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Automatic Gradient Boosting

Abstract

The technological progress of the last decades, especially in the computational
technology, allowed the storage and fast analysis of a continuously increasing
number of datasets. This development is widely omnipresent leading to a situ-
ation where the job of a data scientist is “the sexiest job of the 21st century” (
Harvard Business Review). However, well-qualified data scientist are not a dime
a dozen. Instead, employees being not much familiar with data analysis are often
called to do the job.
Automatic machine learning can help those persons to perform predictive model-
ing with high performing machine learning tools without having much experience.
This is achieved by making those applications parameter-free, i.e. only the data
is required as input. The rest is done automatically. Projects like Auto-WEKA
or auto-sklearn aim to solve the Combined Algorithm Selection and Hyperpa-
rameter optimization (CASH) problem resulting in a huge optimization space.
However, for most real world applications, only few different learning algorithms
are required to deliver superior performances. autoxgboost simplifies this idea
one step further and the CASH problem to taking Gradient Boosting as a single
learning algorithm in combination with intelligent model based hyperparameter
tuning. It is based on the XGBoost R-Package and also supports categorical
variables due to special inbuilt factor feature encoding.
After describing the main concepts of gradient boosting and the autoxgboost
package, several benchmarks are done to improve the package. This includes
multiclass threshold tuning as well as the factor encoding of categorical fea-
tures. Thereafter, autoxgboost is compared to Auto-WEKA and auto-sklearn
in a benchmark looking on the predictive performance. We find out that even
though autoxgboost only uses one learner instead of a whole library, it provides
comparable or even better performances on some datasets. However, when
limitations of the computational resources are not an issue, auto-sklearn still
provides superior performance.



Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Gradient Boosting 4
2.1 Predictive modeling framework . . . . . . . . . . . . . . . . . . . . 4
2.2 Gradient-descent optimization . . . . . . . . . . . . . . . . . . . . 8
2.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Gradient Boosting algorithm . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 eXtreme Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Comparison of different boosting implementations . . . . . . . . . . 20

3 The concept of automatic gradient boosting 22
3.1 Factor feature encoding . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Integer encoding . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Dummy encoding . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Impact encoding . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3.1 Binary classification . . . . . . . . . . . . . . . . 24
3.1.3.2 Multiclass classification . . . . . . . . . . . . . . 26
3.1.3.3 Regression . . . . . . . . . . . . . . . . . . . . . 27
3.1.3.4 Impact encoding of vtreat . . . . . . . . . . . . . 28

3.2 Hyperparameter tuning with mlrMBO . . . . . . . . . . . . . . . . 28
3.2.1 SMBO algorithm . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 XGBoost learner with early stopping . . . . . . . . . . . . . 33
3.2.3 Autoxgboost parameter set . . . . . . . . . . . . . . . . . . 33

3.3 Threshold tuning for classification tasks . . . . . . . . . . . . . . . 35
3.3.1 Intelligent grid search for binary classification . . . . . . . . 37
3.3.2 Generalized Simulated Annealing for multiclass classification 39

3.4 The API of autoxgboost . . . . . . . . . . . . . . . . . . . . . . . 42

4 Further Auto-ML projects 43
4.1 Single-learner approaches . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Multiple-learner approaches . . . . . . . . . . . . . . . . . . . . . . 44

5 Benchmark experiments for optimizing autoxgboost 46
5.1 Factor encoding benchmarks . . . . . . . . . . . . . . . . . . . . . 46

ii



5.1.1 Benchmark configuration . . . . . . . . . . . . . . . . . . . 47
5.1.2 Benchmark results . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Threshold tuning benchmarks . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Algorithm benchmark . . . . . . . . . . . . . . . . . . . . . 57

5.2.1.1 Benchmark configuration . . . . . . . . . . . . . 57
5.2.1.2 Benchmark results . . . . . . . . . . . . . . . . . 59

5.2.2 Hyperparameter benchmark . . . . . . . . . . . . . . . . . 61
5.2.2.1 Benchmark configuration . . . . . . . . . . . . . 61
5.2.2.2 Benchmark results . . . . . . . . . . . . . . . . . 62

6 Autoxgboost benchmarks 64
6.1 Benchmark configuration . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Benchmark results . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion 68

References 70

A Appendix vi
A.1 Additional figures of the factor encoding benchmark . . . . . . . . . vi
A.2 Additional figures and tables of the GenSA tuning benchmark . . . xiv
A.3 Repositories containing the R-Code of this thesis . . . . . . . . . . xviii



List of Figures

1 Machine learning work-flow . . . . . . . . . . . . . . . . . . . . . . 1
2 Comparison between the classical statistical approach and machine

learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Common loss functions for regression. . . . . . . . . . . . . . . . . 6
4 Common loss functions for classification. . . . . . . . . . . . . . . 7
5 Illustration of gradient descent optimization. . . . . . . . . . . . . . 8
6 Differences of leaf wise and level wise tree construction. . . . . . . 21
7 General SMBO Framework . . . . . . . . . . . . . . . . . . . . . . 30
8 Optimization states of different iterations of an mlrMBO example . 32
9 ROC curve and corresponding measured values of a logistic regression

classifier for german credit data depending on the threshold. . . . . 37
10 Performance comparison for theoretical and tuned thresholds on the

credit costs and the mmce. . . . . . . . . . . . . . . . . . . . . . . 38
11 Benchmark results for KDD appetency dataset. . . . . . . . . . . . 50
12 Benchmark results for Amazon dataset. . . . . . . . . . . . . . . . 51
13 Benchmark results for cjs dataset. . . . . . . . . . . . . . . . . . . 52
14 Benchmark results for KDD98 dataset. . . . . . . . . . . . . . . . 53
15 Average ranks of all methods on all datasets. . . . . . . . . . . . . 54
16 Average ranks of all methods on all datasets using ber and mse as

performance measure. . . . . . . . . . . . . . . . . . . . . . . . . . 55
17 Mean (left) and individual success-rate comparison between the bench-

marked optimization functions. . . . . . . . . . . . . . . . . . . . . 60
18 Overview and detailed view of each GenSA parameter configuration

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
19 Benchmark results for credit-g dataset. . . . . . . . . . . . . . . . vi
20 Benchmark results for adult dataset. . . . . . . . . . . . . . . . . . vii
21 Benchmark results for KDD churn dataset. . . . . . . . . . . . . . viii
22 Benchmark results for KDD upselling dataset. . . . . . . . . . . . . ix
23 Benchmark results for bank-marketing dataset. . . . . . . . . . . . x
24 Benchmark results for eucalyptus dataset. . . . . . . . . . . . . . . xi
25 Benchmark results for ozone dataset. . . . . . . . . . . . . . . . . xii
26 Benchmark results for nasa dataset. . . . . . . . . . . . . . . . . . xiii
27 Average ranks of overall best GenSA parameter settings . . . . . . xiv
28 Average ranks of best GenSA parameter settings 3-class-datasets . xv
29 Average ranks of best GenSA parameter settings 4- and 5-class-datasets xvi
30 Average ranks of best GenSA parameter settings 8- and 10-class-

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

iv



List of Tables

1 Scheme of integer encoding . . . . . . . . . . . . . . . . . . . . . . 23
2 Scheme of creating dummy features . . . . . . . . . . . . . . . . . 24
3 Scheme of creating impact features (binary class) . . . . . . . . . . 25
4 Example values of creating impact features from Table 3 . . . . . . 26
5 Scheme of creating impact features (multiclass) . . . . . . . . . . . 26
6 Scheme of creating impact features (regression) . . . . . . . . . . . 28
7 XGBoost hyperparameters tuned by mlrMBO (Description taken from

package manual). . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Cost matrix for credit data. . . . . . . . . . . . . . . . . . . . . . . 38
9 Performances for different thresholds . . . . . . . . . . . . . . . . . 38
10 Arguments of the autoxgboost() function . . . . . . . . . . . . . 41
11 Arguments of the AutoxgbResult object . . . . . . . . . . . . . . 42
12 Different encoding methods and boundary configurations used for the

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13 Datasets used for the encoding benchmark and their properties. . . 48
14 Datasets used for the threshold tuning benchmark and their properties. 58
15 GenSA hyperparameters and ranges for the benchmark . . . . . . . 61
16 Best GenSA parameter configurations. . . . . . . . . . . . . . . . . 63
17 Datasets used for the comparison benchmark of autoxgboost, Auto-

WEKA and auto-sklearn. . . . . . . . . . . . . . . . . . . . . . . . 64
18 Autoxgboost benchmark results. . . . . . . . . . . . . . . . . . . . 66
19 Best overall GenSA parameter settings . . . . . . . . . . . . . . . . xiv
20 Best GenSA parameter settings for datasets with 3 classes . . . . . xv
21 Best GenSA parameter settings for datasets with 4 and 5 classes . xvi
22 Best GenSA parameter settings for datasets with 8 and 10 classes . xvii

v



1. Introduction

1. Introduction

Topics like Big Data, Artificial Intelligence, Machine Learning and Advanced Ana-
lytics are remaining ongoing topics for several years now. While data is gathered
everywhere nowadays, much of its insight is still unused since data scientists are still
rare. The needed know-how to analyze the data in a proper way is not present in
many cases. This is a big problem for many companies of all sectors which are con-
tinuously looking for well-qualified personnel. Figure 1 shows the whole work-flow
of a data scientist. It all starts with creating a plan which contains the main ques-
tions and goals of an analysis. After collecting the necessary datasets, one often
needs to preprocess the data which could include imputing missing values or recod-
ing one or more variables. The main data analysis then contains model building and
evaluation/visualization. The illustration in Figure 1 is similar to the Cross Indus-
try Standard Process for Data Mining (CRSIP) presentation by Shearer (2000), but
more detailed. As on can see, several steps are connected and repeated until the
final results are obtained.
While Planing needs to be done manually by the data scientist, the other steps and

Figure 1: Machine learning work-flow: While some steps need to be done manually,
especially the analytic part can be automated (inspired by Hortonworks Inc.
(2015) The Data Science Work-flow).

