korrelation c

sehr ähnliche Veränderungen im optimalen mtry wie schon für die Regressionsszenarien.
Tabelle 3.6 stellt die Ergebnisse der beiden Responsearten gegenüber. Dadurch ergeben
sich die gleichen Interpretationen wie zuvor in Kapitel 3.2.1. Analoge Abbildungen für die
entsprechenden Variablenwichtigkeiten der Klassifikationsszenarien wie in Kapitel 3.2.1
können Anhang A.8 entnommen werden.
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Abbildung 3.16: Optimale mtry Werte für alle 20 betrachteten Klassifikationsszenari-
en mit p = 20, β3, β5 oder β7 und korrelierten Kovariablen getrennt
nach den verwendeten Performancemaßen und Korrelationen c. In der
linken Spalte sind zum Vergleich die optimalen mtry Werte für die
analogen Szenarien ohne korrelierte Kovariablen angetragen.
Die Definitionen der einzelnen Koffizientenvektoren und Kovarianz-
matrizen sind in den Tabellen 3.1 und 3.2 zusammengefasst.

rangbasierte Performancemaße residuenbasierte Performancemaße

Klassifikation Regression Klassifikation Regression
AUC Kendall′s τ Brier Score MSE

β3 −Σ4 → → → (→)

β3 −Σ5 (→) ↗ → (→)

β5 −Σ2 ↗ ↗ ↗ ↗

β5 −Σ3 (→) (→) ↘ ↘

β7 −Σ1 → → ↘ ↘

Tabelle 3.6: Gegenüberstellung der Veränderungen im optimalen mtry bei steigender
Korrelation c für die Klassifikations- und Regressionsszenarien mit Kova-
rianzmatrizen Σ1 bis Σ5. Ein gleichbleibendes mtry ist dabei mit → ge-
kennzeichnet, ein steigendes mtry mit ↗ und ein sinkendes mtry mit ↘.
Ist das Ansteigen oder Absinken durch eine steigende Korrelation c im Ver-
gleich zum unkorrelierten Szenario nur sehr gering (mtry Differenz ≤ 3),
ist dies durch (→) dargestellt.
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Korrellierte Kovariablen mit Σ6 - Σ8

Auch für die Szenarien mit binären Response und Kovarianzmtarizen Σ6 - Σ8 für die
Koeffizientenvektoren β1 = (7, 0, . . . , 0) und β4 = (7, 7, 7, 7, 7, 0, . . . , 0) zeigen sich in Ab-
bildung 3.17 und 3.18 ähnliche Veränderungen im optimalen mtry wie auch schon bei den
jeweiligen Regressionsszenarien mit p = 20 Kovariablen. Für p = 10 und p = 50 sind die
optimalen mtry im Anhang A.7.2 abgebildet. Außerdem sind die Variablenwichtigkeiten
für β4 in Abbildung A.24 ergänzt. Aufgrund der geringen Unterschiede zwischen den Re-
sponsearten, welche in Tabelle 3.7 zusammengefasst sind, gelten somit die Ergebnisse und
Interpretationen aus Kapitel 3.2.1 ebenso für die entsprechenden Klassifikationsszenarien.
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Abbildung 3.17: Optimale mtry Werte für Klassifikationsszenarien mit p = 20, β1 und
korrelierten Kovariablen getrennt nach den verwendeten Performan-
cemaßen und Korrelationen c. Zusätzlich sind in jeder Grafik die op-
timalen mtry Werte für die analogen Szenarien ohne korrelierte Ko-
variablen ergänzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.
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Abbildung 3.18: Optimale mtry Werte für Klassifikationsszenarien mit p = 20, β4 und
korrelierten Kovariablen getrennt nach den verwendeten Performan-
cemaßen und Korrelationen c. Zusätzlich sind in jeder Grafik die op-
timalen mtry Werte für die analogen Szenarien ohne korrelierte Ko-
variablen ergänzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.

rangbasierte Performancemaße residuenbasierte Performancemaße

Klassifikation Regression Klassifikation Regression
AUC Kendall′s τ Brier Score MSE

β1 −Σ6 2 (→) (→) → (→)

β1 −Σ6 9 (→) (→) → (→)

β1 −Σ6 15 → (→) (→) (→)

β1 −Σ7 ↗ → (→) →

β4 −Σ6 0 (→) (→) ↘ ↘

β4 −Σ6 2 (→) → ↘ ↘

β4 −Σ7 (→) (→) ↗ (→)

β4 −Σ8 ↗ ↗ (→) (→)

Tabelle 3.7: Gegenüberstellung der Veränderungen im optimalen mtry bei steigender
Korrelation c für die Klassifikations- und Regressionsszenarien mit β1 bzw.
β4 und Kovarianzmatrizen Σ6 bis Σ8. Ein gleichbleibendes mtry ist dabei
mit → gekennzeichnet, ein steigendes mtry mit ↗ und ein sinkendes mtry
mit ↘. Ist das Ansteigen oder Absinken durch eine steigende Korrelation c
im Vergleich zum unkorrelierten Szenario nur sehr gering (mtry Differenz
≤ 3), ist dies durch (→) dargestellt.
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4 Empfehlungen zur mtry Wahl

In den vorherigen Kapiteln wurde deutlich, dass der Random Forest Hyperparamter mtry
sehr stark von der Anzahl an relevanten Kovariablen innerhalb eines Datensatzes und der
Korrelation der Kovariablen abhängt. Daher ist es empfehlenswert, besonders diese beiden
Eigenschaften eines Datensatzes zu berücksichtigen, wenn ein Wert für mtry festgelegt
werden soll. Ebenfalls sollte allerdings auch das gewählte Modellgütemaß Beachtung fin-
den, da Kapitel 3.2 auch gezeigt hat, dass die Performance eines Random Forests je nach
Maß für unterschiedliche mtry Werte optimiert werden kann.
Im Folgenden werden Möglichkeiten vorgestellt, mit denen diese Eigenschaften bestimmt
werden können. Außerdem wird anhand zweier Beispiele überprüft, ob sich damit ein
nahezu optimales mtry bestimmen lässt.

4.1 Messung der Korrelation und Relevanz von Kovariablen

Die Stärke des Zusammenhangs von Kovariablen lässt sich mit verschiedenen Korrelati-
onsmaßen bestimmen. Neben dem in Kapitel 2.1.1 vorgestellten Kendall′s τ beschreiben
Fahrmeir et al. (2006, S. 135 - 146) auch zwei weitere Zusammenhangsmaße für metri-
sche Variablen: Der Bravais-Person-Korrelationskoeffizient misst demnach lineare Zusam-
menhänge von Variablen. Dagegen kann mit dem Spearman-Korrelationskoeffizient die
Stärke des monotonen Zusammenhangs zweier Variablen ermittelt werden. Natürlich be-
steht mit diesen Korrelationsmaßen nicht nur die Möglichkeit, den Zusammenhang zweier
Kovariablen zu messen, sondern auch den Zusammenhang der einzelnen Kovariablen mit
einem Response. Werden diese Korrelationskoeffizienten für jede Kovariable ermittelt, ent-
steht meist ein erster Eindruck, welche der Kovariablen einen Einfluss auf die Zielgröße
besitzt und damit eine möglicherweise relevante Kovariable darstellt.

