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Abstract

Die Korrelation der Entscheidungsbaume eines Random Forests wird unter
anderem durch den Hyperparameter mtry beeinflusst. Dieser bestimmt die
Anzahl an Variablen, die innerhalb eines Baumes als Splitkandidaten bertick-
sichtigt werden. Oft finden fiir diesen Parameter bekannte Defaultwerte wie
mtry = {\/]_oJ fir kategorialen Response und mitry = |p/3] fur metrischen
Response Anwendung. Nur wenige Untersuchungen beschéftigen sich tiber die-
se Defaultwerte hinaus mit dem Hyperparamter miry. Es besteht allerdings
die Vermutung, dass die genannten Defaultwerte nicht in jeder Datensituation
die beste Wahl darstellen. Daher ist es Ziel dieser Arbeit, anhand einer Si-
mulationsstudie den Einfluss von mtry aut Random Forests zu untersuchen.
Die Analysen konzentrieren sich dabei vor allem auf die Anzahl an relevanten
Kovariablen innerhalb eines Datensatzes und auf verschiedene Korrelations-
strukturen zwischen den Kovariablen. In Bezug darauf ist von Interesse, wie
sich diese Datenstrukturen auf die Modellperformance eines Random Forests
auswirken.

Die Ergebnisse dieser Simulationen zeigen, dass in Situationen mit sehr we-
nigen bzw. vielen dhnlich relevanten Kovariablen innerhalb eines Datensatzes,
das optimale mtry von den Defaultwerten abweicht. Aber auch wenn einige
der Kovariablen korreliert sind, konnte fiir manche Szenarien abhéngig von
der Starke der Korrelation ein Einfluss auf das optimale mtry festgestellt wer-
den. Bei Auftreten dieser speziellen Datenstrukturen ist es demnach ratsam,
der Wahl von mtry besondere Aufmerksamkeit zu schenken, um einen Random
Forest mit optimaler Modellperformance zu erhalten.

Abschlieflend konnte anhand zweier Anwendungsbeispiele gezeigt werden, wie
die mtry Wahl durch die Messung der Relevanz von Kovariablen umgesetzt

werden kann.



Inhaltsverzeichnis

Seite

1 Einleitung . . . . . . . . . 1

2 Statistische Methodik . . . . . . . .. ... . oo 3

2.1 ModellglitemaBe . . . . . . . .. 3

2.1.1 Regression . . . . . ... 3

2.1.2 Klassifikation . . . . ... ... )

2.2 CART - Classification and Regression Trees . . . . . . ... .. ... ... 7

2.2.1 Regressionsbaume . . . . . . .. ..o Lo 8

2.2.2 Klassifikationsbdume . . . . . . .. ..o 10

2.3 Random Forests . . . . . . . .. .. 11

2.3.1 Verfahren . . . . . . . . ... 11

2.3.2 Korrelierte Variablen . . . . . . . ... ..o 14

2.3.3 Hyperparameter mtry . . . . . ... ... Lo 18

3 Simulationsstudie . . . . ... ... L 20

3.1 Simulationsdesign . . . . . . ... 20

3.1.1 Datensatze . . . . . . . .. 20

3.1.2 Kovariableneinfliisse . . . . .. . ... ... L. 21

3.1.3 Korrelationsstrukturen . . . . . .. ..o 23

3.1.4  Implementierung . . . . . . .. ... oL 27

3.2 Ergebnisse . . . . ... 32

3.2.1 Regression . . . . . . .. L 32

3.2.2 Klassifikation . . . . .. ... oL 47

4 Empfehlungen zur mtry Wahl . . . . . .. .. ... .. ... ... ...... o4

4.1 Messung der Korrelation und Relevanz von Kovariablen . . . . . . . .. .. 54

4.2  Anwendungsbeispiele . . . . .. ..o 56

4.2.1 Regressionsdaten . . . . . .. ... Lo 56

4.2.2 Klassifikationsdaten . . . . . . .. ... Lo 59

5 Fazit . . . . 64
ANHANG

A Allgemeiner Anhang . . . . . . . ... 71

B Elektronischer Anhang . . . . . . . . . ... 90



Abbildungsverzeichnis

Abbildung Seite
2.1 ROC-Kurve eines Beispieldatensatzes (In Anlehnung an Fawcett (2006)) . . . 6
2.2 CART Beispiel fiir einen zweidimensionalen Variablenraum, der rekursiv binér

aufgeteilt wurde (In Anlehnung an Hastie et al. (2009)). . . . ... ... ... 8
3.1 OOB-Kurven fiir Regressionsszenarien mit N = 1000, p = 10, ¢ = 0 und 84, B7. 33
3.2 OOB-Kurven inklusive optimale mtry Werte nach der Anpassung fiir Regres-

sionsszenarien mit N = 1000, p =10, c=0und By, B7. . . . . . . . . . . .. 35
3.3 Optimale relative mtry Werte fiir alle Regressionsszenarien mit ¢ = 0. 36
3.4  OOB-Kurven fiir Regressionsszenarien mit N = 500, p = 20, ¢ = 0 und 81— B4. 37
3.5 Optimale mtry Werte fiir alle Regressionsszenarien mit p = 20 und 3; — 5. . 39
3.6 Variablenwichtigkeiten fiir Regressionsszenarien mit N = 500, p = 20, ¢ =0

bzw. 34, X5, ¢c=0.9. . . . 40
3.7 Variablenwichtigkeiten fiir Regressionsszenarien mit N = 500, p = 20, ¢ = 0

bzw. 3o, 33, ¢c=0.9. . . .. 41
3.8 Variablenwichtigkeiten fiir Regressionsszenarien mit N = 500, p = 20, ¢ =0

bzw. 31, c=0.9. . . . . 42
3.9 Optimale mtry Werte fiir Regressionsszenarien mit p = 20, 34, 37 und 8. . . 44
3.10 OOB-Kurven fiir Regressionsszenarien mit N = 500, p = 20, 3¢, 37, ¢ = 0.9

und B1. . .. 45
3.11 Optimale mtry Werte fiir Regressionsszenarien mit p = 20, 3¢ — g und B4. . 46
3.12 Variablenwichtigkeiten fiir Regressionsszenarien mit N = 500, p = 20, ¢ = 0

bzw. X — g, c=09und By. . . . . .. 47
3.13 OOB-Kurven fiir Klassifikationsszenarien mit N = 1000, p = 10, ¢ = 0 und

B1, Bro o 48
3.14 Optimale relative mtry Werte fir alle Klassifikationsszenarien mit ¢ =0. . . . 49
3.15 OOB-Kurven fir Klassifikationsszenarien mit N = 500, p = 20, ¢ = 0 und

B1i— Ba- o o 50
3.16 Optimale mtry Werte fiir Klassifikationsszenarien mit p = 20 und 3, — 3. o1
3.17 Optimale mtry Werte fiir Klassifikationsszenarien mit p = 20, 3¢, 37 und B;. 52
3.18 Optimale mtry Werte fiir Klassifikationsszenarien mit p = 20, 3¢ — g und B4. 53
4.1 Korrelationsplot einer Auswahl an Variablen des puma32H Datensatzes. o7

i



Abbildungsverzeichnis

4.2  OOB-Kurven des puma32H Datensatzes. . . . . . . . . . . ... .. ... ... 58
4.3  Variablenwichtigkeiten und Korrelationen des puma32H Datensatzes. . . . . . 59
4.4  Korrelationsplot einer Auswahl an Variablen des wdbc Datensatzes. . . . . . . 60
4.5 Mutual Information des wdbc Datensatzes. . . . . . . . . . ... .. ... ... 61
4.6  OOB-Kurven des wdbc Datensatzes. . . . . . . .. . .. .. ... ... .... 62
4.7 Variablenwichtigkeiten und Mutual Information des wdbc Datensatzes. . . . . 63
A.1 OOB-Kurven fiir verschiedene Anzahl an Wiederholungen. . . . . . . . . . .. 71
A.2  OOB-Kurven fiir verschiedene Regressions-Performancemafie. . . . . . . . .. 72
A.3 OOB-Kurven fiir verschiedene Klassifikations-Performancemafle. . . . . . . . . 73
A4 OOB-Kurven des Friedman 1 Regressionsproblems. . . . . . . . ... .. ... 74
A5 OOB-Kurven polynomialer Regressionsprobleme. . . . . . . .. .. ... ... 75
A.6 OOB-Kurven polynomialer Klassifikationsprobleme. . . . . .. ... .. ... 76
A.7 Relative mtry Werte am Optimum der Regressionsszenarien mit ¢ =0. . . . . 78
A.8 Relative mtry Werte am Optimum der Klassifikationsszenarien mit ¢ =0. . . 78
A.9 Optimale mtry Werte fir Regressionsszen. mit p = 10 und 3; — 35 . . . . . . 79
A.10 Optimale mtry Werte fiir Regressionsszen. mit p =50 und 3; — 35 . . . . . . 79
A.11 Optimale mtry Werte fiir Klassifikationsszen. mit p = 10 und 3; — 35 . . . . 80
A.12 Optimale mtry Werte fir Klassifikationsszen. mit p = 50 und 3; — 35 . . . . 80
A.13 Optimale mtry Werte fiir Regressionsszen. mit p = 10 und 3¢, ¥7 und B;. . . 81
A.14 Optimale mtry Werte fiir Regressionsszen. mit p = 50 und 3¢, 37 und B;. . . 81

A.15 Optimale mtry Werte fiir Regressionsszen. mit p = 10 und 3g — ¥g und B4. . 82
A.16 Optimale mtry Werte fiir Regressionsszen. mit p = 50 und 3¢ — 3g und B4. . 82
A.17 Optimale mtry Werte fiir Klassifikationsszen. mit p = 10 und 3¢, ¥7 und B;. 83
A.18 Optimale mtry Werte fiir Klassifikationsszen. mit p = 50 und 3¢, 37 und B;. 83
A.19 Optimale mtry Werte fiir Klassifikationsszen. mit p = 10 und 33 — 3g und 8,. 84
A.20 Optimale mtry Werte fiir Klassifikationsszen. mit p = 50 und g — g und B4. 84
A.21 Variablenwichtigkeiten fir Klassifikationsszen. mit N = 500, p = 20, ¢ = 0

bzw. 24, 25, c=0.9. . e 85
A.22 Variablenwichtigkeiten fiir Klassifikationsszen. mit N = 500, p = 20, ¢ = 0
bzw. o, 33, ¢=0.9. . . . 85

A.23 Variablenwichtigkeiten fiir Klassifikationsszen. mit N = 500, p = 20, ¢ = 0
bzw. 31, c=0.9. . . . . e 86

il



Abbildungsverzeichnis

A.24 Variablenwichtigkeiten fiir Klassifikationsszen. mit N = 500, p = 20, ¢ = 0

bzw. 3¢ — g, c=0.9. . . . . . 86
A.25 Vergleich der Variablenwichtigkeiten cforest und ranger. . . . . . ... .. .. 87
A .26 Korrelationsplot aller Variablen des puma32H Datensatzes. . . . . . . . . .. 88
A.27 Korrelationsplot aller Kovariablen des wdbc Datensatzes. . . . . . . . . . ... 89

iv



Tabellenverzeichnis

Tabelle

2.1 Konfusionsmatrix fir ROC-Kurve. . . . . . . ... ... ... ... ....
2.2 Regressionskoeffizienten der Simulationsstudie von Strobl et al. (2008). . .
3.1 Definition der Koeffizientenvektoren g1—87. . . . . . . . .. .. ... ...
3.2 Definition der Kovarianzstrukturen 3; — X5 . . . . . . . .. ... ... ..
3.3 Definition der Kovarianzstrukturen 3¢ — g . . . . . . . . . . . . ... ..
3.4 Charakteristiken eines Szenarios und die gewédhlten Auspragungen. . . . .
3.5 Anzahl an Szenarien fiir eine Responseart. . . . . . . . ... .. ... ...
3.6 Verdnderungen im optimalen mitry mit den Kovarianzmatrizen 3; bis Xs.
3.7 Verédnderungen im optimalen mtry mit den Kovarianzmatrizen 3¢ bis Xs.

.. 14



1 Einleitung

Die von Breiman (2001) entwickelten Random Forests stellen eine beliebte nichtparame-
trische Klassifikations- bzw. Regressionsmethode dar, insbesondere da sie auch bei kom-
plexen Interaktionen oder hochkorrelierten Kovariablen gute Préadiktionen liefern kénnen.
Ein Random Forest besteht aus vielen dekorrelierten Entscheidungsbaumen. Diese Eigen-
schaft wird unter anderem dadurch beeinflusst, dass fiir die einzelnen Splits eines Baumes
nicht alle Variablen als Splitkandidaten beriicksichtigt werden, sondern nur eine zuféllige
Auswahl an Variablen. Damit sinkt die paarweise Korrelation der Entscheidungsbaume.
Um einen Random Forest mit optimaler Priadiktionsgiite zu erhalten, miissen verschiede
Hyperparameter vorab sorgfiltig vom Benutzer festgelegt werden. Einer der wichtigsten
ist dabei die angesprochene Anzahl an Variablen, die als Splitkandidaten beriicksichtigt
werden, auch mtry genannt. (Hastie et al., 2009, S.587-588)

Eine Untersuchung von Bernard et al. (2009) bestéatigte, dass der gebrauchliche Default-
wert mtry = {\/ﬁJ fiir die Klassifikation im Allgemeinen gute Ergebnisse liefert. Ebenso
zeigte sich dabei allerdings auch, dass in Ausnahmeféllen, zum Beispiel bei nur sehr weni-
gen relevanten Kovariablen, mtry deutlich hoher als der empfohlene Defaultwert gewahlt
werden muss, um einen Random Forest mit bester Pradiktionsgiite zu erhalten. Daher
ist es Ziel dieser Arbeit anhand einer umfangreichen Simulationsstudie den Einfluss des
Hyperparamters mtry auf Random Forests ndher zu untersuchen.

Mit den bereits bekannten Ergebnissen von Bernard et al. (2009) liegt es nahe, im ersten
Schritt die Anzahl an relevanten Kovariablen zu variieren und dabei die optimalen mitry
Werte fiir die verschiedenen Szenarien zu bestimmen. Als Erweiterung zu den Untersu-
chungen von Bernard et al. (2009) werden sowohl Klassifikations- als auch Regresssions-
datensatze betrachtet. Des Weiteren werden aber auch diverse Korrelationsstrukturen der
Kovariablen definiert, da sich fiir einzelne Korrelationsstrukturen bereits ein beachtlicher
Einfluss auf die Variablenwichtigkeiten eines Random Forest gezeigt hat (Gregorutti et al.,
2016; Strobl et al., 2008), womit sich auch Auswirkungen auf das optimale mtry vermuten

lassen.



1 — Einleitung

Im Folgenden befasst sich Kapitel 2 ndher mit der statistischen Methodik, die dieser
Arbeit zugrunde liegt. Dazu zahlt neben verschiedenen Modellgiitemafien und den soge-
nannten CART-Entscheidungsbdaumen auch der im Fokus stehende Random Forest. Die
Unterkapitel 2.3.2 und 2.3.3 geben dabei einen Uberblick tiber die bisherige Forschung zu
den angesprochenen Einflussfaktoren des Parameters mtry.

Das Design der Simulationsstudie, mit den entsprechenden Kovariableneinfliissen und Ko-
varianzstrukturen wird zusammen mit den Ergebnissen in Kapitel 3 dargestellt.

Ziel dieser Arbeit ist es aulerdem eine Empfehlung zur mtry Wahl auszusprechen, die auf
Basis der Datenstruktur bestimmt werden kann. Dafiir beschreibt Kapitel 4 Moglichkei-
ten zur Messung der Korrelation und Relevanz von Kovariablen und iiberpriift, ob sich
mit diesem Ansatz das optimale mtry zweier Beispieldatenséitze bestimmen lasst.

Abschliefend werden die Ergebnisse dieser Arbeit in Kapitel 5 zusammengefasst.

Alle Analysen in dieser Arbeit wurden mit der statistischen Software R durchgefiihrt
(R Core Team, 2015, Version 3.2.3). Zur Erstellung der Abbildungen wurde dabei das
R-Package ggplot2 (Wickham, 2009, Version 2.2.1) genutzt.



2 Statistische Methodik

Das folgende Kapitel behandelt die Methodik, die dieser Arbeit zugrunde liegt. Fiir die
Auswertungen sind unter anderem die vorgestellten Modellgiitemafle von Bedeutung, wel-
che auch die Performance eines Random Forests messen konnen. Neben Klassifikations-
und Regressionsbaumen, welche die Basis eines Random Forest bilden, werden ebenso
Eigenschaften eines Random Forests beschrieben, die unter anderem Grundlage fiir die

durchgefiihrte Simulationsstudie waren.

2.1 Modellgiitemafle

Modellgiitemafle werden verwendet, um die Anpassung eines statistischen Modells an vor-
liegende Daten zu quantifizieren. Dabei liegt der Fokus zumeist auf der Pradiktionsfahig-
keit des Modells. Abhéngig vom Response und der gewiinschten Struktur, die durch die
Modellierung dargestellt werden soll, konnen eine Vielzahl verschiedener Mafle betrachtet
werden.

Im Weiteren werden vier Mafle vorgestellt, die zwei unterschiedliche Strukturen fiir Reg-
ressions- und Klassifikationsmethoden abbilden. Die Bestimmung der Modellgiite kann
damit zum einen basierend auf den Residuen und zum anderen basierend auf den Réngen
der Beobachtungen erfolgen. Rosset et al. (2006) vergleichen diese beiden Ansétze fiir
Regressionsmethoden. Residuenbasierte Mafle haben demnach den Vorteil, dass sie eine
Likelihood-Interpretation erméglichen und oft die ,,wahren“ Kosten des Pradiktionsfeh-
lers darstellen. Allerdings kénnen in manchen Situationen auch rangbasierte Mafle gewisse
Vorteile mit sich bringen, beispielsweise, wenn anstelle der konkret geschiatzten Werte ei-
nes Modells eher im Vordergrund steht, ob das Modell die Beobachtungen anhand der
Pradiktionen in ihrer korrekten Reihenfolge anordnet. Auflerdem sind diese Mafle ein-
fach zu interpretieren und im Vergleich zu residuenbasierten deutlich robuster gegeniiber

Ausreilern im Response oder auch in den Kovariablen.

2.1.1 Regression

Vorzugsweise wird die Modellgiite anhand eines Testdatensatzes ermittelt, welcher nicht

zur Modellierung berticksichtigt wurde. Dieser besteht aus N Beobachtungen (x;,v;),
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t=1,..., N, mit den Kovariablenauspriagungen x; und einem Response y;, welcher im

Fall einer Regressionsmethode metrisch skaliert ist.

Weit verbreitet zur Evaluierung der Performance eines Regressionsmodells ist folgendes
additive Fehlermaf, welches mit den Prédiktionen ¢; aus den Residuen r; = y; —1; gebildet
wird:

1

N i=1

Mittlerer Pradiktionsfehler = L(r;). (2.1)

Hierbei konnen verschiedene Verlustfunktionen L(r) zum Einsatz kommen. Zum Beispiel
ergibt sich durch den quadratischen Fehler L(r) = 72, der sehr oft verwendete Mean Squa-
red Error (MSFE), wobei ein Modell mit einem moglichst geringen M S E angestrebt wird.
(Rosset et al., 2006)

Eine andere Moglichkeit der Modellevaluierung bieten rangbasierte Mafle. Um diese formal
einfach darzustellen wird im Weiteren vorausgesetzt, dass weder im Response noch in den
Kovariablen des Testdatensatzes Bindungen auftreten. Zuséatzlich werden die Préadiktionen

des Modells in absteigender Reihenfolge angenommen, also:
G1>92 > >0n.

Ebenso wird auch der beobachtete Response y im Testdatensatz absteigend angeordnet,

womit sich der urspriingliche Rang einer Beobachtung ¢ ergibt zu:
si:‘{hSN:yiSyh}‘. (2.2)

Mithilfe dieser Rénge und der Indikatorfunktion I kann die Anzahl an vertauschten Be-
obachtungspaaren im Modell definiert werden als
T =Y I(s;> sp). (2.3)
i<h
Dieses Maf3 wird anschliefend transformiert, sodass sich Kendall's T,

AT
=y oy 24

ergibt. Die Transformation stellt sicher, dass 7 innerhalb des Wertebereichs [—1, 1] liegt.
Denn in einem optimalen Modell ist der beobachtete Response in der gleichen Rangfolge
angeordnet wie die Préadiktionen, das heifit es gilt 7" = 0, womit 7 den Wert 1 annimmt. Im
Gegensatz dazu konnen aber auch alle moglichen Rangfolgen des beobachteten Responses
vertauscht sein, was einer invertierten Rangfolge entspricht. Dabei gilt fiir die Anzahl an
vertauschten Beobachtungspaaren T = N(N — 1)/2, womit 7 wiederum den Wert —1
annimmt. (Rosset et al., 2006)
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2.1.2 Klassifikation

Auch fir Klassifikationsverfahren sollten Testdatensétze zur Modellgiitebestimmung her-
angezogen werden. Diese haben die gleiche Definition wie schon bei der Regression, al-
lerdings mit kategorialem Response. Im Weiteren werden zwei Mafle speziell fiir binare

Ausprégungen des Responses vorgestellt.

Ahnlich zum M SE fir die Regression, misst der Brier Score den mittleren quadratischen
Fehler einer Klassifikation. Brier (1950) entwickelte diesen Score urspringlich um meteo-
rologische mehrkategoriale Vorhersagen auszuwerten, er kann allerdings auch fiir jedes
andere Klassifikationsproblem herangezogen werden. Fiir einen bindren Response ist der

Brier Score gegeben durch

1 N
Brier Score = N > (i — i), (2.5)
i=1
wobei y; der beobachtete Response ist und p; die vom Modell vorhergesagte Wahrschein-
lichkeit, dass fiir die i-te Beobachtung y; = 1 gilt. Wie schon beim M SFE induziert auch
hier ein Brier Score von geringerem Wert eine bessere Pradiktionsgiite fiir ein Modell.
(Roulston, 2007)

Das AUC ist ein weiteres Giitemaf fiir Klassifikationsverfahren und entspricht der Flache
unter der ROC-Kurve. Diese sogenannten Receiver Operating Characteristics Kurven
ermoglichen eine visuelle Darstellung der Modellperformance. Hierfiir wird zunéchst fiir
jede Beobachtung die beobachtete Responseauspragung mit der Pradiktion aus dem Mo-
dell verglichen. Dabei kénnen vier verschiedene Fille auftreten, die in einer sogenannten
Konfusionsmatrix zusammengefasst werden. Tabelle 2.1 stellt solch eine Konfusionsmatrix

allgemein dar.

Beobachtete Klasse y
1 0 >
Vorhergesagte 1 || richtig positiv (rp) | falsch positiv (fp) || ni

Klasse 0 || falsch negativ (fn) | richtig negativ (rn) || n;
> n o N

Tabelle 2.1: Konfusionsmatriz bzw. Kontingenztabelle fiir den Vergleich eines beobach-
teten bindren Responses und einer Modellpradiktion.

