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Abstract
Exposure measurement error in epidemiologic air pollution studies can have a severe
impact on a study’s results as it may introduce bias in health effect estimates and low-
ers the statistical power. Measurement error is common in air pollution epidemiology
as many air pollution studies use ambient fixed site measurements instead of personal
air pollution exposure measurements because of lower costs and easier access. While
there are sophisticated methods to correct for measurement error during the analysis of
a study, this thesis concentrates on how to take measurement error into account during
the design stage of a study. Furthermore, it aims at providing a comprehensive review
of relevant literature. It regards various aspects concerning the impact of measurement
error on the study design and gives recommendations for adjusting the study design to
the presence of measurement error.
When designing a study, investigators have to account for a trade-off between using ac-
curate, but costly, measurement methods and a sufficiently large sample size in order to
achieve precise health effect estimates and adequate statistical power. As studies have
to keep cost constraints, the allocation of resources has to be carefully considered to at-
tain cost-efficient designs. Since taking personal exposure measurements can be many
times more expensive and more labour intensive than using ambient monitor measure-
ments, the only use of personal measurements can lead to very small sample sizes
when keeping cost constraints. A good trade-off can often be achieved by conducting
a validation study additionally to the main study. The primary method for adjusting
the study design to measurement error is to increase the sample size. Adjusted sam-
ple size calculations for air pollution studies have to be based on realistic assumptions
and require correctly specified measurement error models. Further investigations are
needed to provide flexible calculation methods and easy access of methods by software
implementations.



Contents

1 Introduction 1

2 Air Pollution Epidemiology 3
2.1 Characteristics of Air Pollution Studies . . . . . . . . . . . . . . . . 3
2.2 Study Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Air Pollution Measurement . . . . . . . . . . . . . . . . . . . . . . . 6

3 Measurement Error 9
3.1 Measurement Error Types . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Measurement Error in Air Pollution Studies . . . . . . . . . . . . . . 11
3.3 Measurement Error and Particular Study Designs . . . . . . . . . . . 14

4 Impact of Measurement Error on
Effective Sample Size 17
4.1 Asymptotic Relative Efficiency . . . . . . . . . . . . . . . . . . . . . 17
4.2 Application to Air Pollution Epidemiology . . . . . . . . . . . . . . . 19

5 Study Design in the Presence of
Measurement Error 20
5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Validation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Characteristics of Validation Studies . . . . . . . . . . . . . . 23
5.2.2 Validation Study Sample Size . . . . . . . . . . . . . . . . . 26
5.2.3 Validation Studies in Air Pollution Epidemiology . . . . . . . 31

5.3 Sample Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Summary and Discussion 41

References 44

List of Figures 50



1. INTRODUCTION 1

1 Introduction
Over the past decades, various studies indicate that exposure to elevated concentra-
tions of air pollution may pose a significant risk on human health (Dockery et al. 1993,
p. 1753). Studies in air pollution epidemiology are prone to exposure measurement
error. The National Research Council Committee on Research Priorities for Airborne
Particulate Matter defines measurement error as follows: “The difference between ac-
tual exposures and measured ambient-air concentrations is termed measurement error.
Measurement error can occur when measures of ambient air pollution are used as an
index for personal exposure.” (National Research Council 2001, p. 125).
As it is well known that measurement error in explanatory variables can distort the sta-
tistical analysis of the data, the impact and handling of measurement error is part of the
most relevant research topics regarding air pollution studies. This thesis is related to
the STRATOS initiative (http://stratos-initiative.org/) that has the objective to provide
accessible and precise guidance in the design and analysis of observational studies. A
group of the initiative (Freedman, Kipnis, Carroll, Deffner, Dodd, Gustafson, Keogh,
Küchenhoff, Shaw, Tooze) addresses the topic of measurement error and misclassifi-
cation.
Measurement error has to be carefully considered in every stage of a study. Generally,
one can take steps to limit the degree of measurement error by a study’s design, in-
cluding the conduct of a validation study to determine the structure and extent of the
error, and by correcting for measurement error in the statistical analysis. This work
concentrates on how to take exposure measurement error into account at the design
stage of an epidemiologic air pollution study.
Measurement error is a fundamental challenge in air pollution epidemiology. Avail-
able ambient air pollution data and an individual’s air pollution exposure can differ
substantially. Personal air pollution exposure is rarely if ever measured because it is
costly, labour intensive and intrusive for the study subjects. Therefore, the presence
of measurement error can be expected in the majority of air pollution studies (Dock-
ery 1993, p. 187). Having inaccurate exposure measurements instead of true exposure
data has the potential to bias the inference by attenuating effect coefficients and lessens
statistical power to detect truly present associations. If measurement error has a criti-
cal magnitude, it can be severe enough to totally negate a study’s ability of draw valid
conclusions about the exposure effect (Armstrong 1998, p. 654). The power loss by
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measurement error leads to the requirement of increasing the sample size in order to
achieve equal power as one would have obtained with accurate data. It is therefore
of crucial importance to consider measurement error already in the design of a study
(Dockery 1993, p. 187). In fact, despite of the wide occurrence and the severe impacts
of measurement error, only few epidemiologic investigators take measurement error
into account (Shaw et al. 2017).
This work aims at giving a comprehensive review of literature that addresses the study
design with regard to measurement error. It regards various aspects concerning the im-
pact of measurement error on the study design and gives recommendations for design-
ing a study in the presence of measurement error. General results for epidemiologic
studies are discussed in the context of air pollution studies.
Chapter 2 provides relevant background information concerning air pollution studies,
their study designs and the methods of air pollution measurement. Information about
measurement error in the context of air pollution studies is given in Chapter 3. The im-
pact of measurement error on effective sample size is described in chapter 4 by regard-
ing the formula of the asymptotic relative efficiency (ARE) for different measurement
error models (section 4.1) and by pointing out relevant results for air pollution studies
(section 4.2). Chapter 5 provides information on how to take measurement error into
account during the design of a study. It consists of three sections. The first section
refers to the topic of data collection including considerations about how to choose be-
tween different measurement methods. Section 5.2 deals with validation studies which
are essential for gaining information about the measurement error in order to adjust the
study design or to correct for measurement error by statistical methods. This section
contains three sub-sections that discuss the general topic of validation studies as well
as the validation study design and the application of validation studies in air pollution
epidemiology. Section 5.3 presents different methods for sample size adjustment in
the presence of measurement error and reviews the relevance of different approaches
for air pollution studies. The thesis concludes with a summary of the considered topics
and a discussion that refers to further aspects and literature.



2. AIR POLLUTION EPIDEMIOLOGY 3

2 Air Pollution Epidemiology
Epidemiology is defined as the ”distribution and determinants of disease frequency in
man.” (MacMahon and Pugh 1970). Regarding the field of air pollution epidemiology,
scientists investigate the effect of air pollution exposure on human diseases. This chap-
ter provides basic information about air pollution studies by first pointing out general
characteristics of air pollution studies with a following explanation of the most com-
mon study designs and methods of air pollution measurement.

2.1 Characteristics of Air Pollution Studies
This chapter gives a general introduction into basic characteristics of studies in air pol-
lution epidemiology.
The outcomes of air pollution studies are health variables that can be for example
changes in human health determinants, such as vital capacity, lung growth and symp-
tom severity, or events such as the onset of symptoms or death. The exposure of inter-
est, that is assumed to have an impact on the health outcome, can be one or several air
pollutants. Some studies are interested in the effect of short-term exposure, whereas
others intend to examine the effect of long-term exposure. Acute health effects are
temporary and caused by time-varying exposure. On the contrary, chronic health ef-
fects are likely to occur due to cumulative exposure or due to complex functions of
exposure in a lifetime. The scale of the outcome and the nature of the health effect
of interest affect the choice of an appropriate study design (Dominici et al. 2003, p.
245). Modern air pollution studies use advanced statistical models for the analysis of
complex air pollution datasets, for example generalized linear models (GLMs), gen-
eralized additive models (GAMs), Cox proportional hazard models and hierarchical
models (Dominici et al. 2003, p. 244).
There are many factors and difficulties that have to be considered in air pollution epi-
demiology. First of all, ambient air pollution varies over space and time. In addition,
personal exposure to air pollution is not only dependent on ambient pollution but also
on individual activity-patterns and individual environments. Furthermore, several con-
founding variables and the correlation among covariates have to be taken into account.
For many diseases the exposure to air pollution is only one of many factors (Dockery
1993, p. 190). Also, when being interested in the effect of a single pollutant, one has
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to be aware of the high inter-correlation between the pollutant of interest and other
pollutants as ambient air consists of a complex composition of various air pollutants
(Dominici et al. 2003, p. 245). Exposure to air pollution is omnipresent and there
is no unexposed population which makes it more difficult to evaluate health effects.
Moreover, the health effect of air pollution exposure is relatively weak which demands
large resources to detect the effects. Additionally, the precise measurement of an indi-
vidual’s exposure to air pollution can be infeasible as measuring personal exposure is
very costly. Therefore, many studies make use of surrogates such as ambient exposure
data coming from fixed monitors. Thanks to the many existing monitoring networks,
investigators have easy access to rich data with a high resolution in time. However, in
many applications, monitor data cannot adequately represent personal exposure which
leads to measurement error in many air pollution studies (Sheppard et al. 2012, p. 208).

2.2 Study Designs
This section gives an overview and brief description of frequently used study designs
in air pollution studies. The broad majority of air pollution studies are observational
studies. Many studies are also “opportunistic” studies since they emerge out of the
possibility of the use of data that was collected for other reasons. Thus, they can be
often limited by the structure of the available data. The most common study designs
in air pollution epidemiology are time series, case-crossover, cohort and panel studies
(Dominici et al. 2003, p. 244 f.). Case-control studies air pollution epidemiology are
rather rare (Dockery 1993, p. 189).
In a time series study, one expects the day-to-day variability of the exposure to be asso-
ciated with the day-to-day variability of the outcome rate (Nieuwenhuijsen 2015, p. 5).
A time series study in air pollution epidemiology typically examines the relationship
between aggregated outcomes, typically population-averaged disease outcomes, and
spatial aggregated exposure data, typically a daily average ambient concentration of a
pollutant. Accordingly, time series studies can be assigned to the category of ecologic
studies (Rothman et al. 2008, p. 511 ff.). Ecologic studies use aggregated data leading
to ”ecological inferences” when conclusions about individuals are drawn from data on
an aggregated level. When using aggregated data, one has to be aware of the so-called
”ecological fallacy” which happens when inferences on the group-level don’t hold for
the individual-level (Freedman 1999).
Case-crossover studies can be used to estimate the risk of a rare health event caused by
short-term exposure to air pollution. Each case represents his own control as one com-
pares the exposure at the time just prior to the event, the “case time”, with the exposure
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of several reference times, the “control time”. By this, the constant characteristics of
an individual are matched automatically which reduces confounding (Dominici 2003
et al., p. 247). This study design is most useful for intermittent exposures that cause
an immediate and transient risk on a rare outcome (Maclure and Mittleman 2000, p.
193).
In contrast to time series, that often concentrate on the day-to-day variation in air pol-
lution and the health outcome with regard to a single location, cohort studies compare
the relationship between air pollution and outcome across several geographical loca-
tions (Dominici 2003, p. 270). In a cohort study the investigator defines a group of
subjects that are heterogeneous in their exposure and follows them over time to record
if they develop a disease or health outcome of interest. Finally, risk estimates can be
gained by comparing their incidence rates (Nieuwenhuijsen 2015, p. 5). Cohort stud-
ies in air pollution epidemiology can be used to estimate the effect of long-term air
pollution exposure on the disease outcome. Frequently, cumulative air pollution expo-
sure is used as the exposure variable.
A panel study follows a cohort of study subjects over a certain period to explore
changes in the health outcome of interest by taking repeated measurements at different
points of time. This design is appropriate if the outcome for a subject varies over time.
Furthermore, this design is practical for the investigation of short-term effects of air
pollution for a susceptible subpopulation (Dominici et al. 2003, p. 249).
The design of a study always depends on the specific research target of the study and
the structure of the data. In summary, time series, panel and case-crossover studies
are useful to study the acute effects of short-term exposures, whereas the cohort study
design studies a combination of acute and chronic effects of longer exposure times
(Dominici et al. 2003, p. 525). The outcomes in cohort and panel studies can be ei-
ther event counts or continuous measurements , while the outcomes of time series and
case-crossover studies should be rare events. The time series study design evaluates
aggregated exposures and event counts over a large population, whereas cohort, panel
and case-crossover studies include the cases individually in the analysis and often ori-
entate their study on well-defined subgroups (Dominici et al. 2003, p. 252 f.). In gen-
eral, it can be found that many air pollution studies are semi-ecologic (Dockery 1993,
p. 188). Truly ecologic studies observe both exposure and health outcome on an ag-
gregated level. The semi-ecologic, also called semi-individual, study design observes
health outcomes on an individual-level and exposure on an aggregated level, measured
by a fixed site monitor. In contrasts to ecologic studies that draw conclusions by eco-
logical inference and are therefore prone to ecological fallacy, semi-ecologic studies
share their inferential properties with typical individual-level study designs. Just like
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other study designs, the semi-ecologic design has to deal with measurement error in
the exposure variable (Künzli and Tager 1997).