1



1. Introduction

especially the technical analysis of the data can be automated. Those analysis do
more and more often include especially machine learning algorithms which require
special skills by the data scientist. However, since many superior techniques are
relatively new or only applicable due to technological and especially computational
progress, the entry barrier for using such methods is not overcome too often. To
counteract this dilemma, programers develop user-friendly software or graphical user
interfaces (GUI) which are based on typical programing languages like R or python
for applying machine learning tasks by end users being not coding-affine. One ex-
ample of an R-based GUI which uses the mlr package by Bischl, Lang, Kotthoff,
et al. (2016) is shinyMlr by Coors and Fendt (2017). It allows users to fully perform
machine learning tasks without writing a single line of code. However, there are
way more open source approaches for making machine learning easier to access for
non-professional data scientists, but also professional commercial ones.
Global players like Google stepped into the market when introducing AutoML. This
architecture allows it to make machine learning and especially neural nets a lot more
accessible to people than before. This is happening by automating almost the whole
machine learning work-flow. AutoML therefore uses neural networks itself to select
the best suitable network for the problem including hyperparameter tuning as well as
stacking together several models. However, the idea of automating machine learning
processes is not new. Hall et al. (2009) introduced an automated work-frame for
choosing from a broad variety of learning algorithms from their open source package
WEKA. Hereby, Auto-WEKA (see Thornton et al. (2013)) simultaneously sets the
optimal hyperparameters for the selected model using Bayesian optimization. All
included algorithms support classification tasks, some also regression tasks.
Very similar to Auto-WEKA is auto-sklearn by Feurer et al. (2015), which is based
on the scikit-learn toolkit for python and includes all of its learners.
The package introduced in this master’s thesis simplifies the idea of automatic ma-
chine learning even further. It uses Gradient Boosting, which is an high-performance
algorithm, if its hyperparameters are adequately tuned, and reduces the whole frame-
work to constructing the optimal gradient boosting model. The whole package is
R-based and uses mlr as a base in combination with the eXtreme Gradient Boosting
(XGBoost) package by Chen and Guestrin (2016). Besides tuning the hyperparam-
eters via Bayesian optimization using the mlrMBO package by Bischl, Richter, et al.
(2017), factor feature transformation is performed as preprocessing step if neces-
sary. Moreover, for classification tasks, threshold tuning for the trained models is

2



1. Introduction

performed as a last optimization step via mlr. Due to its technical base, the auto-
matic gradient boosting approach introduced in this thesis is called autoxgboost.
The thesis’ content is structured as follows. The next section introduces gradient
boosting in detail, since it is the basic learning concept of autoxgboost whose concept
is described afterward in Section 3. It is compared to other Auto-ML projects in the
subsequent Section 4. As a next step, since XGBoost cannot handle factor features,
they need to be transformed. In order to do this properly, several different meth-
ods were benchmarked and therefore introduced in Section 3. The results can be
seen in Section 5.1. While optimizing each part of autoxgboost, it became apparent
that there was potential of improving the threshold tuning algorithm for multiclass
classification tasks. Since this optimization part was used for all multiclass tasks,
it needed to be optimized before finally comparing autoxgboost with other competi-
tors. The underlying technique is described as part of Section 3 while the performed
benchmark experiments for first finding the best optimizer and second its optimal
hyperparameters, is described in Section 5.2.
After optimizing the technical base of the framework, autoxgboost is finally bench-
marked against auto-WEKA and auto-sklearn in order to compare its performance
for real world data in Section 6. After describing the benchmark settings, the per-
formance results are illustrated in that section. We will see, that autoxgboost is able
to compete with its competitors on some datasets.
Finally, the conclusion in Section 7 gives a summary of all topics and findings of this
thesis and an outlook on further research. It provides ideas for further improvements
of the automatic gradient boosting framework.
Note, that large work packages of this master’s thesis consisted of creating R-code
during the formation phase. Not only parts of the autoxgboost but also all performed
benchmarks required a lot of effort which cannot be obviously seen in the written
thesis.

3



2. Gradient Boosting

2. Gradient Boosting

Gradient boosting, which was introduced by J. H. Friedman (2001), combines two
different techniques, Boosting in combination with gradient descent which is also
known as steepest descent method. To introduce and understand both concepts,
some theoretical background needs to be discussed first. Hence, before concentrating
directly on gradient boosting in this section, this technical framework will be explained
in the next parts.

2.1. Predictive modeling framework

When introducing machine learning methods, a comparison with traditional ap-
proaches is obvious. Figure 2 shows the initial situation and compares the classical
statistical approach with the machine learning one. Here, Figure 2a, which is inspired
by illustrations of Breiman (2001), shows the relationship between input x and out-
put y which is described by an unknown function of the nature which is also called
data generating process, as seen in Figure 2b. Classical statistic approaches try to
describe this relationship by a interpretable model. Those models are usually based
on several assumptions which may or may not be supported by the data. If not, the
model should be questioned and probably discarded.
In contrast, machine learning does not even try to model the relationship directly.
Instead, it considers the connection as a black-box function which is approximated as
good as possible by a learning algorithm using input x and output y (see Figure 2c).

naturex y

(a) Initial situation

Linear Models,
Logistic

Regression,
Mixed Models,

. . .

x y

(b) Classical statistics

unknownx y

algorithm

(c) Machine Learning

Figure 2: Comparison between the classical statistical approach and machine learn-
ing.
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2. Gradient Boosting

Thus, assumptions of e.g. several distributions within the data are not made and
can therefore not be violated. Hence, machine learning methods are very good in
imitating nature at the expense of interpretability. As a result, the data scientist
always needs to check whether he requires this interpretability of the effects of single
input variables and choose traditional statistical methods, or rather prefers a higher
prediction performance resulting in the use of machine learning.
The typical predictive modeling setting contains a system with a d-dimensional ran-
dom response vector y ∈ Rd and a set of features x = {x1, . . . , xn}. The features
x are especially in statistics called explanatory variables or in the machine learning
context input, while y is also called output. The goal of predictive modeling is then
to use a training dataset, containing tuples (xi , yi) for i = 1, . . . , n, to approximate
or estimate the unknown system by a prediction function f (), such that

f (x) = y (1)

A good prediction is measured by a loss function L(y , f (x)) and its expected value,
so so-called risk

R(f (x)) = E[L(y , f (x))] =

∫
L(y , f (x))dPxy . (2)

In this regard, the loss is determined by the point-wise deviance of the estimated
model f̂ (x) and the real data points y and simultaneously weights this distance. As
a matter of principle, loss functions can be arbitrarily chosen. However, for regression,
mostly used loss functions are the quadratic loss or least-squares loss:

L(y , f (x)) = (y − f (x))2, −
∂L

∂f (x)
= 2(y − f (x)) (3)

which is equivalent to a maximum-likelihood approach for normally distributed errors
and therefore also sometimes called Gaussian loss. Moreover, it is differentiable. As
one can see in Figure 3, the quadratic loss progressively weights points with higher
distance to f̂ (x). Hence it is not robust regarding outliers.
An alternative loss function is the absolute loss:

L(y , f (x)) = |y − f (x)|, −
∂L

∂f (x)
= sign(y − f (x)) for x 6= 0.
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0

1

2

3

4

−2 −1 0 1 2

Residual y−f(x)

Lo
ss

Loss functions

Quadratic loss

Absolute loss

Huber loss

Figure 3: Common loss functions for regression.

It is equivalent to Laplace distributed errors, but in contrast to the quadratic loss
not differentiable at 0 for y = f . Nevertheless, it is robust which can be seen in
Figure 3.
The Huber loss by Huber (1964) combines the advantages of both loss functions
above by being a combination. For an arbitrary δ > 0 it is defines as

L(y , f (x)) =

12(y − f (x))2 for |y − f (x)| ≤ δ

δ|y − f (x)| − 1
2
δ2 otherwise

, hence

−
∂L

∂f (x)
=

y − f (x) for |y − f (x)| ≤ δ

sign(y − f (x)) otherwise

It is differentiable and robust since it is quadratic in an interval around 0 following
by a linear continuation. Its graph is also illustrated in Figure 3.
When switching to binary classification tasks, other loss functions are usually used,
since the ones for regression are not reasonable. Unfortunately, the Zero-One loss
is not smooth and hence not suitable for optimization as seen in Figure 4. Instead,
smooth and convex loss functions are typically used for classification of which some
examples are also shown in Figure 4. A popular one is the exponential loss which is

6



2. Gradient Boosting

defined as

L(y , f (x)) =

exp(−yf (x)) for y ∈ {−1,+1}

exp(−(2y − 1)f (x)) for y ∈ {0, 1}

It is less robust to strongly misclassified observations compared to the following
methods because of the exponential growth for negative values.
Moreover, the so-called truncated Hinge loss, which was introduced for support vector
machines by Wu and Liu (2007), is suitable for classification tasks. The loss value
is determined by

L(y , f (x)) = max(0, 1− yf (x)) = |1− yf (x)|+.