Tritt bei einer Beobachtung y; = 1 auf und die Pradiktion stimmt mit dieser Aus-

priagung tiiberein, wird die Beobachtung als richtig positiv klassifiziert bezeichnet. Stimmt
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die Pradiktion jedoch nicht iiberein, so ist sie falsch negativ klassifiziert. Andererseits,
wenn y; = 0 die wahre Auspriagung ist und ¢; = 0 vorhergesagt wurde, ist die Beob-
achtung richtig negativ klassifiziert, bzw. bei ; = 1 falsch positiv. Mithilfe der Anzahl
des Auftretens der einzelnen Félle konnen verschiedene Kennzahlen ermittelt werden.
Zwei wichtige Groflen fir die ROC-Kurve sind dabei die richtig positiv Rate und die
falsch positiv Rate:

rp

richtig positiv Rate = . (2.6)
falsch positiv Rate = J:Z. (2.7)

Mit ng und n; werden dabei jeweils die Anzahl an Beobachtungen mit Responseauspriagung
y = 0 bzw. y = 1 bezeichnet. Fiir probabilistische Klassifikationsmethoden, bei denen der
geschétzte Response nicht konkret 0 oder 1 ist, sondern die Wahrscheinlichkeit p fiir eine
der beiden Klassen, kann die Konfusionsmatrix fiir verschiedene Schwellenwerte zwischen
0 und 1 aufgestellt werden. Erst wenn die geschatzte Wahrscheinlichkeit p diesen Schwel-
lenwert iiberschreitet, wird einer Beobachtung die vorhergesagte Klasse § = 1 zugewiesen.
Fiir jeden Schwellenwert gelten demnach auch andere richtig positiv bzw. falsch posi-
tiv Raten. Diese verschiedenen Raten konnen zweidimensional gegeneinander abgetragen
werden, wodurch sich die ROC-Kurve ergibt. Dabei liegt die falsch positiv Rate auf der
x-Achse und die richtig positiv Rate auf der y-Achse. In Abbildung 2.1 ist beispielhaft
eine ROC-Kurve dargestellt.

1.00

0.75

0.50

0.25

Richtig Positiv Rate

0.00 0.25 0.50 0.75 1.00
Falsch Positiv Rate

Abbildung 2.1: ROC-Kurve eines Beispieldatensatzes (In  Anlehnung an Fawcett
(2006)). Die grau eingezeichnete Fliche unterhalb der Kurve entspricht
dabei dem AUC. Die ROC-Kurve einer Klassifikationsmethode mit
zufdlligen Vorhersagen liegt auf der gestrichelten blauen Linie.
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Liegt die ROC-Kurve auf der Diagonalen spricht dies fiir ein Modell, das absolut zuféllig
eine Klasse vorhersagt. In der Regel befindet sich die ROC-Kurve also oberhalb dieser
Diagonale. Perfekte Performance ist dadurch gekennzeichnet, dass der Kurvenverlauf ver-
tikal ausgehend vom Punkt (0,0) zu (0, 1) verlauft und anschlieend horizontal bei (1, 1)
endet. Die Performance lasst sich nun auch mithilfe einer Mafizahl ausdriicken, indem
die Flache unterhalb der ROC-Kurve betrachtet wird. Dieses Performancemafl wird als
AUC (Area Under the Curve) bezeichnet und kann durch Integrieren der Funktion, wel-
che die ROC-Kurve beschreibt, ermittelt werden. Theoretisch kann das AUC' innerhalb
des Wertebereichs [0, 1] liegen, da jedoch die ROC-Kurve fiir gewohnlich oberhalb der
angesprochenen Diagonale liegt, sollte keine realistische Klassifikationsmethode ein AUC
kleiner als 0.5 aufweisen. Es gilt, je grofler das AUC, desto grofler auch die Performance
des Modells. Eine interessante Eigenschaft des AUC' ist auflerdem, dass diese Fléche der
Wahrscheinlichkeit entspricht, dass zwei zuféllig gezogene Beobachtungen i1 und h0 mit
yi1 = 1 und yuo = 0 von der Klassifikationsmethode korrekt geordnet werden, das heifit
es gilt AUC = P(pi > pro)- (Fawcett, 2006)

Hanley und McNeil (1982) zeigen, dass das empirische AUC daher dquivalent zur Wilco-

xon Teststatistik W ist und sich auch folgendermafien berechnen lésst:

1 ni nNo N R
AUC =W = > S(pir, bro), (2.8)
ny-No ;2 p—
1, falls pi1 > Pro
mit S(Pir, Pro) = { 0.5, falls P = Po - (2.9)

0, falls pi1 < Pro

Dabei bezeichnen ny und n; die jeweilige Anzahl an Beobachtungen, fiir die y = 0 bzw.
y = 1 gilt, und pg, (9 € {h,i}, k € {0,1}) sind die entsprechenden Modellpradiktionen
einer Beobachtung g mit wahrer Klasse y = k.

Das AUC kann damit also dhnlich zu Kendall's T aus Gleichung (2.4) auch als rangba-

siertes Maf} interpretiert werden.

2.2 CART - Classification and Regression Trees

CART (Classification and Regression Trees) bezeichnet eine Methode, mit der baumba-
sierte Klassifikation und Regression durchgefiihrt werden kann. Dabei wird der Variablen-
raum rekursiv in verschiedene Partitionen eingeteilt.

Rechts in Abbildung 2.2 ist beispielhaft die Partitionierung eines Datensatzes mit zwei Va-
riablen X; und X, dargestellt. Die Unterrdume Ry, ..., R5 sind durch wiederholtes Teilen

der Einzelrdume in zwei Gruppen entstanden. Dabei wird fiir jeden Split eine Variable und
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eine entsprechende Variablenauspriagung ¢ gewahlt, sodass ein vorab bestimmtes Kriteri-
um optimiert wird. Ebenso wird vorab ein Stopkriterium definiert, welches den Zeitpunkt

festlegt, ab dem keine weiteren Splits mehr durchgefithrt werden.

R R X,
4 5

Abbildung 2.2: CART Beispiel fir einen zweidimensionalen Variablenraum, der rekur-
siv bindr aufgeteilt wurde. Links der zugehorige Entscheidungsbaum, der
die rechte Partition bildet (In Anlehnung an Hastie et al. (2009, S.
306)).

Links in Abbildung 2.2 ist die gleiche Partitionierung in ihrer Baumstruktur dargestellt,
welche eine einfache Interpretierbarkeit des gruppierten Variablenraums ermoglicht. Der
vollstandige Datensatz befindet sich dabei an der Spitze des Baumes und wird an den
jeweiligen Asten entlang in die Unterrdume Ry, . .., Ry, die auch Terminal Nodes genannt
werden, aufgesplittet. Um nun auf Basis solch eines Baumes einen Response y vorherzu-
sagen, wird dieser in jeder Terminal Node separat als Konstante modelliert. (Hastie et al.,
2009, S. 305)

Je nachdem, welcher Response mit einem Entscheidungsbaum abgebildet werden soll,
unterscheidet sich diese Modellierung und auch das Splitkriterium. Daher wird im Weite-
ren zwischen Regressionsbdumen fiir metrischen Response und Klassifikationsbaumen fiir

kategorialen Response unterschieden.

2.2.1 Regressionsbdume

Ein Regressionsbaum wird bei metrischem Response y angewendet. Dabei sind fir N
Beobachtungen sowohl der Response y;, ¢ = 1,..., N, als auch die Auspridgungen von p
Kovariablen X;, j =1,...,p, bekannt. Jeder Beobachtung ¢ kann also ein Vektor (x;,y;)
mit x; = (1, ..., %) zugeordnet werden.

Bei einer Partitionierung in M Terminal Nodes Ry,..., Ry, wird der Response in jeder
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dieser Node als Konstante ¢,, modelliert:

M
f(x)=> cnl(x € Ry). (2.10)
m=1
Mit der Quadratsumme Y (y; — f(x;))? als Minimierungskriterium ergibt sich daraufhin

der Mittelwert aller y; in einer Terminal Node R,, als optimaler Schéatzer fiir ¢,,, also

1
e =5— > Ui (2.11)
|Rm‘ i|X;€ERm
wobei |R,,| die Anzahl an Beobachtungen in einer Node R, angibt.
Um nun die erste Splitvariable j und den optimalen Splitpunkt ¢ zu bestimmen, werden

zwei Halbebenen,
Ri(j,t) = {X|X; <t} und Ry(j,t) = {X|X; > t}, (2.12)

definiert. Die Splitvariable j und der Splitpunkt ¢ sind dann diejenigen, die folgende
Bedingung erfiillen:

nf]wtn mC%n > | (y; — c1)? +7T£TL > | (y; — c2)?| . (2.13)
i|x;ER1 (4,t) i|x;€R2(j,t)

Die inneren Minimierungen werden dabei fir alle j und ¢ mit Gleichung (2.11) und den

in Gleichung (2.12) definierten Halbebenen geldst, womit sich

1
b= ——— > y;und
[Ri(5,1)] i|xi€R1(4,t)
1

== B 214)
ergeben. Fir jede Splitvariable werden dabei alle beobachteten Ausprigungswerte als
Splitpunkte gepriift, um das beste Paar (j,¢) in Bezug auf das Minimierungskriterium zu
finden. Mit diesem Paar werden die Daten in zwei Unterrdume gesplittet und in jedem
dieser Unterrdume wieder ein binérer Split durchgefithrt. Laut Duroux und Scornet (2016)
hat der Response y in den mit diesem Splitkriterium jeweils entstehenden Unterrdumen
minimale (empirische) Varianz, was auch in Gleichung (2.13) ersichtlich wird. Dieses Vor-
gehen wird solange rekursiv angewendet bis ein vorab definiertes Abbruchkriterium erfillt
ist. Meist wird dafiir die minimale Anzahl an Beobachtungen in einer Node verwendet,
welche nicht unterschritten werden soll. (Hastie et al., 2009, S. 307)

Zuséatzlich gibt es auch die Moglichkeit, einen so aufgestellten Baum Tj zu stutzen. Dafiir
kann zum Beispiel das sogenannte cost-complezity pruning angewendet werden. Durch das

Entfernen von einzelnen Asten in Ty entstehen Unterbdume T C Tp mit einer geringeren
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Anzahl an Terminal Nodes (=|7’|). Nun wird das Kosten-Komplexitats Kriterium

|7
ColT) = D NuQum(T) + a|T], (2.15)
m=1
. 1 R
mit Qm(T) = AT Z (yz - Cm>2a
m ’i|X1‘€Rm
Nm = |Rm|7

Cm = L Z Yi
M 4%, €ERm
minimiert. Ziel ist das Auffinden eines Unterbaums T, C Ty fiir jedes «. Dabei stellt «
einen Tuningparameter grofler oder gleich Null dar, der den Tradeoff zwischen Baum-
grofe und der Anpassung an die Daten reguliert. Je grofler dabei «, desto kleiner fallen
die Baume T, aus. Um T, zu ermitteln, werden schrittweise diejenigen Nodes m entfernt,
die den kleinsten Anteil zur Summe -, N,,,@Q.,(7T") beitragen. Aus all diesen Unterbédumen
wird dann mithilfe einer Kreuzvalidierung der Wert & flir a geschétzt, der die Quadrat-

summe minimiert, womit der finale Baum T} ist. (Hastie et al., 2009, S. 308)

2.2.2 Klassifikationsbaume

Im Gegensatz zum metrischen Response y fiir die Regressionsbaume liegt der Response
fiir einen Klassifikationsbaum als kategoriale Variable mit den Auspridgungen 1,..., K
vor. Die Konstruktion solch eines Baumes ahnelt stark der eines Regressionsbaumes, mit
dem einzigen Unterschied im Kriterum @,,(7"), das fiir einen Split und fiir das Stutzen
Verwendung findet.

Auch hierbei entstehen Unterrdume R,,, denen jeweils INV,, Beobachtungen zugeordnet wer-
den. Die Klassenzuordnung dieser Beobachtungen wird dabei tiber das Mehrheitsverhélt-
nis bestimmt. Eine Beobachtung in Node m wird demnach der Klasse k(m) zugeordnet,

welche am haufigsten innerhalb dieser Node auftritt:

k(m) = arg max P, (2.16)
k
A 1
mit P = N Z I(y; = k). (2.17)

m i|xi€Rm

Héaufig verwendete Splitkriterien eines Klassifikationsbaumes sind der Missklassifizierungs-
fehler oder der Gini Index. Beide Kriterien sind Mafie @,,(T") fiir die Unreinheit einer
Node. Dabei misst der Missklassifizierungsfehler den Anteil an Beobachtungen, die durch
das oben beschriebene Mehrheitsverhéltnis einer falschen Klasse zugeordnet werden. Der
Gini Index berticksichtigt dagegen fiir jede Klasse k& das Produkt aus Wahrscheinlichkeit

und Gegenwahrscheinlichkeit fiir eine Klasse.

10



2 — Statistische Methodik

Formal lassen sich diese beiden Mafle auch folgendermaflien ausdriicken:

1
Missklassifizierungsfehler:  Q,,(T) = — Z I(y; # k(m)) =1 = Prk(m)-  (2.18)

™ |%;€Rm
Gini Index:  Qun(T) = Y DukDmir = mek — Dmk)- (2.19)
kAK!
Im Klassifikationsbaum wird die Splitvariable j und ensprechende Splitauspréagung t ge-
sucht, sodass die Unreinheit in beiden neu entstehenden Unterrdumen simultan minimiert
wird. Dafiir werden die UnreinheitsmaBe @,,,(T") der beiden Unterrdume mit der Anzahl
der jeweiligen Beobachtungen N; und N, gewichtet. (Hastie et al., 2009, S. 308-310)

Demnach muss fiir einen Split die Bedingung

erfiillt sein. Wie auch schon bei den Regressionsbédumen sind auch hier die Maie Q1(T)
und ()3(7") abhéngig von den zwei definierten Halbebenenen aus Gleichung (2.12) und
somit auch von dem Paar (7, 1).

Das Verfahren zum Stutzen eines Baumes verléduft mit dem entsprechend ausgetauschten

Unreinheitsmafl Q,,,(7") analog zum Regressionsbaum.

2.3 Random Forests

Ein Random Forest ist eine Abwandlung der Bootstrap Aggregation, kurz auch Bagging
genannt. Beim Bagging wird im Allgemeinen ein Modell auf verschiedene Bootstrap-
Stichproben des Datensatzes angewendet und die resultierenden Schéatzer gemittelt. Das
fithrt zu einer erheblichen Varianzreduktion der Schatzfunktion.

Im Folgenden wird beschrieben, wie sich ein Random Forest auf Basis der vorab vorgestell-
ten Entscheidungsbédume bilden lasst und welche Bedeutung dabei korrelierte Kovariablen

und der Hyperparamter mtry besitzen.

2.3.1 Verfahren

Konkret wird bei einem Random Forest eine grofle Anzahl an Entscheidungsbédumen
betrachtet. Diese werden auf Basis von Bootstrap-Stichproben (Ziehen mit Zuriickle-
gen) der gleichen Grofle des urspriinglichen Datensatz gebildet. Ergebnisse aus Entschei-
dungsbiumen koénnen bereits bei kleineren Anderungen in den Daten unterschiedlich
ausfallen. Aus diesem Grund und da besonders tiefe Bdume (zum Beispiel ungestutz-
te Bdume) einen relativ geringen Bias aufweisen, eignen sie sich hervorragend fiir das
Bagging und profitieren stark von der Mittelwertbildung der Schéatzer aus den einzel-

nen Baumen. Eine Schwachstelle dabei ist allerdings, dass die paarweise Korrelation der

11
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einzelnen Baume die Varianzreduktion begrenzt. Dem wird im Random Forest dadurch
entgegengewirkt, dass in jedem Split nicht alle Variablen berticksichtigt werden, sondern
eine zufallige Auswahl einer bestimmten Anzahl (mtry) an Splitkandidaten vorgenommen
wird. Das reduziert die Korrelation zwischen den Baumen ohne die Varianz des gemittel-
ten Schatzers stark ansteigen zu lassen. Je kleiner mtry dabei gewéahlt wird, desto geringer
fallt auch die Korrelation zwischen den Béumen aus. (Hastie et al., 2009, S. 587-588)

Der Algorithmus fiir einen Random Forest wird von Hastie et al. (2009, S. 588) folgen-
dermaflen zusammengefasst:
Algorithmus 1: Random Forest nach Hastie et al. (2009, S. 588).

Sei B die Anzahl an Baumen in einem Random Forest.

fiir b=1 bis B
(a) Ziehe eine Bootstrap-Stichprobe Z* der Grofle N aus den Trainingsdaten.

(b) Bilde mit dieser Stichprobe einen Baum T}, durch rekursive Wiederholung
der folgenden Schritte in jeder Terminal Node, bis 7,,,;,,, die minimale Anzahl

an Beobachtungen in einer Node erreicht ist.

i. Wahle zufallig mtry Variablen aus den p Kovariablen.

ii. Ermittle die optimale Variable und Variablenauspragung unter den

mtry Variablen.

iii. Splitte die Node in zwei Tochter-Nodes.

Gebe alle Biume {T},}# zuriick.

Dieser Algorithmus lésst sich sowohl fiir einen Random Forest mit metrischem Response
als auch mit kategorialem Response anwenden. Dabei werden bestimmte Defaultwerte fiir
mtry und das Abbruchkriterium n,,;, abhingig vom Response empfohlen. Bei Regressi-
onsproblemen wird hierfiir mtry = |p/3] und n,;, = 5 vorgeschlagen, bei Klassifikati-
onsproblemen mtry = {\/ﬁJ und n,,;, = 1. Allerdings weisen Hastie et al. (2009, S. 592)
auch darauf hin, dass diese Parameter abhéngig von den vorliegenden Daten sein kénnen
und als Tuningparameter behandelt werden sollten.

Unterschiede treten auflerdem auf, wenn die Pradiktion fiir eine neue Beobachtung mit
Variablenausprédgungen x bestimmt werden soll. Im Regressionsfall mit metrischem Re-
sponse wird dieser tiber den Mittelwert der Pradiktionen ¢, = Tj,(x) der einzelnen Baume

geschatzt:

e () = 50 = 5 3 Til). (2.21)

12
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Dagegen wird bei der Klassifikation die sogenannte majority vote angewendet. Jeder der B
Béume hat eine eigene Klassenpradiktion C’b(x) fiir eine Beobachtung mit Kovariablen x.
Im Random Forest erhélt diese Beobachtung jene Klasse zugewiesen, welche am haufigsten

unter all den Baumen auftritt, was sich formal darstellen lasst als

Drtass(x) = CF(x) = majority vote {Cy(x)}7. (2.22)
Eine Besonderheit des Random Forests stellen die out-of-bag (OOB) Pradiktionen einer
Beobachtung dar. Hierfiir werden sowohl fiir Regression als auch fiir Klassifikation zur
Pradiktion nicht alle B Baume beriicksichtigt, sondern nur diejenigen, deren Bootstrap-
Trainingsdaten die betrachtete Beobachtung nicht enthalten. Mit diesen OOB-Pradik-
tionen lédsst sich dann auch der OOB-Fehler des Random Forests schétzen. Sobald sich
dieser stabilisiert, gibt er einen Anhaltspunkt, dass keine weiteren Iterationen bzw. Baume
fir den Forest notig sind. (Hastie et al., 2009, S. 588-593) AuBerdem ist durch die An-
wendung des OOB-Fehlers kein zusatzlicher Testdatensatz notig, da der OOB-Fehler bei
ausreichend hoher Anzahl an Baumen genauso préazise ist, wie der Fehler eines Testda-
tensatzes mit gleicher Anzahl an Beobachtungen wie der Trainingsdatensatz. Ein weiterer
Vorteil ist die Rechengeschwindigkeit, denn anders als zum Beispiel bei einer k-fachen
Kreuzvalidierung, miissen nicht £ Random Forests konstruiert werden, sondern nur einer,
aus diesem der OOB-Fehler ermittelt werden kann. Zudem koénnen die OOB-Pradiktio-
nen zum Beispiel auch fiir die Bestimmung der Variablenwichtigkeiten eingesetzt werden.
(Breiman, 2001)

Es gibt verschiedene Méoglichkeiten die Variablenwichtigkeit zu messen. Ein simpler An-
satz ist zu zédhlen, wie hdufig eine Variable als Splitkandidat in den einzelnen Baumen
eines Forests ausgewahlt wurde. Etwas aufwendiger ist es dagegen das (gewichtete) Mittel
aus den einzelnen Verbesserungen des Splitkriteriums durch jede Variable zu bestimmen.
Dabei beschreibt zum Beispiel die Gini Importance die Verbesserung des Gini Index durch
jede Variable. Haufig wird jedoch die Permutation Accuracy Importance, im Weiteren oft
auch nur Permutation Importance genannt, angewendet, welche auf den OOB-Schétzern
beruht. Dazu wird folgende Prozedur fiir jeden Baum und jede der p Kovariablen X;

wiederholt:

1. Der urspriingliche Zusammenhang zwischen X; und dem Response wird durch zufalli

ge Permutation von X; aufgehoben.

2. Auf Basis der iibrigen Kovariablen und der permutierten Variable X; werden die
OOB-Pridiktionen des Responses erstellt und damit die Prédiktionsgite (OOB-
Fehler) ermittelt.

13
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3. Die Pradiktionsgiite aus 2. wird mit der Pradiktionsgiite vor der Permutation durch

die Differenz der beiden verglichen.

Die Wichtigkeit einer Variable X; entspricht anschliefend dem Mittelwert der Pradikti-
onsgiite-Differenzen (aus 3.) aller Baume des Random Forests. Bei einem hohen Einfluss
von X; auf den Response, wird davon ausgegangen, dass die Préadiktionsgiite deutlich
sinkt, wenn die permutierte Kovariable zur Prédiktion verwendet wird, was damit eine
hohe Auspriagung der Variablenwichtigkeit zur Folge hat. (Strobl et al., 2007)

Bei der Wahl des Mafles fiir die Préadiktionsgiite konnen zum Beispiel die in Kapitel
2.1 vorgestellten Modellgiitemafle zum Einsatz kommen. Wie der Name der Permutation
Accuracy Importance jedoch schon vermuten ldsst, wird fir die Klassifikation meist die
Accuracy verwendet, welche den Anteil an korrekt klassifizierten Beobachtungen inner-
halb der Daten angibt. Fiir die Regression kommt dagegen tiberwiegend der M SFE zum

Einsatz.

2.3.2 Korrelierte Variablen

Vor allem im Zusammenhang mit der Variablenwichtigkeit werden haufig auch korrelierte

Kovariablen im Random Forest untersucht.

Eine Studie von Strobl et al. (2008) definiert dafiir einen Simulationsdatensatz mithilfe
eines linearen Modells, der neben dem Response noch weitere zwolf Kovariablen beinhal-
tet. Die festgelegten Kovariableneinfliisse konnen Tabelle 2.2 entnommen werden. Zudem
erhalten die ersten vier Variablen Xj,..., X, eine starke Blockkorrelation, wéhrend die
restlichen Kovariablen unkorreliert sind. Eine detailliertere Beschreibung eines dhnlichen
Simulationsvorgehens wird in Kapitel 3.1 gegeben. Es sei darauf hingewiesen, dass die fol-
genden Ergebnisse sowohl fiir den Regressionsfall als auch fiir die Klassifikation gelten und
zudem anhand eines Anwendungsbeispiels tiberpriift wurden. Auflerdem kommen fiir die
Konstruktion der Forests nicht wie iiblich CART-Entscheidungsbdume zum Einsatz, son-
dern Conditional Inference Trees, die basierend auf bedingten Teststatistik-Verteilungen
den Zusammenhang zwischen Response und Kovariablen messen, was ein etwas anderes

Vorgehen im Splitprozess zur Folge hat (Nédheres dazu in Hothorn et al. (2006)).

X; Xy Xy X3 Xy X5 X5 X7 Xz ... Xpp
B; 5 ) 2 o -5 -5 -2 0 ... 0

Tabelle 2.2: Regressionskoeffizienten zur Datengenerierung der Simulationsstudie von
Strobl et al. (2008).