2.3 Air Pollution Measurement
Ambient fixed site monitors are the most common source of data in air pollution stud-
ies. Ambient air pollution concentrations measured at fixed sites are therefore often
used as surrogate measurements for personal air pollution exposure. As they are only
proxies for the personal exposure, they cannot represent it perfectly which causes a cer-
tain level of measurement error. The main reasons for this are the low spatial resolution
of fixed site measurements as well as their inability of accounting for the differences in
the exposure among the study subjects (Nieuwenhuijsen 2015, p. 252). Nevertheless,
ambient monitors have the advantage of providing easy access to extensive exposure
data with high temporal resolution, for example daily or hourly measurements (Shep-
pard et al. 2012, p. 209).
Besides ambient fixed site monitor measurements, other surrogates for personal air
pollution exposure are used in air pollution studies, like distance to major roads or
traffic intensity on the residential road. Predictions from models that predict exposure
for individuals are also used as surrogates measurement for personal exposure (Jerrett
et al. 2005, p. 186 ff.). Dionisio et al. (2016) provide a review of such alternative
exposure metrics including GIS-based metrics, satellite data, air quality modeling us-
ing emissions and meteorological data and human exposure models containing human
activity data.
Personal exposure to air pollution can be measured by attaching an exposure monitor
or sensor to the person. It is clear that this method of data collection is more directly
representative for an individual and thus more informative compared to fixed site mea-
surements or other surrogates (Nieuwenhuijsen 2015, p. 87). However, the universal
use of this measurement method is limited. Personal measurements are usually much
more expensive than fixed site measurements while many studies have to meet fixed
cost constraints. Furthermore, they are more labour intensive. Thus, it is mostly not
possible to conduct personal monitoring for a large number of persons while a suffi-
ciently high sample size is essential for a study’s quality. Therefore, studies using only
personal exposure measurements are rare and most investigators utilize this costly mea-
surement method only for a subpopulation of the overall study population to validate
their main measurement method. This issue will be further discussed in section 5.2.
The exposure to air pollution of an individual is complicated to capture by fixed site
ambient monitors as it is driven by many factors like movement and activity patterns.



2. AIR POLLUTION EPIDEMIOLOGY 7

De Nazelle investigates nitrogen dioxide (NO2) data for different activity spaces by
linking space-time air pollution mapping with information about physical activity and
geographic location obtained by smartphones for 36 adults in Barcelona (De Nazelle
et al. 2013, p. 96).

Figure 1: Time spent in activity spaces and percent contribution to total daily inhaled
dose of NO2 from different activity spaces (cf. De Nazelle et al. 2013, p. 96).

Figure 1 shows that the study subjects face the highest NO2 concentration when they
are in transit. Time spent at home which takes 51% of people’s daily time contributes
to 40% of inhaled NO2, whereas time at work which occupies 33% of the day con-
tributes to 28% of the inhaled dose. In contrast, time in transit which represents only
6% of the people’s daily time accounts for 24% of daily inhaled NO2 (De Nazelle et
al. 2013, p. 95). Therefore, it seems reasonable that fixed site monitoring’s ability to
represent an individual’s air pollution exposure is considerably limited and that indi-
vidual measurements can provide valuable information in air pollution epidemiology.
The discrepancy between personal and fixed site measurements can be expressed by
their correlation. Several studies investigate this relationship. Avery et al. (2010) pro-
vides a review of studies that examine the within-participant ambient-personal correla-
tion of PM2.5. Their work includes 18 studies, published between 1999 and 2008 in 17
cities in Europe and North America, that are found by searching seven electronic refer-
ence databases. The studies contain in total 619 non-smoking participants with the age
of 6 to 93 years (Avery et al. 2010, p. 218). Avery et al. 2010 give a comprehensive
comparison of the study results. The pairs per participant of ambient-personal PM2.5

measurements range from 5 to 20 with a median of 8 and were collected over 27 to 547
days. The studies calculate the correlations with either the coefficient by Pearson or
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the coefficient by Spearman. The following figure 2 shows the correlation coefficients
for the different studies. Some studies have more than one correlation coefficient as
they include sub-studies. The within-participant correlation between ambient PM2.5

and personal PM2.5 is denoted by r (Avery et al. 2010, p. 216).

Figure 2: Estimates of r̄ (95% confidence interval) of the within-participant correlation
between ambient and personal PM2.5 for 18 studies (Avery et al. 2010, p. 220).

The correlation coefficients in the 18 studies vary with significant heterogeneity from
0.09 to 0.83 with a median of 0.54. Moreover, Avery finds that correlations are gener-
ally higher for higher ambient PM2.5 concentrations, higher relative humidity, studies
in Europe and with eastern longitudes in North America and lower between-participant
variation (Avery et al. 2010, p. 2018 f.). One should note that Avery only reviews
PM2.5-related studies without regard to other pollutants. In summary, the observed
correlation coefficients of different studies vary a lot with sometimes critically low
values of the correlation between personal and ambient air pollution. This leads to
the conclusion that studies using ambient fixed site measurements instead of personal
measurements may suffer from a considerable amount of measurement error.
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The fact that fixed site monitoring is the more frequently used method of data col-
lection leads to the necessity of investigating the impact of measurement error in air
pollution epidemiology and how to deal with it.

3 Measurement Error
This chapter deals with basic concepts of measurement error with regard to air pollu-
tion studies. The first section (3.1) introduces common measurement error types. In
the second section (3.2), relevant factors related to measurement error in air pollution
studies are explained. Furthermore, as the impact and structure of the measurement er-
ror depends on the study design, the different types of error appearing in air pollution
studies will be considered separately for aggregated-level studies and individual-level
studies in section (3.3). Aggregated level studies examine the association between
spatial aggregated outcomes and spatial aggregated exposure data, whereas individual
level studies regard the individual exposure of the subjects along with their individual
outcome.

3.1 Measurement Error Types
This chapter gives a brief explanation of the basic measurement error models as these
terms are fundamentally for the following issues that will be discussed in this thesis.
Generally, measurement error can arise in the outcome variable or in the covariates.
While simple regression models naturally handle outcome error since it is represented
in the error term of the regression, they assume all explanatory variables are known
and measured without error (Sheppard et al. 2012, p. 209). Thus, literature mostly
focuses on error in explanatory variables. Those can be differentiated between the
variable of interest, which is in epidemiology the exposure that is presumed to have
an impact on health, the potential confounders or the potential interaction-variables
(Armstrong 1998, p. 651). This thesis concentrates on error in the exposure vari-
able. Frequently used terms for errors in exposure variables are “measurement error”
and “misclassification”. The latter term applies to discrete exposure variables (Carroll
et al. 2006, p. 32). Since exposure measurements in air pollution epidemiology are
continuous, misclassification will not longer be discussed. Measurement error is de-
scribed by measurement error models. The two most common models are the classical
measurement error model and the Berkson error model. They are statistically defined
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as (Carroll 2006, p. 3 ff.):

1. The classical model: X∗ = X +U (1)

2. The Berkson model: X = X∗+U, (2)

where X∗ is the error-prone and X the true value of the exposure. U is a random
variable which is for the classical model independent of X and E(U | X) = 0 and for
the Berkson model independent of X∗ and E(U | X∗) = 0. Thus, in this case, X∗

is a unbiased measure of X . Measurement error is likely to be classical if an error-
prone variable is measured uniquely for an individual, whereas it is likely to be of
Berkson type if individuals are assigned to a group and given the same value of the
error-prone measurement. For classical errors it holds that Var(X∗)>Var(X), whereas
for Berkson error it holds that Var(X)>Var(X∗) (Carroll 2006, p. 27 f.).
The error in the mismeasured exposure can either be random, such that some exposure
values are underestimated and others overestimated with the true value as their mean,
like in the equations above, or it can differ systematically from the true value which is
called systematic error (Armstrong 1998, p. 652). For measurement error that is not
random but linear, one can extend the classical measurement error model to a linear
measurement error model such that the error-prone variable depends linearly on the
true value (Buonaccorsi 2010, p. 151):

X∗ = α0 +αX X +U, (3)

where U is again the component that represents the random error with mean zero.
There are several further extensions for measurement error models, for example spe-
cific assumptions for the random component U , that will not be mentioned in this
context.
Another important characteristic of the measurement error is whether it is differential
or non-differential. Measurement error is called non-differential if the distribution of
the outcome Y given (X ,Z,X∗) depends only on (X ,Z) with Z denoting other error-free
covariates. Consequently, variables measured with non-differential error X∗ contain no
information about the outcome Y other than what is already included in X and Z. Oth-
erwise, measurement error is differential (Carroll et al. 2006, p. 36). A typical example
for differential error is the so called “recall bias” in case-control studies where the ex-
posure of the cases is observed with an error that is different from the controls. In
contrast, in studies in which exposure is measured previous to the outcome, the error
is typically non-differential (Nieuwenhuijsen 2015, p. 202).
For the further understanding, it is important to consider the differences between clas-



3. MEASUREMENT ERROR 11

sical and Berkson error of continuous explanatory variables regarding their effect on
study results. By using X∗ as a surrogate of X , assuming single-covariate linear regres-
sion and classical, non-differential measurement error, the estimate of the regression
coefficient βX∗ is a biased estimate of the true coefficient βX . This result is also called
“attenuation” as |βX∗| ≤ |βX |. Unbiased estimates, |βX∗ |= |βX |, occur only for βX = 0.
That is, when testing the null hypothesis βX∗ = 0, classical measurement error doesn’t
lead to spurious significant when there is truly no association. Significance tests for
testing the null hypothesis βX∗ = 0 remain therefore valid tests of the hypothesis that
βX = 0 (Zeger et al. 2000, p. 420 f.). In contrast, for non-differential Berkson er-
ror and linear regression, β̂X∗ is an unbiased estimate of βX . Both types of random
non-differential error, classical and Berkson error, reduce a study’s statistical power to
detect whether βX is different from zero. That is, the chance to detect truly present
significant associations is lower (Armstrong 1998, p. 653 f.). For differential error
assuming linear regression and a classical or linear measurement error model, the re-
lation |βX∗| ≤ |βX | doesn’t longer hold as the effect estimates can be biased either
downwards or upwards. Significant association can be found even when there is truly
no significant association, leading to invalid significant tests for H0 : βX = 0 (Freedman
et al. 2017, p. 8).