Due to linearity for negative values, it is more robust. The same yields for another
possibility, which is to take the same loss function corresponding to the negative
log-likelihood of logistic regression. It is called binomial loss or cross-entropy loss:

L(y , f (x)) =

ln(1 + exp(−2yf (x)) for y ∈ {−1,+1}

−yf (x) + ln(1 + exp(f (x))) for y ∈ {0, 1}
(4)

0

1

2

3

4

−2 −1 0 1 2

Margin y−f(x)

Lo
ss

Loss functions

Zero−One loss

Exponential loss

Binomial loss

Hinge loss

Figure 4: Common loss functions for classification.
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2. Gradient Boosting

For all maximum-likelihood models, a similar approach is possible resulting in the use
of the negative log-likelihood as loss function. In general, a good loss function ap-
proximates the Zero-One loss sufficiently and has in addition appropriate properties.
The binomial loss function can simply be extended for multiclass classification prob-
lems by assuming a multinomial model instead, i.e. the negative log-likelihood of the
resulting multinomial logistic regression forms the loss function which is also known
as softmax function. A variation of this function, which returns the predicted prob-
abilities of each data point belonging to each class, is also used as objective function
in autoxgboost for multiclass classification and called softprob.
Obviously, one is interested in finding an optimal estimate f̂ (x) which minimizes the
risk R(f (x)) over the joint distribution of all tuples of the training set. Hence, with
Eq. (2), f̂ (x) is determined by

f̂ (x) = arg min
f (x)

R(f (x)) = arg min
f (x)

E[L(y , f (x))] (5)

= arg min
f (x)

Ex,y [L(y , f (x))]

= arg min
f (x)

Ex [Ey(L(y , f (x)))|x ] .

2.2. Gradient-descent optimization

z = 2x2 + y2

x

y

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 5: Illustration of gradient
descent optimization.

When generally looking at optimization prob-
lems, one can separate between deterministic and
stochastic methods. Deterministic approaches
are usually faster than stochastic ones, how-
ever, the risk for being trapped in a local min-
ima is significantly higher. Later in this thesis,
some stochastic methods for hyperparameter-
and threshold tuning will be introduced. Never-
theless, gradient-descent is a deterministic non-
parametric iterative method for numerical func-
tion optimization which has often been proposed
for minimizing the empirical risk (see e.g. Rumel-
hart et al. (1986)). We consider the situation of Eq. (5) with an arbitrary, differen-
tiable and unrestricted target function f (x). The gradient ∇f (x) can be understood
as pointer which shows always in the direction of the steepest ascent of the func-
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2. Gradient Boosting

tion. Likewise, −∇f (x) points towards the steepest descent of f (x). Hence, the
gradient represents the tangent’s slope of the function graph, which is similar to the
derivative.
However, in contrast to the scalar-valued derivative, the gradient is vector valued
containing the above described direction and depending on the underlying space,
its representation differs. Applying the nabla operator ∇ on function f results in a
unique vector field which is called gradient. Hence, for a function f : Rn → R we
have

∇f (x) = grad f (x) =

(
∂f (x)

x1
, . . . ,

∂f (x)

xn

)>
. (6)

Then, as a first step for minimizing function f (x) , we select a starting point x (0) as
initial guess. This point can be improved, i.e. we select the next point x (1) such that

x (1) = x (0) − ν∇f (x (0)),

so in general for iteration m,

x (m) = x (m−1) − ν∇f (x (m−1)) for m = 1, . . . ,M, (7)

where ν controls the step size towards the steepest descent. In each iteration, the
optimal ν is allowed to change. An obvious choice is the one which minimizes the
objective function:

ν(m) = arg min
ν>0

f
(
x (m−1) − ν∇f (x (m))

)
. (8)

Eq. (8) is called line search. If the algorithm iteratively reaches an x (m) ∈ Rn with
∇f
(
x (m)

)
= 0 ∈ Rn, a local minima is reached. Figure 5 illustrates the whole

procedure for a two dimensional function f (x, y) = 2x2 + y 2. One can see how the
step size and direction changes for each iteration.

2.3. Boosting

Boosting had its first appearance in form of a simple procedure in the PAC-learning
framework of Valiant (1984) and Kearns and Vazirani (1994). It was developed by
Robert E. Schapire et al. (1998) who were also the first who showed that the perfor-
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2. Gradient Boosting

mance of a weak learner could always be improved by training additional ones. The
only required property of such weak learners is to outperform random chance regard-
ing predictive performance. Boosting is based on this concept which corresponds to
stagewise additive modeling. Following J. Friedman et al. (2000) and J. H. Friedman
(2001), the idea is to learn an additive model

f (x) =

M∑
m=1

fm(x) =

M∑
m=1

βmh(x, θm). (9)

Obviously, the goal is to minimize the empirical risk for which we obtain with Eq. (2)

R =

n∑
i=1

L(yi , f (xi)) =

n∑
i=1

L

(
yi ,

M∑
m=1

βmh(xi , θm)

)
. (10)

It clearly depends on the base learners h(x, θm) and especially their weights βm
and parameters θm. Hence, R has to be minimized regarding parameters (β, θ) =

((β1, θ1), . . . , (βM, θM)) which, if tried directly, can be difficult depending on the
chosen loss function L. Therefore, optimization can be done using a the itera-
tive “greedy” forward stagewise additive modeling approach (see J. Friedman et al.
(2000)). Thus for optimizing

(β∗, θ∗) = arg min
β,θ

n∑
i=1

L

(
yi ,

M∑
m=1

βmh(xi , θm)

)
, (11)

we can use

(β∗m, θ
∗
m) = arg min

β,θ

n∑
i=1

L(yi , fm−1(xi) + βh(xi , θ)) (12)

in order to get

fm(x) = fm−1(x) + βmh(xi , θm) (13)

with

fm−1(x) =

m−1∑
j=1

βjh(xi , θj). (14)

10



2. Gradient Boosting

Here, it is important to clarify that adding each component stagewise means that
previous models are fixed and hence not readjusted. This strategy is called boosting
in the machine learning context, but is also known as matching pursuit in signal
processing (see Mallat and Zhang (1993)).
A typical weak learner h(x, θ), also called base function, are tree stumps, which are
decision trees with only few split points. Those tree stumps bring several advantages
of decision trees which include supporting categorical features and missing values or
robustness regarding outliers. Moreover, training a tree is relatively fast compared
to other algorithms. Additionally, a variable selection mechanism is conceptually
included.
On the other hand, boosting is able to strongly improve the predictive predictive
performance compared to training a single tree. However, interpretability is obviously
lost by combining several trees. Those advantages are similar to the random forest
approach which uses bootstrap aggregation to combine multiple decision trees for
learning (see Breiman (1996)).
One of the first boosting algorithms was AdaBoost (Adaptive Boosting) by Freund
and Robert E Schapire (1997).

2.4. Gradient Boosting algorithm

The gradient boosting algorithm combines the gradient descent method from Sec-
tion 2.2 and boosting which was introduced in the previous Section 2.3. That means
gradient boosting uses stagewise additive models for which the empirical risk R is
minimized by gradient descent.
In detail, for the additive model of Eq. (9), we are looking for an optimal parameter
combination (β∗m, θ

∗
m) like in Eq. (12), i.e. we want to determine the new additive

component βmh(xi , θm) of Eq. (13) for iteration m. Here, Eq. (13), βm is the step
size of the gradient descent, in the previous section also denoted as ν. It is also
called learning rate or shrinkage parameter. If 0 < βm � 1, only a small amount of
the base learner is taken into account in the m-th iteration. This helps preventing the
additive model from overfitting. Moreover, following Schmid and Hothorn (2008),
far more important than the concrete choice of βm is the fact that it is chosen small
enough.

11
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2.4.1. Regression

First, consider a non-parametric model, where predictions can arbitrarily made for
every single observation xi of the n observations of the training dataset (see Bischl
(2017)). This results in n parameters f (xi), but no generalization on the whole
space X . Using the gradient descent we can obtain the gradient with Eq. (6) for a
differentiable loss function L at a point xj for each iteration by

∇R|xj =
∂R
∂f (xj)

=
∂
∑n

i=1 L(yi , f (xi))

∂f (xj)

=
∂L(yj , f (xj))

∂f (xj)
(15)

Hence, the update for iteration m by gradient descent is

fm(xj)← fm−1(xj)− β
∂
∑n

i=1 L(yi , fm−1(xi))

∂fm−1(xj)
(16)

As a consequence, we can determine the directions of the steepest descent for each
xi and define these as pseudo residuals rim

rim = −
[
∂L(yi , f (xi))

∂f (xi)

]
f (x)=fm−1(x)

. (17)

Thus, the optimal weight βm for iteration m can obtain by setting rim = h(xi , θm) in
the line search of Eq. (12):

βm = arg min
β

n∑
i=1

L

(
yi , fm−1(xi)− β

[
∂L(yi , fm−1(xi))

∂fm−1(xi)

])
(18)

However, as stated above, this only holds for a single observation xj of the training
set. Hence, a generalization for all x ∈ X is necessary which can be achieved
by approximating the negative gradient as good as possible by a regression model,

12
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previously called base function or weak learner in Section 2.3,

h(x, θm) = −rm = −
[
∂L(yj , f (xj))

∂f (xj)

]
= −

[
∂
∑n

i=1 L(yi , f (xi))

∂f (xj)

]
(19)

Again, minimizing the risk

R(h(x, θm)) = L(h(x, θm), rm) (20)

leads to

θm = arg min
θ

n∑
i=1

L(rim, h(xi , θ)) (21)

which provides us our optimal parameter θ for Eq. (12). Finally, the new whole addi-
tive part containing the weak base learner h(x, θm) can be interpreted as component,
which moves the model towards the highest decrease of loss, where βm, determined
by Eq. (18), expresses the step size for this move. When using the common least-
squares loss function for regression problems, Eq. (21) reduces to

θm = arg min
θ

n∑
i=1

(rim − h(xi , θ))2. (22)

Basically every regression learner is able to be fitted via the quadratic loss. Addi-
tionally, solving is numerically efficient. Algorithm 1 combines all gradient boosting
steps synoptically (see J. H. Friedman (2001) and Bischl (2017)).
As mentioned before, selecting decision trees as base learner has advantages which
makes them also the preferred choice for autoxgboost. Following J. H. Friedman
(2001), one can write such a tree as

h(x, b, R) =

J∑
j=1

bjI(x ∈ Rj), (23)

where Rj are the disjoint regions, defined by the terminal nodes of the tree with the
corresponding means γj which specify the boundaries of regions Rj . Putting Eq. (23)

13
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Algorithm 1: Gradient Boosting Algorithm.