14
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Neben den korrelierten Variablen analysieren Strobl et al. (2008) auch den Einfluss von
mtry auf die Auswahlhdufigkeiten der Variablen fiir einen Baumsplit. Dabei zeigt sich,
dass gemittelt tiber alle Splits der Baume fiir mtry # 1 die korrelierten Variablen mit
schwachem oder fehlendem Einfluss (X3 und X,) haufiger ausgewéhlt werden als die
gleichstarken unkorrelierten Variablen (X7 und Xg). Dieses Phédnomen lésst sich dadurch
erkldren, dass auch wenn eine Variable keinen oder nur einen geringen Einfluss auf den
Response hat, jedoch hochkorreliert mit einer anderen Einflussvariable ist, diese bei der
Splitwahl als ebenso guter Splitkandidat wie die Variable mit tatsdchlichem Einfluss er-
scheint. Fir steigendes mitry sinken die Auswahlhdufigkeiten fiir X3 und X, jedoch, da
damit auch die Wahrscheinlichkeit steigt, dass eine tatsachlich relevante Variable ebenfalls
als Splitkandidat betrachtet wird.

Diese Beobachtungen haben auch Auswirkung auf die Schétzung der Variablenwichtig-
keit: Die Permutation Importance aus Kapitel 2.3.1 spiegelt nicht die durch die Regres-
sionskoeffizienten festgelegte Struktur wider. Die Variablenwichtigkeiten der korrelierten
Kovariablen werden dabei deutlich iiberschéatzt, was zum Beispiel fast dreimal so hohe
Variablenwichtigkeiten fiir die Kovariablen X; und X, im Vergleich zu den gleichstar-
ken Kovariablen X5 und Xg zur Folge hat. Fir kleine mitry-Werte ist dieser Effekt sogar
starker ausgepréagt als fiir grofle, da die Chance, dass eine korrelierte Variable in einem
Baum frith als Splitkandidat ausgewahlt wird, hoher ist, wenn die restlichen korrelierten
Kovariablen nicht als Splitkandidaten berticksichtig werden. Allerdings stellen Strobl et al.
(2008) auch fest, dass fiir hohere mtry-Werte die Variablilitédt der Variablenwichtigkeit
steigt. Um diese Problematiken zu umgehen, schlagen Strobl et al. (2008) die Verwen-
dung der sogenannten Conditional Permutation Importance vor. Auflerdem erwéhnen sie,
dass fir kleine mtry-Werte eine hohere Pradiktionsgiite erwartet werden kann, wobei ein

Nachweis hierzu nicht angefiihrt wird.

Ahnliche, allerdings etwas komplexere, Simulationsdesigns verwenden auch Tolosi und
Lengauer (2011). Dabei besitzen die blockkorrelierten Variablen die gleiche bzw. &hnliche
Einflussstiarke auf einen ausschlieSlich bindren Response. Neben zwei verschiedenen Si-
mulationsdesigns werden auch zwei reale Datensétze betrachtet. Aus dieser Analyse kann
eine wesentliche Erkenntnis geschlossen werden: Die geschétzten Variablenwichtigkeiten
sind verzerrt, was in diesem Fall bedeutet, dass je mehr Kovariablen blockkorreliert sind,
desto kleiner werden deren Variablenwichtigkeiten. Dadurch kénnen Kovariablen, die zwar
einen starken Einfluss auf den Response haben, jedoch mit sehr vielen anderen Kovariablen
hochkorreliert sind, mithilfe der Variablenwichtigkeit nicht als relevante Variablen erkannt
werden. Der Grund fiir diese Verzerrung im Random Forest liegt dabei in der Randomisie-
rung der einzelnen Bdume durch zum einen die Bootstrap-Stichproben und zum anderen

die Auswahl von mtry Variablen im Splitprozess. Das hat zur Folge, dass die korrelierten
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Variablen untereinander austauschbar als Splitkandidat eingesetzt werden koénnen. Zu-
dem ist intuitiv nachvollziehbar, dass sich bei der Berechnung der Variablenwichtigkeiten
durch die Permutation einer relevanten korrelierten Kovariable keine deutlich schlechtere
Pradiktionsgiite ergibt, da in diesem Fall zur Vorhersage die anderen korrelierten Kova-
riablen herangezogen werden konnen, welche dhnliche Informationen wie die permutierte

Kovariable tragen.

Auch Genuer et al. (2008) untersuchen den Effekt von stark korrelierten Kovariablen im
Random Forest. Allerdings verwenden Sie einen hochdimensionalen Simulationsdatensatz
fir Klassifikation, dem zuséatzliche korrelierte Replikationen der relevanten Variablen hin-
zugefiigt werden. Dabei wird, wie auch von Tologi und Lengauer (2011), ein Sinken der
Variablenwichtigkeit der relevanten Kovariablen beobachtet, je grofler die Gruppe der kor-

relierten Kovariablen ist.

Eine aktuelle Zusammenfassung zu bisherigen Forschungen im Bereich der Korrelation
bei Random Forests und deren Auswirkung auf die Variablenwichtigkeit geben Gregorutti
et al. (2016). AuBlerdem werden theoretische Herleitungen fiir den Zusammenhang zwi-
schen korrelierten Kovariablen und der Permutation Importance in einem additiven Re-
gressionsmodell aufgestellt. Diese zeigen, dass die Variablenwichtigkeit sehr sensibel auf
Korrelationen zwischen den Kovariablen reagiert. Im Folgenden werden nur die Ergebnis-
se dieser Herleitungen dargestellt. Dabei werden fiinf Félle von Korrelationen zwischen
Kovariablen unterschieden, wobei die positive Korrelation zwischen diesen Variablen mit
¢ bezeichnet ist:

Fall 1 - Zwei korrelierte Kovariablen X; und X, und Korrelation 7y mit dem Response.
Damit gilt (X, X2,Y) ~ N3(0,3), mit

1 ¢ 7
YX=|c 1 7. (2.23)
T0 70 1

Nj entspricht hier einer 3-dimensionalen Normalverteilung mit der Kovarianzmatrix 3
und 0 = (0,0,0), dem Vektor der Erwartungswerte.
Fiir steigende positive Korrelationen ¢ sinkt die Variablenwichtigkeit der beiden Kovaria-

blen X; und Xs.

Fall 2 - Zwei korrelierte Kovariablen und eine von diesen Variablen unabhangige Kovaria-

ble X3, deren Korrelation mit dem Response sich von 7y unterscheidet.
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Damit gllt (Xl, Xg, Xg, Y) ~ N4 (O, E), mit

1 ¢ 0 79
10
=] ol (2.24)
00 1 m

To 70 73 1

Wenn c¢ ausreichend grof ist, kann die Variablenwichtigkeit von X3 die Variablenwichtig-

keiten von X; und X, iibersteigen, auch wenn 73 < 7 gilt.

Fall 3 - Alle p Kovariablen sind blockkorreliert und haben Korrelation 7y mit dem Re-

sponse.

Damit gilt (X1, ...,X,,Y) ~ N,.1 (0, %), mit

1 ¢ -+ ¢ 719
c 1 -+ ¢ 7
P A (2.25)
c ¢ -+ 1 79
To To -+ To 1

Je grofler die Anzahl an Kovariablen p, desto schneller sinken die Variablenwichtigkeiten
der Kovariablen gegen 0.

Die Falle 2 und 3 entsprechen damit den Beobachtungen von Tolosi und Lengauer (2011).

Fall 4 - p blockkorrelierte Kovariablen und ¢ Kovariablen unabhéngig von diesen, deren
Korrelation mit dem Response sich untereinander und von 7 unterscheidet.
Damit gl].t (Xh e ,Xp, Xp+1, ce 7Xp+q7 ) ~ Np+q+1 (0, 2), mit

1 ««- ¢ 0 - 0 0
c -1 0 -+ 0 o
S=10 - 0 1 - 0 7. (2.26)
0 - 0 0 - 1 7,
To 0 To Tp+1 tc Tprg 1
Auch hierbei kénnen die unabhéngigen Variablen X1, ..., X, stirkere Variablenwich-
tigkeiten als die untereinander korrelierten Kovariablen X, ..., X, aufweisen, auch wenn

Tptly -y Tprq < To gilt.
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Fall 5 - Zwei negativ korrelierte Kovariablen X; und X, diese Korrelation wird mit —p
bezeichnet.
Damit gilt (X;,X2,Y) ~ N3 (0,X), mit

1 —p 7
YX=|-p 1 1] (2.27)
To T0 1

Fiir steigendes p, was einer starkeren negativen Korrelation entspricht, steigt auch die
Variablenwichtigkeit von X; und Xs. Der Grund dafiir liegt in der entgegengesetzten
Wirkrichtung der Variablen, wodurch beide Variablen zur Erklarung von Y im Modell

benotigt werden.

2.3.3 Hyperparameter mtry

Wie bereits erwahnt, kann mithilfe des Hyperparameters mtry die Stéarke der Randomi-
sierung innerhalb der Bédume eines Random Forests gesteuert werden. Je kleiner mtry
gewahlt wird, desto grofler der Randomisierungseffekt bei der Splitwahl. Dieser Parame-
ter hat damit Einfluss auf eine der wichtigsten Eigenschaften des Random Forest. Oft
werden die empfohlenen Defaultwerte |p/3]| fiir Regressionsmodelle und {\/ﬁJ fiir Klassi-
fikationsmodelle verwendet. Allerdings ist es fragwiirdig, ob diese Werte im Allgemeinen

tatsachlich eine gute Wahl darstellen.

Letzteres und das Fehlen eines theoretischen Konzepts zur mtry-Wahl beanstanden auch
Bernard et al. (2009) und fithren eine Analyse mit Klassifikationsforests durch. Dabei
werden zwolf verschiedene reale Datensétze mit variierender Anzahl an Beobachtungen
und Variablen betrachtet, welche auch mehrkategoriale Responses beinhalten. Die Ergeb-
nisse zeigen, dass in dreiviertel der Datensitze die Modellgiite mit dem Defaultwert fiir
mtry sehr nahe an der optimalen Modellgiite liegt. Als Modellgiitemafl wurde hierbei die
Accuracy gewahlt. Allerdings wurde dabei nicht getestet, ob der optimale mtry Wert
im Vergleich zum Defaultwert zu einer signifikanten Verbesserung der Accuracy beitragt.
Damit stellt der Defaultwert jedoch nicht in allen Féllen die beste Wahl dar.

Ein moglicher Indikator fur die mtry-Wahl ist laut Bernard et al. (2009) die Anzahl an
relevanten Variablen innerhalb der Daten. Der Parameter mtry wirkt als Trade-Off zwi-
schen der Performance und der Diversitdt der einzelnen Bédume eines Random Forests.
Existieren nur wenige relevante Variablen so sinkt die Performance durch die Randomi-
sierung im Splitprozess enorm, was den Trade-Off schwécht. Dagegen bewirken viele stark
relevante Variablen, dass sich die Pradiktionen der einzelnen Baume sehr dhneln und der
Randomisierungseffekt bei der Splitwahl nachlésst. Je weniger relevante Variablen also,

desto grofler fillt der optimale Wert fiir mtry aus, womit die Wahrscheinlichkeit steigt,

18



2 — Statistische Methodik

dass im Splitprozess die unwichtigen Variablen herausgefiltert werden.

Auch Diaz-Uriarte und de Andrés (2006) untersuchen den Effekt verschiedener Hyperpa-
ramter des Random Forests auf den OOB-Fehler. Dabei liegt der Fokus auf Microarray
Daten, die in Genexpressionsstudien vorliegen. Meist wird dabei versucht, aus der Viel-
zahl von Genen diejenigen wenigen zu identifizieren, die einen Zusammenhang mit einem
Response, zum Beispiel einem bestimmtem Krankheitsbild, aufweisen. Genexpressionsda-
ten sind sehr speziell, weswegen viele Standardmethoden oft nicht anwendbar sind. Zum
einen kann die grofie Anzahl an Noise Variablen problematisch sein und zum anderen be-
stehen diese Daten meist aus deutlich mehr Variablen als Beobachtungen, welche oft auch
miteinander interagieren oder korreliert sind. All diese Besonderheiten kénnen jedoch von
einem Random Forest beriicksichtigt werden, womit er auch hier als Klassifikationsme-
thode eingesetzt werden kann. Die Variablenwichtigkeit bietet hierbei beispielsweise eine
Moglichkeit die relevanten Genvariablen zu ermitteln. Auch Diaz-Uriarte und de Andrés
(2006) beobachten, dass der Defaultwert fiir mtry in Bezug auf die OOB Fehlerrate oft,
jedoch nicht immer, eine gute Wahl darstellt. Neben der Anwendung des Random Forests
auf vier reale Datensédtze wurde auch eine sehr umfangreiche Simulationsstudie durch-
gefithrt. Hierbei fallen die Simulationsdatensétze mit wenigen relevanten Genen auf, da
bei diesen ein steigendes mtry die Fehlerrate etwas sinken lasst. Stomit stiitzen also auch

diese Genexpressionsdaten die vorab genannten Thesen von Bernard et al. (2009).

Ahnliche Beobachtungen schildern auch Genuer et al. (2008), die sowohl fiir Regressions-
als auch fiir Klassifikationsforests zwischen Standardproblemen (n >> p) und hochdi-
mensionalen Problemen (n << p) unterscheiden und den OOB-Fehler fiir unterschiedliche
miry-Werte betrachten.

Fiir die untersuchten Standard-Regressionsdatensatze ist der Defaultwert fir mtry oft
nicht optimal, besonders wenn |p/3] = 1 gilt. Fir die simulierten hochdimensionalen Re-
gressionsdatensétze sinkt der OOB-Fehler mit steigendem mitry, weshalb der Defaultwert
fiir mtry auch hier meist nicht optimal gewéhlt ist.

Im Vergleich dazu liefert der mtry-Default fiir Standard-Klassifikationsdatensatze nahe-
zu minimale OOB-Fehler, was allerdings nicht fiir hochdimensionale Klassifikationsda-
tensatze gilt. Hierbei raten auch Genuer et al. (2008) mtry meist deutlich groer als {\/ﬁJ
zu wihlen, um bei einer hohen Anzahl an Variablen p mit einer grofieren Wahrscheinlich-

keit die relevanten Variablen im Splitprozess auszuwéhlen.
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Im Weiteren soll untersucht werden, ob sich die in Kapitel 2.3.3 vorgestellten Beobachtun-
gen auch in einer Simulationsstudie nachbilden und erweitern lassen. Die Grundidee des
Simulationsaufbaus stammt von Hapfelmeier et al. (2012) und wurde in abgewandelter
Form iibernommen. Dabei ist vor allem von Interesse, wie der optimale mtry Wert von
verschiedenen Eigenschaften eines Datensatzes abhéngt.

Keine der in Kapitel 2.3.3 vorgestellten Studien verwendet Datensétze, die sowohl fir
Regressions- als auch fiir Klassifikationsmodelle vergleichbar sind. Daher beruht das Si-
mulationsdesign in dieser Arbeit fiir beide Modellarten auf einem sehr &hnlichen Prinzip,
welches nun detailliert beschrieben wird. Abschlieend werden die Ergebnisse dieser Si-

mulationen vorgestellt.

3.1 Simulationsdesign

3.1.1 Datensitze

Wie bereits erwahnt wurden sowohl Regressionsmodelle wie auch Klassifikationsmodelle
untersucht. Die bendtigten Datenséitze unterscheiden sich hier lediglich in der Definition
des Responses, die Kovariablen werden fiir beide Modelle auf die gleiche Art und Weise

generiert.

Ein Datensatz besteht aus einem Response Y und p Kovariablen X, ..., X, fiir insgesamt
N Beobachtungen. Diese Kovariablen werden zuféllig aus einer multivariaten Normalver-
teilung mit einem Erwartungswertvektor g = 0 der Lange p und Kovarianzmatrix 3

gezogen, es gilt also
(X1,...,X,) ~ N,(0,%).

Jede der Variablen erhalt eine Varianz gleich 1, womit alle Eintrage auf der Diagonale der
p X p Kovarianzmatrix 3 gleich 1 sind. Nach Hapfelmeier et al. (2012) entsprechen die
jeweiligen Kovarianzen in diesem Fall den Korrelationen der Kovariablen, auf welche in
Kapitel 3.1.3 néher eingegangen wird.

Der Einfluss jeder Kovariable auf den Response wird mithilfe eines Koeffizientenvektors
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B = (B1,-..,Bp) bestimmt. Die verwendeten Spezifikationen konnen im Detail dem fol-

genden Kapitel 3.1.2 entnommen werden.

Ein stetiger Response fiir eine Beobachtung ¢ wird daraufhin auf Basis eines linearen

Modells mit den generierten Kovariablen x; = (z;1,. .., x;,) definiert:
yi=x.B+e, Vi=1,...,N. (3.1)
€ = (€1,...,€y) entspricht dabei einem Vektor mit Fehlertermen, der einer Normalvertei-

lung mit Erwartungswert 0 und Varianz 0.5 folgt.

Ein binédrer Response fiir eine Beobachtung ¢ mit den Auspragungen 0 oder 1 wird dagegen

auf Basis eines Logitmodells definiert:

cxp(xi B) .
T =PY =1X=x%;) = ———— >, womit gilt
T+ cap(xB)

Der Response einer Beobachtung i kann demnach zuféllig aus einer Bernoulliverteilung

mit Wahrscheinlichkeit 7; gezogen werden.

3.1.2 Kovariableneinfliisse

Aus Kapitel 2.3.3 geht hervor, dass die Relevanz der einzelnen Kovariablen innerhalb
eines Datensatzes einen starken Einfluss auf die Wahl von mtry hat. Durch die Anwen-
dung realer Datensétze ist es Bernard et al. (2009) allerdings nicht moglich die Anzahl an
tatséchlich relevanten Kovariablen exakt zu bestimmen und Genuer et al. (2008) stellen
nur fir hochdimensionale Daten den Bezug zwischen mtry und den relevanten Kovaria-
blen her. Um diese These detaillierter zu untersuchen, wurde in dieser Arbeit die Anzahl
an relevanten Kovariablen eines Datensatzes durch verschiedene Koeffizientenvektoren
B gesteuert. Dabei induziert 5; = 0, j € {1,...,p}, dass die Variable X, keinen Ein-
fluss auf den Response hat. Insgesamt wurden sieben verschiedene Koeffizientenvektoren
abhéngig von der Anzahl an Variablen p definiert, welche in Tabelle 3.1 zusammengefasst

sind.

Fir B, und B, wurde eine feste Anzahl von ein bzw. zwei Kovariablen gewahlt, die einen
Einfluss auf den Response besitzen, alle restlichen Kovariablen sind fiir die Generierung
des Responses irrelevant. Gleiches gilt auch fiir die Koeffizientenvektoren 83 und 84, wobei
fiinf relevante Kovariablen definiert wurden. Im Gegensatz zu 84 haben diese Kovariablen
mit B3 allerdings nicht alle den gleichen Einfluss, sondern unterscheiden sich geringfiigig,

sodass zwei Kovariablen eine starke Relevanz aufweisen und drei eine moderate Relevanz.
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Koeftizientenvektor 8 = (B, ..., 5,) Beschreibung

Eine relevante und p — 1 irrelevante Kovaria-
B1=(7,0,...,0) blen. P
Zwei relevante und p — 2 irrelevante Kovaria-
By =(7,8,0,...,0) o p
- Fiinf Kovariablen mit unterschiedlicher Rele-
Bs =(17,7,7,20,20,0,...,0) vanz und p — 5 irrelevante Kovariablen.

. Finf Kovariablen mit gleicher Relevanz und
Bs=(17.7,7,7,0,...,0) p — 5 irrelevante Kovariablen.

B @23 15, 18) | Vil Kowriblen it oringerRelevans und

B (o 2051518t | Vil Kovrialen it et Relvans wd

Br=1(2,...,2,3,...,3,4,...,4) Alle Kovariablen mit d&hnlicher Relevanz.

Tabelle 3.1: Definition von sieben verschiedenen Koeffizientenvektoren fir die Datenge-
Nerierung.
Die Haufigkeiten der drei verschiedenen Koeffizientenausprigungen fir
Bs—B7 sind abhdngig von der Anzahl an Variablen p. Dabei gilt fir p = 10:
3, 4, 3; fiirp=20:5, 10, 5, und fir p=>50: 13, 24, 13.

Demgegentiber stehen drei weitere Koeffizientenvektoren, fiir die jede einzelne Kovariable
einen Beitrag zur Generierung des Responses leistet. Durch Anwendung von 5 existieren
hauptséchlich Kovariablen mit &hnlich schwachen Einflussstirken und nur wenige stark
relevante Kovariablen. Die Haufigkeit des Auftretens der Koeffizienten 2,3 und 18 unter-
scheidet sich dabei je nach Anzahl der insgesamt definierten Variablen. Gilt p = 10, so
werden jeweils drei Kovariablen mit einer Einflussstérke von 2 und 18 definiert und vier
Kovariablen erhalten eine Einflussstirke von 3. Fir p = 20 bzw. p = 50 gelten dhnliche
Verhéltnisse: Die Einflussstarken 2 und 18 treten jeweils bei fiinf bzw. 13 Kovariablen
auf und die Einflussstérke 3 bei zehn bzw. 24 Kovariablen. Diese Haufigkeitsverhaltnisse
wurden auch fiir die drei verschiedenen Koeffizientenauspragungen von B¢ und 87 ange-
wendet.

Fiir B¢ wurde die Einflussstarke 3 in 85 durch 15 ersetzt, womit vor allem stark relevante
Kovariablen definiert werden und nur wenige, die kaum einen Einfluss auf den Response
besitzen.

Mit B; kénnen Datensétze generiert werden, deren Kovariablen mit den Koeffizienten-
auspragungen 2, 3 und 4 alle einen dhnlich starken Einfluss auf den Response erkennen

lassen.
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Damit nimmt also die Anzahl an stark relevanten Kovariablen innerhalb der Koeffizien-
tenvektoren von 3 bis 87 zu. Wobei fiir p = 10 eine einzige Ausnahme gilt, denn mit G5

werden zwei stark relevante Kovariablen weniger definiert als mit 8, .

3.1.3 Korrelationsstrukturen

Einige Studien haben gezeigt (siehe dazu Kapitel 2.3.2), dass korrelierte Kovariablen einen
erheblichen Einfluss auf den Splitprozess eines Random Forests haben koénnen. Zudem tre-
ten auch in realen Datensatzen meist Korrelationsstrukturen auf. Deshalb wurde fiir die
Simulationsdatensétze versucht, die von Gregorutti et al. (2016) beschriebenen Korre-
lationsfélle zu iibernehmen. Jedoch sind die ersten beiden Félle und der fiinfte Fall fiir
maximal drei Kovariablen ausgelegt, weswegen in dieser Arbeit nur die Félle 3 und 4
berticksichtigt wurden. Zusétzlich wurden noch drei weitere Kovarianzmatrizen X defi-
niert, wovon eine den Fall 4 umkehrt, und die zwei anderen an das Beispiel von Strobl
et al. (2008) angelehnt sind. Die fiinf betrachteten Korrelationsstrukturen fir die Koef-
fizientenvektoren B3, B5. und B; sind in Tabelle 3.2 zusammengefasst und werden im

Folgenden ausfiihrlicher beschrieben.

Kovarianz || Koeff.-Vektor || Beschreibung

b3 B Alle Kovariablen dhnlich relevant und blockkorreliert.

» 38 Nur die weniger relevanten Kovariablen mit Koeffizien-
2 > tenauspragung 2 und 3 sind blockkorreliert.

» 38 Nur die stark relevanten Kovariablen mit Koeffizienten-
3 b auspragung 18 sind blockkorreliert.

» 38 Jeweils eine Kovariable mit Koeffizientenauspragung 20
4 3 und 0 ist blockkorreliert.

» 38 Jeweils eine Kovariable mit Koeffizientenauspriagung 20,
5 3 7 und 0 ist blockkorreliert.

Tabelle 3.2: Definition der verschiedenen Kovarianzstrukturen fir die Datengenerierung
mit korrelierten Kovariablen und den Koeffizientenvektoren Bs, Bs und Br.