Für Datensätze mit binären Variablen eignen sich die genannten Koeffizienten allerdings
nicht. Um eine Assoziation zwischen metrischen Kovariablen und kategorialem Response
messen zu können, müssen daher andere Maße eingesetzt werden. Ein Beispiel hierfür ist
die Mutual Information. Diese ist zwischen zwei stetigen Zufallsvariablen X und Z nach
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Cover und Thomas (1991, S. 231-232) über die gemeinsame Dichte f(x, z) definiert als

I(X;Z) =
∫
Z

∫
X
f(x, z)log f(x, z)

f(x)f(z)dxdz. (4.1)

Damit lässt sich die Mutual Information auch für zwei diskrete Variablen mit

I(X;Z) =
∑
Z

∑
X

f(x, z)log f(x, z)
f(x)f(z) (4.2)

darstellen. Dabei gilt allgemein I(X;Z) ≥ 0 und I(X;Z) = 0, falls X und Z unabhängige
Zufallsvariablen sind.
Die Mutual Information gibt damit die durchschnittliche Menge an Information über
eine Variable X an, die durch Z vorhergesagt werden kann (Cellucci et al., 2005). Um
dieses Maß für eine metrische und eine kategoriale Variable anwenden zu können, muss
eine der beiden Variablen transformiert werden. Meist wird dabei die stetige Kovariable
diskretisiert. Cellucci et al. (2005) empfehlen dafür, den Wertebereich der Variable in nP
gleich große Partitionen aufzuteilen. Mit der Anzahl an Beobachtungen N ist nP dabei
als größte ganze Zahl definiert, die folgende Gleichung erfüllt:

nP ≤
√
N

5 . (4.3)

In R lässt sich die beschriebene Mutual Information für zwei diskrete bzw. diskretisierte
Variablen mit der Funktion mi.plugin aus dem entropy Package (Hausser und Strimmer,
2014, Version 1.2.1) berechnen.

Eine Alternative, mit welcher ebenfalls die Relevanz der einzelnen Kovariablen festge-
stellt werden kann, stellt die Variablenwichtigkeit eines Random Forests dar. Kapitel 3.2
zeigt von einigen der simulierten Datensätze die Permutation Importance für verschiedene
mtry Werte. Für die Szenarien ohne korrelierte Kovariablen liefern die betrachteten mtry
dabei kaum einen Unterschied in der Rangfolge der Variablenwichtigkeiten (siehe dazu
beispielsweise Abbildungen 3.6, 3.7 und 3.8 für c = 0). Daher kann in diesen Fällen die
jeweilige Relevanz der Kovariablen im Verhältnis zu den restlichen Kovariablen aus einem
Random Forest mit beliebigem mtry bestimmt werden. Je kleiner dabei mtry gewählt
wird, desto geringer ist der Rechenaufwand für den Random Forest.
Problematisch ist allerdings das Auftreten von korrelierten Kovariablen. Denn wie be-
reits in Kapitel 3.2 dargestellt, bestätigen sich die Erkenntnisse von Strobl et al. (2008)
und die Korrelationen wirken sich auf die Permutation Importance aus. Die Variablen-
wichtigkeiten werden dabei vor allem für korrelierte irrelevante Kovariablen überschätzt
und die Wichtigkeiten von korrelierten relevanten Kovariablen werden möglicherweise un-
terschätzt. Diese Effekte verstärken sich auch für eine steigende Korrelation zwischen den
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Kovariablen.
Demnach ist die Permutation Importance kein besonders gut geeignetes Mittel relevante
Kovariablen zu ermitteln, wenn sehr hohe Korrelationen zwischen den Kovariablen auf-
treten. Aber auch die von Strobl et al. (2008) vorgeschlagene Conditional Permutation
Importance in Kombination mit den Conditional Inference Trees kann die beschriebene
Überschätzung nicht gänzlich eliminieren, senkt diese jedoch beachtlich, wie auch Abbil-
dung A.25 zu entnehmen ist. Es muss allerdings im Einzelfall abgewägt werden, ob der
deutlich größere Rechenaufwand des Conditional Inference Forest für eine manchmal nur
sehr geringe Verbesserung der Variablenwichtigkeiten in Kauf genommen wird.

4.2 Anwendungsbeispiele

In der Praxis sollte der Rechenaufwand zur Bestimmung eines Modellparameters natürlich
so gering wie möglich gehalten werden. Daher wird im Folgenden anhand zweier Beispiel-
datensätze überprüft, ob die Korrelations- bzw. Assoziationsmaße zwischen den Kovaria-
blen und dem Response bereits eine ausreichend gute Tendenz für die Wahl von mtry

liefern.
Die beiden Beispieldatensätze stammen von der Onlineplattform OpenML (Vanschoren
et al., 2013), welche unter anderem frei zugängliche Datensätze für das maschinelle Lernen
aus den unterschiedlichsten Quellen bereitstellt. Mit dem R-Package OpenML (Casalicchio
et al., 2017, Version 1.7) ist es möglich, diese Datensätze in einem R kompatiblen Format
herunterzuladen.

4.2.1 Regressionsdaten

Der erste betrachtete Datensatz, mit der OpenML-ID 308, wird als puma32H (Rasmussen
et al., 1996) bezeichnet. Dieser beinhaltet 8192 Beobachtungen und 33 stetige Variablen.
Die Daten wurden während einer realistischen Simulation der Dynamiken eines Roboter-
arms mit der Produktbezeichnung Puma 560 erhoben. Die Winkelbeschleunigung einer
der Verbindungen des Roboterarms stellt dabei den Response dar, welche durch verschie-
dene Eigenschaften wie zum Beispiel Winkelpositionen, Drehmomente und Geschwindig-
keiten vorhergesagt werden kann.

Abbildung 4.1 visualisiert für eine Auswahl der im Datensatz vorhandenen Variablen
den Korrelationskoeffizienten nach Spearman. Der Korrelationsplot aller Variablen ist in
Abbildung A.26 ergänzt. Dabei tritt zwischen keiner der 32 Kovariablen ein messbarer
monotoner Zusammenhang auf. Auch der Zusammenhang des Responses (hier mit Y ge-
kennzeichnet) mit den Kovariablen ergibt lediglich für die Kovariable tau4 einen erhöhten
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Korrelationskoeffizienten. Damit existiert scheinbar nur eine Kovariable, die einen nen-
nenswerten Einfluss auf den Response besitzt.
Mit der Simulationsstudie aus Kapitel 3 hat sich gezeigt, dass bei einer geringen Anzahl
an relevanten Kovariablen das optimale mtry deutlich über dem Defaultwert liegt. Der
Datensatz puma32H lässt sich sehr gut mit den Simulationsszenarien des Koeffizienten-
vektors β1 = (7, 0, . . . , 0) und 20 bzw. 50 unkorrelierten Kovariablen aus Kapitel 3.2.1
vergleichen. Für N = 1000 ergibt sich dabei ein optimales relatives mtry von 0.45 mit
dem Performancemaß Kendall′s τ und ein optimales relatives mtry von 1 mit dem MSE.
Das spricht in diesem Beispiel mit 32 Kovariablen für ein mtry von 14 bzw. 32, was eben-
falls über dem Defaultwert von mtry = 10 liegt.
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Abbildung 4.1: Korrelationsplot einer Auswahl an stetigen Kovariablen und des Res-
ponses Y des puma32H Datensatzes. Der Korrelationsplot aller Varia-
blen ist im Anhang A.26 ergänzt.