Initialize: f0(x) = arg min
θ0

n∑
i=1

L(yi , θ0)

1 for m = 1→ M do
2 for all i do
3 Calculate rim = −

[
∂L(y,f (x))
∂f (xi )

]
f (xi )=fm−1(xi )

4 end
5 Fit regression base learner to the pseudo-residuals rim:

6 θm = arg min
θ

n∑
i=1

(rim − h(xi , θ))2

7 Find via line search:

8 βm = arg min
β

n∑
i=1

L(yi , fm−1(x) + βh(x, θm))

9 Update fm(x) = fm−1(x) + βmh(x, θm)

10 end
Output: f̂ (x) = fM(x)

into Eq. (13) leads to

fm(x) = fm−1(x) + βm

Jm∑
j=1

bjmI(x ∈ Rjm) (24)

which can be reduced to

fm(x) = fm−1(x) +

Jm∑
j=1

γjmI(x ∈ Rjm) (25)

when setting γjm = βmbjm, where like before, βm is determined by line search (see
J. H. Friedman (2001)). Again, minimizing the loss function provides the optimal
coefficients for γjm which is done by

γjm = arg min
γj

n∑
i

L

(
yi , fm−1(xi) +

Jm∑
j=1

γjmI(x ∈ Rjm)

)
. (26)

14



2. Gradient Boosting

Algorithm 2: Gradient Tree Boosting Algorithm.

Initialize: f0(x) = arg min
γ

n∑
i=1

L(yi , γ)

1 for m = 1→ M do
2 for all i do
3 Calculate rim = −

[
∂L(y,f (x))
∂f (xi )

]
f (xi )=fm−1(xi )

4 end
5 Fit regression tree to the pseudo-residuals rim given terminal regions

Rjm, j = 1, . . . , Jm:
6 for j = 1→ Jm do
7 γjm = arg min

γ

∑
xi∈Rjm L(yi , fm−1(xi) + γ)

8 end
9 Update fm(x) = fm−1(x) +

∑Jm
j=1 γjmI(x ∈ Rjm)

10 end
Output: f̂ (x) = fM(x)

Due to the property that regions Rj are disjoint, this can be reduced to

γjm = arg min
γ

∑
xi∈Rjm

L(yi , fm−1(xi) + γ). (27)

Regarding a loss function L, this result is the optimal constant update given fm−1.
It can be determined individually and directly within each terminal region while the
tree structure is still included. The above changes Algorithm 1 to Algorithm 2.

2.4.2. Classification

The general gradient boosting Algorithm 1 is obviously fully dependent of the loss
function L. For the regression case, we chose the least-squares loss which was
equivalent to the maximum-likelihood approach for normally distributed errors. For
classification, we already saw suitable loss functions in Section 2.1 whose mathemat-
ical derivation we want to discuss a bit more in detail in this section. When restricting
to binary classification first, the obvious difference to regression is the fact that our
target variable does not contain continuous, but only two different class levels, e.g.
y ∈ {0, 1}. If the model’s output maps on real values, one can regard positive val-
ues as indication for class 1 and negative values for class 0 respectively. Hence, we
get discrete predictions by I(f (x) > 0). Alternatively, we transform our model such
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that its function values lie in the interval [0, 1], which can then be interpreted as
probabilities for class 1. This can be achieved by applying the logistic distribution
function

logistic(η) =
exp(η)

1 + exp(η)
, (28)

where η is called link function, since it links the model with the prediction probabilities.
Following Mehta and Patel (1995), Bischl (2017) and J. Friedman et al. (2000),
denote

πi1 = P(yi = 1|xi1, . . . , xik) = logistic(ηi) =
exp(ηi)

1 + exp(ηi)
, (29)

where

ηi = x>i βi , xi = xi1, . . . , xik .

Hence, probability πi1 is not directly modeled, but indirectly via the logit function

ηi = logit(yi = 1|xi1, . . . , xik) = ln
πi1

1− πi1
= x>i βi . (30)

When applying the maximum likelihood approach for the logistic regression model,
one gets the log-likelihood

n∑
i=1

(yi lnπi1 + (1− yi) ln(1− πi1))

=

n∑
i=1

(yi f (xi)− ln(1 + exp(f (xi))) (31)

for f (xi) = x>i βi . One can now define the negative log-likelihood of Eq. (31) as new
loss function which we have already seen in Eq. (4) in Section 2.1. That is

L(y , f (x)) = −yf (x) + ln(1 + exp(f (x))), with −
∂L

∂f (x)
= y − π1(x),

where π1(x) an estimate for the posterior probability of class 1, that is P̂(y = 1|x) =

logistic(f̂ (x)).
This can be generalized for the k-class classification problem, assuming a multinomial
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model. Therefore, with the maximum likelihood approach we obtain as loss function

L(yk , fk(x)) = −
K∑
k=1

yk lnπk(x), (32)

where yk = I(y = k) for class k . Hence, the posterior probability of class k is given
by

πk(x) = P̂(y = k |x) =
exp(fk(x))∑J
j=1 exp(fj(x))

(33)

which corresponds to the softmax function as mentioned in Section 2.1. This leads
to the multiclass pseudo residuals rik,m when substituting Eq. (33) into Eq. (32) and
taking the first derivatives (see J. H. Friedman (2001):

rik,m = −
[
∂L(yik , fk,m(xi)

∂fk,m(xi)

]
fk,m(x)=fk,m−1(x)

= yik − πk,m−1(xi), (34)

where πk,m−1(xi) is derived from Eq. (33) for fk,m−1. Summarizing the above, we see
that K models (trees) are fitted in each iteration m to predict the pseudo residuals
rik,m for each class k . Each tree has J terminal nodes with regions {R1k,m . . . , RJk,m}
with corresponding updates

γjk,m = arg min
γjk

n∑
i=1

K∑
k=1

φ

(
yik , fk,m−1(xi) +

J∑
j=1

γikI(xi ∈ Rj,m)

)
(35)

with φ(yk , fk(x)) = −yk lnπk(x) from Eq. (32).
Following J. Friedman et al. (2000), this equation has no closed form solution.
However, it can be approximated by a single Newton-Raphson step, which separates
it into a single calculation for each terminal node, that is

γjk,m =
K − 1

K

∑
xi∈Rjk,m rik,m∑

xi∈Rjk,m |rik,m|(1− |rik,m|)
(36)

which serves for the update

fk,m(x) = fk,m−1(x) +

Jm∑
j=1

γjk,mI(x ∈ Rjk,m). (37)
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Algorithm 3: K-class Classification Gradient Tree Boosting Algorithm.
Initialize: fk,0(x) = 0, k = 1, . . . , K

1 for m = 1→ M do

2 Set πk(x) =
exp(fk(x))∑J
j=1 exp(fj(x))

for k = 1→ K do

3 Calculate rik,m = yik − πk,m−1(xi), i = 1, . . . , n.
4 Fit regression tree to the pseudo-residuals rik,m given terminal regions

Rjk,m, j = 1, . . . , Jm:
5 for j = 1→ Jm do

6 γjk,m = K−1
K

∑
xi∈Rjk,m

rik,m∑
xi∈Rjk,m

|rik,m|(1−|rik,m|)

7 end
8 Update fk,m(x) = fk,m−1(x) +

∑Jm
j=1 γjk,mI(x ∈ Rjk,m)

9 end
10 end

Output: f̂k(x) = fk,M(x)

Finally, after M steps, fk,M(x) is returned as final model, leading to Algorithm 3.