3.2 Measurement Error in Air Pollution Studies
This chapter focuses on measurement error in air pollution exposure. As described
in chapter 2.3, the correlation between personal exposure and ambient fixed monitor
measurements is in many cases inadequately low. Thus, when using ambient mea-
surements instead of personal measurements, assuming that individual exposure is the
exposure of interest and ambient concentration the surrogate measure, a certain extent
of measurement error emerges in the exposure variable.
The measurement error is a result of several factors. An individual’s total exposure
does not only come from ambient sources, but also from non-ambient sources. Total
personal exposure for a subject i at a time point t, X personal

it , can therefore be described
by (Dominici et al. 2003, p. 260):

X personal
it = Xnon−ambient

it +αitXambient
it . (4)

In this equation, Xnon−ambient
it stands for the non-ambient source exposure of the indi-

vidual i at time t and Xambient
it for the ambient concentration at the individual i’s spatial

location at time t. The parameter αit is an infiltration parameter that stands for the
fraction of ambient air pollution concentration that the subject i is exposed to at time t.
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It depends on several factors such as outdoor air penetration to indoor environments,
the subject’s individual activity patterns and pollutant-specific features (Dominici et al.
2003, p. 260).
Furthermore, one needs to consider that ambient data of air pollution concentrations
can be prone to instrumental error that is caused by inaccurate measurements of fixed
site monitors. There are different types of fixed site monitors that differ in their accu-
racy and time resolution (Dominici et al. 2003, p. 268).
Figure (3) shows a schematic for the relationship between measured ambient air pol-
lution concentration (X∗t ) and personal exposure (Xit) that are connected by the true
ambient pollution (X ′t ) and the indoor exposure (Wit) (cf. Zeger et al. 2000 p. 423).

Figure 3: Schematic relating ambient measured pollution level (X∗t ) to personal expo-
sure (Xit) by true ambient pollution (X ′t ) and indoor exposure (Wit) ( cf. Zeger et al.
2000, p. 423).

Measurement error in air pollution studies is influenced by several study-specific fac-
tors. Especially when personal exposure varies a lot among the study subjects, al-
though study subject live in the same area, stationary monitor measurements cannot
easily represent the personal concentrations. Such large variation in personal expo-
sures can be caused by outdoor motor vehicle concentrations that are typically very
heterogeneous in space. For example, Suh and Zanobetti (2010) examine the adequacy
of using ambient measurements for analyising the relationship between traffic-related
air pollution and heart rate variability in a study of 30 people living in Atlanta. They
conclude that measurement error caused by the usage of ambient measurements instead
of personal measurements masks the effect of traffic-related pollution on the outcome.
While ambient elemental carbon (EC) and ambient nitrogen dioxide (NO2) have no
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significant effect on the heart rate variability, their respective personal measurements
show a significant negative association (Sou and Zanobetti 2010, p. 687 ff.). This in-
dicates that for traffic pollutants ambient concentrations might be a poor surrogate for
personal exposure and thus lead to crucial bias.
Another factor that introduces variability in personal exposures is home ventilation.
Sarnat et al. (2000) describe a study in Baltimore with 15 non-smoking elderly sub-
jects that wear a multi-pollutant sampler for 12 days during the summer of 1998 and the
winter of 1999. They conclude that indoor ventilation is a substantial determinant of
personal exposure and of the personal-ambient associations. Whereas this association
is strong for individuals that spend a lot of their time in well-ventilated environments,
it decreases for people that spend most their time in poorly ventilated environments
(Sarnat et al. 2000, p. 1195 f.). This leads to the conclusion that ambient measure-
ments are better proxies for personal exposure when the degree of ventilation for the
subjects is high compared to when ventilation levels are low.
Generally, measurement error varies according to space and time. There exist cru-
cial pollutant-specific differences concerning measurement error when using ambient
monitor data instead of personal measurements. Some pollutants, like total PM2.5 and
Ozone (O3), are homogeneous over space. Other pollutants, especially those caused
by traffic, such as carbon monoxide (CO) and nitrogen dioxide (NO2), are character-
ized by spatio-temporal variability (Sarnat et al. 2010, p. 135). Sarnat figures out that
the effect of monitor site location and distance between sites and study population on
estimated relative risks depends on whether the pollutant of interest is homogeneous or
heterogeneous over space. For homogeneous pollutants similar relative risk estimates
are found regardless of monitor site and distance between site and study population,
whereas different relative risk estimates are found for heterogeneous pollutants (Sarnat
et al. 2010, p. 144).
While much literature concentrates on the difference between ambient and individual
exposure, it is also important to consider the problem of spatial misalignment. Spatial
misalignment is caused by data measured at different spatial resolutions. It is common
in air pollution studies because exposure and outcome data are often collected inde-
pendently. In cohort studies, spatial misalignment error occurs because exposure data
measured by fixed site monitors has a much lower spatial resolution than the data of
the health outcome which is often measured at the individual level. In time series de-
signs, assuming region-wide counts of events like mortality or hospital admissions as
the outcome variable and region-wide average pollutant levels as the explanatory vari-
able, spatial misalignment error is caused by the difference between the measurements
of the fixed site monitor, which is meant to represent the study population area, and the
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true ambient average concentration in this area. The severity of spatial misalignment
depends also on the heterogeneity or homogeneity of the pollutant of interest (Peng
and Bell 2010, p. 720 f.).
In summary, there are many factors that play a role in the structure and the resulting
impact of measurement error in air pollution studies.
Measurement error consists generally of a mixture of different error types which de-
pends on the study design. This topic will be further discussed in the following chapter.

3.3 Measurement Error and Particular Study Designs
For different study designs, exposure measurement error comes in different domi-
nant error-types. The impact of the measurement error is therefore also dependent
of design-specific characteristic. This chapter points out the measurement error related
differences between aggregated level study designs and individual level study designs.
Aggregated level studies examine the association between spatial aggregated outcomes,
typically daily event counts in a certain area, and spatial aggregated exposure data,
typically a daily average ambient concentration of a pollutant in the same area. These
studies can be used for investigating the short-term effects of air pollution on health.
As mentioned in section 2.2, a typical study design for such studies is the time-series
design. In the following, the particular types of measurement error appearing in such
studies will be explained.
Zeger et al. (2000) present a conceptual framework for the evaluation of measurement
error in air pollution time-series studies based on a log-linear regression model for
risk. This model, which aims to explain an individual’s risk of death on a given day
by an individual’s exposure, is aggregated to form a model whose outcome is the total
deaths in a population. Such models, that are based on aggregated data, are used in
many time-series studies. Presuming that the personal exposure Xit of an individual i

at time point t is the true measure and the ambient concentration measured by an inex-
act monitor X∗t at time point t is the surrogate measure, the difference between those
two measures can be partitioned in three components (Zeger et al. 2000, p. 422):

Xit−X∗t = (Xit− X̄t)+(X̄t−X ′t )+(X ′t −X∗t ). (5)

The true ambient air pollution concentration at time t is denoted by X ′t . The first part
(Xit − X̄t) represents the error caused by the use of averaged instead of individual ex-
posure data. The second part (X̄t−X ′t ) corresponds to the difference between averaged
personal exposure and the true ambient air pollution concentration. The discrepancy
between the true and the measured ambient levels is shown by the third part (X ′t −X∗t ).
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It includes instrumental error and spatial variation of ambient concentration levels.
The first term, by having the averaged instead of the individual personal exposure,
behaves like Berkson error, whereas the second term (X̄t −X ′t ) is not Berksonian and
thought to be a crucial source of bias. The third term, when using the average of avail-
able monitors in an area, is likely to be mainly of Berkson-type (Zeger 2000, p. 422).
The difference between true ambient levels and average personal exposure (X̄t −X ′t )

is influenced by many factors as personal exposure contains also exposure from non-
ambient sources (Zeger et al. 2000, p. 423).
Sheppard et al. (2005) make further investigations for air pollution time series studies
regarding explicitly the personal exposure model that was described in section 3.2 as
X personal

it = Xnon−ambient
it +αitXambient

it . They examine the role of the infiltration pa-
rameter αit , the contributions of ambient and non-ambient sources exposures, and the
spatial heterogeneity in ambient concentrations using a large data set of PM2.5 in Seat-
tle including measurements of personal, home-outdoor and fixed site monitors. They
make several conclusions for sources of measurement error in time series studies. In
summary, by assuming that ambient and non-ambient source exposures are indepen-
dent of each other, they recommend to use average ambient concentrations of several
monitors and conclude that ambient concentration measurements work well in time
series studies as they are able to adequately summarize the time-varying population
average exposure. By this, good estimates of the health-effect coefficient can obtained
even if ambient measurements can only explain a small part of the total variation in
personal exposure. This conclusion is, however, restricted to PM2.5 which varies little
over space (Sheppard et al. 2005, p. 375).
Similarly, Dominici et al. (2003) argue that ambient PM varies generally more over
time than over space and that ignoring non-ambient sources of exposure in time se-
ries studies may not be problematic since ambient and non-ambient sources of PM are
likely to be independent. They also conclude that ambient measurements are an appro-
priate surrogate for the average exposure of the study population in time series studies
(Dominici et al. 2003, p. 268).
The case-crossover study design also uses temporal contrasts and investigates acute ef-
fects. Dionisio et al. (2016) concludes that for time-series and case-crossover designs
fixed site measurements are adequate as they capture temporal variation. This holds
especially for spatially homogeneous pollutants (Dionisio et al. 2016, p. 496 f.).
In summary, these results apply for study designs that driven by temporal contrasts
and investigate short-period variations, for example daily variations of exposure and
outcome on an aggregated level.
Individual level studies, in contrast to aggregated level studies, regard the individual
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exposure of the subjects along with their individual outcome. This is often the case
in cohort studies. As already explained in section 2.2, they can be used to estimate
the effect of long-term air pollution exposure. Especially for long-term exposure mea-
surements, collecting data with personal monitoring methods is infeasible (Van Roos-
broeck et al. 2008, p. 409). Unless the personal monitor is worn the whole period in
which exposure can affect disease, it’s use is limited by the extent to which the period
of personal monitoring is representative of the individual’s true exposure (Nieuwen-
huijsen 2015, p. 87). Generally, individual level studies attempt to contain sufficient
variation in the exposure. Therefore such studies usually compare exposure-outcome
associations across several geographical locations. This happens by including study
subjects from different communities or different areas within a community (Sheppard
et al. 2012, p. 204). The overall aim of those studies is to analyse the effect of individ-
ual exposure on individual disease outcomes.
Measurement error in exposure data representing individual exposure can be caused
by little spatial resolution of the available air pollution exposure data when assigning a
certain value of exposure to an individual. This is typically the case when the investiga-
tor has only access to data from a limited number of fixed site monitors. Cohort studies
often use ambient community-level measurements of cumulative exposure from fixed
site monitors. This approach works good if the variance of the exposure measurements
between the communities is large compared to the variance of the exposure within the
communities (Dominici et al. 2003, p. 270). Thus, in practice, it has to be checked
if this requirement is fulfilled if one intends to use ambient community-level measure-
ments as a surrogate for personal measurements.
As long-term personal measurements are often infeasible and as fixed monitor mea-
surement are limited in their spatial resolution, cohort studies use more and more
spatial prediction approaches. These models are used to predict exposures at loca-
tions without monitors, for example by land use regression models or spatio-temporal
models (Sheppard et al. 2012, p. 208). However, the measurements resulting of
the prediction models are still just a surrogate of the true exposure and incorporate a
certain degree of measurement error. Szpiro et al. (2011) suggest that by using pre-
dicted exposure values, the measurement error generally results in two components. A
Berkson-like component arises because of smoothing the exposure surface in the pre-
diction model which lessens the exposure variability, and a classical-like component
is caused by the uncertainty of the model estimates. These errors cannot be defined as
the standard classical and Berkson error as they are not spatially independent, but are
thought to have similar impacts. The Berkson-like error reduces statistical power and
can be controlled by increasing the sample size, whereas the classical-like component
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is independent of increasing sample sizes and has the potential to induce bias in the
effect estimates (Szpiro et al. 2011, p. 612 ff.).