Um diese Werte zu überprüfen, wurde für jeden mtry Wert im Intervall [1, 32] ein Random
Forest mit 500 Bäumen gefittet und dessen Performance sowohl mit Kendall′s τ als auch
mit dem MSE ermittelt. Daraus ergeben sich die bereits bekannten OOB-Kurven, die in
Abbildung 4.2 für den Datensatz puma32H dargestellt sind. Die Optima der OOB-Kurven
liegen hierbei mit Kendall′s τ bei mtry = 20 und mit dem MSE bei mtry = 27. Wird
jedoch die gleiche Anpassung für das optimale mtry durchgeführt wie auch schon bei der
Simualitionsstudie (Gleichungen (3.9) und (3.10)), liegt das optimale mtry für Kendall′s τ
bei 15 und für den MSE bei 24. Die Random Forests mit diesen optimalen mtry Werten
besitzen damit eine um maximal 0.5% vom Optimum abweichende Prädiktionsgüte.
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Abbildung 4.2: OOB-Kurven der Performancemaße Kendall′s τ und MSE für den
puma32H Datensatz.

Für Kendall′s τ liegt somit das vorab durch die Korrelationskoeffizienten ermittelte
mtry = 14 nur geringfügig unterhalb des wahren optimalen mtry. Dagegen wurde der
mtry Wert für den MSE deutlich zu groß gewählt. Der Kurvenverlauf für den MSE

lässt allerdings bereits ab einem mtry von etwa 17 ein Plateau erkennen, womit auch
das ermittelte mtry = 32 eine ähnliche Prädiktionsgüte wie das optimale mtry liefert.
Eventuell könnte für den MSE eine etwas stärkere Anpassung für das optimale mtry

vorgenommen werden, wodurch sich in diesem Beispiel kleinere optimale mtry, sehr ähn-
lich denen zu Kendall′s τ ergeben.

Abschließend sollen nun die Korrelationskoeffizienten nach Spearman zwischen dem Re-
sponse und den Kovariablen mit der Variablenwichtigkeit eines Random Forests verglichen
werden. Da für die Relevanz einer Variable die Richtung des Zusammenhangs keine Be-
deutung hat, sind die absoluten Spearman-Korrelationen in Abbildung 4.3 angetragen.
Die Rangfolge der Variablen entspricht dabei den Variablenwichtigkeiten, welche aus ei-
nem Random Forest mit dem optimalen mtry für den MSE, mtry = 24, entnommen
sind. Sowohl mit der Permutation Importance als auch mit dem Spearman Korrelations-
koeffizient wird der Variable tau4 die größte Relevanz zugewiesen. Überraschend ist die
Schätzung der Variablenwichtigkeit für theta5, denn diese Kovariable ist weder mit dem
Response noch mit der relevanten Kovariable tau4 korreliert (siehe Abbildung 4.1) und
besitzt dennoch eine verhältnismäßig hohe Variablenwichtigkeit. Aufgrund der fehlenden
Fachkenntnisse über die Daten, kann an dieser Stelle die Plausibilität der beiden Maße
nicht überprüft werden, da nicht bekannt ist, ob sich theta5 oder auch eine der anderen
Kovariablen tatsächlich auf die Winkelbeschleunigung einer Verbindung des Roboterarms
auswirken.
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Abbildung 4.3: Vergleich der Variablenwichtigkeit eines Random Forests mit mtry = 24
und der Spearmankorrelation aller Kovariablen des puma32H Datensat-
zes.

4.2.2 Klassifikationsdaten

Der zweite betrachtete Datensatz, mit der OpenML-ID 1510, ist der Breast Cancer Wis-
consin (Diagnostic) Datensatz (Lichman, 2013), auch wdbc genannt. Für die 569 Beob-
achtungen existieren 30 stetige Kovariablen und ein binärer Response. Die Kovariablen
wurden aus digitalisierten Bildern einer Feinnadelbiopsie der Brust ermittelt. Diese bein-
halten 10 verschiedene Eigenschaften von jeweils drei Zellkernen, wie zum Beispiel den
Radius, die Kompaktheit oder die Standardabweichung der Graustufenwerte. Einige der
Kovariablen sind allerdings auch auf Basis anderer vorliegender Kovariablen definiert,
darunter unter anderem die Fläche oder der Umfang. Der binäre Response entspricht der
Prognose des Gewebes (gutartig oder bösartig), welche auf Basis der Zellkerneigenschaf-
ten vorhergesagt werden kann.

Mit dieser Datenstruktur ist zu erwarten, dass einige der Kovariablen stark korreliert sind.
Dies bestätigen auch die Korrelationskoeffizienten nach Spearman für eine Auswahl an 11
Kovariablen in der folgenden Abbildung 4.4. Beispielsweise besitzen die Kovariablen V21,
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V23 und V24 eine starke Blockkorrelation von fast 1. Die Korrelationskoeffizienten aller
30 Kovariablen sind im Anhang A.27 ergänzt.

1 0.79

1

0.3

0.37

1

0.81

0.99

0.38

1

0.78

1

0.37

0.99

1

0.49

0.22

0.22

0.24

0.21

1

0.76

0.56

0.34

0.61

0.55

0.56

1

0.83

0.66

0.39

0.7

0.65

0.52

0.91

1

0.94

0.78

0.37

0.81

0.77

0.54

0.84

0.9

1

0.36

0.26

0.23

0.28

0.25

0.5

0.53

0.48

0.46

1

0.42

0.13

0.19

0.18

0.12

0.61

0.76

0.62

0.52

0.49

1

V8

V21

V22

V23

V24

V25

V26

V27

V28

V29

V30

V8
V21 V22 V23 V24 V25 V26 V27 V28 V29 V30

−1.0

−0.5

0.0

0.5

1.0

Spearman 
Korrelation

Abbildung 4.4: Korrelationsplot einer Auswahl an stetigen Kovariablen des wdbc Da-
tensatzes. Der Korrelationsplot aller Kovariablen ist im Anhang A.27
ergänzt.

Um die Relevanz der einzelnen Kovariablen zu bestimmen, kam nun die in Kapitel 4.1
beschriebene Mutual Information zum Einsatz. Die damit erhaltenen Assoziationen der
Kovariablen und des Responses sind in Abbildung 4.5 visuell dargestellt. Eine Mutual
Information gleich 0 bedeutet allgemein die Unabhängigkeit zweier Variablen. In diesem
Beispiel existieren nur sehr wenige Kovariablen, die eine Mutual Information nahe 0 besit-
zen und dagegen 24 Kovariablen mit einer Mutual Information größer 0.05. Damit lassen
sich die Kovariablen grob in folgende vier Gruppen einteilen: 10 Kovariablen mit starker
Relevanz, 5 mit moderater Relevanz, 9 mit geringer Relevanz und 6 Kovariablen mit kaum
einer Relevanz für den Response.