Im Fall 3 von Gregorutti et al. (2016) besitzen alle Kovariablen den gleichen Einfluss
auf den Response und sind untereinander mit Korrelation ¢ blockkorreliert. Diese Vorga-

ben werden mit dem Koeffizientenvektor 87 = (2,...,2,3,...,3,4,...,4) und der p X p

Kovarianzmatrix
1 ¢ c
c 1
21 == )
c
C c 1
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bis auf die gering unterschiedlichen Koeffizientenauspragungen erfiillt. Die positive Kor-
relation zwischen den Kovariablen wird hierbei und im Weiteren mit ¢ bezeichnet.

Im Fall 4 von Gregorutti et al. (2016) werden diejenigen Kovariablen mit den gréfiten Ko-
effizientenauspragungen blockkorreliert und die restlichen relevanten Kovariablen nicht.
Um diesen Fall umzukehren, miissen die weniger relevanten Kovariablen blockkorelliert
sein. Diese beiden Korrelationsstrukturen konnen mit dem Koeffizientenvektor 85 und

den Kovarianzmatrizen 35 und X3 realisiert werden. Dabei gilt fiir den umgekehrten Fall

Bs (2, ..., 3, 18, ..., 18)
1 c 0 0
22 _ & 1 0 0 (33)
0 0 1 0
0 0 0 1
und angelehnt an den Fall 4 kann X33 verwendet werden:
ﬂ5 (27 ) 3a 187 ) 18)
1 0 0 0
5, = 0o --- 1 0 --- 0 . (3.4)
o --- 0 1 - ¢
0 0 ¢ 1

Strobl et al. (2008) definieren einen Simulationsdatensatz fir den stark relevante, weniger
relevante und irrelevante Kovariablen blockkorreliert werden. Zur Rekonstruktion dieser
Variante bietet sich also 83 = (7,7,7,20,20,0,...,0) an. Um zunéchst den tatsichlichen
Einfluss der Korrelation einer stark relevanten und irrelevanten Kovariable zu untersuchen,

wird mit der Kovarianzmatrix

Bs (7, 7. 7. 20, 20, 0, 0, ..., 0)
1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 ¢

= O 0 0 0 1 0 (3.5)

0 0 0 ¢ 0 1 0 0
0 0 1 0
0 0 0 1
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nur eine stark relevante mit einer irrelevanten Kovariable korreliert. Dabei wird im Koeffi-
zientenvektor jeweils die erste Variable mit der entsprechenden Auspriagung als korrelierte
Kovariable gewéhlt. Aber auch die Blockkorellation von Strobl et al. (2008) kann auf glei-

che Weise mit

Bs (r, 7, 7, 20, 20, 0, 0, ..., 0)
1 0 0 c 0 ¢ 0 0
0 1 o 0 0 0
0 0 1 0o 0 0
c 0 0 1 0 ¢

Y5 = 0 0 0 0 1 0 (3.6)

c 0 0 c 0 1 0 0
0 0 1 0
0 0 0 1

simuliert werden.

Die beschriebenen fiinf Kovarianzmatrizen sind sehr verschieden, weswegen die Moglich-
keit besteht, dass sie keine eindeutigen Interpretationen in Bezug auf den Einfluss der
Korrelationen auf mtry zulassen. Daher wurden zusétzlich noch weitere Kovarianzmatri-
zen fir die Koeffizientenvektoren mit einer (8;) bzw. fiinf (8,4) relevanten Kovariablen
definiert, welche in Tabelle 3.3 aufgelistet sind. Mit diesen Kovarianzmatrizen kann un-
ter anderem explizit untersucht werden, welche Auswirkungen die Blockkorrelation von

irrelevanten Kovariablen hat.

Kovarianz || Koeff.-Vektor || Beschreibung

n 8., 8 Die relevanten und eine bestimmte Anzahl an a irrele-
6-a L 24 vanten Kovariablen sind blockkorreliert.

> B1, Bs Nur die irrelevanten Kovariablen sind blockkorreliert.

> 8. Die Halfte der relevanten und die Halfte der irrelevanten

Kovariablen sind blockkorreliert.

Tabelle 3.3: Definition der verschiedenen Kovarianzstrukturen fir die Datengenerierung
mit korrelierten Kovariablen und den Koeffizientenvektoren 81 und 4.

Mit ¥, wird neben den relevanten Kovariablen in 87 und B, zuséitzlich eine bestimm-

te Anzahl an a irrelevanten Kovariablen blockkorreliert. Fiir a kann jeder ganzzahlige

Wert grofler oder gleich 0 gewéhlt werden. Zum Beispiel ist 3¢5 mit 8; folgendermafien
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definiert:

0

0

0

1

(3.7)

Werden nur die irrelevanten Kovariablen blockkorreliert, ergibt sich auch fiir 8; und B4

mit der Kovarianzmatrix ¥; die gleiche Darstellungsweise wie bereits fiir 33 in Definition

(3.4), allerdings mit einem geringeren Anteil an unkorrelierten Variablen.

Die letzte Kovarianzmatrix g ist &hnlich zu X5, bei der eine irrelevante Kovariable zuséatz-

lich zu zwei unterschiedlich relevanten Kovariablen blockkorreliert wird. Fir g werden

jedoch zwei gleich relevante Kovariablen und die Hélfte aller irrelevanten Kovariablen des

Koefhizientenvektors B4 blockkorreliert. Entspricht die Halfte einer ungeraden Zahl, wird

die nachstkleinere ganze Zahl angewendet, womit sich g fiir zehn Kovariablen beispiels-

weise zu
Bs (7, 7, T,
1 c 0
c 1 0
0 0 1
0 0 0
0 0 0
dg =

C c 0
C c 0
0
0
0

ergibt.

=~

o O O = O o o

=~

o O = O O O O

0,

o

S = O O

0, 0)
0 O
(3.8)
0
1 0
0 1
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3.1.4 Implementierung

Alle Analysen wurden mit der statistischen Software R, Version 3.2.3, durchgefiihrt (R
Core Team, 2015). Die Datensétze wurden wie vorab beschrieben generiert. Dabei variiert
die Anzahl an Beobachtungen N zwischen 500 und 1000, wobei anzumerken ist, dass durch
eine zu geringe Anzahl an Beobachtungen, wie zum Beispiel N = 100, die definierten
Kovarianzstrukturen nicht ausreichend exakt eingehalten werden kénnen. Die Anzahl an
Variablen p wurde auf 10, 20 und 50 festgelegt. Aulerdem wurden fiir jedes Szenario 500
Datensétze erstellt und die Auswertungen dieser jeweils gemittelt. Ein Szenario ist dabei
durch die Responseart, die Anzahl an Beobachtungen N, die Anzahl an Kovariablen p,
den Koeffizientenvektor 8 und die Kovarianzmatrix 3 mit entsprechender Korrelation ¢
definiert.

Es wurde darauf verzichtet hochdimensionale Daten mit n << p zu definieren, da Diaz-
Uriarte und de Andrés (2006) bereits eine detaillierte Simulationsstudie dazu durchgefiithrt
haben, bei der ebenfalls der OOB-Fehler in Abhéngigkeit von mtry dokumentiert ist.

Charakteristik Auspriagungen Bedingung
Responseart metrisch, binér
Koeffizientenvektor 3 B1 - B~
Anzahl an Kovariablen p 10, 20, 50
Anzahl an Beobachtungen N 500, 1000
b3 B
X, X3 Bs
Y, Xs Bs
Y60 Ba
Kovarianzmatrix X Y6 B1, Ba
6.4, 267 B1, p=10
Y69, 2615 B, p=20
X624, 23639 B1, p =50
27 517 ﬂél
3g Ba
K ati 0,0.3,0.9
orrelation ¢ 0.6 S, O, B

Tabelle 3.4: Charakteristiken eines Szenarios und die gewdhlten Ausprdgungen fir die
durchgefiihrte Simulationsstudie. Finige Ausprdgungen fiir die Kovarianz-
matrizen und Korrelationen wurden nur fir bestimmte Szenarien verwen-
det, diese sind in der letzten Spalte gekennzeichnet.
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Tabelle 3.4 fasst die gewédhlten Charakteristiken der Szenarien zusammen und zuséatzlich
gibt Tabelle 3.5 Aufschluss iiber die Anzahl an Szenarien fiir eine Responseart unter ver-
schiedenen Bedingungen. So wurden zum Beispiel mit allen sieben Koeffizientenvektoren
aus Tabelle 3.1 Datensétze ohne Korrelation zwischen den Kovariablen ermittelt, was fiir

jede Responseart zu 42 verschiedenen Szenarien fiir die Bedingung ¢ = 0 fiihrt.

# Auspragungen je Charakteristik
Bedingung # Szenarien

P N B B+ X c
c=0 3 2 7 - - 42
- X5 3 2 - 5 2 60
X6 - Mg 3 2 - 8 3 144
Gesamtanzahl Szenarien fiir eine Responseart 246

Tabelle 3.5: Anzahl an Szenarien fir eine Responseart unter verschiedenen Bedingungen
der Charakteristiken.

Fiir die Kovarianzmatrizen und deren entsprechende Korrelationen wurden etwas kom-
plexe Kombinationen der verschiedenen Ausprigungen angewendet, welche im Weiteren
zwar angesprochen, deren Bedeutungen jedoch erst bei den Auswertungen in Kapitel 3.2
deutlich werden.

Die Korrelation c aller Kovarianzmatrizen wurde auf die Werte 0.3 und 0.9 festgelegt,
wobei fiir 3g bis g noch zuséitzlich ¢ = 0.6 hinzugenommen wurde. Wie bereits im
vorherigen Kapitel angesprochen, wurde nicht jede Kovarianzmatrix auf jeden Koeffizi-
entenvektor angewendet. Um nicht nochmals auf jede einzelne dieser Kombinationen ein-
zugehen, sei auf Tabelle 3.4 verwiesen. Dabei stellt die Kovarianzmatrix 3 , allerdings
eine Besonderheit dar, da mit ihr nicht nur eine feste Anzahl an irrelevanten Kovariablen
zuséatzlich zu den relevanten Kovariablen blockkorreliert wird, sondern diese Anzahl auch
abhéngig von p gewahlt wurde. So werden hierbei immer 50 bzw. 80 Prozent aller irre-
levanten Kovariablen fiir den Koeffizientenvektor 81 zuséatzlich blockkorreliert. Dies muss
beriicksichtigt werden, wenn die Anzahl an Szenarien fiir 3¢ - 35 in Tabelle 3.5 bestimmt
wird. Insgesamt sind acht Kombinationen aus 8 + 3 fiir jedes p definiert worden, da
die Kovarianzmatrizen g4 - g 39 fiir die einzelnen p nur jeweils zwei Auspragungen
darstellen. Damit wurden fiir eine Responseart 144 verschiedene Szenarien mit den Kova-
rianzmatrizen g - g erstellt. Dies fithrt zu insgesamt 246 verschiedenen Szenarien fiir

eine Responseart.
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Aufgrund der hohen Anzahl an zu untersuchenden Datensitzen wurden die Berechnun-
gen parallel auf einem Server durchgefiihrt, woftir das Package parallelMap (Bischl und
Lang, 2015, Version 1.3) verwendet wurde. Der kombinierte multiple rekursive Zufallszah-
lengenerator von L'Ecuyer (1999) stellt dabei wéhrend der Seedspezifikation die Repro-
duzierbarkeit der Ergebnisse sicher. Erganzend dazu ist es mit dem Package mlr (Bischl
et al., 2016, Version 2.11) allgemein moglich, diverse maschinelle Lernverfahren (soge-
nannte Learner) in R zu nutzen. Die Verfahren kénnen mit den darin bereitgestellten
Funktionen auf relativ einfache Weise auch parallel implementiert und ausgewertet wer-
den. Dabei iibersteigt die Funktionalitit des mlr-Packages oft die der zugrundeliegenden
Basisfunktionen, so sind zum Beispiel auch Parametertuning oder Variablenselektion be-

nutzerfreundlich umsetzbar.

Fiir die Regressions- und Klassifikationsforest wurden die zwei Learner regr.ranger und
classif.ranger verwendet. Diese greifen auf das Package ranger (Wright und Ziegler, 2017,
Version 0.8.0) zu, welches die schnellste und speicherplatzeffizienteste Implementierung
eines Random Forests bereitstellt. Es wurden damit Random Forests mit 500 Baum-
en gebildet, da Probst und Boulesteix (2017) gezeigt haben, dass sich die Struktur des
OOB-Fehlers mit einer hoheren Anzahl an Baumen nicht mehr beachtlich dndert. Fiir
alle Parameter aufler mtry wurden die Defaultwerte verwendet. Das bedeutet unter an-
derem, dass sich in jeder Node eines Baumes mindestens eine (Klassifikation) bzw. finf
(Regression) Beobachtungen befinden. Auflerdem wird als Splitkriterium der Gini Index
(Klassifikation) bzw. die minimale Varianz des Response in den entstehenden Unterraum-
en (Regression) angewendet. Fir jeden mtry Wert zwischen 1 und p wurde daraufhin ein
Random Forest gebildet und die mittlere OOB-Préadiktionsgiite aus den 500 Wiederho-
lungen fiir jedes Szenario ermittelt. Diese Préadiktionsgiite kann dann in Abhéngigkeit von
mtry als Kurve dargestellt werden, welche im Weiteren als OOB-Kurve bezeichnet wird.
Um eine moglichst glatte Schatzung der OOB-Pradiktionsgiite zu erzielen, ist es notig die
Anzahl der Wiederholungen ausreichend grofi zu wahlen. In Abbildung A.1 kann beispiel-
haft fiir ein Szenario der Kurvenverlauf bei 50, 500 und 1000 Wiederholungen verglichen
werden. Damit wurde iiberpriift, dass 500 Wiederholungen eine gute Wahl sind, denn mit

1000 Wiederholungen ergibt sich kein glatterer Kurvenverlauf.

Wie schon in Kapitel 2.3.1 angesprochen, kann die OOB-Pradiktionsgiite eines Random
Forests mit verschiedenen Maflen bestimmt werden. Das Package mir hat neben den in
Kapitel 2.1 vorgestellten Modellgiitemafien eine Vielzahl an weiteren Maflen implemen-
tiert. Um herauszufinden, welches Mafl unter diesen ein moglichst eindeutiges optimales
mtry extrahieren kann, wurden verschiedene relevante Mafle auf zwei Szenarien angewen-

det. Beispiele fiir die unterschiedlichen malabhéngigen Kurven der OOB-Pradiktionsgiite
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liefern die Abbildungen in Anhang A.2. Dabei zeigt sich, dass sich die Performancemafle
anhand ihrer OOB-Kurvenverldufe und den damit verbundenen optimalen mitry Werten
in zwei Gruppen einteilen lassen. In der ersten Gruppe hat der Random Forest die opti-
malste Pradiktionsgiite meist fiir einen kleinen Wert von mtry. Das Optimum lédsst sich
bei diesen Performancemaflen durch einen relativ eindeutigen , Knick* im Kurvenverlauf
erkennen. Das AUC' und Kendall's T wurden reprisentativ fiir diese Mafle ausgewéahlt
und im Weiteren verwendet. In der zweiten Gruppe ist dieser Knick im Kurvenverlauf
nicht mehr zu erkennen. Damit lasst sich das Optimum dieser Performancemafle auch
nicht mehr so eindeutig anhand des Kurvenverlaufs bestimmen und die optimale Pradik-
tionsgilite liegt meist bei hoheren mtry Werten als mit Maflen aus der ersten Gruppe. Der
Brier Score und der M SE wurden reprasentativ fiir diese Gruppe von Performancema-
Ben ausgewahlt und im Weiteren verwendet.

Welches Modellgiitemafl verwendet wird, sollte spezifisch anhand der vorliegenden Da-
ten entschieden werden, da keine allgemein giiltigen Richtlinien existieren, in welchen
Situationen welches Mafl Verwendung finden sollte. Eine grobe Vorgabe zur Auswer-
tung von Klassifikationsmethoden mit dem BrierScore oder dem AUC' geben allerdings
Hernandez-Orallo et al. (2012): Demnach miissen fiir eine konkrete Wahl aus verschie-
denen Performancemaflen zwei Faktoren beriicksichtigt werden. Das sind zum einen die
Einsatzbedingungen des Modells wie Missklassifizierungskosten und/oder Klassenvertei-
lungen und zum anderen auf welche Art und Weise die Klassenzuteilung stattfindet(zum
Beispiel ab welchem Schwellenwert der Prédiktionswahrscheinlichkeit eine Beobachtung
y = 1 zugewiesen bekommt). Wenn allerdings keine Informationen tiber die Einsatzbe-
dingungen zur Verfiigung stehen, sollte auf das AUC zuriickgegriffen werden. Oft sind
diese Bedingungen jedoch voraussichtlich nach der Evaluierung, wenn das Modell im Ein-
satz ist und unter Umstanden weiterentwickelt wird, bekannt. In diesem Fall und wenn
zusétzlich davon ausgegangen werden kann, dass das Modell zuverlassige Pradiktionen
ermittelt, wird der Brier Score empfohlen. Moglicherweise lassen sich die theoretischen
Herleitungen von Hernandez-Orallo et al. (2012) auch auf die in Kapitel 2.1.1 vorgestellten
Modellgiitemafle fiir die Regression tibertragen. Dazu bedarf es allerdings einer genaueren

Untersuchung, auf die im Rahmen dieser Arbeit nicht eingegangen werden kann.

Die fir diese Arbeit generierten Datensitze beriicksichtigen nur lineare Einflussgrofien
(siehe Kapitel 3.1.2). Es wurde allerdings auch tiberprift, ob sich das Verhalten der OOB-
Pradiktionsgiite in Abhédngigkeit von miry éndert, wenn nicht-lineare Kovariablen aufge-
nommen werden. Hierflir gibt es verschiedene Méglichkeiten diese zu definieren, die zwei
verwendeten Ansitze werden nun kurz vorgestellt.

Zum einen stellt das R-Package mlbench (Leisch und Dimitriadou, 2010, Version 2.1-1)

eine Funktion zur Verfiigung, mit der Daten fiir das sogenannte Friedman 1 Regressions-
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problem generiert werden konnen. Dabei werden zehn unabhéngige Kovariablen aus einer
Gleichverteilung auf dem Intervall [0, 1] gezogen, wobei nur fiinf von diesen den Response

y auf folgende Weise definieren:
y = 10sin(mx;%5) + 20(x3 — 0.5)% 4+ 10x, + 55 + €.

Dabei gilt fiir die Fehlerterme € ~ N(0,0). Die damit generierten Datensétze beinhalten
somit drei nicht-lineare, zwei lineare und fiinf irrelevante Einflussgrofien. Sowohl o, die
Varianz der Fehlerterme, als auch die Anzahl an Beobachtungen werden vom Benutzer
festgelegt.

Zum anderen wurden Datensdtze dhnlich wie in Kapitel 3.1.2 definiert. Die generierten
Kovariablen xy, ..., x, wurden lediglich vor der Responsebildung mit einer Polynomfunk-
tion 3. Grades transformiert. In den Modellgleichungen (3.1) und (3.2) werden somit die
einzelnen Kovariablen x;,7 = 1,...,p, nur durch (x;)? ersetzt. Diese Transformation kann
daher fiir Regressions- und auch fiir Klassifikationsdatensatze durchgefithrt werden.
Anhang A.3 zeigt eine Auswahl der betrachteten OOB-Kurven fiir diese beiden Ansétze
und ermoglicht einen Vergleich mit den analogen Szenarien auf Basis linearer Einfluss-
groflen. Dabei wird deutlich, dass sich der Verlauf und auch die optimalen mtry Werte
nicht wesentlich unterscheiden, weswegen diese zuséitzliche Eigenschaft innerhalb der Da-

ten nicht weiter verfolgt wurde.

Das genaue Vorgehen fiir die Simulation eines Szenarios wird in Algorithmus 2 als Pseu-

docode fiir W = 500 Wiederholungen zusammengefasst.
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Algorithmus 2: Erstellung einer OOB-Kurve fiir ein Szenario.

fiir Response € {metrisch, bindr}
fiir mtry = 1 bis p
fiir w = 1 bis 500

1. Generiere einen Datensatz entsprechend N, p, 8, ¥ und c.
2. Definiere einen mlr-Task abhédngig vom Response.
3. Bilde mit diesem Task einen entsprechenden Random Forest Learner.

4. Trainiere auf Basis des Learners einen Random Forest mit mtry als An-
zahl zuféllig ausgewéhlter Variablen in jedem Baumsplit und extrahiere die
OOB-Pridiktionen des Forest.

5. Ermittle die gewilinschten Performancemafle aus diesen OOB-Préadiktionen
(AUC und Brier Score fir Klassifikation bzw. Kendall's 7 und M SE fiir

Regression).

L 6. Gebe die Performancemafle zuriick.

Ermittle fiir jedes Performancemaf individuell den Mittelwert iiber alle

Wiederholungen und die einzelnen mtry Werte.

Stelle die erhaltenen mittleren Performancemafle als OOB-Kurve dar, dabei liegen

die mtry Werte auf der x-Achse und die Performancemafle auf der y-Achse.

3.2 Ergebnisse

Im Folgenden werden die wichtigsten Erkenntnisse aus der Simulation der verschiedenen
Szenarien dargestellt. Dabei werden die Ergebnisse aus den generierten Datensétzen mit
metrischem Response getrennt von den Ergebnissen der Datensétze mit binarem Response
betrachtet. Zudem wird innerhalb dieser Szenarien nach der Korrelationsstruktur der

Kovariablen unterschieden.

3.2.1 Regression
Unkorrellierte Kovariablen

Die OOB-Kurven fiir die verschiedenen Regressionsszenarien wurden wie in Algorithmus 2
beschrieben ermittelt.
Beispielhaft zeigt Abbildung 3.1 den Verlauf der gemittelten Performancemafie Kendall's T

und M SFE in Abhéangigkeit des Parameters mtry fiir zwei verschiedene Szenarien, die sich

32



3 — Simulationsstudie

nur durch ihren Koeffizientenvektor unterscheiden. Hierbei werden diejenigen Random
Forests verglichen, welche die wenigsten (8;) und die meisten (B7) relevanten Kovaria-
blen in den Daten beinhalten. Die simulierten Datensétze der Szenarien bestehen aus
N = 1000 Beobachtungen und p = 10 Kovariablen, wobei diese unkorreliert sind und
damit die Kovarianzmatrix 3 als Einheitsmatrix mit Dimension 10 x 10 definiert ist. Die
Quadrate markieren das Optimum der jeweiligen Mafle und die gestrichelte graue Linie

den Defaultwert fiir mtry bei dieser Konfiguration.

0.95-
0.90- x ,
Optimum
[=]
é) = By
g 0.85-
= = B7
Q
Y
0.80- mtry
Default
0.75-

mtry mtry

Abbildung 3.1: OOB-Kurven der Performancemafle Kendall's 7 und MSE fiir Regres-
stonsszenarien mit 1000 Beobachtungen, 10 unkorrelierten Kovariablen
und zwei verschiedene Koeffizientenvektoren B (eine relevante Kova-
riable) und By (nur relevante Kovariablen).

Zunéchst fallt auf, dass der Defaultwert von mtry in diesen beiden Beispielen nicht die
beste Wahl darstellt, denn die mtry Werte an den Optima weichen teilweise deutlich davon
ab. Auflerdem ist gut zu erkennen, dass fiir einen bestimmten Koeffizientenvektor je nach
Performancemafl auch verschiedene mtry Parameter gewéhlt werden sollten, um einen
Random Forest mit optimaler Performance zu erhalten. Fiir 81 ist dieser Unterschied
nur gering, nachdem Kendall's 7 durch ein mtry von 8 optimal ausfallt und der MSFE
fior mtry = 10. Fur B; fallt der Unterschied jedoch etwas groBer aus, da Kendall's T fir
mtry = 1 optimal ist und der M SE fiir mtry = 5.