4 Impact of Measurement Error on
Effective Sample Size

When designing a study, it is important to make sure that the study has enough statis-
tical power to detect the effect of the exposure variable. One can design a study and
determine the sample size such that a prespecified effect will be found with a certain
power. Measurement error, however, has the impact to reduce a study’s power and
effective sample size which diminishes the chance that a truly present significant effect
can be detected. Ignoring measurement error can therefore result in large discrepan-
cies between computed and actual study power and significant exposure effects can be
missed (Armstrong 1998, p. 654). This chapter deals at first with the general impact
of measurement error on the effective sample size by means of the asymptotic relative
efficiency. Secondly, the results will be discussed in the context of air pollution studies.

4.1 Asymptotic Relative Efficiency
Lagakos (1988) explores the impact of measurement error on commonly-used statisti-
cal tests and the resulting loss of effective sample size. The efficiency of a test statistic
T1 relative to another test statistic T2 is defined as the ratio of sample sizes NT1/NT2

required to achieve the same performance (Pratt and Gibbons 1981,p. 345). In this
context, the performance of a test statistic is expressed by its statistical power. La-
gakos calculates the loss in efficiency by measurement error in terms of asymptotic
results requiring large sample sizes. The underlying asymptotic theory is based upon
the assumption of local alternatives. The alternatives are the values of the coefficient β

in the alternative hypotheses H1. Under this local alternative assumption a sequence of
local alternative hypotheses β (n) in the neighborhood of the null hypothesis are tested,
whereas tests with fixed alternatives test hypotheses of the form H0 = β0 vs. H1 = β1

(Van der Vaart 1998, chapter 15). The assumption of local alternatives is an approxi-
mation that is appropriate for small values βX of the alternative hypothesis (Tosteson
et al. 2003, p. 1070). Lagakos compares the efficiency of a test statistic using X∗

with the efficiency of a test statistic using X for local alternatives to the null hypothesis
βX = 0 by the asymptotic relative efficiency that is denoted by ARE(X∗ : X) (Lagakos
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1988, p. 258 f.). He relates his calculations to linear regression, logistic regression and
proportional hazard models.
For continuous explanatory variables, Lagakos examines the ARE for different mea-
surement error models. For the classical non-differential measurement error model
with E(X∗ | X) = X and Var(X∗ | X) = σ2

U it holds that (Lagakos 1988, p. 268):

ARE(X∗ : X) =
σ2

X

σ2
X∗

=
σ2

X

σ2
X +σ2

U
= ρ

2
XX∗, (6)

and for non-differential Berkson errors with E(X | X∗) = X∗ and Var(X | X∗) = σ2
U it

holds that (Lagakos 1988, p. 269):

ARE(X∗ : X) =
σ2

X∗

σ2
X∗+σ2

U
= ρ

2
XX∗. (7)

The square of the correlation between X and X∗, denoted by ρ2
XX∗ , is also called the

coefficient of validity. The coefficient of validity is a common measure in the topic of
measurement error as it is for linear regression and classical measurement error equal
to the factor that attenuates the effect estimate (Armstrong 1998, p. 652 f.). Further-
more, the adequacy of a measurement method is often expressed by the correlation
between true and measured exposure as it was done in section 2.3.
Lagakos also gives an extension of the Berkson model that can be used when expo-
sure is measured at different geographical areas and the same exposure measurement
is assigned to all subjects living in a certain geographical area. This is often the case in
air pollution studies with various fixed site monitors that give approximated exposure
measurements for the nearby located individuals. In this model the true exposure for
a region j satisfies E(X | X∗ = X∗j ) = X∗j with Var(X | X∗ = X∗j ) = σ2

U j
for j = 1, ...,k

and the ARE becomes (Lagakos 1988, p. 269):

ARE(X∗ : X) =
∑ j π j(X∗j −µ)2

∑ j π jσ
2
U j

+∑ j π j(X∗j −µ)2 , (8)

where µ = E(X) = E(X∗) and π j is the proportion of the population in region j. Al-
though Lagakos considers only least-squares tests for linear models and likelihood tests
for logistic and proportional hazards models, the overall result ARE = ρ2

XX∗ holds for
all generalized linear models for one parameter exponential families (Lagakos 1988,
p. 270).
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4.2 Application to Air Pollution Epidemiology
For studies in air pollution epidemiology, the measurement error comes in complex
forms with a mixture of different error types. Therefore, the formulas described in the
previous chapter cannot be simply transfered to applications in air pollution epidemi-
ology. One should rather use formulas that make it possible to extend the measurement
error model to individual demands.
A simple approach, that may be helpful in this context, is given in a paper by Tosteson
and Tsiatis (1988). They provide an extension of the ARE-formula for measurement
error consisting of a mixture of non-differential classical and Berkson error. The mea-
surement error model including both error types can be described by means of an
intervening variable S (Tosteson and Tsiatis 1988, p. 512):

X = S+UB, X∗ = S+UC, (9)

where S is a random variable with mean µS and variance σ2
S . UB and UC are inde-

pendent random variables with means zero and variances σ2
B and σ2

C. The variable S

corresponds to the true mean exposure, UB to the Berkson error and UC to the classical
error. Assuming a score test of a generalized linear model leads to the formula of the
asymptotic relative efficiency (Tosteson and Tsiatis 1988, p. 512):

ARE(X∗ : X) =
σ2

S

σ2
S +σ2

C
·

σ2
S

σ2
S +σ2

B
. (10)

As the ARE(X∗ : X) < 1, the formula shows again a reduction of the power of the
score test by the combination of classical error and Berkson error. The mixture of
these error types can also be considered during the analysis stage of a study. Mallick
et al. (2002) present Bayesian methods for semiparametric regression modeling with
predictors measured with both classical and Berkson error (Mallick et al. 2002).
In conclusion, measurement error of classical type, Berkson type or a mixture of both
types reduces the power and the effective sample size of a study. However, the tests
and p-values remain valid for non-differential measurement error which is likely in air
pollution studies. This means that mistaken “significant” results, when there is actu-
ally no effect, aren’t more likely with measurement error than without measurement
error. For differential error, which is rather rare in air pollution studies, these results
don’t hold. In some cases, one may obtain “significant results” for effect estimates
even though they is in fact no significant association (Armstrong 1998, p. 654 f.). In
summary, one requires a larger number of study subjects for detecting a certain effect
slope with a given power when having erroneous exposure values instead of true val-
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ues (Devine 2003, p. 331 f.). Formulas for calculating the measurement error adjusted
sample size will be shown in the following chapter.

5 Study Design in the Presence of
Measurement Error

The correction of biased coefficients due to measurement error is generally possible
by using statistical methods during the analysis. Nonetheless, those methods cannot
bring back lost power (Armstrong 1998, p. 655). It is therefore necessary to consider
and minimize measurement error already in the design stage of a study. In fact, the
big majority of air pollution studies doesn’t take measurement error into account at all.
The topic group 4 of the STRATOS initiative for measurement error and misclassifica-
tion evaluates the current practice for addressing measurement error in observational
epidemiology by a literature survey. Only 42% of the reviewed articles of air pol-
lution cohort studies, that have been searched using general search terms related to
the research area, mention measurement error as a potential problem. Only 6% use a
method to adjust for measurement error (Shaw et al. 2017).
This chapter comprises comprehensive information concerning the three topics data
collection, validation studies and sample size adjustment in the presence of measure-
ment error.

5.1 Data Collection
As the impact of exposure measurement error on a study’s result can be serious, one
has to try to collect the data such that measurement error is minimized. A study has
limited resources because of its budget and the more accurate a measurement method,
the higher are the costs. One has to reasonably organize a study’s budget and decide
how much resources should be spent on data collection. If one designs a study while
accounting for measurement error, one has to consider that the use of inaccurate and
cheap measurement methods can lead to unfeasibly large sample sizes. Then, is it
necessary to reduce the measurement error and more accurate measurement methods
may be needed. An intuitive way to choose the best measurement method is to calcu-
late the required sample sizes for each measurement instrument under consideration.
Less precise measurement methods will demand higher sample sizes than more accu-
rate measurement methods. After all, one can determine the best measurement method
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by choosing the method with the lowest cost for the respective required sample size
(McKeown-Eyssen and Tibshirani 1994, p. 419).
Armstrong (1996) gives a more formal criterion for allocating resources in improving
accuracy of the measurement method. As more accurate measurements demand costs
that could be spent in other ways like increasing the sample size, Armstrong gives
a formal method regarding the trade-off between improving accuracy and increasing
sample size. His criterion maximizes study power and compares study designs by their
ARE. He extends the usual definition of the ARE, presented in chapter 4, by including
the costs per subject. The commonly defined ARE compares two study designs by the
ratio of the sample sizes required to attain equal statistical power of detecting an as-
sociation. The extended ARE is defined as the ratio of the total study costs to achieve
equal power (Armstrong 1996, p. 192). Assuming that the total costs of a study are
proportional to the sample size, the basic cost of including a subject in the study is de-
noted as CI , the cost of measuring the true exposure X as CX and the cost of measuring
the surrogate X∗ as CX∗ . The total costs of two studies SX and SX∗ , one study observing
the perfect measure X with sample size NX and the other study the surrogate measure
X∗ with sample size NX∗ , can be expressed by NX(CI +CX) and NX∗(CI +CX∗), respec-
tively. The ARE of study SX∗ relative to study SX is defined as (Armstrong 1996, p.
194):

ARE(X∗ : X) =
NX(CI +CX)

NX∗(CI +CX∗)
=

NX

NX∗
· CI +CX

CI +CX∗
. (11)

As NX
NX∗

equals the validity coefficient ρ2
XX∗ , it follows that (Armstrong 1996, p. 194):

ARE(X∗ : X) = ρ
2
XX∗ ·

CI +CX

CI +CX∗
. (12)

Study SX is preferable compared to study SX∗ if ARE(X∗ : X)< 1 which is true when:

ρ
2
XX∗ <

CI +CX∗

CI +CX
. (13)