Keines der betrachteten Simulationsszenarien in Kapitel 3.2.2 berücksichtigt exakt diese
Kovariablenstruktur, am besten lässt sie sich wohl mit β6 = (2, . . . , 2, 15, . . . , 15, 18, . . . , 18)
für p = 20 bzw. p = 50 und N = 500 vergleichen. Für unkorrelierte Kovariablen liegt da-
bei das optimale relative mtry mit dem AUC bei 0.05 bzw. 0.02 und für den Brier Score
bei 0.45 (vgl. Abbildung 3.14).
Wie der Korrelationsplot in Abbildung 4.4 zeigt, tritt allerdings in diesem Beispiel eine
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nicht unbedeutende Korrelation zwischen einigen der stark relevanten Kovariablen V8,
V21, V23 und V28 auf.
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Abbildung 4.5: Mutual Information aller stetigen Kovariablen mit dem Response des
wdbc Datensatzes.

In der Simulationsstudie wurden mit den Kovarianzmatrizen Σ1 und Σ3 jeweils die rele-
vanten Kovariablen blockkorreliert. Dies hat laut Tabelle 3.6 mit dem AUC kaum einen
Einfluss auf das optimale mtry im Vergleich zum unkorrelierten Szenario hat. Jedoch ist
demnach davon auszugehen, dass das optimale mtry für den BrierScore etwas geringer
als im unkorrelierten Szenario ist. In Abbildung 3.16 sinkt das optimale mtry für c = 0.9,
N = 500 und p = 20 im Simulationsszenario mit β5−Σ3 von mtry = 13 im unkorrelierten
Szenario auf mtry = 6 und für β7 −Σ1 von mtry = 9 auf mtry = 3. Somit liegen beide
optimalen mtry Werte nahe am Defaultwert (mtry = 4) dieser Szenarien.
Da weder die Koeffizientenvektoren noch die Kovarianzmatrizen dieser Korrelationsszena-
rien vergleichbar mit der vorherrschenden Datenstruktur des wdbc Datensatzes sind, kann
nur eine grobe Schätzung getätigt werden, dass das optimale mtry mit dem Brier Score

wahrscheinlich nahe am Defaultwert liegt und mit dem AUC bei 1 (b0.05 · 30c = 1).

Auch für dieses Beispiel wurden die OOB-Kurven mithilfe von Random Forests mit 500
Bäumen für alle mtry Werte im Intervall [1, 30] ermittelt. Dabei ergeben sich die in Abbil-
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dung 4.6 dargestellten Kurvenverläufe. Das Optimum des AUC liegt bei mtry = 3, wobei
das optimale mtry durch die nachträgliche Anpassung wie in Gleichung (3.10) und einen
Schwellenwert von 0.999 für Klassifikationsszenarien, bei mtry = 1 liegt. Ein Random
Forest mit diesem optimalen mtry besitzt damit eine Prädiktionsgüte, die maximal 0.1%
vom Optimum abweicht. Diese Anpassung ergibt für den Brier Score mtry = 4, was
auch dem mtry Wert am Optimum entspricht.
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Abbildung 4.6: OOB-Kurven der Performancemaße AUC und BrierScore für den wdbc
Datensatz.

Somit wurden die vorab mit der Mutual Information und den Korrelationskoeffizienten
der Kovariablen festgelegten mtry Werte sehr gut gewählt. Das optimale mtry mit dem
AUC liegt mit 1 exakt auf der Einschätzung und da der Defaultwert in diesem Beispiel
mtry = 5 ist, weicht das tatsächliche optimale mtry = 4 für den Brier Score kaum davon
ab.

Abschließend ist auch für dieses Beispiel ein Vergleich der Permutation Importance und
der Mutual Information sehr interessant. Abbildung 4.7 stellt diese gegenüber, wobei die
Rangfolge der Kovariablen in dieser Grafik den Variablenwichtigkeiten eines Random Fo-
rests mit 500 Bäumen und mtry = 1 (dem optimalen mtry mit dem AUC) entspricht.
Durch die Berücksichtigung dieser Rangfolge, sind die einzelnen Werte der Mutual Infor-
mation nicht ihrem Betrag nach angeordnet, womit die beiden Maße die Kovariablen nicht
gleichermaßen relevant einschätzen. Jedoch besitzen die zehn Kovariablen, die mit der Mu-
tual Information als stark relevant gruppiert wurden, auch eine hohe Variablenwichtigkeit
(≥ 0.015). Damit stellt nur die Variable V7 eine Ausnahme dar, die zwar ebenfalls eine
Variablenwichtigkeit größer als 0.015 hat, deren Mutual Information diese allerdings nicht
als stark relevante Kovariable gruppieren lässt. Für Variablen mit einer Variablenwich-
tigkeit kleiner als 0.015 können dagegen keine eindeutigen Übereinstimmungen mit den
Gruppen der Mutual Information ausgemacht werden. Auch für dieses Beispiel kann ohne
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inhaltliche Fachkenntnisse die Plausibilität beider Maße an dieser Stelle nicht überprüft
werden.
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Abbildung 4.7: Vergleich der Variablenwichtigkeit eines Random Forests mit mtry = 1
und der Mutual Information aller Kovariablen mit dem Response des
wdbc Datensatzes.
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5 Fazit

Ziel dieser Arbeit war es, den Einfluss des Hyperparamteters mtry auf Random Forests zu
untersuchen. Dafür wurde eine umfangreiche Simulationsstudie sowohl für Regressions- als
auch für Klassifikationsdatensätze umgesetzt. Basis dieser Simulationsstudie waren unter
anderem Thesen von Bernard et al. (2009), die für Klassifikationsdaten einen Einfluss der
Anzahl an relevanten Kovariablen auf das optimale mtry festgestellt hatten. Außerdem
aber auch Analysen von Strobl et al. (2008) und Gregorutti et al. (2016), die Auswirkun-
gen korrelierter Kovariablen im Random Forest auf die Variablenwichtigkeit entdeckten,
wodurch ebenfalls ein Einfluss auf das optimale mtry denkbar ist.

Insgesamt wurden 492 verschiedene Szenarien für die Simulationsstudie definiert, wobei
diese sich für jede Responseart in drei Gruppen aufteilen lassen: Darunter die Szenarien
ohne korrelierte Kovariablen, die Szenarien angelehnt an oben genannte Thesen mit den
Kovarianzmatrizen Σ1 bis Σ5 und weitere Szenarien mit den Kovarianzmatrizen Σ6 bis
Σ8 für detailliertere Analysen. Diese Aufteilung erleichtert das Zusammenfassen der je-
weiligen Ergebnisse.
Grundsätzlich müssen alle Ergebnisse unter Berücksichtigung der Modellgütemaße be-
trachtet werden. Denn es hat sich gezeigt, dass je nach verwendetem rang- oder residu-
enbasierten Modellgütemaß, auch verschiedene optimale mtry Werte für ein Szenario in
Betracht gezogen werden müssen. Dabei ist für die einzelnen Szenarien das optimale mtry
mit den residuenbasierten Modellgütemaßen meist größer als mit den rangbasierten Ma-
ßen.