Es muss jedoch auch erwidhnt werden, dass zum Beispiel fur Kendall’s 7 im Szenario mit
B1 das Maximum nicht so eindeutig ausgepragt ist wie mit 8. Mit 8, liefern alle Random
Forests mit einem mitry grofler oder gleich 6 eine sehr dhnliche Performance. Da Gleiches
auch am Kurvenverlauf des M SFE zu erkennen ist, ist es empfehlenswert den besten mtry
Wert nicht am Kurvenoptimum zu wéhlen, sondern eine geringfiigige Anpassung vorzu-

nehmen.
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Im Weiteren wird daher der kleinste mtry Wert, fiir den das Perfomancemafl eine Abwei-
chung von maximal 0.5% zum Optimum hat, als optimales mitry bezeichnet. Sei p die
Anzahl an Kovariablen und P,,,, die Performance eines Random Forests mit Parameter
mitry, mtry € [1,p]. Um mithilfe dieser Werte das optimale mtry zu bestimmen, wurden

folgende zwei Schritte durchgefiihrt:

1. Je nachdem, ob das Performancemafl minimiert oder maximiert werden soll, wird

fur jede Auspragung Py, mtry € [1, p|, folgendes Verhaltnis ermittelt

P, opt

., falls P,y = min(Py, ..., P,)
Vpntry = § Y (3.9)

mtry, falls P,y = max(Py, ..., P,).

]
opt

2. Darauthin wird jenes optimale mtry gesucht, das die Gleichung
Mtryope = min {mtry | 0.995 < v, < 1} (3.10)
erfillt.

Falls demnach keines der Performancemafe eine Abweichung von 0.5 % einhalt, wird der
miry Wert am Optimum F,, gewéhlt. AuBerdem wird durch die Einschrankung, dass das
Verhéaltnis vy, kleiner oder gleich 1 sein muss, sichergestellt, dass das optimale mtry
nicht grofler gewahlt wird als der mtry Wert am Optimum der Kurve. Insgesamt liefert
diese Anpassung natiirlich etwas kleinere Werte fiir mtry als das Optimum, jedoch birgt
das den Vorteil, dass somit rechensparsamere Modelle bevorzugt werden, die trotzdem
eine dhnlich gute Performance liefern. Der gewahlte Schwellenwert fiir die untere Inter-
vallgrenze von v, sollte zwischen 0 und 1 liegen und nicht zu klein gewahlt werden,
damit die optimalen mtry Werte nicht zu stark geschrumpft werden. Ein Wert von 0.995
erschien bei Betrachtung der resultierenden optimalen mtry Werte fiir die Regressionss-

zenarien als sinnvoll.

Fiir die eben vorgestellten Szenarien ergeben sich nur leicht verdnderte optimale mitry
Werte wie Abbildung 3.2 zeigt. Da der MSE im Vergleich zu Kendall's T einen relativ
groflen Wertebereich besitzt, ist es hierbei selten der Fall, dass eine Abweichung kleiner
0.5% vom Optimum eintritt. Deswegen bringt die Anpassung fir den M SE nur fir ei-
ne hohe Anzahl an Kovariablen deutliche Unterschiede im optimalen mtry mit sich. Die
analogen Abbildungen der OOB-Kurven aller betrachteten Szenarien kénnen im elektro-

nischen Anhang, im Unterordner ,Zusdtzliche_Grafiken®, aufgerufen werden.
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Abbildung 3.2: O0B-Kurven der Performancemafe Kendall's 7 und MSE fiir Regres-
sionsszenarien mit 1000 Beobachtungen, 10 unkorrelierten Kovariablen
und zwei verschiedenen Koeffizientenvektoren B, (eine relevante Kova-
riable) und By (nur relevante Kovariablen). Zusdtzlich sind die mtry
Werte am Optimum und nach der Anpassung gekennzeichnet.

Nun ist von Interesse, wie das optimale mtry fiir die verschiedenen Szenarien ohne kor-
relierte Kovariablen ausfillt. Abbildung 3.3 fasst diese zusammen und unterscheidet auch
hier wieder zwischen Kendall's T und dem MSE als Performancemas.

Durch die vorab beschriebene Anpassung des optimalen mitrys konnte erreicht werden,
dass auch fiir den M SFE deutlichere Strukturen fiir die verschiedenen Koeffizientenvekto-
ren zu erkennen sind und die optimalen mtry Werte nicht fiir fast alle Koeffizientenvek-
toren bei p liegen (Abbildung A.7 zeigt die entsprechenden mtry Werte an den Optima
der OOB-Kurven).

Da die Anzahl an Kovariablen innerhalb der Szenarien zwischen 10, 20 und 50 variiert,
ist hier zur besseren Vergleichbarkeit nicht der absolute mtry Wert auf der y-Achse an-
getragen, sondern der relative. Die Reihenfolge der Koeffizientenvektoren in der Legende
entspricht der Anzahl an stark relevanten Variablen innerhalb der Datensétze mit p = 50,
von den wenigsten am Anfang bis zu den meisten am Ende der Liste. Da sich fiir einige
der Koeffizientenvektoren Anderungen im optimalen mtry iiber N tiiberdecken, wurde den
Verbindungslinien in der Hohe eine geringe zuféllige Variation aufaddiert, wodurch diese

besser sichtbar sind.
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Abbildung 3.3: Optimale relative mtry Werte fiir alle 42 betrachteten Regressionsszena-
rien ohne korrelierte Kovariablen getrennt nach den verwendeten Per-
formancemafen und der Anzahl an Variablen p.
Die Tabelle rechts gibt die Anzahl an stark relevanten Kovariablen fiir
die einzelnen Koeffizientenvektoren in Abhdngigkeit von p an.

Werden zum Beispiel die relativen optimalen mtry Werte der einzelnen Szenarien mit
Kendall's T verglichen wird deutlich, dass die mtry Werte tiber die Anzahl an Beob-
achtungen hinweg vergleichsweise konstant ausfallen. Allerdings ist die Anzahl an stark
relevanten Kovariablen ein Einflussfaktor auf das optimale mitry. Die Reihenfolge der Ko-
effizientenvektoren in der Grafik entspricht fast exakt der Reihenfolge in der Legende, was
bedeutet, je grofler die Anzahl an stark relevanten Kovariablen ist, desto kleiner wird das
relative optimale mtry.

Eine Ausnahmen stellt allerdings der Koeffizientenvektor 81 mit nur einer relevanten Ko-
variable dar. Fiir diesen ist das optimale mtry kleiner als fiir By mit zwei relevanten
Kovariablen. Um diese Tatsache néher zu untersuchen, vergleicht Abbildung 3.4 den Ver-
lauf der einzelnen OOB-Kurven der ersten vier Koeffizientenvektoren fiir Kendall’s 7 und
den MSE. Hierbei ist zu erkennen, dass sich Kendall’s T iber mtry hinweg zwischen 3,
und (B, sehr dhnlich verhélt. Erst wenn eine hohere Anzahl an relevanten Kovariablen
berticksichtigt wird, wie mit 83 oder B4, dndert sich der Verlauf der Kurve, was zur Folge
hat, dass sich ein eindeutigeres Optimum an einem geringeren mtry ausbildet. Der M SFE
zeigt dazu im Vergleich fiir 81 und B, nur einen geringen Unterschied in den Kurven-

verlaufen, sodass daraus geschlossen werden kann, dass es fiir die Wahl von mtry nicht
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von Bedeutung ist, ob nun ein oder zwei relevante Kovariablen existieren. Aus diesem
Grund und weil die Rangfolge der beiden Vektoren 8, und By die einzige Ausnahme fiir
Kendall's T darstellt, kann trotzdem davon ausgegangen werden, dass je grofler die An-
zahl an stark relevanten Kovariablen ist, desto kleiner ist auch das optimale mtry.

Dies ist keine tiberraschende Erkenntnis, da bereits Bernard et al. (2009) empfohlen ha-
ben, mtry bei nur sehr wenigen relevanten Kovariablen héher zu setzen, um die Wahr-
scheinlichkeit zu steigern, dass auch die wenigen wichtigen Kovariablen im Splitprozess
Beriicksichtigung finden.

Jedoch sind nicht nur die stark relevanten Kovariablen von Bedeutung, sondern auch
die weniger relevanten, wie B9 = (7,8,0,...,0) und B3 = (7,7,7,20,20,0,...,0) zeigen.
Durch drei zusétzliche, weniger relevante Kovariablen stellt sich fiir 83 ein deutlich gerin-

gerer optimaler mtry Wert heraus, als fir B,.

0.95-
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0.90-
400- mtry
= —
£ 0.85- " Pr
I =
2 0.80- 200- —~Bs
0.75- k
¥ mtry
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5 10 15 20 5 10 15 20
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Abbildung 3.4: OOB-Kurven der Performancemafle Kendall's 7 und MSE fiir Regres-
stonsszenarien mit 500 Beobachtungen, 20 unkorrelierten Kovariablen
und den Koeffizientenvektoren 81 bis By.

Die ersten vier Koeffizientenvektoren besitzen iiber p hinweg alle die gleiche Anzahl an re-
levanten Kovariablen. Dabei lasst sich mit Kendall’s 7 als Performancemafl gut erkennen,
dass der relative optimale mtry Wert tiber p hinweg sehr ahnlich ist. Denn ob nun, wie bei
B2, zwei aus zehn Kovariablen relevant sind oder zwei aus 20 Kovariablen, fithrt in beiden
Féllen zu einem relativen mtry von ca. 0.5. Das heift, bei nur sehr wenigen relevanten
Kovariablen innerhalb der Daten scheint anhand dieser Ergebnisse die absolute Anzahl
an stark relevanten Kovariablen eine wichtige Rolle zu spielen und nicht unbedingt deren
Anteil innerhalb der p Kovariablen.

Vergleichbares zeigt sich auch an 85 und B4: Je grofler dabei die Anzahl an Variablen

p, desto mehr stark relevante Kovariablen werden berticksichtigt, diese stellen allerdings
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jeweils einen ahnlichen Anteil innerhalb der p Kovariablen dar. In Abbildung 3.3 ist fiir
diese beiden Koeffizientenvektoren mit d&hnlichem Anteil an relevanten Kovariablen das
optimale relative mtry nicht konstant fiir alle p, sondern sinkt mit steigendem p und da-

mit mit steigender Anzahl an stark relevanten Kovariablen.

Werden die optimalen mtry Werte fiir Kendall's 7 und fiir den M SE verglichen, kénnen
auf Basis dieser Szenarien zwei Unterschiede ausgemacht werden: Zum einen liegt das
optimale mtry mit dem M SFE als Performancemafl immer iiber dem Defaultwert, was fiir
Kendall's T nicht gilt. Zum anderen variieren die mtry Werte mit dem M SFE fir einzelne
Koeffizientenvektoren in Abhéngigkeit der Anzahl an Beobachtungen. Diese Variationen
belaufen sich allerdings auf maximal 10%, was absolut gesehen nur einer mtry-Anderung
zwischen 1 (p = 10) und 5 (p = 50) entspricht. Diese kleinen Unterschiede zwischen
verschiedenen N kommen fiir den MSFE vor allem durch das Fehlen eines eindeutigen
Optimums zustande, was bereits Abbildung 3.4 gezeigt hat. Damit sind auch leichte Ab-
weichungen vom optimalen mtry fiir den MSE denkbar, mit denen sich trotzdem eine
vergleichbare Modellperformance ergibt. Die fehlenden eindeutigen Optima fiir den M SFE,
konnen auch fiir die insgesamt vergleichsweise hohen optimale mtry Werte verantwortlich
sein.

Wie auch schon mit Kendall's T entspricht auch hierbei die Reihenfolge der Koeffizien-
tenvektoren nahezu der Reihenfolge in der Legende, also der Anzahl an stark relevanten

Kovariablen, wobei fiir B3, B4 und 85 einzelne Abweichungen zu erkennen sind.

Korrellierte Kovariablen mit »; - X5

Wenn im Weiteren von Szenarien mit (block)korrelierten Kovariablen gesprochen wird,
ist im Allgemeinen nicht gemeint, dass alle Kovariablen miteinander korreliert sind, son-
dern, dass eine Kovarianzmatrix ungleich der Einheitsmatrix definiert wurde. Da diese
Korrelationen unter anderem auch Einfluss auf die Variablenwichtigkeit haben (siche Ka-
pitel 2.3.2) werden auch einige Grafiken dazu vorgestellt. Wie dabei die mittlere relative
Variablenwichtigkeit bestimmt und die entsprechenden miry Werte ausgewéahlt wurden
beschreibt Anhang A.4.

Ahnlich zu den vorhergehenden Datensitzen mit unkorrelierten Kovariablen stellt Ab-
bildung 3.5 die optimalen mtry Werte der Szenarien fiir die Koeffizientenvektoren s,
Bs und B mit den Kovarianzmatrizen 3, bis 35 dar. Da die Verlaufe kaum von der
Anzahl an Variablen p beeinflusst werden, sind diese beispielhaft nur fiir p = 20 darge-

stellt, die weiteren Abbildungen kénnen dem Anhang A.6 entnommen werden. Mit diesen
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Abbildungen kann zum einen untersucht werden, wie sich das optimale mitry fiir verschie-
dene Korrelationsstarken verhélt und zum anderen aber auch, ob Unterschiede zwischen
den Performancemaflen existieren. Die einzelnen Koeffizientenvektoren unterscheiden sind
farblich und je nach verwendeter Kovarianzmatrix sind die Szenarien durch eine niedrigere

Farbintensitit von der Ausgangssituation ohne Korrelationen abgesetzt.
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Abbildung 3.5: Optimale mtry Werte fir alle 20 betrachteten Regressionsszenarien mit
p = 20, B3, Bs oder B7 und korrelierten Kovariablen getrennt nach
den verwendeten Performancemaflen und Korrelationen c. In der linken
Spalte sind zum Vergleich die optimalen mtry Werte fiir die analogen
Szenarien ohne korrelierte Kovariablen angetragen.

Die Definitionen der einzelnen Koffizientenvektoren und Kovarianzma-
trizen sind in den Tabellen 3.1 und 3.2 zusammengefasst.

Beginnend mit dem Koeffizientenvektor 83 = (7,7,7,20,20,0,...0) ist fir ¢ = 0.3 mit
keiner der beiden Kovarianzmatrizen und fiir keines der Performancemafle eine deutliche
Verdnderung des optimalen mitry zu erkennen (im Vergleich zum analogen Szenario mit
unkorrelierten Kovariablen). Das éndert sich jedoch, wenn die Korrelation auf ¢ = 0.9 an-
steigt. Diese Korrelation bewirkt laut Strobl et al. (2008), dass vor allem fiir kleinere mtry
die korrelierten Kovariablen als Splitkandidaten bevorzugt werden und dadurch die Varia-
blenwichtigkeiten von weniger relevanten oder gar irrelevanten Kovariablen iiberschétzt
werden. Wie in Abbildung 3.3 beobachtet, gilt fiir Szenarien mit unkorrelierten Kova-
riablen: Je mehr relevante Kovariablen existieren, desto kleiner wird das optimale mtry.
Wenn nun durch Korrelation innerhalb der Daten mehr Kovariablen als relevant erkannt
werden, konnte vermutet werden, dass das optimale mtry im Vergleich zum unkorrelierten

Szenario kleiner ausféllt. Dies bestéatigt sich allerdings nicht. Denn fiir 3,, wenn also nur
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eine stark relevante und eine irrelevante Kovariable korreliert sind, bleibt das optimale
relative mtry fir Kendall's 7 zwar noch konstant, steigt aber fast auf das Doppelte an,
sobald noch eine weniger relevante Kovariable zusétzlich blockkorreliert wird (35). Der
MSFE hingegen steigt fiir diese beiden Korrelationsstrukturen nur geringfiigig an. Diese
Beobachtungen widersprechen somit auch Strobl et al. (2008), die fir das Szenario mit
35 und einem kleinen mtry eine hohere Pradiktionsgiite erwartet hatten. Moglicherweise
lassen sich allerdings die Erkenntnisse aus genannter Studie nicht direkt auf Random Fo-
rests basierend auf CART-Entscheidungsbdume wie in dieser Arbeit anwenden.

Wie Abbildung 3.6 der Variablenwichtigkeiten fiir diese Szenarien zeigt, konnen tatsiachlich
Abweichungen fiir die Variablenwichtigkeiten der drei korrelierten Kovariablen (1, 4 und
6) im Vergleich zum unkorrelierten Szenario ausgemacht werden. Die Abweichungen der
Variablen 1 und 6 koénnen jedoch durch ein grofleres mitry verringert werden. Warum
erst die Hinzunahme einer weniger relevanten korrelierten Kovariable (X5) das optima-
le mtry ansteigen lésst, kann anhand der beschriebenen Szenarien und Random Forest

Eigenschaften nicht sicher geklért werden.
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Abbildung 3.6: Mittlere relative Permutation Importance tiber 500 Wiederholungen mit
den Spezifikationen: Metrischer Response, B3 = (7,7,7,20,20,0,...,0),
N =500, 20 unkorrelierte Kovariablen bzw. Kovarianzmatrizen 34 und
35 mit ¢ = 0.9. Die dabei jeweils blockkorrelierten Kovariablen sind im
Titel gekennzeichnet. Die verschiedenen mtry Werte je Szenario ent-
sprechen dem Defaultwert und den optimalen mtry Werten fiir die Per-
formancemafle Kendall's 7 und MSE.

Auch fir den Koeffizientenvektor 85 = (2,...,2,3,...,3,18,...,18) wurden zwei verschie-

dene Kovarianzmatrizen verwendet. 35 blockkorreliert dabei die 15 weniger relevanten Ko-
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variablen. Das hat zur Folge, dass bereits bei einer Korrelation von 0.3 ein etwas hoherer
mtry Wert (im Vergleich zum unkorreliertem Szenario) die optimale Modellperformance
in Bezug auf Kendall's T liefert. Dieser Effekt verstarkt sich sogar deutlich fir ¢ = 0.9. Ist
dagegen nur eine Blockkorrelation der stark relevanten Kovariablen mit der Kovarianz-
matrix X3 definiert, hat dies fiir Kendall's 7 kaum Auswirkungen auf das optimale mitry,
unabhéngig von der Stérke der Korrelation. Da dies dem Fall 4 von Gregorutti et al. (2016)
entspricht, wird erwartet, dass die Variablenwichtigkeit der unkorrelierten, weniger rele-
vanten Kovariablen tiberschétzt werden kénnte. Abbildung 3.7 vergleicht die zugehorigen
Variablenwichtigkeiten fiir das unkorrelierte Szenario und die beiden Korrelationsszenari-
en. Entgegen den Erwartungen steigen die Variablenwichtigkeiten der weniger relevanten
Kovariablen mit 33 fiir keines der betrachteten mtry an. Sind jedoch nur die weniger
relevanten Kovariablen blockkorreliert (3,), ist fiir alle betrachteten miry eine deutliche
Uberschétzung dieser Variablenwichtigkeiten zu erkennen, wobei diese Uberschitzung fiir
ein grofles mtry am kleinsten ist. Dies konnte auch Grund fiir das etwas groflere optimale

mtry fir dieses Szenario sein.
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Abbildung 3.7: Mittlere  relative — Permutation — Importance  dber 500  Wie-
derholungen — mit  den  Spezifikationen:  metrischer  Response,
Bs = (2,...,2,3,...,3,18,...,18), N = 500, 20 wunkorrelierte
Kovariablen bzw. Kovarianzmatrizen Yo und X3 mit ¢ = 0.9. Die dabei
jeweils blockkorrelierten Kovariablen sind im Titel gekennzeichnet. Die
verschiedenen mtry Werte je Szenario entsprechen dem Defaultwert
und den optimalen mtry Werten fir die Performancemafle Kendall's T

und MSE.

Im Gegensatz zu Kendall's 7 nimmt der optimale mtry Wert mit dem MSE fir eine

steigende Korrelation ¢ ab, wenn nur die stark relevanten Kovariablen blockkorreliert sind
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(33). In diesem Fall ndhern sich die Variablenwichtigkeiten fiir das kleinste mtry = 2 am
starksten an die Variablenwichtigkeiten des unkorrelierten Szenarios an, was vielleicht das
kleinere optimale mtry fir den M SE induziert. Wohingegen die Korrelation der weniger
relevanten Kovariablen, wie auch schon mit Kendall's 7, ebenfalls einen Anstieg des
optimalen mtry in Bezug auf den M SE verursacht. Dieses Verhalten fiithrt auch dazu, dass
sich die optimalen mtry mit den beiden Performancemaflen fiir diesen Koeffizientenvektor

und ¢ = 0.9 nicht mehr so stark unterscheiden.
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Abbildung 3.8: Mittlere  relative — Permutation — Importance  dber 500  Wie-
derholungen — mit  den  Spezifikationen:  metrischer  Response,
Br=1(2,...,2,3,...,3,4,...,4), N = 500, 20 unkorrelierte Kovaria-
blen bzw. Kovarianzmatrixz 37 mit ¢ = 0.9. Die dabei blockkorrelierten
Kovariablen sind sind im Titel gekennzeichnet. Die verschiedenen mtry
Werte je Szenario entsprechen dem Defaultwert und den optimalen
mtry Werten fir die Performancemafle Kendall's T und MSE.

Fiir den letzten betrachteten Koeffizientenvektor 87 = (2,...,2,3,...,3,4,...,4) wurde
nur eine Korrelationsstruktur mit der Kovarianzmatrix 3, berticksichtigt. Dabei werden
alle Kovariablen, welche in diesem Fall eine dhnliche Einflussstéirke besitzen, blockkorre-
liert. Durch die leicht verschiedenen Koeffizientenauspragungen wird nicht exakt der Fall
3 von Gregorutti et al. (2016) abgebildet, weswegen hier zu erwarten ist, dass die Varia-
blenwichtigkeiten der Kovariablen mit Koeffizientenauspriagungen 2 wie im Fall 4 etwas
iiberschétzt werden. Gleichzeitig wird aber auch die Variablenwichtigkeit der Kovariablen
mit Koeffizientenauspragungen 4 unterschéatzt, wodurch sich die Auswahlhéufigkeiten aller
Kovariablen angleichen. Siehe dazu auch Abbildung 3.8 der simulierten Variablenwichtig-

keiten. Allerdings sollten diese Unterschiede in den Auswahlhdufigkeiten im Vergleich zum
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unkorrelierten Szenario fiir die sehr dhnlichen Koeffizientenauspriagungen keinen gravie-
renden Einfluss auf die Modellperformance haben, wodurch ein dhnliches optimales mtry
erwartet wird. Fiir Kendall's T trifft diese Theorie auch bei steigender Korrelation ¢ zu,
denn das optimale mtry bleibt konstant bei einem Wert von 1. Jedoch ist fiir den MSFE
mit steigendem c ein deutlich kleineres mtry als im unkorrelierten Szenario zu bevor-
zugen, wodurch sich bei hoher Korrelation in diesem Szenario wieder ahnliche optimale

mtry Werte fiir beide Performancemafle ergeben.

Fir die Unterschiede zwischen Kendall’s 7 und dem M SFE muss allerdings auch bertick-
sichtigt werden, dass sich mit Kendall’s 7 im Vergleich zum M SFE bereits fiir die un-
korrelierten Szenarien kleinere optimale mtry Werte ergeben, womit natiirlich fiir dieses
Performancemaf keine groflen Verdnderungen hinsichtlich eines noch kleineren mtry be-
obachtet werden kénnen. Allerdings lassen sich die sinkenden optimalen mtry Werte mit
dem MSE zum Beispiel fir 85 und 33 oder 87 und ¥; mit den betrachteten Random
Forest Eigenschaften nicht mit Sicherheit erklédren. Denn es gilt beispielsweise fiir 85 und
323 nicht, dass in diesem Szenario eine hohere Anzahl an relevanten Kovariablen erkannt
wird, weswegen ein kleines miry nachvollziehbar wére.