2.5. eXtreme Gradient Boosting

XGBoost has several advantages which led to choose it for the autoxgboost package.
A main reason is the strong connection between the developers of autoxgboost and
the mlr package, since it uses the mlr’s framework in combination with its learner
database. Therein, XGBoost is the leading gradient boosting implementation given
its strong performance for most machine learning tasks compared to its competitor
packages regarding both, speed and predictive quality. Another reason is that it na-
tively supports parallel computing since a large part of its code back-end is written in
C++. Consequently, XGBoost combines two very important advantages - compared
to other gradient boosting implementations, it is fast by using a minimal amount
of resources at the same time. Hence, the training of large datasets is not a prob-
lem for the algorithm. This made it also very popular for several machine learning
competitions, e.g. on Kaggle, often XGBoost is used by the winning teams. Finally,
XGBoost allows to use custom objective functions for model building which allows
its use in a very flexible manner.
More in detail, the idea of Chen and Guestrin (2016) is to introduce regularization
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of the objective function

L(y , f (x)) =

n∑
i=1

L(yi , f (xi)) +

M∑
m=1

Ω(fm(x)), (38)

with

Ω(f (x)) = γ|f (x)|+
1

2
λ ‖ω|2 (39)

where |f (x)| is the number of leafs of tree f (x) and ω is the weight vector containing
each leaf’s score. Hence, Ω can be understood as a combination of Lasso regular-
ization of γ and ridge regularization of coefficient λ. It serves as a regularizer which
penalizes the model complexity in order to avoid over-fitting.
Unfortunately, Eq. (38) cannot be optimized by traditional methods. Nevertheless,
following J. Friedman et al. (2000), a second order Taylor approximation can be used
for optimization, that is for boosting iteration m

L(y , fm(x)) ≈
n∑
i=1

[
L(yi , fm−1(xi)) + gi fm(xi) +

1

2
hi f
2
m(xi)

]
+ Ω(fm(x)) (40)

∝
n∑
i=1

[
gi fm(xi) +

1

2
hi f
2
m(xi)

]
+ Ω(fm) = L̂(y , fm(x)) (41)

where gi = ∂L(yi ,fm−1(xi ))
∂fm−1(xi )

and gi = ∂2L(yi ,fm−1(xi ))
∂f 2m−1(xi )

. Define Ij := {i |q(xi) = j} as the set
of all observations of leaf j , where q(xi) is the decision rule to classify observation xi
into leaf j . Using this definition and Eq. (39), Eq. (41) can be written as

L̂(y , fm(x)) =

n∑
i=1

[
gi fm(xi) +

1

2
hi f
2
m(xi)

]
+ γ|fm(x)|+

1

2
λ

|fm(x)|∑
j=1

ω2j (42)

=

|fm(x)|∑
i=1

∑
i∈Ij

gi

ωj +
1

2

∑
i∈Ij

hi + λ

ω2j
+ γ|fm(x)|. (43)

Instead of entropy or information gain, XGBoost uses an own scoring function which
is similar to the impurity score for evaluating decision trees. Since it is usually
impossible to determine all possible tree structures q, Chen and Guestrin (2016) use
a greedy algorithm which iteratively adds branches to a tree starting by a single leaf.
Thus, assume IL and IR as the instance sets of the left and right child nodes. Then,
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the split criteria is given by

1

2

 (∑i∈IL gi
)2∑

i∈IL hi + λ
+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−

(∑
i∈{IL∪IR} gi

)2∑
i∈{IL∪IR} hi + λ

− γ. (44)

For an even more detailed look on the theoretical background of XGBoost and com-
parison benchmarks including e.g. GBM and H2O-GBM, the interested reader is
referred to the paper of Chen and Guestrin (2016).

2.6. Comparison of different boosting implementations

There exist several different boosting algorithms for machine learning purposes.
Starting historically, one of the first was the prominent adaBoost by Freund and
Robert E Schapire (1997), Its principle is to change the sample distribution in each
iteration by differently weighting the observations of the training dataset, i.e. it in-
creases the weight of the “difficult” observation which were wrongly predicted in the
previous iteration. Hence, the base learners concentrate more on those observations
in contrast to the gradient boosting method, which trains the weak base learners on
the remaining errors, i.e. the pseudo-residuals. However, also this technique trans-
fers the focus to the difficult observations.
Another boosting algorithm is provided by the mboost package by Hofner et al.
(2014). Its approach is a model-based boosting algorithm with support for (gen-
eralized) linear models (glmboost()), (generalized) additive models (gamboost())
or trees (blackboost()) as base learners. Unfortunately, it is very slow for large
datasets. Other popular implementations of gradient boosting algorithms, which use
trees as weak learners, are e.g. GBM by Ridgeway (2005), the H2O-GBM (see Kral-
jevic and team (2017)) , lightGBM by Ke et al. (2017), CatBoost (see Dorogush,
Gulin, et al. (2017) and Dorogush, Ershov, et al. (2017)) and of course XGBoost,
the base for autoxgboost. lightGBM and CatBoost are quite new and seem to de-
liver state-of-the-art performances. Moreover, lightGBM is designed to make tree
gradient booster faster since it not checking all splits when creating new leaves but
only look at some of them by sorting and binning them first. This idea by Ke et al.
(2017) is called histogram implementation. Thus, the resulting trees grow leaf wise
instead of level wise compared to other gradient boosting machines. The concept is
shown in Figure 6. It shows that the presorted states are kept. For tree growing,
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(a) Leaf wise tree growth.

(b) Level wise tree growth.

Figure 6: Differences of leaf wise and level wise tree construction.

the algorithm selects the leaf which provides the maximum delta loss. To conclude,
lightGBM offers faster learning than other methods matched with state-of-the-art
performance.
In contrast, speed is not the main argument for CatBoost. Instead, due to an in-
telligent factor encoding, it offers support for categorical features making special
treatment obsolete before training. As a result, CatBoost frequently outperforms
other gradient boosting algorithms like XGBoost and lightGBM regarding predictive
performance. Moreover, the developers recently announced that they succeeded in
improving the algorithm’s speed significantly.
Comparing different gradient boosting implementations, especially the relatively new
lightGBM and CatBoost algorithms look promising. However, implementations for
both methods seem to be tricky including a non straightforward installation to make
both algorithms working. As a result, the effort to switch to another gradient boost-
ing algorithm might be too complex. Further research should be made to check
the feasibility of a system switch and to compare speed and predictive performance
leaving the door open for further improvements of our automated gradient boosting
machine.
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3. The concept of automatic gradient boosting

This section introduces the structure of the autoxgboost package which is based
on the open source programming language R and available via Github (https:
//github.com/ja-thomas/autoxgboost). It contains several different parts which
will be discussed in detail in the following parts of this master’s thesis. As its name im-
plies, autoxgboost uses the XGBoost package as implementation for gradient boost-
ing. Hence, after the general approach of gradient boosting was introduced in the
previous section, this one gives a closer look on those parts of the machine learning
work-flow which are included and therefore automated by the package.

3.1. Factor feature encoding

After stating the main questions for an analysis, everything starts with data and
preprocessing it. The latter includes all necessary steps to meet the requirements of
the chosen learning algorithm. Within autoxgboost, this means to transform factor
features as a first step, since XGBoost requires numeric input variables. Several
different methods of doing this task exist. Hence, after starting with the first one,
which is a simple transformation of the categories into integers, other techniques
are introduces in the following parts of this section. This first mentioned integer
encoding or feature hashing is described in the next one. Almost the same amount
of complexity is reached by creating dummy features for all factor levels. This
technique is described afterward, following by two unlike more complex variations of
impact encoding.
Finding the best performing encoding method for autoxgboost required a benchmark
experiment which compared all methods of Section 3.1. Its setting and results are
shown in Section 5.1

3.1.1. Integer encoding

The simplest possibility of changing categorical variables to numeric ones is done by
changing each factor level to an integer. The idea is straightforward and shown in
Table 1, where a feature X = {x1, . . . , xn} contains three factor levels a, b and c .
The new feature X∗ simply contains values 1 for a, 2 for b and 3 for c . This method,
what we call integer encoding, is the simplest form of feature hashing for a single
variable. In general, for feature hashing the original category xi is transformed by a
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X
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

X∗

a 1

b 2

a 1

c =⇒ 3

b 2

c 3

a 1

c 3

b 2

Table 1: Scheme of integer encoding

so-called hash function h in the way that

h : X → R

xi 7→ h(xi)

In our case, we have h(xi) ∈ N. In general, h(xi), which is called hash value or simply
hash could also be a vector resulting in more than a single new feature. However,
this method has the advantage that not only one but several categorical features
could be recoded together using a single hash function.

3.1.2. Dummy encoding

The concept of dummy encoding is to create one separate feature for each factor
level. It is also sometimes called one-hot encoding. It is shown in Table 2, where a
feature X is dummy encoded into features X∗a , X

∗
b and X∗c . Hence, for each factor

level of X a new feature is created, i.e. we get new variables X∗a , X
∗
b and X∗c with

x∗j,i = Ixi=j for observation i where j ∈ {a, b, c} and X∗j = {x∗j,1, . . . , x∗j,n}. Obviously,
since all new features are linear dependent, one arbitrary dummy variable could be left
out. So in general, for a factor feature X with n factor levels, one would end up with
n− 1 dummy encoded features when applying this “1− n”-method. The left-out one
would then be regarded as “reference”, since it equals 1, if all other dummy features
are 0.
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

X∗a X∗b X∗c

a 1 0 0

b 0 1 0

a 1 0 0

c =⇒ 0 0 1

b 0 1 0

c 0 0 1

a 1 0 0

c 0 0 1

b 0 1 0

Table 2: Scheme of creating dummy features

3.1.3. Impact encoding

Another method of transforming factor features is called impact encoding. The
name implies, that recoding depends on the impact each factor level has on the
target variable of the machine learning task. This means that in contrast to dummy
encoding, impact encoding can only be performed on a concrete training dataset.
The first approach benchmarked in Section 5.1 was introduced by Micci-Barreca
(2001).