Die Szenarien mit unkorrelierten Kovariablen nehmen insbesondere die Relevanz der ein-
zelnen Kovariablen in Augenschein. Durch die flexible Gestaltung der Simulationsda-
tensätze konnte vorab nicht nur festgelegt werden, welche Kovariablen einen relevanten
Einfluss auf den Response besitzen sollen, sondern auch wie groß dieser tatsächlich ist.
Damit bestätigt sich für die entsprechenden Regressionsszenarien eindeutig, dass mit stei-
gender Anzahl an relevanten Kovariablen ein geringerer Wert für mtry ausreichend ist, um
eine hohe Prädiktionsgüte sicherzustellen. Dabei zeigten nicht nur die stark relevanten,
sondern auch die weniger relevanten Kovariablen einen Einfluss auf das optimale mtry.
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Diese Beobachtungen lassen sich intuitiv erklären, da bei wenigen relevanten Kovariablen
mit einem hohen mtry die Wahrscheinlichkeit größer ist, dass auch diese relevanten Kova-
riablen im Splitprozess berücksichtigt werden. Bei vielen ähnlich relevanten Kovariablen
reicht dagegen schon ein kleines mtry aus, da nahezu jede Kovariable die gleiche Infor-
mation trägt und die explizite Kovariablenauswahl im Splitprozess damit an Bedeutung
verliert.
Auch die Klassifikationsszenarien lieferten ähnliche Erkenntnisse, wobei die OOB-Kurven
der Performancemaße häufig ein Plateau zeigen, weswegen nicht immer eindeutige Opti-
ma und damit keine eindeutigen optimalen mtry festgestellt werden konnten. Allerdings
besitzen die eben beschriebenen Grenzfälle mit vielen bzw. wenigen relevanten Kovaria-
blen auch hierbei die kleinsten bzw. größten optimalen mtry.

Für die Korrelationsszenarien war vor allem von Interesse, wie sich die optimalen mtry

bei steigender Korrelation der Kovariablen im Vergleich zu den jeweiligen unkorrelier-
ten Szenarien verändern. Dabei zeigten sich zwischen den beiden Responsearten keine
bedeutenden Unterschiede, weswegen die beobachteten Ergebnisse sowohl für die Regres-
sionsszenarien als auch für die Klassifikationsszenarien gelten.
Bei Korrelation der relevanten Kovariablen (Σ1 und Σ3) ergeben sich verhältnismäßig
kleine optimale mtry. Da mit den rangbasierten Performancemaßen das optimale mtry
bereits für die unkorrelierten Szenarien sehr gering ist, kann nur für die residuenbasier-
ten Maße ein Sinken des optimalen mtry aufgrund der Korrelation beobachtet werden.
Dagegen steigt das optimale mtry unabhängig vom verwendeten Performancemaß, wenn
nur die Kovariablen mit geringer Relevanz blockkorreliert sind (Σ2). Die Korrelation von
jeweils einer stark relevanten, weniger relevanten und irrelevanten Kovariable (Σ4 und
Σ5) hat, unabhängig vom Performancemaß, kaum einen Einfluss auf das optimale mtry
im Vergleich zu den unkorrelierten Szenarien.
Mit den weiteren Kovarianzmatrizen Σ6 und Σ8, standen die Auswirkungen von korre-
lierten, irrelevanten Kovariablen auf das optimale mtry im Zentrum der Analysen. Bei
nur einer relevanten Kovariable ließen sich, abgesehen von einer Ausnahme, keine Unter-
schiede im optimalen mtry durch die definierten Kovarianzmatrizen erkennen. Dagegen
zeigten sich für fünf relevante Kovariablen abhängig vom Performancemaß Veränderungen
im optimalen mtry. Bei steigender Korrelation zwischen den relevanten und bis zu zwei
irrelevanten Kovariablen (Σ6) ergeben sich verhältnismäßig kleine optimale mtry. Wie
auch schon vorab beschrieben, ist das optimale mtry der rangbasierten Perfomancemaße
bereits für die unkorrelierten Szenarien sehr gering, weshalb auch hier nur für die residu-
enbasierten Maße deutlich kleinere mtry zu beobachten sind. Wenn nur die irrelevanten
Kovariablen blockkorreliert sind (Σ7), hat dies kaum Auswirkungen auf das optimale
mtry. Dagegen ist für die rangbasierten Performancemaße ein deutlicher Anstieg des op-
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timalen mtry zu erkennen, wenn sowohl die Hälfte der relevanten als auch die Hälfte der
irrelevanten Kovariablen korreliert ist (Σ8). Dieser Anstieg ist für die residuenbasierten
Perfomancemaße dagegen nicht zu erkennen, was auch an den bereits hohen optimalen
mtry der unkorrelierten Szenarien liegen kann.

Zusammenfassend muss also für die Veränderungen im optimalen mtry bei steigender
Korrelation der Kovariablen besonders zwischen den rang- und residuenbasierten Perfo-
mancemaßen unterschieden werden. Für die rangbasierten Maße ist bei diesen Simulati-
onsszenarien kein Sinken des optimalen mtry zu beobachten, da bereits für die unkorre-
lierten Szenarien verhältnismäßig kleine mtry als optimal gelten. Allerdings erhöht sich
das optimale mtry, wenn nur die weniger relevanten (Σ2) oder sowohl einige der relevan-
ten als auch irrelevanten Kovariablen korreliert sind (Σ5, Σ8).
Für die residuenbasierten Maße steigt dagegen das optimale mtry, wenn nur weniger rele-
vante oder nur irrelevante Kovariablen korreliert sind (Σ2, Σ7). Im Gegensatz dazu sinkt
es, wenn alle relevanten und nur wenige der irrelevanten Kovariablen blockkorreliert sind
(Σ1, Σ3, Σ6).
Die Beobachtungen mit Σ2 lassen sich zum Beispiel damit erklären, dass die Auswahlhäufig-
keiten der korrelierten Kovariablen im Splitprozess vor allem für kleinere mtry ansteigen
(Strobl et al., 2008). Jedoch können anhand der beschriebenen Szenarien und Random Fo-
rest Eigenschaften die Auswirkungen der Kovarianzmatrizen auf das optimale mtry nicht
mit einer allgemeingültigen These aufgeklärt werden. Daher sind besonders in Bezug auf
die korrelierten Kovariablen weitere Untersuchungen nötig, um detailliertere Aussagen zu
den Gründen der jeweiligen Veränderungen treffen zu können.