Jedoch haben diese Analysen gezeigt, dass die Theorien von Gregorutti et al. (2016) und
Strobl et al. (2008) eine guten Ansatz liefern und verschiedene Kovarianzstrukturen auch
einen Einfluss auf das optimale miry besitzen konnen. Moglicherweise existieren durch
die Korrelation einiger Kovariablen noch weitere Effekte, die bisher nicht berticksichtigt

wurden und anhand der vorliegenden Szenarien nicht deutlich werden.

Korrellierte Kovariablen mit >4 - g

Fiir die Koeffizientenvektoren g; = (7,0...,0) und B4 = (7,7,7,7,7,0,...,0) wurden
noch weitere Szenarien mit verschiedenen Kovarianzmatrizen definiert, um etwas struktu-
rierter zu untersuchen, ob ein eindeutiger Effekt der Korrelation irrelevanter Kovariablen
auf das optimale mtry nachgewiesen werden kann.

Fir 87 und 20 Kovariablen sind dies die Kovarianzmatrizen g, 3¢9 und Xg 15, mit
denen neben der relevanten Kovariable jeweils 2, 9 bzw. 15 der irrelevanten Kovariablen
zusétzlich blockkorreliert werden. Auflerdem kann mit 3, tiberpriift werden, wie sich das
optimale mitry verhélt, wenn nur die irrelevanten Kovariablen blockkorreliert sind. Ab-
bildung 3.9 stellt die optimalen mtry in Abhéngigkeit der verwendeten Korrelationen
c € {0.3,0.6,0.9} und der PerformancemaBe Kendall's 7 und MSE fiir p = 20 dar. Die
optimalen mtry Werte fir p = 10 und p = 50 sind im Anhang A.7.1 zu finden.
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Abbildung 3.9: Optimale miry Werte fiir Regressionsszenarien mit 81 und p = 20 kor-
relierten Kovariablen getrennt nach den verwendeten Performancema-
Ben und Korrelationen c. Zusdtzlich sind in jeder Grafik die optimalen
mtry Werte fir die analogen Szenarien ohne korrelierte Kovariablen
erganzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.

Mit Kendall's 7 ist fur diese Szenarien durch die Hinzunahme von blockkorrelierten, irre-
levanten Kovariablen nur ein geringfiigiger Anstieg des optimalen mtry im Vergleich zum
unkorrelierten Szenario (¢ = 0) zu erkennen. Dabei kann jedoch kein deutlicher Unter-
schied zwischen den einzelnen Kovarianzmatrizen g ausgemacht werden. Die Korrelati-
on der irrelevanten Kovariablen (X;) bewirkt dagegen keine Verdnderung des optimalen
mtry im Vergleich zum unkorrelierten Szenario. Die Mehrzahl der optimalen mtry mit
dem MSFE liegt bei 20, womit sich auch hier kein Einfluss der Kovarianzmatrizen erken-
nen lasst. Die einzelnen OOB-Kurven fiir Kendall’s 7 und den M SE in Abbildung 3.10
verstarken diesen Eindruck, denn fiir keine der genannten Kovarianzstrukturen mit Kor-
relation ¢ = 0.9 tritt eine Anderung im Kurvenverlauf ein.

Bei nur einer relevanten Kovariable in den Daten ist demnach der Einfluss der Korrelation

sehr gering und zeigt keine bedeutenden Auswirkungen auf das optimale mitry.
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Abbildung 3.10: OOB-Kurven der Performancemafle Kendall's T und MSE fiir Re-
gressionsszenarien mit 500 Beobachtungen, 20 korrelierte Kovariablen

(c =0.9) und Koeffizientenvektor 3.

Andere Erkenntnisse liefern dagegen die Korrelationsstrukturen des Koeffizientenvektors
B4 mit fiinf relevanten Kovariablen. Hierbei wurden ebenfalls vier verschiedene Kovari-
anzmatrizen angewendet: Mit g g werden nur die relevanten Kovariablen blockkorreliert.
Diese Struktur wird durch zwei weitere irrelevante Kovariablen ergéinzt, indem 3¢, an-
gewendet wird. Mit ¥; konnen nur die irrelevanten Kovariablen blockkorreliert definiert
werden und g kombiniert die Korrelation von relevanten und irrelevanten Kovariablen,
wobei jeweils die Hélfte der relevanten (= 2 Kovariablen) und die Hélfte der irrelevan-
ten Kovariablen (= 7 Kovariablen fir p = 20) blockkorreliert werden. Die dabei mit den
Performancemaflen Kendall's 7 und MSE resultierenden optimalen mtry sind fiir die
Szenarien mit p = 20 Kovariablen und verschiedenen Korrelationen ¢ in Abbildung 3.11
dargestellt. Die optimalen mtry fiir die analogen Szenarien mit p = 10 und p = 50 sind
im Anhang A.7.1 dargestellt.

Mit Kendall's T ist fir eine steigende Korrelation kaum eine Anderung im optimalen
mtry im Vergleich zum unkorrelierten Szenario zu erkennen, wenn nur die relevanten
(X60) oder auch zusétzlich dazu noch zwei weitere irrelevante Kovariablen (3¢.2) block-
korreliert sind. Auch die alleinige Korrelation der irrelevanten Kovarialben (X7) lasst das
optimale mtry nur fiir eine sehr starke Korrelation von ¢ = 0.9 geringfiigig anwachsen.
Sind jedoch jeweils die Hélfte der relevanten als auch die Hélfte der irrelevanten Kovaria-
blen blockkorreliert (3s) wird das optimale mitry fiir eine steigende Korrelation deutlich
grofer. Liegt es im unkorrelierten Szenario noch bei mtry = 4, so ist es zum Beispiel mit
c=0.9und N = 500 bei mtry = 14.

Fiir den M SE ergeben sich allerdings andere Effekte fiir die einzelnen Kovarianzmatrizen:
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So sinkt das optimale mtry deutlich, wenn nur die relevanten (X ) oder auch zusétzlich
dazu noch zwei weitere irrelevante Kovariablen (34 2) blockkorreliert sind. Dagegen &ndert
es sich kaum, wenn nur die irrelevanten (37) oder auch jeweils die Halfte der irrelevanten

und relevanten (3g) Kovariablen korreliert sind.
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Abbildung 3.11: Optimale mitry Werte fiir Regressionsszenarien mit B4 und p = 20 kor-
relierten Kovariablen getrennt nach den verwendeten Performancema-
Ben und Korrelationen c. Zusdtzlich sind in jeder Grafik die optimalen
mtry Werte fiir die analogen Szenarien ohne korrelierte Kovariablen
erganzt.
Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.

Werden noch die Variablenwichtigkeiten der 500 Wiederholungen berticksichtigt, welche
Abbildung 3.12 darstellt, so sind die Variablenwichtigkeiten der fiinf korrelierten Kovaria-
blen mit ¥4 ¢ und dem kleinsten mtry = 3 am grofiten. Dies kann vielleicht eine mogliche
Ursache fiir das gesunkene optimale mtry mit dem MSFE sein. Theoretisch wird dage-
gen ein dhnliches optimales mtry wie im unkorrelierten Szenario erwartet, denn auch im
unkorrelierten Fall werden die relevanten Kovariablen am haufigsten ausgewéhlt und die-
se Auswahlhédufigkeiten sollten sich durch die Blockkorrelation nicht stark &ndern. Die
Variablenwichtigkeiten mit 3; dhneln sich fiir alle betrachteten mtry, allerdings ist mit
einem relativ geringem mtry = 6 eine leichte Uberschétzung der korrelierten irrelevan-
ten Kovariablen zu erkennen. Werden jeweils die Hélfte der relevanten und irrelevanten
Kovarialben blockkorreliert (Xg), so fithrt das dazu, dass die Variablenwichtigkeiten der
unkorrelierten relevanten Kovariablen etwas unterschéitzt werden und dagegen die kor-

relierten irrelevanten Kovariablen tiberschitzt werden. Diese Uberschétzung fallt fiir ein
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groferes miry jedoch kleiner aus, was fiir das hohere optimale mitry spricht.
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Abbildung 3.12: Mittlere relative  Permutation  Importance tiber 500  Wie-
derholungen — mit den  Spezifikationen: metrischer  Response,
Bs=(7,7,7,7,7,0,...,0), N = 500, 20 unkorrelierte Kovaria-
blen bzw. Kovarianzmatrizen 3¢ bis Xg mit ¢ = 0.9. Die dabei
blockkorrelierten Kovariablen sind in den Titeln gekennzeichnet. Die
verschiedenen mtry Werte je Szenario entsprechen dem Default-

wert und den optimalen mtry Werten fir die Performancemafe
Kendall's 7 und MSE.

3.2.2 Klassifikation
Unkorrellierte Kovariablen

Auf gleiche Weise wie fiir die Regressionsszenarien wurden auch die OOB-Kurven fiir
die verschiedenen Klassifikationsszenarien nach Algorithmus 2 ermittelt. Da sich die all-
gemeinen Interpretationen fir die optimalen mtry zwischen den beiden Responsearten

stark dhneln werden im Weiteren vor allem Auffélligkeiten angesprochen.

In Abbildung 3.13 sind beispielhaft fiir zwei Szenarien die OOB-Kurven auf Basis des
AUC und des Brier Scores dargestellt. Dabei werden wie auch schon fiir die Regressi-
onsszenarien diejenigen Random Forests verglichen, welche die wenigsten (5;) und die
meisten (87) relevanten Kovariablen in den Daten beinhalten. Ebenso bestehen die Da-
tensétze dieser beiden Szenarien aus N = 1000 Beobachtungen und p = 10 unkorrelierten

Kovariablen. Das angetragene optimale mtry wurde hierbei wieder tiber die Anpassung
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aus den Gleichungen (3.9) und (3.10) ermittelt (Abbildung A.8 fasst fiir alle Koeffizien-
tenvektoren die miry Werte ohne Anpassung, also am Optimum, zusammen). Mit einem
unteren Schwellenwert von 0.995 fiir das Verhéltnis vy, in (3.10) werden jedoch die op-
timalen mtry Werte besonders fiir das AUC' etwas zu stark geschrumpft. Daher wurde
dieser Wert fiir die Klassifikationsszenarien auf 0.999 angehoben, womit nun das kleinste
mitry, dessen Performancemafl eine Abweichung von maximal 0.1% zum Optimum besitzt,

als optimales mtry bezeichnet wird.
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Abbildung 3.13: OOB-Kurven der Performancemafile AUC und Brier Score fir
bindren Response mit 1000 Beobachtungen, 10 unkorrelierten Kovaria-
blen und zwei verschiedenen Koeffizientenvektoren B (eine relevante
Kovariablen und B; (nur relevante Kovariablen).

Je nach residuen- oder rangbasiertem Performancemafl &hneln die Kurvenverlaufe da-
bei stark den Regressionsverlaufen. Die Abweichungen der optimalen mitry Werte vom
Defaultwert fallen jedoch fiir die beiden betrachteten Szenarien nicht besonders grof3 aus.
Das liegt daran, dass die optimalen mtry Werte mit dem AUC alle sehr klein sind und na-
he am Defaultwert liegen und B fiir den Brier Score eine Ausnahme darstellt, was beides
in Abbildung 3.14 deutlich wird. Hier sind die optimalen mtry fiir alle sieben betrachte-
ten Koeffizientenvektoren dargestellt. Die Unterschiede im optimalen mtry zwischen den
einzelnen Koeffizientenvektoren sind mit dem AUC teilweise sehr gering. Trotzdem ist
eine Tendenz zu erkennen, denn bei ein oder zwei relevanten Kovariablen (8; und 83) ist
das optimale mtry am grofiten und dagegen ist es fiir eine grofie Anzahl an relevanten
Kovarialben (8¢ und B7) sehr klein. Damit gilt auch fiir diese Szenarien, je mehr relevante

Kovariablen existieren, desto kleiner wird das optimale mtry.
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Abbildung 3.14: Optimale relative mtry Werte fiir alle 42 betrachteten Klassifikations-
szenarien ohne korrelierte Kovariablen getrennt nach den verwendeten
Performancemaflen und der Anzahl an Variablen p.

Die Tabelle rechts gibt die Anzahl an stark relevanten Kovariablen fir
die einzelnen Koeffizientenvektoren in Abhdngigkeit von p an.

Im Vergleich dazu fillt es in Abbildung 3.14 schwer mit dem Brier Score solch ein-
deutige Aussagen zu treffen. Eine Erklarung fir die stark schwankenden optimale mtry
Werte liefert Abbildung 3.15. Denn hier ist gut zu erkennen, dass sich der grundsétzliche
Kurvenverlauf der OOB-Kurven mit dem Brier Score fiir keinen der vier betrachteten Ko-
effizientenvektoren gravierend dndert. Dagegen ist mit dem AUC bereits bei zwei stark
relevanten und drei weniger relevanten Kovariablen (83) ein konkretes Optimum aus-
zumachen. Dadurch, dass dieses Optimum jedoch fiir ein verhaltnismafig kleines mtry
angenommen wird, ergibt sich fiir dieses Szenario mit dem AUC' kein Unterschied im

optimalen mtry zu B4 mit fiinf stark relevanten Kovariablen.

Insgesamt kann also fiir diese Klassifikationsszenarien nicht so augenscheinlich wie fir die
Regressionsszenarien nachgewiesen werden, welche Auswirkung die Relevanz der einzelnen
Kovariablen auf das optimale mtry besitzt. Jedoch ist die gleiche Tendenz zu erkennen:
Die optimalen mtry sind fiir Szenarien mit wenigen relevanten Kovariablen meist hoher

als fiir Szenarien mit vielen ahnlich relevanten Kovariablen.
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Abbildung 3.15: OOB-Kurven der Performancemafie AUC und Brier Score fir Klas-
sifikationsszenarien mit 500 Beobachtungen, 20 unkorrelierten Kova-
riablen und den Koeffizientenvektoren B, bis By.

Korrellierte Kovariablen mit X; - 3

Auch fur die Klassifikationsszenarien wurden die Kovarianzmatrizen ¥, bis X5 fiir die
Koeffizientenvektoren B3, 85 und B7; angewendet. Die dabei resultierenden optimalen
mtry fir p = 20 sind in Abbildung 3.16 dargestellt. Auch hier sind in der linken Spalte die
Szenarien ohne korrelierte Kovariablen abgebildet und die verwendeten Kovarianzmatrizen
sind durch verschiedene Farbintensitaten den jeweiligen Koeffizientenvektoren zuordenbar.
Die Abbildungen fiir p = 10 und p = 50 sind im Anhang A.6.2 zu finden.

Abhéngig von den verwendeten rang- bzw. residuenbasierten Performancemaflen zeigen
sich mit diesen Kovarianzstrukturen innerhalb der Daten bei steigender Korrelation c
sehr dhnliche Veranderungen im optimalen mtry wie schon fiir die Regressionsszenarien.
Tabelle 3.6 stellt die Ergebnisse der beiden Responsearten gegeniiber. Dadurch ergeben
sich die gleichen Interpretationen wie zuvor in Kapitel 3.2.1. Analoge Abbildungen fiir die
entsprechenden Variablenwichtigkeiten der Klassifikationsszenarien wie in Kapitel 3.2.1

konnen Anhang A.8 entnommen werden.
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Optimale mtry Werte fiir alle 20 betrachteten Klassifikationsszenari-

en mit p = 20, B3, Bs oder B7 und korrelierten Kovariablen getrennt
nach den verwendeten Performancemafen und Korrelationen c. In der
linken Spalte sind zum Vergleich die optimalen mtry Werte fir die
analogen Szenarien ohne korrelierte Kovariablen angetragen.
Die Definitionen der einzelnen Koffizientenvektoren und Kovarianz-
matrizen sind in den Tabellen 3.1 und 3.2 zusammengefasst.

rangbasierte Performancemafle

residuenbasierte Performancemafle

Klassifikation Regression Klassifikation Regression
AUC Kendall's T Brier Score MSE
B3 — Xy — — — (=)
B3 — s (—) /! — (=)
Bs — X / / /! /!
Bs — 3 (—) (—) \ \
Br — %, — — AV ¢

Tabelle 3.6: Gegeniiberstellung der Verdnderungen im optimalen miry bei steigender
Korrelation ¢ fiir die Klassifikations- und Regressionsszenarien mit Kova-
rianzmatrizen 3y bis X5. Fin gleichbleibendes mtry ist dabei mit — ge-
kennzeichnet, ein steigendes mtry mit /* und ein sinkendes mtry mit \.
Ist das Ansteigen oder Absinken durch eine steigende Korrelation ¢ im Ver-
gleich zum unkorrelierten Szenario nur sehr gering (mtry Differenz < 3),
ist dies durch (—) dargestellt.
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Korrellierte Kovariablen mit Y4 - 3g

Auch fir die Szenarien mit bindren Response und Kovarianzmtarizen g - Xg fir die
Koeffizientenvektoren 8, = (7,0,...,0) und B4 = (7,7,7,7,7,0,...,0) zeigen sich in Ab-
bildung 3.17 und 3.18 &hnliche Verdnderungen im optimalen mtry wie auch schon bei den
jeweiligen Regressionsszenarien mit p = 20 Kovariablen. Fiir p = 10 und p = 50 sind die
optimalen mtry im Anhang A.7.2 abgebildet. Aulerdem sind die Variablenwichtigkeiten
fiir B4 in Abbildung A.24 ergénzt. Aufgrund der geringen Unterschiede zwischen den Re-
sponsearten, welche in Tabelle 3.7 zusammengefasst sind, gelten somit die Ergebnisse und

Interpretationen aus Kapitel 3.2.1 ebenso fiir die entsprechenden Klassifikationsszenarien.

c=0.3 c=0.6 c=0.9
20-
15- 2
O
10- S 262
< s
5 * * % * ¥ * 69
26 15
? 0- 27
c |
20 * c=0
(0]
15- 5
(&S]
10-% * * @ mtry
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Abbildung 3.17: Optimale mtry Werte fiir Klassifikationsszenarien mit p = 20, 8, und
korrelierten Kovariablen getrennt nach den verwendeten Performan-
cemafien und Korrelationen c. Zusdtzlich sind in jeder Grafik die op-
timalen mtry Werte fir die analogen Szenarien ohne korrelierte Ko-
variablen ergdnzt.

Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3
zusammengefasst.
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Abbildung 3.18: Optimale mitry Werte fir Klassifikationsszenarien mit p = 20, B4 und

korrelierten Kovariablen getrennt nach den verwendeten Performan-
cemafien und Korrelationen c. Zusdtzlich sind in jeder Grafik die op-
timalen mtry Werte fir die analogen Szenarien ohne korrelierte Ko-
variablen ergdnzt.

Die Definitionen der einzelnen Kovarianzmatrizen sind in Tabelle 3.3

zusammengefasst.
rangbasierte Performancemafle residuenbasierte Performancemafle
Klassifikation Regression Klassifikation Regression
AUC Kendall's T Brier Score MSE

B1 — X2 (—) (—) — (=)
B1— X (—) (—) — (—)
B1— 15 — (=) (=) (—)
B1 — X Va — (=) —
B1— oo (—) (—) \ N\
B1— X (—) — N\ \
Bi— Xy (=) (=) / (=)
Ba— s / /! (—) (=)

Tabelle 3.7: Gegeniiberstellung der Verdnderungen im optimalen miry bei steigender

Korrelation c fiir die Klassifikations- und Regressionsszenarien mit 81 bzw.
B4 und Kovarianzmatrizen g bis 3g. Fin gleichbleibendes miry ist dabei
mit — gekennzeichnet, ein steigendes mitry mit / und ein sinkendes mtry
mit . Ist das Ansteigen oder Absinken durch eine steigende Korrelation c
im Vergleich zum unkorrelierten Szenario nur sehr gering (mtry Differenz
< 3), ist dies durch (—) dargestellt.
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4 Empfehlungen zur mtry Wahl

In den vorherigen Kapiteln wurde deutlich, dass der Random Forest Hyperparamter mtry
sehr stark von der Anzahl an relevanten Kovariablen innerhalb eines Datensatzes und der
Korrelation der Kovariablen abhéangt. Daher ist es empfehlenswert, besonders diese beiden
Eigenschaften eines Datensatzes zu beriicksichtigen, wenn ein Wert fiir mtry festgelegt
werden soll. Ebenfalls sollte allerdings auch das gewahlte Modellgiitemafl Beachtung fin-
den, da Kapitel 3.2 auch gezeigt hat, dass die Performance eines Random Forests je nach
Maf fiir unterschiedliche mtry Werte optimiert werden kann.

Im Folgenden werden Moglichkeiten vorgestellt, mit denen diese Eigenschaften bestimmt
werden konnen. Auflerdem wird anhand zweier Beispiele iiberpriift, ob sich damit ein

nahezu optimales miry bestimmen lasst.

4.1 Messung der Korrelation und Relevanz von Kovariablen

Die Stéarke des Zusammenhangs von Kovariablen lasst sich mit verschiedenen Korrelati-
onsmaflen bestimmen. Neben dem in Kapitel 2.1.1 vorgestellten Kendall's T beschreiben
Fahrmeir et al. (2006, S. 135 - 146) auch zwei weitere Zusammenhangsmafle fiir metri-
sche Variablen: Der Bravais-Person-Korrelationskoeffizient misst demnach lineare Zusam-
menhange von Variablen. Dagegen kann mit dem Spearman-Korrelationskoeffizient die
Stéarke des monotonen Zusammenhangs zweier Variablen ermittelt werden. Natiirlich be-
steht mit diesen Korrelationsmaflen nicht nur die Moglichkeit, den Zusammenhang zweier
Kovariablen zu messen, sondern auch den Zusammenhang der einzelnen Kovariablen mit
einem Response. Werden diese Korrelationskoeffizienten fiir jede Kovariable ermittelt, ent-
steht meist ein erster Eindruck, welche der Kovariablen einen Einfluss auf die Zielgrofie

besitzt und damit eine moglicherweise relevante Kovariable darstellt.

Fiir Datensétze mit bindren Variablen eignen sich die genannten Koeffizienten allerdings
nicht. Um eine Assoziation zwischen metrischen Kovariablen und kategorialem Response
messen zu kénnen, miissen daher andere Mafle eingesetzt werden. Ein Beispiel hierfiir ist

die Mutual Information. Diese ist zwischen zwei stetigen Zufallsvariablen X und Z nach
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Cover und Thomas (1991, S. 231-232) iiber die gemeinsame Dichte f(z, z) definiert als

I(X;Z):/Z/Xf(x,z)logmmcdz. (4.1)

Damit lasst sich die Mutual Information auch fir zwei diskrete Variablen mit

o f(z,2)

I(X;7)= ;;f(x,z)logf(x)f(z) (4.2)
darstellen. Dabei gilt allgemein I(X; Z) > 0 und I(X; Z) = 0, falls X und Z unabhéingige
Zufallsvariablen sind.

Die Mutual Information gibt damit die durchschnittliche Menge an Information tiber
eine Variable X an, die durch Z vorhergesagt werden kann (Cellucci et al., 2005). Um
dieses Maf fiir eine metrische und eine kategoriale Variable anwenden zu kénnen, muss
eine der beiden Variablen transformiert werden. Meist wird dabei die stetige Kovariable
diskretisiert. Cellucci et al. (2005) empfehlen dafiir, den Wertebereich der Variable in np
gleich grofle Partitionen aufzuteilen. Mit der Anzahl an Beobachtungen N ist np dabei

als grofite ganze Zahl definiert, die folgende Gleichung erfiillt:

np < \/§ (4.3)

In R lésst sich die beschriebene Mutual Information fiir zwei diskrete bzw. diskretisierte
Variablen mit der Funktion mi.plugin aus dem entropy Package (Hausser und Strimmer,
2014, Version 1.2.1) berechnen.