3.1.3.1. Binary classification
For a binary target variable, which implies a binary classification context, i.e. Y =

{y1, . . . , yn}, where yi ∈ {0, 1} for i = 1, . . . , n, it encodes each factor level of a
feature X into a combination of the conditional probability for the positive class 1,
given a factor level of X and the prior probability of class 1. As a result, we get a
new impact feature X∗ = {x∗1 , . . . , x∗n} whose entries x∗i for i = 1, . . . , n are defined
as

Impact(xi) = λ(nxi ) · P (Y = 1|X = xi) + (1− λ(nxi )) · P (Y = 1), (45)

here nxi is the absolute number of observations for which feature X equals the factor
level of xi . For factor levels l1, . . . , lm of X and xi = lj , j ∈ {1, . . . , m}, we get
nxi = nlj . nlj is then called cell size of cell lj , which contains all observations for which
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X Y




X∗ Y

a 1 λ(na) · P (Y = 1|X = a) + (1− λ(na)) · P (Y = 1) 1

b 1 λ(nb) · P (Y = 1|X = b) + (1− λ(nb)) · P (Y = 1) 1

a 1 λ(na) · P (Y = 1|X = a) + (1− λ(na)) · P (Y = 1) 1

c 0 =⇒ λ(nc) · P (Y = 1|X = c) + (1− λ(nc)) · P (Y = 1) 0

d 1 λ(nd) · P (Y = 1|X = d) + (1− λ(nd)) · P (Y = 1) 1

c 0 λ(nc) · P (Y = 1|X = c) + (1− λ(nc)) · P (Y = 1) 0

a 1 λ(na) · P (Y = 1|X = a) + (1− λ(na)) · P (Y = 1) 1

d 1 λ(nd) · P (Y = 1|X = d) + (1− λ(nd)) · P (Y = 1) 1

b 0 λ(nb) · P (Y = 1|X = b) + (1− λ(nb)) · P (Y = 1) 0

Table 3: Scheme of creating impact features (binary class)

X has factor level lj . Thus we can write Eq. (45) also for each xi of cell lj as

Impact(lj) = λ(nlj ) · P (Y = 1|X = lj) + (1− λ(nlj )) · P (Y = 1). (46)

Here, λ(nlj ) controls the transition rate between the conditional probability of the
positive class depending on the observations factor level lj , i.e. P (Y = 1|X = lj),
and the prior probability of class 1 of the target variable in the training dataset,
P (Y = 1). It is defined as an s-shaped function

λ(nlj ) =
1

1 + exp

(
−

(nlj − ptrust)

pslope

) (47)

and depends of besides cell size nlj of the trust parameter ptrust and the slope param-
eter pslope. The trust parameter defines half of the minimal cell size, for which the
impact value is almost completely shifted towards the conditional probability, if pslope

is sufficiently small at the same time. On the other hand, for pslope → ∞, λ(nlj )

converges against 0.5. Hence, we get a fixed threshold in that case. Note that for
nlj = ptrust, it also applies that λ(nlj ) = 0.5. Table 3 shows an example, where impact
encoding is performed on a training set with 9 observations. For a feature X with
factor levels lj ∈ {a, b, c, d} and target variable Y with class levels {0, 1}, we get a
new non-factor feature X∗, which consists of numeric values in [0, 1] for each former
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X Y




X∗ Y




X∗ Y

a 1 0.88 · 1 + (1− 0.88) · 13 1 0.92 1

b 1 0.73 · 0.5 + (1− 0.73) · 13 1 0.46 1

a 1 0.88 · 1 + (1− 0.88) · 13 1 0.92 1

c 0 =⇒ 0.73 · 0 + (1− 0.73) · 13 0 =⇒ 0.09 0

d 1 0.73 · 1 + (1− 0.73) · 13 1 0.82 1

c 0 0.73 · 0 + (1− 0.73) · 13 0 0.09 0

a 1 0.88 · 1 + (1− 0.88) · 13 1 0.92 1

d 0 0.5 · 1 + (1− 0.5) · 13 0 0.82 0

b 0 0.73 · 0.5 + (1− 0.73) · 13 0 0.46 0

Table 4: Example values of creating impact features from Table 3

factor level of X. With pslope = ptrust = 1, we obtain values

P (Y = 1|X = a) = 1, λ(na) = 0.88

P (Y = 1|X = b) = 0.5, λ(nb) = 0.73

P (Y = 1|X = c) = 0, λ(nc) = 0.73

P (Y = 1|X = d) = 1, λ(nd) = 0.73 and
P (Y = 1) = 1

3
.

Hence, we get the final impact values of Table 4.

3.1.3.2. Multiclass classification
For multiclass classification tasks, a single new feature X∗ for replacing the original
variable X is not sufficient. Nevertheless, the multiclass extension for impact encod-
ing is straightforward. Here, one new non-factor feature is created for each class of

X Y




X∗A X∗B X∗C Y

a B . . . λ(na) · P (Y = B|X = a) + (1− λ(na)) · P (Y = B) . . . B

b A . . . λ(nb) · P (Y = B|X = b) + (1− λ(nb)) · P (Y = B) . . . A

a C . . . λ(na) · P (Y = B|X = a) + (1− λ(na)) · P (Y = B) . . . C

c A =⇒ . . . λ(nc) · P (Y = B|X = c) + (1− λ(nc)) · P (Y = B) . . . A

d C . . . λ(nd) · P (Y = B|X = d) + (1− λ(nd)) · P (Y = B) . . . C

c A . . . λ(nc) · P (Y = B|X = c) + (1− λ(nc)) · P (Y = B) . . . A

a B . . . λ(na) · P (Y = B|X = a) + (1− λ(na)) · P (Y = B) . . . B

d C . . . λ(nd) · P (Y = B|X = d) + (1− λ(nd)) · P (Y = B) . . . C

b B . . . λ(nb) · P (Y = B|X = b) + (1− λ(nb)) · P (Y = B) . . . B

Table 5: Scheme of creating impact features (multiclass)
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the target variable. Each of them is determined by a ratio between the conditional
probability of the related class depending on the factor level of the original feature
X and the prior probability of that class. Again, this threshold is defined by function
λ(·), which is equally calculated as in the binary setting. Hence, for any class c , we
can calculate a new numeric value for a factor level lj by

Impact(lj) = λ(nlj ) · P (Y = c |X = lj) + (1− λ(nlj )) · P (Y = c). (48)

This scheme is shown in Table 5. It illustrates that for class levels {A,B, C}, a factor
feature X with levels {a, b, c, d} is replaced by the new numeric features X∗A, X

∗
B, and

X∗C. For X
∗
B, the formulas for each observation are formulated in Table 5. Moreover,

for X∗A and X∗C, only class B needs to be changed within the probabilities into the
corresponding class A or C as seen in Eq. (48).
Like in dummy encoding, the resulting numeric features are linear dependent. Hence,
one of them can be left out in the impact encoded dataset.

3.1.3.3. Regression
Impact encoding is not limited to classification, but also possible for regression tasks.
Since there exist no probabilities in the regression case, a combination of the target’s
mean Y and the target’s mean within each cell, i.e. Ylj for a factor level lj for feature
X is used instead to determine the transformed values. Remember, a cell for a factor
level lj was defined as the set of all observations, whose factor level of feature X is
equal to lj . As a results, we get a single numeric-valued transformed variable whose
new impact values are calculated by

Impact(lj) = λ(nlj ) · Ylj + (1− λ(nlj )) · Y . (49)

Table 6 shows the resulting formulas similar to Table 3 and Table 5 for a regression
example. Obviously, the necessary values for this example are

Ya = 11, λ(na) = 0.88

Yb = 20, λ(nb) = 0.73

Yc = 31, λ(nc) = 0.73

Yd = 40, λ(nd) = 0.73 and
Y = 1

3
.
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X Y




X∗ Y

a 10 λ(na) · Ya + (1− λ(na)) · Y 10

b 21 λ(nb) · Yb + (1− λ(nb)) · Y 21

a 12 λ(na) · Ya + (1− λ(na)) · Y 12

c 30 =⇒ λ(nc) · Yc + (1− λ(nc)) · Y 30

d 39 λ(nd) · Yd + (1− λ(nd)) · Y 39

c 32 λ(nc) · Yc + (1− λ(nc)) · Y 32

a 11 λ(na) · Ya + (1− λ(na)) · Y 11

d 41 λ(nd) · Yd + (1− λ(nd)) · Y 41

b 19 λ(nb) · Yb + (1− λ(nb)) · Y 19

Table 6: Scheme of creating impact features (regression)

Note, since the factor feature X is the same as in Table 3 and Table 5, the resulting
values for λ are the same.

3.1.3.4. Impact encoding of vtreat
The second method of impact encoding, which was introduced by Mount and Zumel
(2016), is an element of the vtreat package for R. However, while its application
usually consists of several treatments for a single categorical variable, here, only a
method very similar to the one of Section 3.1.3 was used. Both implementations only
differ on the calculation of the ratio between the conditional and prior probabilities.
Taking Eq. (46) and Eq. (49) for vtreat, both equations reduce to

Impact(xlj ) = logit(P (Y = c |X = lj))− logit(P (Y = c)) (50)

and

Impact(xlj ) = Ylj − Y . (51)

Obviously, this impact encoding variation forgoes the transition function λ.

3.2. Hyperparameter tuning with mlrMBO

Each machine learning model works best, when its hyperparameters are set to the
optimal values. Since trying each possible parameter combination is not an option,
since this approach is computational far too expensive, one needs an intelligent way
of searching the learner’s hyperparameter space for the best configuration. This
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procedure is called hyperparameter tuning and can be understood as an optimization
problem, where the models’ performance is to be maximized given its hyperparame-
ters. The hyperparameter space contains the feasible sets of all parameters, where
each feasible set contains all possible values of a parameter.
As starting point for all tuning approaches, one needs to choose the hyperparame-
ters, which should be tuned, and their value ranges. If the complete hyperparameter
space is too large or resources for tuning are limited, the resulting tuning parameter
set can also be a subset of it. Then, the optimal parameter setting can be found by
tuning the model via various techniques.
One of the simplest methods is grid search, where the performance is measured and
compared for each point of a predefined grid on the tuning set. Another method is
the random search which randomly selects hyperparameter configurations for mea-
suring and comparing the performance. All methods have in common that the best
performing configuration during tuning (depending on the chosen performance mea-
sure) will be chosen for the final model.
More advanced tuning methods include a certain logic for choosing a parameter
configuration within the parameter space. A popular tuning algorithm is irace by
López-Ibáñez et al. (2016) which is based on the racing algorithm by Maron and
Moore (1997). However, this method will not be discussed in detail in this master’s
thesis.
Another tuning method which uses Sequential Model-Based Optimization (SMBO),
also known as Bayesian Optimization is included in autoxgboost and called mlrMBO
by Bischl, Richter, et al. (2017). This concept uses function approximations to con-
struct an algorithm which efficiently solves our optimization problem.
There exist several variations of SMBO since its framework is modular. One Pop-
ular variation is the Efficient Global Optimization algorithm (EGO) by Jones et al.
(1998) which was the first approach using Gaussian processes (GP) as so-called sur-
rogate models to optimize box-constrained functions on a numeric-only input domain
X ∈ Rd . Those surrogate models will be discussed in more detail in the next part of
this section.
However, the underlying stochastic process approach for function approximations,
which is called Kriging, was already introduced in the early 1960s and was ever
since part of mathematical geology literature, optimization theory and statistics (see
Matheron (1963), N. A. C. Cressie (2015) and N. Cressie (1990)).
Another common SMBO combination was proposed by Hutter et al. (2011) and is
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called SMAC which stand for Sequential Model-based Algorithm Configuration. It
extends the SMBO approach using random forests as surrogate model to be capable
of also handling categorical parameters.