Außerdem sind auch diverse Erweiterungen der Simulationsstudie denkbar. Mit dem bis-
herigen Design wurden nur normalverteilte Variablen berücksichtigt, womit keine allge-
meingültigen Aussagen getroffen werden können. Daher könnte die Variablengenerierung
auch auf Basis verschiedener anderer Verteilungen betrachtet werden. Außerdem sind die
ausschließlich metrischen Kovariablen eine Einschränkung, da auch kategoriale Einfluss-
größen eventuell einen Einfluss auf das optimale mtry haben können. Dabei ist auch die
Aufnahme von mehrkategorialen Kovariablen, ebenso wie mehrkategorialen Responses für
die Klassifikationsszenarien möglich. Zudem können Interaktionsstrukturen zwischen den
Kovariablen und auch Ausreißer innerhalb der einzelnen Kovariablen neue Erkenntnisse
liefern.
Durch die gewählte Anpassung des optimalen mtry, wird in den meisten Szenarien nicht
das mtry am Optimum der OOB-Kurve als optimal angesehen, sondern ein kleineres. Das
führt zu einem rechensparsameren Modell, welches dabei aber gleichzeitig eine Modell-
performance sehr nahe am Optimum besitzt. Bereits bei diesen Auswertungen hat sich
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jedoch gezeigt, dass es vielleicht auch sinnvoll ist, den Schwellenwert für diese Anpassung
je nach Performancemaß und nicht abhängig von der Responseart zu wählen. Da dieser
Schwellenwert maßgeblich die Ergebnisse beeinflusst, sind sicherlich auch alternative Kon-
zepte zum Auffinden des optimalen mtry interessant.

Insgesamt kann geschlussfolgert werden, dass bei besonders wenigen oder vielen relevanten
Kovariablen innerhalb der Daten und bei starken Korrelationen zwischen den Kovariablen,
die bekannten Defaultwerte meist suboptimal sind und die mtry Wahl entscheidend für
eine gute Modellperformance ist.
Die Anwendungsbeispiele haben gezeigt, dass zur Wahl von mtry die Relevanz der Ko-
variablen herangezogen werden kann, welche zum Beispiel anhand von Korrelationsko-
effizienten oder Assoziationsmaßen, wie der Mutual Information, bestimmt werden. Um
damit auf ein optimales mtry zu schließen, können Präzedenzfälle herangezogen werden,
wie zum Beispiel die Szenarien aus der Simulationsstudie in dieser Arbeit. Jedoch ist
dieses Vorgehen vor allem für die betrachteten Grenzfälle mit sehr wenigen oder sehr
vielen relevanten Kovariablen besonders geeignet, da diese Variablenstrukturen mit den
Zusammenhangsmaßen gut zu unterscheiden sind. Falls viele möglicherweise irrelevante
Kovariablen vorab festgestellt werden (wie im zweiten Anwendungsbeispiel, Kapitel 4.2.2),
sollte außerdem ein weiterer Ansatz in Erwägung gezogen werden. Statt einen Random
Forest mit großem mtry zu ermitteln, kann durch eine Variablenselektion einerseits die
Modellierung enorm vereinfacht werden und andererseits verringert sich daraufhin in den
meisten Situationen der kritische Einfluss der mtry Wahl. Wenn jedoch anderweitige,
komplexere Strukturen innerhalb der Daten auftreten, ist es denkbar, dass diese mithilfe
der Zusammenhangsmaße nicht zuverlässig erkannt werden und die Einteilung in einen
Präzedenzfall nicht mehr möglich ist. In dieser Situation ist es grundsätzlich ratsam auf
die bereits bekannten Defaultwerte zurückzugreifen, die in vielen Fällen ebenfalls zu ei-
ner guten Modellperformance führen (Bernard et al., 2009; Dı́az-Uriarte und de Andrés,
2006).
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A Allgemeiner Anhang

A.1 OOB-Kurven für verschiedene Anzahl an Wiederholungen

Die folgende Abbildung vergleicht die OOB-Kurven eines Beispielszenarios für verschie-
dene Anzahl an Wiederholungen W .
Mit W = 50 zeigt sich dabei eine etwas raue Kurve, womit diese Anzahl an Wiederholun-
gen noch zu gering ist. Dagegen sind die Unterschiede im Verlauf zwischen den Kurven
mit W = 500 und W = 1000 sehr gering und 500 Wiederholungen scheinen ausreichend
zu sein.
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Abbildung A.1: OOB-Kurven der Performancemaße AUC und Brier Score für binären
Response mit 500 Beobachtungen, 20 unkorrelierten Kovariablen, Koef-
fizientenvektor β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4) und unterschiedlicher
Anzahl an Wiederholungen W .
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A.2 OOB-Kurven für verschiedene Performancemaße

Beispielhaft sind im Folgenden die OOB-Kurven verschiedener Performancemaße für das
Szenario mit Koeffizientenvektor β3 = (7, 7, 7, 20, 20, 0, . . . , 0), N = 500 Beobachtungen
und p = 10 unkorrelierten Kovariablen für jeweils einen numerischen und binären Res-
ponse dargestellt. Die Abkürzungen und Beschreibungen der verwendeten Performance-
maße können dem R-Package mlr entnommen werden.
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Abbildung A.2: OOB-Kurven für verschiedene Regressions-Performancemaße.

Die linken OOB-Kurven besitzen ein ausgeprägtes Optimum bei mtry = 3, das sich durch
einen ”Knick“ der OOB-Kurven zeigt. Dieser ”Knick“ ist für die rechten OOB-Kurven
nicht vorhanden, deren Optima bei etwas höheren mtry ≥ 6 liegen. Da sich die Werte-
bereiche der rechten Performancemaße sehr stark unterscheiden, überdecken sich einige
Kurven in dieser Grafik. Allerdings sind detailliertere Verläufe im elektronischen Anhang
im Unterordner ”Zusätzliche Grafiken“ dargestellt.
Exemplarisch wurden die Maße Kendall′s τ und MSE für diese beiden Gruppen gewählt.
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A.2.2 Klassifikation
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Abbildung A.3: OOB-Kurven für verschiedene Klassifikations-Performancemaße.

Die linken OOB-Kurven besitzen ihr Optimum bei mtry = 2, dagegen besitzen die rechten
OOB-Kurven alle ihr Optimum bei einem größerem mtry ≥ 5. Aufgrund der verschiede-
nen Wertebereiche der linken Perfomancemaße sind hier die beschriebenen ”Knicke“ im
Kurvenverlauf nur marginal zu erkennen. Allerdings sind detailliertere Verläufe im elek-
tronischen Anhang im Unterordner ”Zusätzliche Grafiken“ dargestellt.
Exemplarisch wurden die Maße AUC und Brier Score für die beiden Gruppen gewählt.
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A.3 OOB-Kurven für nicht-lineare Einflussvariablen

Optimum ● ●Linear Friedman 1 mtry Default
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Abbildung A.4: OOB-Kurven des Friedman 1 Regressionsproblems.