This formula can also be used for comparing an approximate measure X∗1 with a more
precise, but still approximate measure X∗2 . The application of the formula above can be
carried out analogously with replacing ρ2

XX∗ by the ratio ρ2
XX∗2

/ρ2
XX∗1

. Armstrong pro-
vides also an extension of the formula that allows to include overhead costs of a study
that are not proportional to the number of study subjects. In summary, the conclusion
of this approach is that spending resources on improving accuracy of measurement is
worthy up to the point at which the proportional increase in total costs per individ-
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ual is greater that the proportional increase of ρ2
XX∗ (Armstrong 1996, p. 194). One

has to notice that this criterion leads to a design with maximum power, but doesn’t
necessarily lead to a design with minimum bias. Furthermore, this approach assumes
non-differential errors. Non-differential errors, however, are reasonable to assume for
many air pollution studies. Also, confounding variables Z aren’t considered. For this,
one can replace the coefficient of validity ρ2

XX∗ by the square of the partial correlation
ρ2

XX∗|Z , assuming that the confounder Z is measured without error (Armstrong 1996,
p. 196).
Regarding air pollution epidemiology, one may assume that the measurements from
personal monitors can be treated as the true values X and measurements from fixed
site monitors as the surrogate values X∗. For example, if the true and the surrogate
measures are correlated at ρXX∗=0.5, then ρ2

XX∗=0.25, which implies that a study based
on personal monitors will only be worthwhile if the total cost per subject for personal
monitors (CI +CX) is less than four times the total cost per subject for fixed site mea-
surements (CI +CX∗) (Armstrong 1996, p. 194). As the costs for personal monitor
measurements are many times higher than the costs for fixed site measurements, this
will not hold for air pollution studies leading to the conclusion that using only the gold
standard measure is less effective than using approximates measurements with more
study subjects. For correlation coefficients that are larger than 0.5, the only use of the
accurate measure will be even less effective. However, this is only a simplified theoret-
ical representation of the reality. In fact, a mixture of the observation of accurate and
surrogate measurements can be useful. This will be discussed in the following chapter
regarding validation studies including the allocation of resources to the main study and
the validation study. General methods for determining main study sample sizes will be
presented in section 5.3.
Regarding the collection of the data, White et al. (1994) deal with the effect of ex-
posure variance in the presence of measurement error. Selecting a population with
larger exposure variance in contrast to one with smaller exposure variance reduces un-
der certain assumptions the required sample size with an even more pronounced effect
for exposures measured with error (White et al. 1994, p. 1994 ff.). This however,
cannot generally be transfered to air pollution studies. A population with larger expo-
sure variance in a certain area, that is represented by a single ambient monitor, leads
to increased measurement error in the ambient measurements that try to represent the
personal exposures. The result of White (1994) does only hold when the true exposure
variance is captured by the measurements, for example when exposure is measured by
personal monitors or when the study includes different locations with different moni-
tors for each location. In this case, the overall exposure variance has to be explained
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by the exposure variance between the different locations, not by the exposure variance
within the locations.
Regarding the air pollution monitor placement in a study area, studies in air pollution
epidemiology often locate the ambient monitors in an informal fashion, preferring to
place monitors near locations that are thought to be interesting for land use, traffic or
population characteristics (Kanaroglou et al. 2005, p. 2400). Kanaroglou et al. present
a formal methodology for locating a fixed number of monitors in urban areas that was
applied in Toronto, Canada. They suggest to determine a continuous surface over the
study area whereby higher values of the surface indicate an increased need for moni-
tors. The surface is based on two criteria. The first indicates that an increased number
of monitors has to be placed for areas with higher spatial variability of the pollutant.
The second criteria demands an increased number of monitors in areas with a high
density of the at-risk populations, for example specified by socio-demographic charac-
teristics. The optimal locations for the predefined number of monitors are found by an
algorithm for location-allocation problems (Kanaroglou et al. 2005, p. 2400). When
collecting data by ambient monitors, such criteria can be useful in the design stage of
the study in order to ensure maximal benefit of the collected data.

5.2 Validation Studies
Many epidemiologic air pollution studies don’t account for exposure measurement
error because of insufficient knowledge about the error (Sheppard et al. 2012, p. 204).
With regard to this, validation studies are of great importance as they are necessary for
gaining information about the measurement error in a specific study.

5.2.1 Characteristics of Validation Studies

A validation study aims at collecting information about the structure and extent of the
measurement error in order to be able to work out an appropriate measurement error
model and its parameters. This information can be used for adjustment of the study
design, such as an increase of sample size, or for adjustment of the later statistical
analysis with measurement error correction methods.
A validation study requires measurements of the true value of the variable of interest
as well as its imperfect measurements that are used in the main study. The true mea-
surement is also called the “gold standard”. These accurate measurements are usually
collected using sophisticated technology and are usually much more expensive than
the inaccurate measurements. This is also the main reason why in most studies these
accurate measurements can’t be collected for the whole study population and the vali-
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dation study sample size n is mostly much smaller than the main study sample size N

(Spiegelman 1994, p. 192). After obtaining the gold standard measurements of the val-
idation study, they have to be analysed to get information about the error by comparing
them with the crude measurements of the main study. First of all, the error structure
should be figured out, indicating whether the error is systematic, for example linearly
dependent on the true measurements, or random. This is necessary to work out an ap-
propriate measurement error model. This can be for example simply done by plotting
both measures against each other. Furthermore, the magnitude of the measurement
error in the exposure variable is an important indicator for the impact and severity of
the error (Nieuwenhuijsen 2015, p. 204). By means of validation studies, the extent
of the error can be quantified. For continuous exposure variables, as used in air pol-
lution studies, a simple approach of quantifying the error is to calculate the validation
coefficient, the square of the correlation between the gold standard measurements X

obtained from the validation study and the crude measurements X∗ (Nieuwenhuijsen
2015, p. 206):

ρ
2
XX∗ =

σ2
X

σ2
X∗

=
σ2

X

σ2
X +σ2

U
. (14)

The validation coefficient has already been used in chapter 4 to express the loss of
effective sample size. Alternatively, one can express the relationship between the inac-
curate measurements and the true exposure in terms of a regression equation (Holford
and Stack 1995, p. 344):

X = λ0 +λX∗X∗+ ε. (15)

The slope of this regression λX∗ is also called the calibration coefficient. In linear re-
gression with classical error it is equal to ρ2

XX∗ . Furthermore, it is called the attenuation
factor as the attenuation of the effect coefficient can in linear regression with classical
error be described as βX∗ = λX∗βX (Nieuwenhuijsen 2015, p. 209). It is therefore
important for the correction of biased coefficients. The ability of quantifying the mea-
surement error requires the gold standard measurements and makes validation studies
inevitable. This leads to the necessity of considering them in the study’s design stage.
In an internal validation study a subset of the main study population is selected to
validate the data. Thus, data for the validation study subjects include the imperfect
measurements of exposure and the health outcome, which are collected for all main
study participants, and additionally the gold standard measurements. To achieve unbi-
ased estimates of the measurement error distribution, it is essential for the validation
study to select a representative subset of the main study population. Random sampling
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is the most common way to realize this (Holford and Stack 1995, p. 348).
In an external validation study the study subjects are not a subset of the main study
population. The data could be obtained by another investigator. Therefore the data
of the n study subjects gained by an external validation study include no information
about the subject’s outcome status (Holford and Stack 1995, p. 354). Figure (4) shows
a schematic describing internal vs. external validation studies (cf. Holford and Stack
1995, p. 349).

Figure 4: Schematic diagram of internal vs. external validation studies ( cf. Holford
and Stack 1995, p. 349).

When designing a validation study, one has to make sure that the information gained by
the validation study, for example a validation coefficient, can be transfered to the main
study. As explained in the previous section, the validation coefficient depends upon the
error distribution as well as upon the distribution of the true exposures. Consequently,
if the distributions of the true exposures differ in the main and validation study, the
coefficient is not portable. The same holds for the calibration coefficient (Nieuwenhui-
jsen 2015, p. 219). For an external validation study is it necessary to particularly assure
the portability of coefficients, whereas for internal studies the portability is fulfilled by
random sampling of the validation study population out of the main study population
(Spiegelman 1994, p. 197). Furthermore, the internal validation study has the advan-
tage that additional information is collected for the subjects in the main study that are
also part of the validation study (Nieuwenhuijsen 2015, p. 218). In summary, from
validity and efficiency considerations an internal validation study design is preferable
over an external one.
Besides internal and external validation studies, one can use repeated measurement
studies to validate the error-prone data. When measurement error is random, then tak-
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ing repeated observations with the inaccurate measuring tool provides the possibility
to estimate the variance of the random error (Holford and Stack 1995, p. 341). This
method of taking repeated measurements can be used to assess instrumental measure-
ment error, for example for inaccurate monitors.

5.2.2 Validation Study Sample Size

The parameters obtained by validation studies, like validation or calibration coeffi-
cients, should be as precise as possible. An adequate and intuitive approach for identi-
fying the optimal validation study sample size is to figure out how the variance of the
estimated parameter of interest depends upon the sample size. In addition, for deter-
mining the sample size, it is required to find a good trade-off between precise estimates
and the resulting costs (Nieuwenhuijsen 2015, p. 220). In the following, more concrete
examples for such approaches are presented.
We assume linear regression with a single error-prone explanatory variable X∗ whose
error is non-differential and follows the linear measurement error model X∗ = α0 +

αX X +U . Further, we assume that the validation study is designed to provide an esti-
mate of the calibration factor λX∗ and that λX∗ is estimated by the slope of the regres-
sion of X on X∗. Additionally, we assume that the relation βX∗ = λX∗βX holds. The
biased coefficient βX∗ can therefore be corrected by dividing it by the estimate of λX∗

obtained from the validation study. Consequently, the variance of the adjusted estimate
of βX depends on the uncertainty of the estimated λX∗ . Rosner provides a formula for
the variance of the adjusted β̂X (Rosner et al. 1989, p. 1054):

Var(β̂X)≈
Var(β̂X∗)

λ 2 +
β̂ 2

X∗Var(λ̂ )
λ 4 . (16)

The second part of the right hand side of formula (16) represents the additional uncer-
tainty in the adjusted β̂X caused by the uncertainty of λ̂ . To minimize this additional
uncertainty, one should determine the validation study sample size such that second
part of the right hand side of (16) remains a small fraction f of the first part. A for-
mula for the validation study sample size can be determined by assuming that the main
study has 50% power to detect β̂X∗ as statistically significant at the 5% level, that is
Var(β̂X∗)≈ β 2

X∗/4. This yields Var(λ̂ )≈ fλ 2/4. Assuming that the measurements of
the validation study equal the true values X , the formula for validation study sample
size n can be derived as (Freedman et al. 2017, p. 19 f.)