Eine Alternative, mit welcher ebenfalls die Relevanz der einzelnen Kovariablen festge-
stellt werden kann, stellt die Variablenwichtigkeit eines Random Forests dar. Kapitel 3.2
zeigt von einigen der simulierten Datensétze die Permutation Importance fiir verschiedene
mtry Werte. Fiir die Szenarien ohne korrelierte Kovariablen liefern die betrachteten mtry
dabei kaum einen Unterschied in der Rangfolge der Variablenwichtigkeiten (siehe dazu
beispielsweise Abbildungen 3.6, 3.7 und 3.8 fiir ¢ = 0). Daher kann in diesen Féllen die
jeweilige Relevanz der Kovariablen im Verhaltnis zu den restlichen Kovariablen aus einem
Random Forest mit beliebigem mtry bestimmt werden. Je kleiner dabei mtry gewahlt
wird, desto geringer ist der Rechenaufwand fiir den Random Forest.

Problematisch ist allerdings das Auftreten von korrelierten Kovariablen. Denn wie be-
reits in Kapitel 3.2 dargestellt, bestitigen sich die Erkenntnisse von Strobl et al. (2008)
und die Korrelationen wirken sich auf die Permutation Importance aus. Die Variablen-
wichtigkeiten werden dabei vor allem fiir korrelierte irrelevante Kovariablen iiberschétzt
und die Wichtigkeiten von korrelierten relevanten Kovariablen werden moglicherweise un-

terschatzt. Diese Effekte verstarken sich auch fiir eine steigende Korrelation zwischen den
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Kovariablen.

Demnach ist die Permutation Importance kein besonders gut geeignetes Mittel relevante
Kovariablen zu ermitteln, wenn sehr hohe Korrelationen zwischen den Kovariablen auf-
treten. Aber auch die von Strobl et al. (2008) vorgeschlagene Conditional Permutation
Importance in Kombination mit den Conditional Inference Trees kann die beschriebene
Uberschétzung nicht génzlich eliminieren, senkt diese jedoch beachtlich, wie auch Abbil-
dung A.25 zu entnehmen ist. Es muss allerdings im Einzelfall abgewagt werden, ob der
deutlich groflere Rechenaufwand des Conditional Inference Forest fiir eine manchmal nur

sehr geringe Verbesserung der Variablenwichtigkeiten in Kauf genommen wird.

4.2 Anwendungsbeispiele

In der Praxis sollte der Rechenaufwand zur Bestimmung eines Modellparameters natiirlich
so gering wie moglich gehalten werden. Daher wird im Folgenden anhand zweier Beispiel-
datenséitze tberpriift, ob die Korrelations- bzw. Assoziationsmafle zwischen den Kovaria-
blen und dem Response bereits eine ausreichend gute Tendenz fiir die Wahl von mitry
liefern.

Die beiden Beispieldatensitze stammen von der Onlineplattform OpenML (Vanschoren
et al., 2013), welche unter anderem frei zugangliche Datensétze fiir das maschinelle Lernen
aus den unterschiedlichsten Quellen bereitstellt. Mit dem R-Package OpenML (Casalicchio
et al., 2017, Version 1.7) ist es moglich, diese Datensétze in einem R kompatiblen Format

herunterzuladen.

4.2.1 Regressionsdaten

Der erste betrachtete Datensatz, mit der OpenML-ID 308, wird als puma32H (Rasmussen
et al., 1996) bezeichnet. Dieser beinhaltet 8192 Beobachtungen und 33 stetige Variablen.
Die Daten wurden wéhrend einer realistischen Simulation der Dynamiken eines Roboter-
arms mit der Produktbezeichnung Puma 560 erhoben. Die Winkelbeschleunigung einer
der Verbindungen des Roboterarms stellt dabei den Response dar, welche durch verschie-
dene Figenschaften wie zum Beispiel Winkelpositionen, Drehmomente und Geschwindig-

keiten vorhergesagt werden kann.

Abbildung 4.1 visualisiert fiir eine Auswahl der im Datensatz vorhandenen Variablen
den Korrelationskoeffizienten nach Spearman. Der Korrelationsplot aller Variablen ist in
Abbildung A.26 erginzt. Dabei tritt zwischen keiner der 32 Kovariablen ein messbarer
monotoner Zusammenhang auf. Auch der Zusammenhang des Responses (hier mit Y ge-

kennzeichnet) mit den Kovariablen ergibt lediglich fiir die Kovariable tau4 einen erhéhten
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Korrelationskoeffizienten. Damit existiert scheinbar nur eine Kovariable, die einen nen-
nenswerten Einfluss auf den Response besitzt.

Mit der Simulationsstudie aus Kapitel 3 hat sich gezeigt, dass bei einer geringen Anzahl
an relevanten Kovariablen das optimale mtry deutlich iiber dem Defaultwert liegt. Der
Datensatz puma32H lasst sich sehr gut mit den Simulationsszenarien des Koeffizienten-
vektors 81 = (7,0,...,0) und 20 bzw. 50 unkorrelierten Kovariablen aus Kapitel 3.2.1
vergleichen. Fiir N = 1000 ergibt sich dabei ein optimales relatives mtry von 0.45 mit
dem Performancemafl Kendall’s T und ein optimales relatives mtry von 1 mit dem MSE.
Das spricht in diesem Beispiel mit 32 Kovariablen fiir ein mtry von 14 bzw. 32, was eben-

falls iber dem Defaultwert von mtry = 10 liegt.
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Abbildung 4.1: Korrelationsplot einer Auswahl an stetigen Kovariablen und des Res-
ponses Y des puma32H Datensatzes. Der Korrelationsplot aller Varia-
blen ist im Anhang A.26 erginzt.

Um diese Werte zu tiberpriifen, wurde fiir jeden mtry Wert im Intervall [1, 32] ein Random
Forest mit 500 Baumen gefittet und dessen Performance sowohl mit Kendall’'s T als auch
mit dem M SFE ermittelt. Daraus ergeben sich die bereits bekannten OOB-Kurven, die in
Abbildung 4.2 fiir den Datensatz puma32H dargestellt sind. Die Optima der OOB-Kurven
liegen hierbei mit Kendall's 7 bei mtry = 20 und mit dem MSE bei mtry = 27. Wird
jedoch die gleiche Anpassung fiir das optimale mtry durchgefithrt wie auch schon bei der
Simualitionsstudie (Gleichungen (3.9) und (3.10)), liegt das optimale mtry fur Kendall's T
bei 15 und fir den M SFE bei 24. Die Random Forests mit diesen optimalen mtry Werten

besitzen damit eine um maximal 0.5% vom Optimum abweichende Pradiktionsgite.
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Abbildung 4.2: OOB-Kurven der Performancemafle Kendall's 7 und MSE fir den
puma32H Datensatz.

Fiur Kendall's 7 liegt somit das vorab durch die Korrelationskoeffizienten ermittelte
mitry = 14 nur geringfiigig unterhalb des wahren optimalen mtry. Dagegen wurde der
mtry Wert fir den MSFE deutlich zu grofl gewahlt. Der Kurvenverlauf fiir den MSFE
lasst allerdings bereits ab einem mitry von etwa 17 ein Plateau erkennen, womit auch
das ermittelte mtry = 32 eine ahnliche Pradiktionsgiite wie das optimale mtry liefert.
Eventuell kéonnte fiir den MSE eine etwas stirkere Anpassung fiir das optimale mitry
vorgenommen werden, wodurch sich in diesem Beispiel kleinere optimale mitry, sehr ahn-

lich denen zu Kendall's T ergeben.

Abschliefliend sollen nun die Korrelationskoeffizienten nach Spearman zwischen dem Re-
sponse und den Kovariablen mit der Variablenwichtigkeit eines Random Forests verglichen
werden. Da fir die Relevanz einer Variable die Richtung des Zusammenhangs keine Be-
deutung hat, sind die absoluten Spearman-Korrelationen in Abbildung 4.3 angetragen.
Die Rangfolge der Variablen entspricht dabei den Variablenwichtigkeiten, welche aus ei-
nem Random Forest mit dem optimalen mtry fir den MSE, mtry = 24, entnommen
sind. Sowohl mit der Permutation Importance als auch mit dem Spearman Korrelations-
koeffizient wird der Variable taud die groBte Relevanz zugewiesen. Uberraschend ist die
Schétzung der Variablenwichtigkeit fiir thetad, denn diese Kovariable ist weder mit dem
Response noch mit der relevanten Kovariable tauj korreliert (siehe Abbildung 4.1) und
besitzt dennoch eine verhaltnisméBig hohe Variablenwichtigkeit. Aufgrund der fehlenden
Fachkenntnisse iiber die Daten, kann an dieser Stelle die Plausibilitidt der beiden Mafle
nicht tiberpriift werden, da nicht bekannt ist, ob sich thetab oder auch eine der anderen
Kovariablen tatsdchlich auf die Winkelbeschleunigung einer Verbindung des Roboterarms

auswirken.
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Abbildung 4.3: Vergleich der Variablenwichtigkeit eines Random Forests mit mtry = 24
und der Spearmankorrelation aller Kovariablen des puma32H Datensat-
zes.

4.2.2 Klassifikationsdaten

Der zweite betrachtete Datensatz, mit der OpenML-ID 1510, ist der Breast Cancer Wis-
consin (Diagnostic) Datensatz (Lichman, 2013), auch wdbc genannt. Fir die 569 Beob-
achtungen existieren 30 stetige Kovariablen und ein binarer Response. Die Kovariablen
wurden aus digitalisierten Bildern einer Feinnadelbiopsie der Brust ermittelt. Diese bein-
halten 10 verschiedene Eigenschaften von jeweils drei Zellkernen, wie zum Beispiel den
Radius, die Kompaktheit oder die Standardabweichung der Graustufenwerte. Einige der
Kovariablen sind allerdings auch auf Basis anderer vorliegender Kovariablen definiert,
darunter unter anderem die Fléche oder der Umfang. Der bindre Response entspricht der
Prognose des Gewebes (gutartig oder bosartig), welche auf Basis der Zellkerneigenschaf-

ten vorhergesagt werden kann.
Mit dieser Datenstruktur ist zu erwarten, dass einige der Kovariablen stark korreliert sind.

Dies bestétigen auch die Korrelationskoeffizienten nach Spearman fiir eine Auswahl an 11

Kovariablen in der folgenden Abbildung 4.4. Beispielsweise besitzen die Kovariablen V21,
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V23 und V24 eine starke Blockkorrelation von fast 1. Die Korrelationskoeffizienten aller

30 Kovariablen sind im Anhang A.27 ergénzt.

o =
s o

V28 . 0.46 0.52
Spearman
vai .. e Korrelation
s Blososs oo 7
0.5
V25 .056 0.52 0.54 0.5 0.61
0.0
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Abbildung 4.4: Korrelationsplot einer Auswahl an stetigen Kovariablen des wdbc Da-
tensatzes. Der Korrelationsplot aller Kovariablen ist im Anhang A.27
erganzt.

Um die Relevanz der einzelnen Kovariablen zu bestimmen, kam nun die in Kapitel 4.1
beschriebene Mutual Information zum Einsatz. Die damit erhaltenen Assoziationen der
Kovariablen und des Responses sind in Abbildung 4.5 visuell dargestellt. Eine Mutual
Information gleich 0 bedeutet allgemein die Unabhéngigkeit zweier Variablen. In diesem
Beispiel existieren nur sehr wenige Kovariablen, die eine Mutual Information nahe 0 besit-
zen und dagegen 24 Kovariablen mit einer Mutual Information gréfier 0.05. Damit lassen
sich die Kovariablen grob in folgende vier Gruppen einteilen: 10 Kovariablen mit starker
Relevanz, 5 mit moderater Relevanz, 9 mit geringer Relevanz und 6 Kovariablen mit kaum

einer Relevanz fiir den Response.

Keines der betrachteten Simulationsszenarien in Kapitel 3.2.2 berticksichtigt exakt diese
Kovariablenstruktur, am besten ldsst sie sich wohl mit 8¢ = (2,...,2,15,...,15,18,...,18)
fiir p = 20 bzw. p = 50 und N = 500 vergleichen. Fiir unkorrelierte Kovariablen liegt da-
bei das optimale relative mtry mit dem AUC bei 0.05 bzw. 0.02 und fiir den Brier Score
bei 0.45 (vgl. Abbildung 3.14).

Wie der Korrelationsplot in Abbildung 4.4 zeigt, tritt allerdings in diesem Beispiel eine
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nicht unbedeutende Korrelation zwischen einigen der stark relevanten Kovariablen VS,
V21, V23 und V28 auf.

V28 - .
V23- .
V8- .
V21- J
V24 - J
V3 - .
V1- .
V7 - .
V4 - J
V27 - .
V11- .
V6 - J
V13- J
V26 - J
V14 - .
V22 - J
V2 - .
V18- J
V25- .
V29- J
V5 - .
V16- J
VO - J
V30-
V17- e
V19-
V20- o
V10- o
V15- e
V12- |

00 01 02 03 04
Mutual Information

Variable

Abbildung 4.5: Mutual Information aller stetigen Kovariablen mit dem Response des
wdbc Datensatzes.

In der Simulationsstudie wurden mit den Kovarianzmatrizen ¥; und X3 jeweils die rele-
vanten Kovariablen blockkorreliert. Dies hat laut Tabelle 3.6 mit dem AUC' kaum einen
Einfluss auf das optimale mtry im Vergleich zum unkorrelierten Szenario hat. Jedoch ist
demnach davon auszugehen, dass das optimale mtry fiir den BrierScore etwas geringer
als im unkorrelierten Szenario ist. In Abbildung 3.16 sinkt das optimale mtry fiir ¢ = 0.9,
N = 500 und p = 20 im Simulationsszenario mit 85 — 33 von mtry = 13 im unkorrelierten
Szenario auf mtry = 6 und fir B; — 3, von miry = 9 auf mtry = 3. Somit liegen beide
optimalen mt¢ry Werte nahe am Defaultwert (mtry = 4) dieser Szenarien.

Da weder die Koeffizientenvektoren noch die Kovarianzmatrizen dieser Korrelationsszena-
rien vergleichbar mit der vorherrschenden Datenstruktur des wdbc Datensatzes sind, kann
nur eine grobe Schétzung getétigt werden, dass das optimale mtry mit dem Brier Score
wahrscheinlich nahe am Defaultwert liegt und mit dem AUC bei 1 (|0.05-30] = 1).

Auch fur dieses Beispiel wurden die OOB-Kurven mithilfe von Random Forests mit 500
Béaumen fiir alle mtry Werte im Intervall [1, 30] ermittelt. Dabei ergeben sich die in Abbil-
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dung 4.6 dargestellten Kurvenverldufe. Das Optimum des AUC' liegt bei mtry = 3, wobei
das optimale mtry durch die nachtrégliche Anpassung wie in Gleichung (3.10) und einen
Schwellenwert von 0.999 fiir Klassifikationsszenarien, bei mtry = 1 liegt. Ein Random
Forest mit diesem optimalen mtry besitzt damit eine Pradiktionsgiite, die maximal 0.1%
vom Optimum abweicht. Diese Anpassung ergibt fiir den Brier Score mtry = 4, was

auch dem mtry Wert am Optimum entspricht.

0.992-
0.035-
0.991- o Optimum
O S 0.034- « Anpassun
)
2 0.990- - O Real
2 0.033
0.989- m
0.032- mtry
0.988- Default
0 10 20 30 0 10 20 30
mtry mtry

Abbildung 4.6: OOB-Kurven der Performancemafle AUC und BrierScore fir den wdbc

Datensatz.

Somit wurden die vorab mit der Mutual Information und den Korrelationskoeffizienten
der Kovariablen festgelegten mtry Werte sehr gut gewéhlt. Das optimale mtry mit dem
AUC liegt mit 1 exakt auf der Einschéitzung und da der Defaultwert in diesem Beispiel
mtry = 5 ist, weicht das tatsidchliche optimale mtry = 4 fir den Brier Score kaum davon
ab.

Abschlielend ist auch fir dieses Beispiel ein Vergleich der Permutation Importance und
der Mutual Information sehr interessant. Abbildung 4.7 stellt diese gegeniiber, wobei die
Rangfolge der Kovariablen in dieser Grafik den Variablenwichtigkeiten eines Random Fo-
rests mit 500 Baumen und miry = 1 (dem optimalen mtry mit dem AUC') entspricht.
Durch die Berticksichtigung dieser Rangfolge, sind die einzelnen Werte der Mutual Infor-
mation nicht ihrem Betrag nach angeordnet, womit die beiden Mafle die Kovariablen nicht
gleichermaflen relevant einschatzen. Jedoch besitzen die zehn Kovariablen, die mit der Mu-
tual Information als stark relevant gruppiert wurden, auch eine hohe Variablenwichtigkeit
(> 0.015). Damit stellt nur die Variable V7 eine Ausnahme dar, die zwar ebenfalls eine
Variablenwichtigkeit groer als 0.015 hat, deren Mutual Information diese allerdings nicht
als stark relevante Kovariable gruppieren lasst. Fiir Variablen mit einer Variablenwich-
tigkeit kleiner als 0.015 kénnen dagegen keine eindeutigen Ubereinstimmungen mit den

Gruppen der Mutual Information ausgemacht werden. Auch fiir dieses Beispiel kann ohne
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inhaltliche Fachkenntnisse die Plausibilitiat beider Mafle an dieser Stelle nicht tiberpriift

werden.

Variable

V15- o .
0.00 001 002 0.03
Variablenwichtigkeit

01 02 03 04
Mutual Information

Abbildung 4.7: Vergleich der Variablenwichtigkeit eines Random Forests mit mtry = 1

und der Mutual Information aller Kovariablen mit dem Response des
wdbc Datensatzes.
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5 Fazit

Ziel dieser Arbeit war es, den Einfluss des Hyperparamteters mtry auf Random Forests zu
untersuchen. Dafiir wurde eine umfangreiche Simulationsstudie sowohl fiir Regressions- als
auch fur Klassifikationsdatensitze umgesetzt. Basis dieser Simulationsstudie waren unter
anderem Thesen von Bernard et al. (2009), die fir Klassifikationsdaten einen Einfluss der
Anzahl an relevanten Kovariablen auf das optimale mitry festgestellt hatten. Auflerdem
aber auch Analysen von Strobl et al. (2008) und Gregorutti et al. (2016), die Auswirkun-
gen korrelierter Kovariablen im Random Forest auf die Variablenwichtigkeit entdeckten,

wodurch ebenfalls ein Einfluss auf das optimale mtry denkbar ist.

Insgesamt wurden 492 verschiedene Szenarien fiir die Simulationsstudie definiert, wobei
diese sich fiir jede Responseart in drei Gruppen aufteilen lassen: Darunter die Szenarien
ohne korrelierte Kovariablen, die Szenarien angelehnt an oben genannte Thesen mit den
Kovarianzmatrizen 3; bis X5 und weitere Szenarien mit den Kovarianzmatrizen g bis
3 fiir detailliertere Analysen. Diese Aufteilung erleichtert das Zusammenfassen der je-
weiligen Ergebnisse.

Grundsatzlich miissen alle Ergebnisse unter Beriicksichtigung der Modellgiitemafle be-
trachtet werden. Denn es hat sich gezeigt, dass je nach verwendetem rang- oder residu-
enbasierten Modellgiitemaf}, auch verschiedene optimale mtry Werte fiir ein Szenario in
Betracht gezogen werden miissen. Dabei ist fiir die einzelnen Szenarien das optimale mitry
mit den residuenbasierten Modellgiitemaflen meist grofier als mit den rangbasierten Ma-

Ben.

Die Szenarien mit unkorrelierten Kovariablen nehmen insbesondere die Relevanz der ein-
zelnen Kovariablen in Augenschein. Durch die flexible Gestaltung der Simulationsda-
tensédtze konnte vorab nicht nur festgelegt werden, welche Kovariablen einen relevanten
Einfluss auf den Response besitzen sollen, sondern auch wie grof§ dieser tatséchlich ist.
Damit bestatigt sich fiir die entsprechenden Regressionsszenarien eindeutig, dass mit stei-
gender Anzahl an relevanten Kovariablen ein geringerer Wert fiir mtry ausreichend ist, um
eine hohe Pradiktionsgiite sicherzustellen. Dabei zeigten nicht nur die stark relevanten,

sondern auch die weniger relevanten Kovariablen einen Einfluss auf das optimale mitry.
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Diese Beobachtungen lassen sich intuitiv erkldren, da bei wenigen relevanten Kovariablen
mit einem hohen miry die Wahrscheinlichkeit grofler ist, dass auch diese relevanten Kova-
riablen im Splitprozess berticksichtigt werden. Bei vielen dhnlich relevanten Kovariablen
reicht dagegen schon ein kleines mtry aus, da nahezu jede Kovariable die gleiche Infor-
mation tragt und die explizite Kovariablenauswahl im Splitprozess damit an Bedeutung
verliert.

Auch die Klassifikationsszenarien lieferten dhnliche Erkenntnisse, wobei die OOB-Kurven
der Performancemafle haufig ein Plateau zeigen, weswegen nicht immer eindeutige Opti-
ma und damit keine eindeutigen optimalen mtry festgestellt werden konnten. Allerdings
besitzen die eben beschriebenen Grenzfille mit vielen bzw. wenigen relevanten Kovaria-

blen auch hierbei die kleinsten bzw. gréfiten optimalen mtry.

Fir die Korrelationsszenarien war vor allem von Interesse, wie sich die optimalen mtry
bei steigender Korrelation der Kovariablen im Vergleich zu den jeweiligen unkorrelier-
ten Szenarien verdndern. Dabei zeigten sich zwischen den beiden Responsearten keine
bedeutenden Unterschiede, weswegen die beobachteten Ergebnisse sowohl fiir die Regres-
sionsszenarien als auch fiir die Klassifikationsszenarien gelten.

Bei Korrelation der relevanten Kovariablen (3; und X3) ergeben sich verhéltnismafig
kleine optimale mtry. Da mit den rangbasierten Performancemaflen das optimale mtry
bereits fiir die unkorrelierten Szenarien sehr gering ist, kann nur fiir die residuenbasier-
ten Mafle ein Sinken des optimalen mtry aufgrund der Korrelation beobachtet werden.
Dagegen steigt das optimale mtry unabhingig vom verwendeten Performancemafl, wenn
nur die Kovariablen mit geringer Relevanz blockkorreliert sind (3,). Die Korrelation von
jeweils einer stark relevanten, weniger relevanten und irrelevanten Kovariable (¥4 und
3’5) hat, unabhéngig vom Performancemaf, kaum einen Einfluss auf das optimale mtry
im Vergleich zu den unkorrelierten Szenarien.

Mit den weiteren Kovarianzmatrizen 3 und Xg, standen die Auswirkungen von korre-
lierten, irrelevanten Kovariablen auf das optimale mitry im Zentrum der Analysen. Bei
nur einer relevanten Kovariable lieflen sich, abgesehen von einer Ausnahme, keine Unter-
schiede im optimalen mtry durch die definierten Kovarianzmatrizen erkennen. Dagegen
zeigten sich fiir fiinf relevante Kovariablen abhédngig vom Performancemafl Verénderungen
im optimalen miry. Bei steigender Korrelation zwischen den relevanten und bis zu zwei
irrelevanten Kovariablen (¥4) ergeben sich verhdltnisméafig kleine optimale mtry. Wie
auch schon vorab beschrieben, ist das optimale mtry der rangbasierten Perfomancemafle
bereits fiir die unkorrelierten Szenarien sehr gering, weshalb auch hier nur fiir die residu-
enbasierten Mafle deutlich kleinere mtry zu beobachten sind. Wenn nur die irrelevanten
Kovariablen blockkorreliert sind (37), hat dies kaum Auswirkungen auf das optimale

mtry. Dagegen ist fiir die rangbasierten Performancemafle ein deutlicher Anstieg des op-

65



5 — Fazit

timalen mtry zu erkennen, wenn sowohl die Héalfte der relevanten als auch die Hélfte der
irrelevanten Kovariablen korreliert ist (Xg). Dieser Anstieg ist fiir die residuenbasierten
Perfomancemafe dagegen nicht zu erkennen, was auch an den bereits hohen optimalen

mtry der unkorrelierten Szenarien liegen kann.