Die Kurven in Abbildung A.4 sind nach Algorithmus 2 entstanden, wobei in Schritt 1
die Daten mithilfe der R-Funktion mlbench.friedman1 generiert wurden. Für die Über-
gabeparameter gilt n = 500 und sd = 0.5 (Anzahl an Beobachtungen und Varianz der
Fehlerterme).
Da kein Koeffizientenvektor mit vergleichbar relevanten Kovariablen definiert wurde, ist
beispielhaft der Verlauf der OOB-Kurve für einen linearen Einfluss mit dem Koeffizien-
tenvektor β3 = (7, 7, 7, 20, 20, 0, . . . , 0), p = 10 und N = 500 Beobachtungen dargestellt.
Es ist jedoch trotzdem sehr gut zu erkennen, dass sich die Kurvenverläufe und mtry am
Optimum weder für Kendall′s τ noch für den MSE stark unterscheiden. Anzumerken ist,
dass hier für eine bessere Vergleichbarkeit der Wertebereiche, die Werte des MSE durch
die jeweiligen Maxima geteilt wurden.
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Optimum ● ●Linear Polynomial mtry Default
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Abbildung A.5: OOB-Kurven für polynomiale und lineare Einflussvariablen eines ste-
tigen Responses.

Abbildung A.5 stellt die OOB-Kurven für polynomiale und lineare Einflussvariablen eines
stetigen Responses gegenüber. Die Datensätze bestehen aus 500 Beobachtungen, 20 un-
korrelierten Kovariablen und den zwei Koeffizientenvektoren β3 = (7, 7, 7, 20, 20, 0, . . . , 0)
und β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18).
Mit beiden Performancemaßen sind für die jeweiligen Koeffizientenvektoren kaum Un-
terschiede zwischen den OOB-Kurven für lineare und polynomiale Einflussvariablen zu
erkennen.
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Optimum ● ●Linear Polynomial mtry Default
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Abbildung A.6: OOB-Kurven für polynomiale und lineare Einflussvariablen eines
binären Responses.

Die Abbildung A.6 stellt die OOB-Kurven für polynomiale und lineare Einflussvariablen
eines binären Responses gegenüber. Die Datensätze bestehen aus 500 Beobachtungen, 10
unkorrelierten Kovariablen und den zwei Koeffizientenvektoren β3 = (7, 7, 7, 20, 20, 0, . . . , 0)
und β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18).
Mit beiden Performancemaßen sind für die jeweiligen Koeffizientenvektoren kaum Un-
terschiede zwischen den OOB-Kurven für lineare und polynomiale Einflussvariablen zu
erkennen.
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A.4 Beschreibung der mittleren relativen Variablenwichtigkeit und
der drei gewählten mtry Parameter

Um die Variablenwichtigkeiten der 500 Wiederholungen eines Szenarios zusammenfassen
zu können, mussten für jede Wiederholung zuerst die absoluten Werte der Wichtigkeiten
durch die maximale Wichtigkeit geteilt werden. Die damit erhaltenen relativen Variablen-
wichtigkeiten konnten daraufhin über alle 500 Wiederholungen gemittelt werden.
Die Variablenwichtigkeiten für ein Szenario wurden anschließend an Schritt 4 von Algo-
rithmus 2 für drei festgelegte Werte mtry1, mtry2 und mtry3 bestimmt und ebenfalls aus-
gegeben. Dabei wurden jeweils diejenigen mtry gewählt, welche die zwei jeweiligen Perfor-
mancemaße optimieren (nach der Anpassung aus Gleichung (3.10)) und der Defaultwert.
Traten für ein Szenario zwei dieser mtry Werte wiederholt auf, wurde eine Fallunterschei-
dung vorgenommen, um einen davon verschiedenen dritten mtry Wert festzulegen. Dafür
wurde der Wertebereich [1, p] der möglichen mtry in drei gleichgroße Quantile aufgeteilt.
Den unterschiedlichen Werten mtry1 und mtry2 konnten dann die jeweiligen Quantile q1

und q2 zugeteilt werden. Auf Basis dieser beiden Quantile wurde daraufhin folgenderma-
ßen mtry3 festgelegt:

• Unterscheiden sich q1 und q2, so entspricht mtry3 dem ganzzahligen Mittelwert
innerhalb des verbliebenen Quantils, womit q3 6= (q1, q2).

• Gleichen sich dagegen q1 und q2 und die beiden mtry Werte entstammen dem
– 1. oder 2. Quantil, so entspricht mtry3 dem ganzzahligen Mittelwert innerhalb

des 3. Quantils.
– 3. Quantil, so entspricht mtry3 dem ganzzahligen Mittelwert innerhalb des 1.

Quantils.
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A.5 Relative optimale mtry Werte unter Berücksichtigung des
Optimums
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Abbildung A.7: Relative mtry Werte am Optimum (ohne Anpassung) der Regressions-
szenarien ohne korrelierte Kovariablen.
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Abbildung A.8: Relative mtry Werte am Optimum (ohne Anpassung) der Klassifika-
tionsszenarien ohne korrelierte Kovariablen.
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A.6 Weitere Ergebnisse für optimale mtry Werte mit korrelierten
Kovariablen (Σ1 bis Σ5)

Nachfolgend jeweils für alle Regressions- und Klassifikationsszenarien mit p = 10 und
p = 50 blockkorrelierten Kovariablen (Σ1 bis Σ5) die optimalen mtry Werte, getrennt
nach den verwendeten Performancemaßen und Korrelationen c ∈ {0.3, 0.9}. In der linken
Spalte sind jeweils zum Vergleich die Werte für die analogen Szenarien ohne Korrelationen
dargestellt. Die Definitionen der Koeffizientenvektoren und Kovarianzmatrizen sind in den
Tabellen 3.1 und 3.2 zusammengefasst.

A.6.1 Regression
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Abbildung A.9: Optimale mtry Werte für Regressionsszenarien mit p = 10 und Kova-
rianzmatrizen Σ1 bis Σ5.
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Abbildung A.10: Optimale mtry Werte für alle Regressionsszenarien mit p = 50 und
Kovarianzmatrizen Σ1 bis Σ5. 79
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A.6.2 Klassifikation
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Abbildung A.11: Optimale mtry Werte für Klassifikationsszenarien mit p = 10 und
Kovarianzmatrizen Σ1 bis Σ5.
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Abbildung A.12: Optimale mtry Werte für alle Klassifikationsszenarien mit p = 50
und Kovarianzmatrizen Σ1 bis Σ5.
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A.7 Weitere Ergebnisse für optimale mtry Werte mit korrelierten
Kovariablen (Σ6 bis Σ8)

Nachfolgend jeweils für alle Regressions- und Klassifikationsszenarien mit p = 10 und
p = 50 blockkorrelierten Kovariablen (Σ6 bis Σ8) die optimalenmtry Werte, getrennt nach
den verwendeten Performancemaßen und Korrelationen c ∈ {0.3, 0.6, 0.9}. In jeder Grafik
sind die optimalen mtry Werte für die analogen Szenarien ohne korrelierte Kovariablen
ergänzt. Die Definitionen der Kovarianzmatrizen sind in Tabelle 3.3 zusammengefasst.