3.2.1. SMBO algorithm

No matter which variation of SMBO is used for tuning, each contains the same
setup. Following Bischl, Richter, et al. (2017), we assume an arbitrary black-box
function f (x) : X → R, where X ⊂ Rd is an d-dimensional input space and y ∈ R
denotes the deterministic function’s output. This function is generally assumed to be
expensive to evaluate. Hence, a predefined budget determines the maximum number
of function evaluations.
In detail, each element Xi of X , where i = 1, . . . , d , can either be a numeric interval,
i.e. Xi ∈ {[a, b]|a ≤ b a, b ∈ R}, or contains categorical factor levels, i.e. Xi ∈
{{li ,1, . . . , li ,k}|k ∈ N}. The goal is to find the input vector x∗, such that

x∗ = arg min
x∈X

f (x).

As mentioned above, each function evaluation of f is usually expensive. There-
fore, the SMBO framework introduces surrogate models f̂ which approximate the
expensive black-box function f while being cheaply evaluable. Those f̂ are iteratively
updated during the whole process which is illustrated in Figure 7 following Bischl,
Richter, et al. (ibid.). It contains the following steps:

Figure 7: General SMBO Framework
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(1) It all starts with generating an initial design of ninit points (x (1), . . . , x (ninit)) ∈ X .
It is important to choose a sufficiently large number ob initial points which
should cover X good enough to ensure an adequate fit of f̂ . At these points,
f get evaluated with f (x (j)) = y (j), where j = 1, . . . , ninit. Then, the resulting
pairs (x (j), y (j)) serve as base of the initial surrogate model f̂ . As mentioned
before, Kriging is a common and recommended choice for a surrogate model
which delivers a state-of-the-art performance for numeric parameter spaces
while random forests allow also categorical ones. Since XGBoost only con-
tains numerical hyperparameters, autoxgboost relies on mlrMBO’s default,
the Gaussian processes of Kriging. However, the package allows to use any
regression learner as surrogate model which is included in the mlr package.

(2) As a next step, the surrogate model is fitted based on all pairs (x (j), y (j)).

(3) The proposition of new m points x (j+i), where i = 1, . . . , m, is based on an
infill criterion which is also known as acquisition function. Its purpose is to lead
the optimization process towards the most promising points, which e.g. could
offer the highest expected improvement, which is defined as

EI(x) := E(I(x)) = E(max{ymin − Y (x), 0}).

Here, I(x) is a random variable, which defines the potential improvement at
x for ymin, the currently best observed function value. Furthermore, Y (x) is
a random variable, which is normally distributed within the Gaussian process
context and expresses the posterior distribution of x with posterior mean µ̂(x)

and posterior standard deviation ŝ2(x). Thus, with Y (x) ∼ N(µ̂(x), ŝ2(x)),
EI(x) can be written as

EI(x) = (ymin − µ̂(x))Φ

(
ymin − µ̂(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − µ̂(x)

ŝ(x)

)
, (52)

where φ is the density function and Φ the distribution function of the standard
normal distribution.

(4) The proposed new points in (3) are evaluated by f in the next step resulting
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in new tuples (x (j+i), y (j+i)).

(5) Steps (2)-(4) are repeated until the budget is exhausted or other stop criteria
take effect. Those might be limits set by the user, e.g. the maximum number of
SMBO iterations, a certain time limit for the optimization or if a prespecified
value for f is achieved. If at least on criterion is met, the tuning algorithm
continues with step (6).

(6) Finally, the best point observed during optimization is usually returned as the
final solution x∗. However, if the black-box function is noisy, an additional
surrogate model fit to determine the optimal point is an option.
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Figure 8: State at several iterations of an example mlrMBO run. Each plot consists
of two parts, where the upper one shows the real function f (1-dimensional
Alpine 2 function) as a solid line and its estimation µ̂ as a dotted line. The
shaded area shows the uncertainty, the red circles are the initial design
points while the sequential points are shown as green squares. The lower
parts show the respective values for the expected improvements whose
optimum is marked as a blue triangle and defines the next proposed point.
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Six iterations of the SMBO optimization process for the Alpine 2 Function are shown
in Figure 8. The 1-dimensional version is defined as

f (x) =
√
x · sin(x).

Each iteration, contains two plots. The upper one shows the original function f
as solid line and its estimated function µ̂ as dotted line. Moreover, the upper plot
illustrates the initial points as red circles, new proposed points as blue triangles
and sequential points, i.e. previously proposed and hence evaluated points as green
squares. Obviously, the first iteration does not have any sequential point yet and
thus, it provides the first proposed point. This point is chosen by the largest expected
improvement (EI) whose dashed graph can be seen in the lower plot of each iteration.
Clearly, this graph is determined by the uncertainty level of the approximation function
(ŝ) which is shown as the shaded area in each upper plot in combination with and
the value of the approximation function µ̂. Higher uncertainty and a lower value for
µ̂ increases the expected improvement as seen in Eq. (52). Figure 8 convincingly
demonstrated the capability of SMBO, which is of course not limited to univariate
objective functions. Therefore, it is a very suitable tuning method for autoxgboost.

3.2.2. XGBoost learner with early stopping

In Section 3.2 we saw that mlrMBO is used for hyperparameter tuning of autoxg-
boost. For each tuning iteration, an XGBoost learner is trained on the data. In
contrast to the default settings of the algorithm, here, early stopping is enabled.
This means that the training process in a single tuning iteration stops, if the per-
formance does not improve for a certain number of boosting iterations on a specific
validation set. This specific number is called early stopping rounds and set to 10

in autoxgboost. The validation set is determined by the early stopping fraction
which is set to 4/5, i.e. this fraction is used for training while 1/5 of the data is
used to measure the performance in each boosting iteration.
Using early stopping as stop criteria for training, one needs to ensure that enough
iterations are performed in first place. Hence, the parameter nrounds is set to 106.

3.2.3. Autoxgboost parameter set

Tuning always requires parameters with a corresponding parameter space to search
for the optimal values. The above mentioned early stopping rounds help to determine
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the nrounds argument of autoxgboost. The idea is to take the number rounds of
the best performing model as value for the nrounds parameter. The other learner
parameters are directly tuned and shown in Table 7 including the lower and upper

Autoxgboost parameterset

Name Lower Upper Trafo Description

eta 0.01 0.2 controls the learning rate: scale the con-
tribution of each tree by a factor of 0 <

eta < 1 when it is added to the current
approximation. Used to prevent overfit-
ting by making the boosting process more
conservative. Lower value for eta implies
larger value for nrounds: low eta value
means model more robust to overfitting
but slower to compute. Default: 0.3

gamma −7 6 2x minimum loss reduction required to make
a further partition on a leaf node of the
tree. the larger, the more conservative the
algorithm will be.

max_depth 3 20 maximum depth of a tree. Default: 6
colsample_bytree 0.5 1 subsample ratio of columns when con-

structing each tree. Default: 1
colsample_bylevel 0.5 1 subsample ratio of columns for each split,

in each level. Default: 1
lambda −10 10 2x L2 regularization term on weights. De-

fault: 0
alpha −10 10 2x L1 regularization term on weights. (there

is no L1 reg on bias because it is not im-
portant). Default: 0

subsample 0.5 1 subsample ratio of the training instance.
Setting it to 0.5 means that xgboost ran-
domly collected half of the data instances
to grow trees and this will prevent over-
fitting. It makes computation shorter (be-
cause less data to analyze). It is advised to
use this parameter with eta and increase
nround. Default: 1

Table 7: XGBoost hyperparameters tuned by mlrMBO (Description taken from pack-
age manual).
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bounds of the parameter space. Additionally, parameters alpha, gamma and lambda
have a transformation function f (x) = 2x . This ensures positive values with higher
concentration on small values.