n≈ 4(1−ρ2
XX∗)

fρ2
XX∗

. (17)
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For this formula, one has to determine ρ2
XX∗ in advance. Furthermore, the fraction f has

to be decided. For example, a value of the fraction f = 0.1 provides that the variance
of the adjusted β̂X will not increase by more than 10% because of the uncertainty in
the estimate of λ .
There are other approaches regarding the validation study sample size. Generally, there
are two ways to determine the validation study sample size n. The first is to determine
the values of N and n that will optimize the study design by setting a fixed cost con-
straint. The other is to specify the size of the effect that one wants to detect with a
given power, and then find the values of N and n that minimize the costs (Spiegelman
and Gray 1991, p. 855 f.).
Greenland (1988a) provides a method to determine the optimal proportion of subjects
P = n/(N+n) allocated to the validation study by minimizing the variance of the esti-
mated association between true exposure and disease while fixing the overall cost. He
only addresses this method to the case of binary exposures. Since air pollution expo-
sure measurements are continuous, we will focus on validation study design methods
related to continuous exposure variables. Spiegelman and Gray (1991) present ap-
proaches to identify the optimal allocation of study sample sizes N and n of the main
and the validation study for relative risk modeling in the case of a single continuous
exposure. The approach of Spiegelman and Gray is presented in the following.
Spiegelman and Gray’s approach is based on minimizing the proposed budget given
adequate statistical power to the test of the hypothesis of interest. Their proposed
methods for efficient study designs hold for studies in which the outcome is binary and
random in the design and exposure is observed at the baseline (Spiegelman and Gray
1991, p. 853). One should note that at least this is usually not true for case-control
studies. The model on which their calculations are based is the logistic regression
model (Spiegelman and Gray 1991, p. 852):

f (Y | X) =
exp{(α +βX)Y}
1+ exp{α +βX}

, (18)

where Y is the observed binary disease outcome and X is the true exposure. The
parameter α equals the logit of the sample disease prevalence at X = 0 and β , the
parameter of interest, equals the logit of Pr(Y = 1 | X = x + 1) minus the logit of
Pr(Y = 1 | X = x). They describe the relationship between the true and the imperfect
exposure with a generalized Gaussian measurement error model (Spiegelman and Gray
1991, p. 853):

f (X | X∗) =
exp{−1

2(X−α− γX∗)2/σ2}
√

2πσ2
. (19)
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When X follows a Gaussian distribution, the generalized Gaussian measurement er-
ror model (19) can also be transformed to the classical error model X∗ = X +U with
U ∼N(0,σ2

U) by setting suitable values for α , γ and σ2. This structural model, assum-
ing that X has a well-defined conditional distribution given X∗, is incorporated in the
main model linking the outcome and the observed values X∗. In addition they make
the conditional independence assumption f (Y | X ,X∗) = f (Y | X) which is equiva-
lent to the assumption of non-differential errors (Spiegelman and Gray 1991, p. 853).
They provide different design optimality approaches for internal and external vali-
dation studies. The design optimization uses log-likelihood functions which differ
for internal and external validation studies. For an internal validation study, the log-
likelihood function can be separated in three parts (Spiegelman and Gray 1991, p.
854):

L =
N

∑
i=1

l1i(α,β ,α ′,γ,σ2)+
n

∑
i=1

l2i(α
′,γ,σ2)+

n

∑
i=1

l3i(α,β ). (20)

The first part represents the likelihood contribution of the N main study subjects, where
l1 is the log of the model for the observed data f (Y | X∗) that consists of the logistic
model with true exposure f (Y | X) of formula (18) and the measurement error model
f (X | X∗) of formula (19). The second part corresponds to the likelihood contribution
of the validation study subjects n where l2 is the log of (19). The third part is the log
of the logistic model of formula (18).
When the validation study is external, the corresponding log-likelihood function con-
sists only of the first and the second part since the third part cannot be determined
as there is no information available about the outcome status of the validation study
subjects (Spiegelman and Gray 1991, p. 854):

L =
N

∑
i=1

l1i(α,β ,α ′,γ,σ2)+
n

∑
i=1

l2i(α
′,γ,σ2). (21)

By means of this full likelihood approach including the information of the main and the
validation study, one can calculate maximum likelihood estimates of β and approxi-
mate the variance of this estimator for power calculations. The total cost function,
which has to be specified, depends on the unit costs rX , rX∗ and rY for observing X , X∗

and Y , and on the sample sizes N and n. The total cost function of main and validation
study for internal validation studies is given by (Spiegelman 1994, p. 194):

C(N,n) = min{(rY + rX∗)N +(rX + rX∗+ rY ),(rY + rX)n}, (22)
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where (rY + rX)n is the total cost of a fully validated design with accurate measure-
ments for all subjects. For external validation studies the total cost function becomes
(Spiegelman 1994, p. 194):

C(N,n) = (rY + rX∗)N +(rX + rX∗)n. (23)

To summarize, the optimization criteria of Spiegelman and Gray minimizes the cost
function with respect to the values N and n while keeping the power constraints. Those
constraints assure that the study will be able to discriminate between two specified ef-
fect levels of the outcome-exposure relationship with a fixed power (Spiegelman and
Gray 1991, p. 856). For power calculations they choose the discriminatory power
criterion which is proposed by Greenland (1988b). The sample size which fulfills the
discriminatory power criterion is given by the maximum of two sample sizes that are
calculated by the common specification of power and sample size, where the role of
two hypothesized values βL and βU , between which the study is designed to discrimi-
nate, are alternated. This means that at first βL plays the role of the null hypothesis and
βU the role of the alternative hypothesis and then the roles are reversed. The presented
approach for the main study and validation study sample size calculations requires nu-
merical methods. (Spiegelman and Gray 1991, p. 855 ff.). Several quantities have to
be identified in advance which are the costs of observing X , X∗ and Y , the prevalence
of disease in the study population, the two hypothesized values of βX between which
the study is designed to discriminate, the mean and variance of X∗, the parameters of
the distribution of X given X∗ and the desired confidence level and power for the hy-
pothesis test (Spiegelman 1994, p. 198).
The conclusions found by Spiegelman and Gray after applying the method to differ-
ent scenarios can be summarized as follows. The relative validation study sample size
is highly dependent on the reliability of the error-prone measure and the cost of the
gold standard measure X relative to the error prone measure X∗ used in the main study.
With decreasing reliability of the crude measure and with decreasing relative validation
study unit cost, the optimal relative validation study size increases. Different scenarios
included also different values for the disease probability and hypothesized relative risk
values, where slightly different results are obtained for internal and external validation
studies (Spiegelman and Gray 1991, p. 858 ff.). In most cases one can conclude that
the internal validation study is considerably more cost-efficient than the external one
(Spiegelman and Gray 1991, p. 863).
It is important to keep in mind that the approach of Spiegelman and Gray is only valid
for the classical measurement error model (Spiegelman and Gray 1991, p. 866) while
the classical measurement error assumption is not adequate in many practical appli-
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cations in epidemiology. For instance, in air pollution studies usually a part of the
measurement error is of Berkson-type. Another issue that is worth considering is the
normality assumption on the conditional distribution on X given X∗. This assump-
tion may not be fulfilled as the exposure distribution in epidemiology is often highly
non-normal like the distribution of exposure to air pollutants (Spiegelman and Gray
1991, p. 867). Transformations of the data may be needed. However, the work of
Spiegelman and Gray gives a profound insight into a way of realizing validation study
and main study sample size calculations under the important aspect of cost-efficiency.
Since the gold standard measurements are in many cases extremely expensive and val-
idation studies are the only way of gaining useful information about the measurement
error, it is highly recommended to carefully consider the proportion of overall study
resources allocated to the main study and the validation study.
There is an important aspect that should be considered when using validation study
results for the correction of attenuated coefficients. In practice, in many epidemiologic
applications the putative gold standard is measured with at least a small extent of error.
Measurements of such imperfect reference instruments are called “alloyed gold stan-
dards”. Wacholder et al. (1993) examine the influence of measurement error in alloyed
gold standards when a validation study is used to correct effect estimates. Their results
apply to corrections in proportional hazard and logistic regression models (Wachholder
et al. 1993, p. 1253). They conclude that in general all common methods that are used
to correct for attenuation yield biased estimates for the corrected coefficients when the
validation data has an alloyed gold standard (Wachholder et al. 1993, p. 1256). The
relation between the biased corrected estimate and the true slope depends on the error
of the alloyed gold standard measurements and on the correlation of the error in the
crude measure of the main study with the error in the alloyed gold standard of the val-
idation study. Positive correlation between the errors is likely when the two measures
are expected to make similar mistakes, while independent errors can be assumed when
the two measures are taken with different and independent processes. Negative cor-
relations are rare but can occur when the measure used in the validation study is too
specific and the measure used in the main study is too sensitive, or the other way round
(Wachholder et al. 1993, p. 1257). If the errors are independent, alloyed gold stan-
dards imply overcorrection of the effect estimates. Positive correlation of the errors
diminishes the overcorrection, whereas negative correlation accentuates the overcor-
rection (Wachholder et al. 1993, p. 1254). Since less than perfect gold standards are
common in epidemiology, particularly for environmental, occupational and nutritional
exposures, it is recommended to be cautious with careless adoption of error corrections
based on validation studies (Wachholder et al. 1993, p. 1256). For the study design,
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regarding validation studies, it is important to keep in mind the problem of alloyed
gold standards. One can take steps to improve the accuracy of the validation study
measurements or, if alloyed gold standard measurements are inevitable, to estimate the
error in the alloyed gold standard measurements.

5.2.3 Validation Studies in Air Pollution Epidemiology

In air pollution studies, the inaccurate measure is usually a measure of ambient levels
whereas the gold standard measurements of the validation study come from personal
monitors that are attached to the individuals. The use of personal monitors is very
costly as it requires additional technical input. Because of the high costs and labour
intensity, it is mostly not possible to take personal measurements for a large number
of subjects. Furthermore, the duration of measuring personal exposures is limited as
it causes inconvenience for study subjects (Nieuwenhuijsen 2015, p. 87). Because
of these factors, the sample size of validation studies in air pollution epidemiology is
limited. However, when personal exposure is the exposure of interest of the study, the
measurements of personal monitors from a validation study can provide useful infor-
mation (Nieuwenhuijsen 2015, p. 87). As the individual measurements are directly
representative for the true exposure of each person in the measuring period, they could
be seen as either a gold standard or something approximating such a standard. In the
case that the measurements from personal monitors still contain error, for example in-
strumental error of monitors, the measurements meet only an alloyed gold standard.
Regarding the problem of alloyed gold standards, for air pollution studies it is mostly
adequate to assume that the errors in the crude measure and in the gold standard mea-
sure are uncorrelated. This is reasonable as the measurement methods are objective
(Van Roosbroeck 2008, p. 411), in contrast to other epidemiologic studies that obtain
their data for example by interviewing subjects.
For example in air pollution epidemiology, Van Roosbroeck et al. (2008) analyses
validation studies for NO2 and soot . The conducted main study is interested in the as-
sociation between traffic-related pollutants and respiratory symptoms in children. The
collected data includes several disease outcomes and outdoor measurements of soot
and NO2 between 1997 and 1998 for 2083 children from different dutch schools lo-
cated near freeways. The validation study for NO2 is an internal validation study with
67 validation study subjects out of 2083 main study subjects. The surrogate measure is
the home outdoor concentration, whereas the gold standard measurements come from
personal monitors attached to the subject. Average personal and average outdoor con-
centrations are available for one to four 1-week periods in each of the four seasons.
The validation study for soot is external and conducted 8 years later on school children
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in Utrecht with a validation study size of 45. Personal measurements from this val-
idation study are available for four 48-hour periods (Van Roosbroeck 2008, p. 410).
They assume a linear measurement error model and estimate the model parameters
by a linear regression equation X = λ0 + λX∗X∗+ λ ′ZZ′+ ε , including confounders
Z′. Furthermore, they calculate correlation coefficients between surrogate and “true”
measurements ρXX∗ and obtain the values 0.53 for soot and 0.35 for NO2. After ad-
justment for measurement error by the regression calibration method, the estimated
effect coefficients become two to three times larger than the original estimates. For
example, the adjusted prevalence ratio for the outcome “current phlegm” is 5.3 (95%
confidence interval: 1.2 – 22.6), whereas the original result is 2.2 (95% confidence
interval: 1.3-3.9). The much larger confidence interval for the adjusted value results
from the small validation study sample size and the increased estimate of uncertainty
by taking measurement error into account. Van Roosbroeck points out that the val-
idation study sample size is too small to give reliable corrected effect estimates. In
general, validation studies with adequate power will remain difficult to realize because
of the infeasibility of measuring long-term personal exposure (Van Roosbroeck 2008,
p. 412 ff.).
The increase in the effect estimates after adjusting for measurement error in the de-
scribed validation study shows the crucial importance of accounting for measurement
error and underlines the usefulness of the conduct of validation studies in air pollu-
tion epidemiology. As the correlation between true and surrogate exposure is in many
air pollution studies using ambient monitor measurements inadequately low, one can
expect heavy changes in the effect coefficients by measurement error adjustment for
other air pollution studies. Even though a part of measurement error in air pollution
epidemiology is of Berkson type, the complex mixture of measurement error types
including classical error components results in biased effect coefficients. It remains
difficult to give general results for air pollution studies. Kioumourtzoglou et al. (2014)
provides another article related to the topic of validation studies in air pollution epi-
demiology. Articles for studies, that take measurement error into account during the
design stage of the study by conducting validation studies in advance, cannot be found
indicating the importance of improving the current practice with regard to this topic.
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5.3 Sample Size Calculation
The determination of the sample size is a crucial part of designing a study. The sample
size in an epidemiologic study can typically be calculated by using a criterion that ex-
presses the desired statistical power or the desired precision of effect estimates. There
is a broad variety of methods and software in order to calculate sample sizes, but those
assume implicitly that the data is free of measurement error (Devine 2003, p. 316).
As presented in chapter 4, measurement error has the impact to reduce the effective
sample size of a study which induces the requirement of increasing the sample size in
order to meet the criteria.
Devine (2003) suggests an approach of sample size calculation assuming a linear re-
gression model which bases on a power criterion by Dupont and Plummer (1998). One
has to specify a value for the regression coefficient βX that one wishes to detect with a
certain power at a certain significance level α and tests the null hypothesis H0 : βX = 0.
When assuming that N is large, the sample size estimator for error-free data is given
by (Devine 2003, p. 326):