A.7.1 Regression
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Abbildung A.13: Optimale mtry Werte für Regressionsszenarien mit β1 = (7, 0, . . . , 0),
p = 10 Kovariablen und Kovarianzmatrizen Σ6 und Σ7.
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Abbildung A.14: Optimale mtry Werte für Regressionsszenarien mit β1 = (7, 0, . . . , 0),
p = 50 Kovariablen und Kovarianzmatrizen Σ6 und Σ7.
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Abbildung A.15: Optimale mtry Werte für Regressionsszen. mit
β4 = (7, 7, 7, 7, 7, 0, . . . , 0), p = 10 Kovariablen und Kovarianz-
matrizen Σ6 bis Σ8.
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Abbildung A.16: Optimale mtry Werte für Regressionsszenarien mit
β4 = (7, 7, 7, 7, 7, 0, . . . , 0), p = 50 Kovariablen und Kovarianz-
matrizen Σ6 bis Σ8.
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A.7.2 Klassifikation
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Abbildung A.17: Optimale mtry Werte für Klassifikationsszenarien mit
β1 = (7, 0, . . . , 0), p = 10 Kovariablen und Kovarianzmatrizen
Σ6 und Σ7.
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Abbildung A.18: Optimale mtry Werte für Klassifikationsszenarien mit
β1 = (7, 0, . . . , 0), p = 50 Kovariablen und Kovarianzmatrizen
Σ6 und Σ7.
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Abbildung A.19: Optimale mtry Werte für Klassifikationsszenarien mit
β4 = (7, 7, 7, 7, 7, 0, . . . , 0), p = 10 Kovariablen und Kovarianz-
matrizen Σ6 bis Σ8.
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Abbildung A.20: Optimale mtry Werte für Klassifikationsszenarien mit
β4 = (7, 7, 7, 7, 7, 0, . . . , 0), p = 50 Kovariablen und Kovarianz-
matrizen Σ6 bis Σ8.
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A.8 Variablenwichtigkeiten der Klassifikationsszenarien mit den
Kovarianzmatrizen Σ1 bis Σ8

Die folgenden Abbildungen stellen beispielhaft die Variablenwichtigkeiten der 500 Wie-
derholungen verschiedener Klassifikationsszenarien mit N = 500, 20 Kovariablen und den
Kovarianzmatrizen Σ1 bis Σ8 dar. Die dabei jeweils mit c = 0.9 blockkorrelierten Kovaria-
blen sind im Titel gekennzeichnet. Die verschiedenen mtry Werte je Szenario entsprechen
dem Default und den optimalen mtry für die Performancemaße AUC und Brier Score.
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Abbildung A.21: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit β3 = (7, 7, 7, 20, 20, 20, 0, . . . , 0), Σ4 und Σ5.
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Abbildung A.22: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit β5 = (2, . . . , 2, 3, . . . , 3, 18, . . . , 18), Σ2 und Σ3. 85
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Abbildung A.23: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit β7 = (2, . . . , 2, 3, . . . , 3, 4, . . . , 4) und Σ1.
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Abbildung A.24: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit β4 = (7, 7, 7, 7, 7, 0 . . . , 0) und Kovarianzmatrizen Σ6 bis Σ8.
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A.9 Korrelierten Kovariablen: Vergleich zweier Variablenwichtig-
keiten

In der folgenden Abbildung wird die Conditional Importance aus einem Conditional In-
ference Forest (R-Funktion cforest aus dem Package party (Strobl et al., 2008, Version
1.2-2)) mit der Permutation Importance aus einem CART-Forest (R-Funktion ranger)
verglichen.
Der Conditional Inference Forest liefert vor allem mit c = 0.9 deutlich geringere Variablen-
wichtigkeiten für die korrelierten Kovariablen, die näher an der Relevanz der Kovariablen
im unkorrelierten Szenario liegen. Das ist zwar für die Kovariablen 1 und 6 angemessen,
jedoch ist auch die Variablenwichtigkeit der korrelierten, stark relevanten Kovariable 4
deutlich gesunken. Damit enspricht die Relevanz von Kovariable 4 nicht mehr der Rele-
vanz der Kovariable 5, trotz gleicher Koeffizientenausprägung.
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Abbildung A.25: Vergleich der Conditional Importance aus einem Conditional Infe-
rence Forest mit der Permutation Importance aus einem CART-
Forest.
Dabei wurden zwei Szenarien mit folgender Spezifikation verwendet:
Binärer Response, p = 10, N = 500, β3 = (7, 7, 7, 20, 20, 0, . . . , 0),
Kovarianzmatrix Σ5 mit c ∈ (0.3, 0.9). Die dabei blockkorrelierten
Kovariablen sind durch Fettdruck an der y-Achse gekennzeichnet.

87



A – Allgemeiner Anhang

A.10 Korrelationsplots aller stetigen Variablen der Anwendungs-
beispiele
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Abbildung A.26: Korrelationsplot der stetigen Kovariablen und des Responses Y des
puma32H Datensatzes.
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A – Allgemeiner Anhang
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Abbildung A.27: Korrelationsplot der stetigen Kovariablen des wdbc Datensatzes.
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B Elektronischer Anhang

Der elektronische Anhang umfasst neben einer Readme-Datei die drei Ordner

”Ergebnisse“, ”Masterarbeit“ und ”Skripte“:

• Ergebnisse: Enthält einige Unterordner.

– Simulationsordner 01 bis 09: Für jedes Simulationsskript gibt es einen
Unterordner mit den jeweiligen rds-Dateien der Ergebnisse. Die Ordner haben
dabei die gleiche Nummerierung, wie die entsprechenden Simulationsskripte.
Die Dateibenennung ist im jeweiligen Simulationsskript am Anfang beschrie-
ben.

– Spezifikationen: Enthält rds-Dateien mit den jeweiligen Spezifikationen der
Szenarien für die Simulationsstudie.

– Zusätzliche Grafiken: Enthält pdf-Dateien mit Abbildungen zu einigen OOB-
Kurven, die nicht in dieser Arbeit verwendet wurden.

• Masterarbeit: Enthält die vorliegende Arbeit im pdf-Format und einen Unterord-
ner, mit allen in dieser Arbeit verwendeten Abbildungen im pdf-Format.

• Skripte: Enthält drei Unterordner mit Syntax-Dateien der Statistiksoftware R.

– Funktionen: Enthält Skripte, in denen die Koeffizientenvektoren und Ko-
varianzmatrizen aus den Tabellen 3.1, 3.2 und 3.3 definiert werden, sowie
Funktionen, die während der Simulation aufgerufen werden.

– Grafiken: Enthält Skripte, mit denen die Abbildungen in dieser Arbeit repro-
duziert werden können. Die Dateien haben dabei die gleiche Nummerierung,
wie die entsprechende Simulationsskripte, mit denen die Ergebnisse erstellt
worden sind.

– Simulationen: Enthält Skripte, mit denen die Ergebnisse der Simulations-
studie aus dieser Arbeit reproduziert werden können. Die Dateien sind nach
der Reihenfolge ihrer Ausführung von 01 bis 09 nummeriert.
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