Zusammenfassend muss also fiir die Verdnderungen im optimalen mtry bei steigender
Korrelation der Kovariablen besonders zwischen den rang- und residuenbasierten Perfo-
mancemaflen unterschieden werden. Fiir die rangbasierten Mafe ist bei diesen Simulati-
onsszenarien kein Sinken des optimalen mtry zu beobachten, da bereits fiir die unkorre-
lierten Szenarien verhéltnisméflig kleine miry als optimal gelten. Allerdings erhoht sich
das optimale mtry, wenn nur die weniger relevanten (33) oder sowohl einige der relevan-
ten als auch irrelevanten Kovariablen korreliert sind (35, 3g).

Fiir die residuenbasierten Mafle steigt dagegen das optimale mtry, wenn nur weniger rele-
vante oder nur irrelevante Kovariablen korreliert sind (X, ¥7). Im Gegensatz dazu sinkt
es, wenn alle relevanten und nur wenige der irrelevanten Kovariablen blockkorreliert sind
(34, X3, ).

Die Beobachtungen mit 3, lassen sich zum Beispiel damit erkldren, dass die Auswahlhaufig-
keiten der korrelierten Kovariablen im Splitprozess vor allem fiir kleinere mtry ansteigen
(Strobl et al., 2008). Jedoch kénnen anhand der beschriebenen Szenarien und Random Fo-
rest Eigenschaften die Auswirkungen der Kovarianzmatrizen auf das optimale mtry nicht
mit einer allgemeingiiltigen These aufgeklart werden. Daher sind besonders in Bezug auf
die korrelierten Kovariablen weitere Untersuchungen notig, um detailliertere Aussagen zu

den Griinden der jeweiligen Veranderungen treffen zu kénnen.

Auflerdem sind auch diverse Erweiterungen der Simulationsstudie denkbar. Mit dem bis-
herigen Design wurden nur normalverteilte Variablen berticksichtigt, womit keine allge-
meingiltigen Aussagen getroffen werden kénnen. Daher kénnte die Variablengenerierung
auch auf Basis verschiedener anderer Verteilungen betrachtet werden. Aulerdem sind die
ausschlieflich metrischen Kovariablen eine Einschrinkung, da auch kategoriale Einfluss-
grofen eventuell einen Einfluss auf das optimale mtry haben kénnen. Dabei ist auch die
Aufnahme von mehrkategorialen Kovariablen, ebenso wie mehrkategorialen Responses fiir
die Klassifikationsszenarien moglich. Zudem koénnen Interaktionsstrukturen zwischen den
Kovariablen und auch Ausreifler innerhalb der einzelnen Kovariablen neue Erkenntnisse
liefern.

Durch die gewéhlte Anpassung des optimalen mtry, wird in den meisten Szenarien nicht
das mtry am Optimum der OOB-Kurve als optimal angesehen, sondern ein kleineres. Das
fithrt zu einem rechensparsameren Modell, welches dabei aber gleichzeitig eine Modell-

performance sehr nahe am Optimum besitzt. Bereits bei diesen Auswertungen hat sich
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jedoch gezeigt, dass es vielleicht auch sinnvoll ist, den Schwellenwert fiir diese Anpassung
je nach Performancemafl und nicht abhéngig von der Responseart zu wéhlen. Da dieser
Schwellenwert mafigeblich die Ergebnisse beeinflusst, sind sicherlich auch alternative Kon-

zepte zum Auffinden des optimalen mitry interessant.

Insgesamt kann geschlussfolgert werden, dass bei besonders wenigen oder vielen relevanten
Kovariablen innerhalb der Daten und bei starken Korrelationen zwischen den Kovariablen,
die bekannten Defaultwerte meist suboptimal sind und die mtry Wahl entscheidend fiir
eine gute Modellperformance ist.

Die Anwendungsbeispiele haben gezeigt, dass zur Wahl von mtry die Relevanz der Ko-
variablen herangezogen werden kann, welche zum Beispiel anhand von Korrelationsko-
effizienten oder Assoziationsmaflen, wie der Mutual Information, bestimmt werden. Um
damit auf ein optimales mtry zu schliefen, kénnen Prazedenzfille herangezogen werden,
wie zum Beispiel die Szenarien aus der Simulationsstudie in dieser Arbeit. Jedoch ist
dieses Vorgehen vor allem fiir die betrachteten Grenzfille mit sehr wenigen oder sehr
vielen relevanten Kovariablen besonders geeignet, da diese Variablenstrukturen mit den
Zusammenhangsmaflen gut zu unterscheiden sind. Falls viele moglicherweise irrelevante
Kovariablen vorab festgestellt werden (wie im zweiten Anwendungsbeispiel, Kapitel 4.2.2),
sollte auBlerdem ein weiterer Ansatz in Erwidgung gezogen werden. Statt einen Random
Forest mit groem mitry zu ermitteln, kann durch eine Variablenselektion einerseits die
Modellierung enorm vereinfacht werden und andererseits verringert sich darauthin in den
meisten Situationen der kritische Einfluss der mitry Wahl. Wenn jedoch anderweitige,
komplexere Strukturen innerhalb der Daten auftreten, ist es denkbar, dass diese mithilfe
der Zusammenhangsmafle nicht zuverldssig erkannt werden und die Einteilung in einen
Prazedenzfall nicht mehr moglich ist. In dieser Situation ist es grundsétzlich ratsam auf
die bereits bekannten Defaultwerte zuriickzugreifen, die in vielen Féllen ebenfalls zu ei-

ner guten Modellperformance fithren (Bernard et al., 2009; Diaz-Uriarte und de Andrés,
2006).
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A Allgemeiner Anhang

A.1 OOB-Kurven fiir verschiedene Anzahl an Wiederholungen

Die folgende Abbildung vergleicht die OOB-Kurven eines Beispielszenarios fiir verschie-
dene Anzahl an Wiederholungen W.

Mit W = 50 zeigt sich dabei eine etwas raue Kurve, womit diese Anzahl an Wiederholun-
gen noch zu gering ist. Dagegen sind die Unterschiede im Verlauf zwischen den Kurven
mit W = 500 und W = 1000 sehr gering und 500 Wiederholungen scheinen ausreichend

ZU sein.
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Abbildung A.1: OOB-Kurven der Performancemafle AUC' und Brier Score fir bindren
Response mit 500 Beobachtungen, 20 unkorrelierten Kovariablen, Koef-
fizientenvektor Br = (2,...,2,3,...,3,4,...,4) und unterschiedlicher
Anzahl an Wiederholungen W .
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A.2 OOB-Kurven fiir verschiedene Performancemafle

Beispielhaft sind im Folgenden die OOB-Kurven verschiedener Performancemafle fiir das
Szenario mit Koeffizientenvektor 83 = (7,7,7,20,20,0,...,0), N =500 Beobachtungen

und p = 10 unkorrelierten Kovariablen fiir jeweils einen numerischen und bindren Res-

ponse dargestellt. Die Abkiirzungen und Beschreibungen der verwendeten Performance-

mafle konnen dem R-Package mlr entnommen werden.

A.2.1 Regression

Performance

0.95-
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Performancemal’
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mtry
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Performance

Performancemal}
—— rae —— rmse—-— medse—— rsq

—— [TSeé—=— mse medae—— expvar

300-

200-

mtry

Abbildung A.2: OOB-Kurven fiir verschiedene Regressions-Performancemafe.

Die linken OOB-Kurven besitzen ein ausgepriagtes Optimum bei mitry = 3, das sich durch
einen ,Knick” der OOB-Kurven zeigt. Dieser ,Knick® ist fiir die rechten OOB-Kurven

nicht vorhanden, deren Optima bei etwas hoheren mtry > 6 liegen. Da sich die Werte-

bereiche der rechten Performancemafle sehr stark unterscheiden, iiberdecken sich einige

Kurven in dieser Grafik. Allerdings sind detailliertere Verlaufe im elektronischen Anhang

im Unterordner ,Zusdtzliche-Grafiken® dargestellt.

Exemplarisch wurden die Mafie Kendall’s 7 und M SFE fir diese beiden Gruppen gewahlt.
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A.2.2 Klassifikation

Performancemal} Performancemal}
—— auc tpr apr fnr —— Qsr
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Abbildung A.3: OOB-Kurven fiir verschiedene Klassifikations-Performancemafse.

Die linken OOB-Kurven besitzen ihr Optimum bei mtry = 2, dagegen besitzen die rechten
OOB-Kurven alle ihr Optimum bei einem gréferem miry > 5. Aufgrund der verschiede-
nen Wertebereiche der linken Perfomancemafle sind hier die beschriebenen , Knicke* im
Kurvenverlauf nur marginal zu erkennen. Allerdings sind detailliertere Verlaufe im elek-
tronischen Anhang im Unterordner ,Zusdtzliche_Grafiken® dargestellt.

Exemplarisch wurden die Mafle AUC und Brier Score fir die beiden Gruppen gewahlt.
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A.3 OOB-Kurven fiir nicht-lineare Einflussvariablen

Optimum —— Linear—~— Friedman1 ~ Mtry Default

1.0-
0.825-
L
[ ) 0.8-
D P
T 0.800- 5
2 = 0.6
Q @©
< 0.775 o A
0.4-
0.7507 I I I I I I I I I I
2 4 6 8 10 2 4 6 8 10
mtry mtry

Abbildung A.4: OOB-Kurven des Friedman 1 Regressionsproblems.

Die Kurven in Abbildung A.4 sind nach Algorithmus 2 entstanden, wobei in Schritt 1
die Daten mithilfe der R-Funktion mlbench.friedmanl generiert wurden. Fiir die Uber-
gabeparameter gilt n = 500 und sd = 0.5 (Anzahl an Beobachtungen und Varianz der
Fehlerterme).

Da kein Koeffizientenvektor mit vergleichbar relevanten Kovariablen definiert wurde, ist
beispielhaft der Verlauf der OOB-Kurve fiir einen linearen Einfluss mit dem Koeffizien-
tenvektor B3 = (7,7,7,20,20,0,...,0), p=10 und N = 500 Beobachtungen dargestellt.
Es ist jedoch trotzdem sehr gut zu erkennen, dass sich die Kurvenverldufe und mitry am
Optimum weder fiir Kendall’s 7 noch fiir den M SE stark unterscheiden. Anzumerken ist,

dass hier fiir eine bessere Vergleichbarkeit der Wertebereiche, die Werte des M SE durch

die jeweiligen Maxima geteilt wurden.

74



A — Allgemeiner Anhang

Optimum - Linear - Polynomial ~ mtry Default
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Abbildung A.5: OOB-Kurven fir polynomiale und lineare Einflussvariablen eines ste-
tigen Responses.

Abbildung A.5 stellt die OOB-Kurven fiir polynomiale und lineare Einflussvariablen eines
stetigen Responses gegentiber. Die Datensétze bestehen aus 500 Beobachtungen, 20 un-
korrelierten Kovariablen und den zwei Koeffizientenvektoren 83 = (7,7,7, 20, 20,0, ...,0)
und 85 = (2,...,2,3,...,3,18,...,18).

Mit beiden Performancemaflen sind fiir die jeweiligen Koeffizientenvektoren kaum Un-
terschiede zwischen den OOB-Kurven fiir lineare und polynomiale Einflussvariablen zu

erkennen.
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Abbildung A.6: OOB-Kurven fir polynomiale und lineare FEinflussvariablen eines

bindren Responses.

Die Abbildung A.6 stellt die OOB-Kurven fiir polynomiale und lineare Einflussvariablen

eines bindren Responses gegentiber. Die Datensétze bestehen aus 500 Beobachtungen, 10

unkorrelierten Kovariablen und den zwei Koeffizientenvektoren 83 = (7,7, 7, 20, 20,0, ... ,0)
und Bs = (2,...,2,3,...,3,18,...,18).

Mit beiden Performancemaflen sind fiir die jeweiligen Koeffizientenvektoren kaum Un-

terschiede zwischen den OOB-Kurven fiir lineare und polynomiale Einflussvariablen zu

erkennen.
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A.4 Beschreibung der mittleren relativen Variablenwichtigkeit und
der drei gewihlten mtry Parameter

Um die Variablenwichtigkeiten der 500 Wiederholungen eines Szenarios zusammenfassen
zu konnen, mussten fiir jede Wiederholung zuerst die absoluten Werte der Wichtigkeiten
durch die maximale Wichtigkeit geteilt werden. Die damit erhaltenen relativen Variablen-
wichtigkeiten konnten daraufhin iiber alle 500 Wiederholungen gemittelt werden.

Die Variablenwichtigkeiten fiir ein Szenario wurden anschliefend an Schritt 4 von Algo-
rithmus 2 fiir drei festgelegte Werte mtry;, mtry, und mirys bestimmt und ebenfalls aus-
gegeben. Dabei wurden jeweils diejenigen mtry gewahlt, welche die zwei jeweiligen Perfor-
mancemafe optimieren (nach der Anpassung aus Gleichung (3.10)) und der Defaultwert.
Traten fiir ein Szenario zwei dieser mtry Werte wiederholt auf, wurde eine Fallunterschei-
dung vorgenommen, um einen davon verschiedenen dritten miry Wert festzulegen. Dafiir
wurde der Wertebereich [1, p| der moglichen mtry in drei gleichgroe Quantile aufgeteilt.
Den unterschiedlichen Werten mtry; und mtry, konnten dann die jeweiligen Quantile ¢,
und ¢o zugeteilt werden. Auf Basis dieser beiden Quantile wurde daraufthin folgenderma-

Ben mtrys festgelegt:

e Unterscheiden sich ¢; und ¢, so entspricht mirys dem ganzzahligen Mittelwert
innerhalb des verbliebenen Quantils, womit g3 # (¢1, g2)-
e Gleichen sich dagegen ¢; und ¢ und die beiden mtry Werte entstammen dem

— 1. oder 2. Quantil, so entspricht mtrys dem ganzzahligen Mittelwert innerhalb
des 3. Quantils.

— 3. Quantil, so entspricht mtrys dem ganzzahligen Mittelwert innerhalb des 1.
Quantils.
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A.5 Relative optimale mtry Werte unter Beriicksichtigung des

Optimums
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Abbildung A.7: Relative mtry Werte am Optimum (ohne Anpassung) der Regressions-
szenarien ohne korrelierte Kovariablen.
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Abbildung A.8: Relative mtry Werte am Optimum (ohne Anpassung) der Klassifika-
tionsszenarien ohne korrelierte Kovariablen.
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A.6 Weitere Ergebnisse fiir optimale mtry Werte mit korrelierten
Kovariablen (3; bis X5)

Nachfolgend jeweils fiir alle Regressions- und Klassifikationsszenarien mit p = 10 und
p = 50 blockkorrelierten Kovariablen (3; bis ¥5) die optimalen mtry Werte, getrennt
nach den verwendeten Performancemafien und Korrelationen ¢ € {0.3,0.9}. In der linken
Spalte sind jeweils zum Vergleich die Werte fiir die analogen Szenarien ohne Korrelationen
dargestellt. Die Definitionen der Koeffizientenvektoren und Kovarianzmatrizen sind in den

Tabellen 3.1 und 3.2 zusammengefasst.

A.6.1 Regression
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Abbildung A.9: Optimale mtry Werte fir Regressionsszenarien mit p = 10 und Kova-
rianzmatrizen 3, bis 2.
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Abbildung A.10: Optimale mtry Werte fiir alle Regressionsszenarien mit p = 50 und
Kovarianzmatrizen 331 bis . 79
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A.6.2 Klassifikation
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Abbildung A.11: Optimale mtry Werte fir Klassifikationsszenarien mit p = 10 und
Kovarianzmatrizen 31 bis 5.
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Abbildung A.12: Optimale mtry Werte fiir alle Klassifikationsszenarien mit p = 50
und Kovarianzmatrizen 3, bis 2.
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A7

Kovariablen (34 bis Xg)

Weitere Ergebnisse fiir optimale mtry Werte mit korrelierten

Nachfolgend jeweils fiir alle Regressions- und Klassifikationsszenarien mit p = 10 und

p = 50 blockkorrelierten Kovariablen (3¢ bis ¥g) die optimalen mtry Werte, getrennt nach

den verwendeten Performancemafien und Korrelationen ¢ € {0.3,0.6,0.9}. In jeder Grafik

sind die optimalen mtry Werte fiir die analogen Szenarien ohne korrelierte Kovariablen

ergianzt. Die Definitionen der Kovarianzmatrizen sind in Tabelle 3.3 zusammengefasst.

A.7.1 Regression

Abbildung A.13: Optimale mtry Werte fiir Regressionsszenarien mit 81 = (7,0, . ..
= 10 Kowvariablen und Kovarianzmatrizen g und .

mtry

Abbildung A.14: Optimale mtry Werte fiir Regressionsszenarien mit 81 = (7,0, . ..
p = 50 Kovariablen und Kovarianzmatrizen g und ;.
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Abbildung A.15: Optimale mtry Werte fur Regressionsszen. mit
By=(7,7,7,7,7,0,...,0), p = 10 Kowvariablen und Kovarianz-
matrizen g bis Xg.
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Abbildung A.16: Optimale mtry Werte fuir Regressionsszenarien mit
By=(7,7,7,7,7,0,...,0), p = 50 Kovariablen und Kovarianz-
matrizen g bis Xg.

82



A — Allgemeiner Anhang

A.7.2 Klassifikation
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Abbildung A.17: Optimale mtry  Werte  fir  Klassifikationsszenarien — mit
B1=(7,0,...,0), p = 10 Kovariablen und Kovarianzmatrizen
Y und X7.
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Abbildung A.18: Optimale  mitry Werte  fir  Klassifikationsszenarien — mit
B1=(7,0,...,0), p = 50 Kovariablen und Kovarianzmatrizen
26 und 27.
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Abbildung A.19: Optimale  miry Werte  fir  Klassifikationsszenarien — mit
Bs=(7,7,7,7,7,0,...,0), p = 10 Kovariablen und Kovarianz-
matrizen g bis Xg.
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Abbildung A.20: Optimale  miry Werte  fir  Klassifikationsszenarien — mit
By=(7,7,7,7,7,0,...,0), p = 50 Kowvariablen und Kovarianz-
matrizen g bis Xg.
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A.8 Variablenwichtigkeiten der Klassifikationsszenarien mit den
Kovarianzmatrizen X; bis X

Die folgenden Abbildungen stellen beispielhaft die Variablenwichtigkeiten der 500 Wie-

derholungen verschiedener Klassifikationsszenarien mit N = 500, 20 Kovariablen und den

Kovarianzmatrizen ¥, bis g dar. Die dabei jeweils mit ¢ = 0.9 blockkorrelierten Kovaria-

blen sind im Titel gekennzeichnet. Die verschiedenen mtry Werte je Szenario entsprechen

dem Default und den optimalen mtry fir die Performancemafie AUC und Brier Score.
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Abbildung A.21: Mittlere relative Permutation Importance der Klassifikationsszenarien
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Abbildung A.22: Mittlere relative Permutation Importance der Klassifikationsszenarien

mit Bs = (2,...,2,3,...,3,18,...,18), 3y und 3. ]5
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Abbildung A.23: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit Br = (2,...,2,3,...,3,4,...,4) und ¥.
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Abbildung A.24: Mittlere relative Permutation Importance der Klassifikationsszenarien
mit By = (7,7,7,7,7,0...,0) und Kovarianzmatrizen 3¢ bis Xg.
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A.9 Korrelierten Kovariablen: Vergleich zweier Variablenwichtig-
keiten

In der folgenden Abbildung wird die Conditional Importance aus einem Conditional In-
ference Forest (R-Funktion cforest aus dem Package party (Strobl et al., 2008, Version
1.2-2)) mit der Permutation Importance aus einem CART-Forest (R-Funktion ranger)
verglichen.

Der Conditional Inference Forest liefert vor allem mit ¢ = 0.9 deutlich geringere Variablen-
wichtigkeiten fiir die korrelierten Kovariablen, die ndher an der Relevanz der Kovariablen
im unkorrelierten Szenario liegen. Das ist zwar fiir die Kovariablen 1 und 6 angemessen,
jedoch ist auch die Variablenwichtigkeit der korrelierten, stark relevanten Kovariable 4
deutlich gesunken. Damit enspricht die Relevanz von Kovariable 4 nicht mehr der Rele-

vanz der Kovariable 5, trotz gleicher Koeffizientenauspragung.

c=0.3 c=0.9

Variable
w ©
® o o o o
3
&
ranger cforest

000 025 050 075 100 000 025 050 075 1.00
Mittlere Relative Variablenwichtigkeit

Abbildung A.25: Vergleich der Conditional Importance aus einem Conditional Infe-
rence Forest mit der Permutation Importance aus einem CART-
Forest.
Dabei wurden zwei Szenarien mit folgender Spezifikation verwendet:
Bindrer Response, p = 10, N = 500, B3 = (7,7,7,20,20,0,...,0),
Kovarianzmatriz X5 mit ¢ € (0.3,0.9). Die dabei blockkorrelierten
Kovariablen sind durch Fettdruck an der y-Achse gekennzeichnet.
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A.10 Korrelationsplots aller stetigen Variablen der Anwendungs-
beispiele
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Abbildung A.26: Korrelationsplot der stetigen Kovariablen und des Responses Y des
puma32H Datensatzes.
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A — Allgemeiner Anhang
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Abbildung A.27: Korrelationsplot der stetigen Kovariablen des wdbc Datensatzes.
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B Elektronischer Anhang

Der elektronische Anhang umfasst neben einer Readme-Datei die drei Ordner

JErgebnisse”,  Masterarbeit” und ,Skripte:

e Ergebnisse: Enthélt einige Unterordner.

— Simulationsordner 01 bis 09: Fiir jedes Simulationsskript gibt es einen
Unterordner mit den jeweiligen rds-Dateien der Ergebnisse. Die Ordner haben
dabei die gleiche Nummerierung, wie die entsprechenden Simulationsskripte.
Die Dateibenennung ist im jeweiligen Simulationsskript am Anfang beschrie-
ben.

— Spezifikationen: Enthélt rds-Dateien mit den jeweiligen Spezifikationen der
Szenarien fiir die Simulationsstudie.

— Zusitzliche _Grafiken: Enthélt pdf-Dateien mit Abbildungen zu einigen OOB-

Kurven, die nicht in dieser Arbeit verwendet wurden.

e Masterarbeit: Enthilt die vorliegende Arbeit im pdf-Format und einen Unterord-

ner, mit allen in dieser Arbeit verwendeten Abbildungen im pdf-Format.

e Skripte: Enthalt drei Unterordner mit Syntax-Dateien der Statistiksoftware R.
— Funktionen: Enthilt Skripte, in denen die Koeffizientenvektoren und Ko-

varianzmatrizen aus den Tabellen 3.1, 3.2 und 3.3 definiert werden, sowie
Funktionen, die wihrend der Simulation aufgerufen werden.

— Grafiken: Enthéalt Skripte, mit denen die Abbildungen in dieser Arbeit repro-
duziert werden kénnen. Die Dateien haben dabei die gleiche Nummerierung,
wie die entsprechende Simulationsskripte, mit denen die Ergebnisse erstellt
worden sind.

— Simulationen: Enthélt Skripte, mit denen die Ergebnisse der Simulations-
studie aus dieser Arbeit reproduziert werden koénnen. Die Dateien sind nach

der Reihenfolge ihrer Ausfithrung von 01 bis 09 nummeriert.
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