N =
(z1−α + z1−δ )

2σ2
ε,X

β 2
X σ2

X
. (24)

In this formula, z1−α and z1−δ are the (1−α) and the (1−δ ) quantiles of the standard
normal distribution where δ equals the type 2 error and thus (1−δ ) equals the power.
One has to insert the value for βX , that has to be specified before. The values σ2

ε,X and
σ2

X denote the residual variance of the regression of X on the outcome and the variance
of the true explanatory variable X . Both can be estimated by for example using infor-
mation from previous studies (Devine 2003, p. 326 f.).
Further on, Devine assumes that the data is not error-free but measured with classical
measurement error X∗ = X +U such that the values Ui are independent of X and nor-
mally distributed with mean zero and variance σ2

U . Again a linear regression is fitted,
now with the values of X∗. For again obtaining the required number of study subjects
to achieve the desired power to test H0 : βX = 0, Devine suggests to use the previous
formula and simply substitute the relevant parameters related to X∗(Devine 2003, p.
332):

N∗ =
(z1−α + z1−δ )

2σ2
ε,X∗

(ρ2
XX∗βX∗)2σ2

X∗
, (25)

where σ2
ε,X∗ is the residual variance of the regression of X∗ on the outcome and σ2

X∗

the variance of X∗. Again, both values can be estimated. Furthermore, the coefficient
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βX from formula (24) is substituted by ρ2
XX∗βX∗ according to the result that classical

measurement error under linear regression attenuates the true βX by the factor ρ2
XX∗ .

As expected, the formula gives high sample sizes N* for low correlations between sur-
rogate and true measure.
Devine evaluates the adjusted sample size estimator by a simulation approach for a
linear regression of daily exercise time on the body mass index. He repeats the simu-
lation experiment for different values of the correlation ρXX∗ . The resulting empirical
powers for the adjusted values N∗ using the suggested formula are nearly identical to
the target power of 0.9 (Devine 2003, p. 329, 333).
This approach requires knowledge about ρ2

XX∗ = σ2
X/σ2

X∗ which can be obtained by a
validation study with the gold standard measure X . One has to notice that the suggested
approach applies only to the classical measurement error. Devine’s considerations are
based on the fact that for classical measurement error σ2

X < σ2
X∗ and that the coefficient

βX∗ is attenuated towards the null while the true βX is the parameter that is wanted to
be tested (Devine 2003, p. 330 ff.). Clearly this is not the case for many practical
applications where a considerable part of the error is of Berkson-type like in many air
pollution studies.
McKeown-Eyssen and Tibshirani (1994) give another example for sample size adjust-
ment in the presence of measurement error for logistic regression. They assume a
linear measurement error model X∗ = α0 +αX X +U , where U is assumed to be nor-
mally distributed and independent of X . Moreover, they refer their work to case-control
studies. The calculations are based on a sample size formula for error-free variables
by McKeown-Eyssen and Thomas (1985) that is applicable for normally distributed
exposures X and exponential relations between exposure X and the risk of disease
r(X) such that r(X) = exp(a+bX) (McKeown-Eyssen and Tibshirani 1994, p. 415 f.).
Similarly as in the paper from Devine (2003), the formula for the adjusted sample size
N∗ is derived after inserting the respective values for X∗ for the attenuated coefficient
βX∗ and the increased exposure variance σ2

X∗ into the formula. After simplifying, one
obtains (McKeown-Eyssen and Tibshirani 1994, p. 416):

N∗ =
N

ρ2
XX∗

. (26)

While this approach is similar to that presented by Devine, the difference between for-
mula (26) and the formula (25) by Devine is that (26) restricts itself to logistic regres-
sion with exponential risks whereas (25) is limited to linear regression. Furthermore,
the approach by McKeown-Eyssen and Tibshirani is targeted on case-control studies.
For a practical application, it is important to regard the adequacy of the assumptions
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that were made for this derivation. The exposure X is assumed to be normally dis-
tributed (McKeown-Eyssen and Tibshirani 1994, p. 416 f.). As air pollution exposure
data is skewed, this assumption does not automatically hold and data transformations
may be necessary. Another assumption is that the random error U is normally dis-
tributed and independent of the level of the exposure (McKeown-Eyssen and Tibshirani
1994, p. 417). In practice, this assumption has to be ensured by applying for example
a logarithmic transformation to the data. However, assumptions have to be proofed
individually for different studies since general results may be difficult as studies in air
pollution epidemiology vary a lot in their designs and available data. The approach by
Devine which is based on the classical measurement error assumes normal distribution
and independence of the error as well. The formulas by McKeown-Eyssen and Tibshi-
rani and Devine both assume a single error-prone covariate and don’t take confounders
into account. In fact, it is essential for models used in air pollution epidemiology to
adjust for confounders. The confounders itself may be measured with or without error.
Further research is needed for sample size determination under measurement error with
confounding variables (McKeown-Eyssen and Tibshirani (1994), p. 417 f.). Finally,
the main concern for the approaches by Devine and McKeown-Eyssen and Tibshi-
rani is that they only refer to linear regression and logistic regression while studies in
air pollution epidemiology also use more sophisticated models like generalized linear
models (GLMs).
Tosteson et al. (2003) give methods for sample size calculations that can be applied to
a broad variety of GLMs. Their asymptotic theory is built upon the properties of the
score test modified for measurement error without the simplifying assumption of small
relative risks or other modeling restrictions. Previous calculations for the asymptotic
relative efficiency of score tests in a generalized linear model with surrogate covariates
employ the local alternative condition under a sequence of alternatives β (n) such that
√

nβ (n)→ τ , where ‖τ‖> 0 (Tosteson and Tsiatis 1988, p. 510; Tosteson et al. 2003,
p. 1072). The approach of Tosteson et al. does not rely on the local alternative as-
sumption and considers asymptotic theory appropriate for fixed alternatives (Tosteson
et al 2003, p. 1070). Furthermore, this approach is applicable for various measure-
ment error models (Tosteson et al. 2003, p. 1078 f.). Additionally, the calculations
by Tosteson et al. take into account a confounder Z, measured without error. They
use a general measurement error model that is able to express the relationship between
X and X∗ in a flexible way. All they assume is the usual conditional independence
assumption (Tosteson et al. 2003, p. 1071):

fY,X∗|Z,X(Yi,X∗i | Zi,Xi) = fY |Z,X(Yi | Zi,Xi) fX∗|Z,X(X
∗
i | Zi,Xi), (27)
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where f is a conditional probability density or mass function. The assumption requires
that the surrogate X∗ is independent of the outcome Y given the true exposure X and the
confounder Z, corresponding to non-differential error (Tosteson et al. 2003, p. 1071).
This assumption is likely to be satisfied in many practical applications of air pollution
epidemiology as the measurements by fixed site monitors are objective and unlikely to
contain information about the outcome status Y given X . They derive the asymptotic
distribution of the score test statistic under measurement error for the null hypothesis
H0 : βX = 0 and the asymptotic power function of the test for fixed alternatives.
In contrast to the general derivation, Tosteson et al. find that when making the more
restricted assumption of local alternatives, suitable for small alternatives βX , the cal-
culations simplify to the already known relation ARE = ρ2

XX∗ yielding sample size
adjustment by N∗ = N/(ρ2

XX∗). This holds for simple regression models and linear
measurement error and is consistent with the findings of other authors (Tosteson et
al. 2003, p. 1073). The approach by Tosteson et al., however, does not rely on these
assumptions. They underline this advantage by showing that the simplified adjusted
sample size assuming local alternatives seriously underestimates the correct sample
size for larger alternatives of βX (Tosteson 2003, p. 1078). In practice, when con-
ducting sample size adjustments, it is important to consider this issue, depending on
whether one tests for local or large alternatives to H0 : βX = 0.
The calculation of measurement error adjusted sample sizes N∗, proposed by Tosteson
et al., require specification of the joint distribution of (Z,X ,X∗). Additionally, they in-
volve multi-dimensional integral evaluations. A web-based demonstration program for
sample size calculations has been implemented for continuous covariates and a scalar
Z in logistic regression with joint normality of (Z,X ,X∗). It is applicable for classical,
Berkson, and general measurement error models. One has to specify the correlations
ρXX∗ and ρZX . For classical error, X∗ and Z are conditionally independent given X

and ρZX∗ = ρZX ρXX∗ . For Berkson error, X and Z are conditionally independent given
X∗ and ρZX∗ = ρZX/ρXX∗ . For the general measurement error model, no assumptions
are set for the correlations among X , X∗ and Z, and ρXX∗ and ρZX∗ must be specified
independently (Tosteson et al. 2003, p. 1073).
Figures (5) and (6) show outputs of the program for sample size and power calculations
for logistic regression with classical measurement error.
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Figure 5: Sample size calculation with measurement error (filled box) and without
measurement error (empty circle)( cf. Tosteson et al. 2003, p. 1074).

Figure 6: Power calculation with measurement error (filled box) and without measure-
ment error (empty circle)( cf. Tosteson et al. 2003, p. 1074).
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Figure (5) shows the required sample size for a fixed power dependent on different val-
ues of the alternative odds ratio for one standard deviation increase in exposure. The
required sample sizes are given for exposure measured with and without measurement
error. They decrease with increasing alternative odds ratios. Larger sample sizes are
required in the presence of measurement error, especially for small alternatives. Fig-
ure (6) shows the power for a fixed sample size, again dependent on alternative odds
ratios for one standard deviation increase in exposure. Power increases with increasing
alternative odds ratios. Under measurement error, the power is considerably reduced,
particularly for small alternatives. The programm, on which the figures are based, is
not accessible anymore.
Besides the joint normality of (Z,X ,X∗), it is also possible to use the same methods by
specifying other forms of the joint distribution. Regarding the joint normality assump-
tion of (Z,X ,X∗) of the implemented program, Tosteson et al. find a moderate to high
sensitivity to the introduction of skewed exposure and measurement error distributions
(Tosteson et al. 2003, p. 1076 f.). For skewed exposures, as air pollution exposure, it
is therefore necessary to adequately specify the joint distribution in order to obtain cor-
rect power functions. Furthermore, Tosteson et al. verify the properties of their power
function by computer-simulations using a logistic regression model. The simulations
show that the power function leads to correct sample sizes for detecting small as well
as large alternatives (Tosteson et al. 2003, p. 1076).
In summary, approaches of three papers, Devine (2003), McKeown-Eyssen and Tib-
shirani (1994) and Tosteson et al. (2003) were described. The approach by Devine
is restricted to linear regression under classical measurement error, while McKeown-
Eyssen and Tibshirani derive their calculations for logistic regression under linear
measurement error. In contrast, Tosteson et al. give sample size calculation meth-
ods that are applicable to a broad variety of GLMs and measurement error models
with the inclusion of confounders. They base their calculations upon the asymptotic
theory of the properties of the score test for fixed alternatives under measurement er-
ror. All approaches assume non-differential error and a single error-prone exposure
variable. Concerning the relevance of these methods in air pollution epidemiology,
the approach by Tosteson et al. seems more important than the previously described
methods by Devine and McKeown-Eyssen and Tibshirani. The models used in air pol-
lution epidemiology are more complex than simple linear regression and vary by the
study design. Tosteson’s approach is very flexible and can be adapted to individual
requirements by specifying the measurement error model and the joint distribution of
(Z,X ,X∗). More research has to be done in order to investigate how such methods can
be used in specific practical applications in air pollution epidemiology. The increase
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of sample size by the factor 1/(ρ2
XX∗) , which is proposed by Devine for linear regres-

sion and by McKeown-Eyssen and Tibshirani for logistic regression, can serve as an
approximation of the required sample size for other models.
Sample size adjustment by using the equation N∗ = N/(ρ2

XX∗) of course involves the
calculation of N, the sample size that would be needed for the true measure X . Since N

has to be estimated as well, one also has to expect a certain degree of uncertainty in N.
To estimate N, one has to use any information available about the distribution of X , in
the best case observations of X by an internal validation study, and apply an adequate
sample size calculation method depending on the study design and model used for sta-
tistical analysis. For example the required sample size N for error-free variables in a
case-control study, assuming normally distributed exposure X and exponential risks of
disease r(X) = exp(a+ bX), can be calculated by (McKeown-Eyssen and Tibshirani
1994, p. 416):

N =
2(tα − tδ )2

σ2
X β 2

X
, (28)

where tα and tδ are the critical values of the t distribution for the desired significance
level α and power 1−δ . One has to specify σ2

X , the true exposure variance in the study
population. Furthermore, one has to specify βX , the slope parameter of the association
between exposure and outcome that is regarded as clinically or epidemiologically im-
portant (McKeown-Eyssen and Tibshirani 1994, p. 416). Consequently, calculating N

involves to already make assumptions or estimates for these parameters.
However, it is clear, that measurement error in the exposure variable can call for an
enormous increase of sample size which is dependent on the coefficient of valid-
ity ρ2

XX∗ . Figure (7) shows sample size adjustment factors (1/ρ2
XX∗) dependent on

the correlation ρXX∗ to illustrate sample size adjustment according to the formula
N∗ = N/ρ2

XX∗ .
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Figure 7: Sample size adjustment factors dependent on the correlation ρXX∗ .

The plot on the left side shows the adjustment factors 1/(ρ2
XX∗) for a whole range of

values for ρXX∗ . The plot on the right side is an enlarged version of the left plot for
values of ρXX∗ from 0.4 to 1.0. As can be seen, the impact of measurement error on
sample size can be considerable. If the correlation between X and X∗ is less than 0.5,
then at least a fourfold increase of sample size will be required. Only for correlations
larger than 0.7 the increase in required sample size will be less than twofold.
For air pollution studies, supposing that the true measure X is measured by personal
monitors and the surrogate X∗ is obtained from ambient monitors, the correlation co-
efficients ρXX∗ vary a lot among different air pollution studies. As described in sec-
tion 2.3, Avery et al. (2010) provide a review of 18 studies that examine the within-
participant ambient-personal correlation of PM2.5. The correlation coefficients vary
with significant heterogeneity from 0.09 to 0.83 with a median of 0.54 (Avery et al.
2010, p. 2018 f.). This leads to the conclusion that at least for some studies the re-
quired increase of sample size for measurement error adjustment can be tremendous.
This sample size increase may sometimes be infeasible to realize in practice. Then, one
should better try to reduce measurement error by improving measurement methods in
order to achieve higher correlation coefficients ρXX∗ . However, the determination of
the sample size is an important step of designing a study which is crucial for a study’s
ability to detect significant associations between outcome and exposure. All of the
sample size adjustment methods demand information from previous validation studies
which underlines the necessity of validation studies.
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6 Summary and Discussion
In summary, it is recommended to design a study such that the need of precise results,
like accurate health risk estimates, and the need for a cost-efficient study design are in a
good balance. This means in a concrete way that collecting data of personal exposures
might indeed lead to precise risk estimates but are on the other hand often very expen-
sive and can thus reduce the sample size because of cost constraints which can then
reduce the statistical power of the study. Thus, in some cases exposure measurement
from fixed site monitors can be more cost-efficient. As opposed to that, if the surrogate
exposure, which is usually the fixed site monitor measurement, is a bad representative
of the personal exposure, measurement error will have a severe impact on the study’s
results. That is, measurement error reduces the effective sample size which reduces
the statistical power of a study to detect truly significant results. Also, measurement
error can cause in some cases critical bias in the estimated coefficients that describe the
association between exposure and outcome. In the case of severe measurement error
due to inaccurate surrogate measurements, the only use of the cheap surrogate mea-
surements might be inadequate. In many cases one can achieve a good trade-off with
precise results and efficient allocation of resources by conducting a validation study,
additionally to the main study. Validation studies have to be well-designed to allocate
resources optimally to the main and the validation study. The primary method to ad-
just the study design for measurement error is to increase the sample size. Appropriate
sample size adjustment approaches have to be applied while using correctly specified
measurement error models adapted to individual needs.
After determining the study design, it is generally recommended to conduct a simulation-
based evaluation of the study design prior to data collection to verify the adequacy of
planned sample sizes, assumptions on parameters and other design attributes (Devine
2003, p. 336). A carefully considered study design can be even more valuable than a
complex statistical analysis. More investigations are needed to allow for a practically
orientated and feasible application of the proposed methods. For this, it is necessary
to provide accessible guidelines and software to calculate power and adjusted sample
sizes in the presence of measurements error. They have to be applicable for a broad
class of models, like logistic regression models, GLMs or GAMs, and it has to be
possible to adapt measurement error models to individual requirements. An accurate
specification of the measurement error model is important as measurement error in en-
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vironmental epidemiology is often a mixture of different error types.
It is important to notice that all the points discussed in this thesis assume that the re-
lationship between the health outcome and the true exposure is of interest. Sometimes
this may not be the case. Since regulations affect the ambient air, one may rather be
interested in predicting the effect resulting from a change of measured ambient expo-
sure instead of personal exposure (Thomas et al. 1993, p. 90).
Furthermore, one should keep in mind that models in air pollution studies also have to
control for confounders although confounders are mostly not considered in measure-
ment error related literature. In general, the impact of measurement error on the effect
estimates of interest is thought to be increased by the presence of confounders, either
measured with or without error (Armstrong 1998, p. 654). Further research is needed
regarding how to include confounders into the relevant formulas.
In addition, most literature concerning measurement error in air pollution studies refers
only to a single pollutant. Also, because the US Environmental Protection Agency
(EPA) regulates the different pollutants independently, many studies investigate the ef-
fect of a particular pollutant on health. In fact, the correct identification of this effect is
challenging as it demands an accurate adjustment for confounding caused by a compli-
cated mixture of co-pollutants. Further work regarding this issue will provide a benefit
for the whole field of air pollution epidemiology (Dominici et al. 2003, p. 268 f.).
Current air pollution studies should also keep in mind recently developed exposure
metrics, like GIS-based metrics or models using meteorological or human activity data.
Dionisio et al. review the relevance of these exposure metrics and conclude that they
have the potential to reduce measurement error by increasing spatial resolution of the
exposure data compared to the only use of fixed site monitor data (Dionisio et al. 2016,
p. 496 ff.).
There is extensive literature that deals with the effect of measurement error on effect
estimates and that provides sophisticated methods for correcting biased coefficients by
statistical fixes. There is also a large number of articles related to measurement error
and epidemiology. However, literature that gives concrete and feasible instructions for
designing an epidemiology study in the presence of measurement error is limited. Fu-
ture investigations are needed as this topic can be highly complex, particularly in air
pollution epidemiology.
Further literature, that deals with different topics mentioned in this thesis, is useful for
a deeper understanding. Related to air pollution measurement, Hsu et al. (2012) inves-
tigate factors affecting personal air pollution exposure by conducting studies in Seattle
and New York. Setton et al. (2011) examine the impact of ignoring daily mobility
patterns for studies of traffic-related air pollution. Furthermore, Szpiro et al. (2010)
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propose an exposure prediction approach that considers complex spatio-temporal cor-
relations and accommodates spatio-temporal misaligned data. Baxter et al. (2013) and
Özkaynak et al. (2013) present methods for alternative exposure metrics, like different
exposure prediction approaches, and give future recommendations. Further, Goldman
et al. (2012) refer to geostatistical air pollution modeling and use modeled exposures
to examine measurement error in a time-series design. Gryparis et al. (2008) provide
a framework for measurement error in exposure predictions related to the topic of spa-
tial misalignment. Furthermore, concerning spatial misalignment and controlling for
unmeasured confounding, Lee and Sarran (2015) propose an approach that addresses
both challenges and provide software in form of an R-package for application of their
proposed model. Regarding sample size and power calculations, Tosteson and Tsiatis
(1988) show calculations for the efficient score test statistic for surrogate covariates
and the asymptotic relative efficiency. Devine and Smith (1998) provide another paper
that deals with the effects of measurement error concerning the required sample size
under measurement error. With regard to the difficulty in air pollution epidemiology
that humans are simultaneously exposed to a complex mixture of different pollutants,
Dominici et al. (2010) discuss the topic of shifting from a single-pollutant to a multi-
pollutant approach from different perspectives.
After all, much work remains to be done in the development of efficient designs in
air pollution epidemiology that will help to answer current questions about the impact
of air pollution on health. Such studies will be of high importance since they will
ultimately influence regulatory policies of governments to protect public health.
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