3.3. Threshold tuning for classification tasks

Spiegelhalter (1986) stated out, how important it is to consider prediction probabil-
ities for classification tasks, which implies that looking at uncertain observations is
key for good results. This is obviously not possible for regression tasks, since one
does not get any probabilities from the model for numeric response values. Hence,
when concentrating on classification problems, these decisions require reliable prob-
abilities, which are not always guaranteed. Already J. Friedman et al. (2000) stated
out that boosting is inclined to make poorly calibrated predictions. However, there
exist two ways of dealing with this problem. The first one tries to “calibrate” the
probabilities given by a model. This procedure is called classifier calibration and offers
several solutions to overcome these deficient probabilities, e.g. Logistic Correction,
by J. Friedman et al. (ibid.), Platt Scaling by Platt (1999) or Isotonic Regression
(see Zadrozny and Elkan (2001) and Zadrozny and Elkan (2002)).
The other possibility to deal with unreliable probabilities is not to change the proba-
bilities directly, but to adjust the resulting classification rules. This can be done by
optimizing the classification probability threshold. Compared with hyperparameter
tuning, for which different parameter settings are trained and compared afterward,
the threshold tuning is done for predictions of an already trained model.
One could say that after receiving class probabilities by the machine learning model,
one leaves the probabilistic part and switches to decision theory in order to apply
non-probabilistic treatment for especially difficult observations, where the uncertainty
level for one class or another is high.
For example, consider a binary classification model whose output provides probabil-
ities for the positive class, let us say, class 1. Obviously, one classifies observations
with probabilities close to 1 to this positive class 1 while observations with probabili-
ties close to 0 are assigned to the other class, called e.g. class 0. Moreover, there is
an area of high uncertainty around the probability of 0.5. While one intuitively would
set a threshold at exactly 0.5, however, this might not be optimal for many datasets,
since there exist situations where one reasonably doubts about the model predictions.
As presented by Silver (2012), one key element is the signal - noise ratio within the
data, which might be problematic for too small datasets and in other cases. One
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possible case is highly unbalanced data, where machine learning models might fail or
give non-trustworthy results. Consider data from a medical trial with 100 patients
with a disease and 100.000 patients without that disease. A model which assigns
all observations to the non-disease class has an accuracy of 99, 9%. However, all
diseased patients are classified incorrectly but might got a probability for having the
disease of around 45% by the model. Hence, setting a threshold below this level
might improve the overall performance and additionally, this would also corresponds
to a decision boundary for a doctor who would run some additional tests for patients
which have a probability significantly above zero.
While also measurement errors during the data collection process could push close
observations towards one side of the threshold boundary, also cost-sensitive classifi-
cation is one reason for tuning the threshold which labels the observations such that
a certain cost function is minimized. A popular example for this task is a bank which
wants to classify potential credit customers in two groups. One group, for which a
credit can be granted, and another one, for which it should be denied. Obviously,
the bank wants to avert giving credit to customers, which are not able to repay it.
Hence, this error comes at a higher cost then refusing a credit to a financially strong
customer. As a consequence, shifting uncertain observations towards the non-credit
group allows to potentially minimize the costs.
While the examples above are of only binary nature, the concept can simply be ex-
tended to multiclass problems resulting in a threshold vector whose length equals the
number of classes of the target variable.
But first, one should consider the general possibilities of implementing threshold tun-
ing. One way, and that is the way how it is implemented in the mlr package and
hence in autoxgboost, is to tune the threshold directly on given predictions without
any further resampling strategy for evaluation. Here, the predictions depend on their
origin. Technically, it would be possible to use predictions of the training dataset to
tune the threshold, which is obviously not a good choice since it leads to overfitting.
A better way of making predictions is based on a resampling strategy which is useful
for model evaluation at the same time. Hence, if the model was trained by cross-
validation or a fixed holdout split, all predictions, which are made on the specific test
sets are used for threshold tuning. Then, the whole problem basically reduces to a
black-box optimization problem of the performance function given those predictions.
On the other hand, one could use an additional, autonomous resampling loop to find
an even more adequate threshold based on another test set, which would however

36



3. The concept of automatic gradient boosting

be the slower way of doing it. Obviously, there is still room for improvements and
further research on this topic.
The next part of this section gives a more detailed example of the binary classifica-
tion case and moreover introduces the technical details of the implemented threshold
tuning within autoxgboost. Thereafter, a part showing the background for the mul-
ticlass case follows.

3.3.1. Intelligent grid search for binary classification

The binary case of threshold tuning is similar to a ROC-curve analysis. This ROC-
curve illustrates the ratio between the true positive rate (tpr) and the false positive
rate (fpr) of a classifier. Thus, the optimal threshold is the point, where the ratio
between both measures is optimal regarding a cost function or the achieved prediction
accuracy. A ROC-curve for a logistic regression model for the credit example from
Section 3.3 is shown in Figure 9a, while Figure 9b shows the coresponding values
for ROC measures, the true positive rate, and the false positive rate, as well as the
mean misclassification error (mmce) depending on the threshold. The ROC-curve
from Figure 9a looks quiet symmetric which indicates that the optimal threshold is
close to 0.5. This impression is supported by Figure 9b, but additionally, if shows
clearly that the minimum value for the mmce is at around 0.6. Hence, tuning the
threshold could give additional prediction performance.
When looking at a cost matrix like in Table 8 for the same dataset, one can calculate
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Figure 9: ROC curve and corresponding measured values of a logistic regression clas-
sifier for german credit data depending on the threshold.
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no credit credit
fin. weak 0 10

fin. strong 1 0

Table 8: Cost matrix for credit data.

Performance

Threshold credit costs mmce
0.5 (default) 1.738 0.253
0.091 (theoretical) 0.631 0.442
0.0764 (tuned) 0.572 0.482

Table 9: Performances for different thresholds

a theoretical threshold for the positive class 1 by

t∗ =
c(1, 0)− c(0, 0)

c(1, 0)− c(1, 1) + c(0, 1)− c(0, 0)
= 0.091 (53)

Table 9 compares for different thresholds the resulting performances when training
a logistic regression learner applying 3-fold cross-validation on the data. While the
default threshold at 0.5 has the best value for the mmce, it has clearly the weakest
value for the credit costs compared to the theoretical and the tuned threshold values.
Obviously, optimizing the threshold outperforms the default and is especially recom-
mended for applications like this cost-sensitive classifications, which is done by using
the predictions made on the test sets of each cross-validation iteration. Tuning gives
extra performance compared to the theoretical value. Figure 10 shows the detailed
performance for both variants and illustrates the results from Table 9.
Technically, within mlr the threshold is tuned by optimizing the performance on the
predictions for a certain measure, depending on the threshold parameter. This is
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Figure 10: Performance comparison for theoretical and tuned thresholds on the credit
costs and the mmce.
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done by an algorithm, which could be simply described as an intelligent grid search.
It is performed via the optimizeSubInts() function of the BBmisc package by Bis-
chl, Lang, Bossek, et al. (2017). Internally, this function uses the base optimization
function optimize() of the stats package, but prevent the algorithm being trapped
within a local optima by dividing the parameter space into equally sized subintervals.
Here in the binary case, the feasible space fo the threshold is [0, 1] ⊂ R, which is by
default divided into 20 smaller parts. On each of those, the optimize() function
is then applied to optimize the performance function to obtain the optimal value for
the threshold.
An R package, which is specialized for optimizing binary thresholds, which are called
cutpoints there, is cutpointr by Thiele (2017). Several different methods for cal-
culating cutpoints of which some are designed to be more robust than the simple
empirical optimization of a metric are included in the package. Moreover, cutpointr
is able to automatically bootstrap the variability of the optimal thresholds in order
to return out-of-bag estimates of various performance metrics.

3.3.2. Generalized Simulated Annealing for multiclass classification

While the ROC-curve analysis is a well known topic, threshold tuning especially for
multiclass problems is not a much discussed field in the literature yet and there exist
still no silver bullet for doing it. For multiclass and multilabel classification tasks (the
latter is not included in autoxgboost), another algorithm is used for threshold tuning
by mlr than for the binary case, which has to be capable of optimizing multidimen-
sional, potentially complex, non-convex and -smooth functions with a high number of
local optima. To find an algorithm, which provides these properties by being simul-
taneously time efficient, a benchmark was done to compare different optimization
functions. As one can see in Section 5.2, the Generalized Simulated Annealing (GSA)
algorithm of the GenSA package by Yang Xiang et al. (2013) won this benchmark
by providing the best performance and likewise being the fastest algorithm. Hence,
the technical background of this optimization technique will be introduced in this
section.
The concept of Classical Simulated Annealing (CSA) is unlike gradient descent not
a deterministic but stochastic optimization method. Note, that since the objective
function is a not known black-box function, there exist no derivatives, which makes
e.g. gradient descent not applicable. CSA was proposed by Kirkpatrick et al. (1983)
and has its origin in metallurgy. The algorithm was developed to simulate the an-
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nealing process of molten metal, whose temperature is reduced until it reaches its
crystalline state. At this state, the metal reaches its minimal thermodynamic en-
ergy level, which is a global minimum, when considering a function depending on the
thermal energy. Therefore, in the simulated annealing algorithm, the whole process
is simulated, where the metal’s energy function is regarded as the objective func-
tion. During the cooling process, one or more artificial temperatures, which serve as
stochastic thermal noise to escape local minima, are added and gradually annealed.
At the end, the system should be inside the global optimum.
Additionally to CSA, Szu and Hartley (1987) proposed Fast Simulated Annealing
(FSA) which cools faster. Moreover, following Tsallis and Stariolo (1996), CSA and
FSA can be generalized to GSA. In general, the annealing process depends on the
visiting distribution and the acceptance probability. One can understand both parts
in the way that the first one proposes new points, which will be accepted (or de-
clined) by the acceptance probability. In detail, the visiting distribution determines
the trial jump distance 4x(t) of x(t) for an iteration t under artificial temperature
Tqν(t), where qν controls the shape of the visiting distribution, that is, as proposed
by Szu and Hartley (1987), a d-dimensional distorted Cauchy-Lorentz distribution
and following Tsallis and Stariolo (1996) given by

gqν(4x(t)) ∝
[Tqν(t)]−

d
3−qν[

1 + (qν − 1) (4x(t))2

[Tqν (t)]
2

3−qν

] 1
qν−1+

d−1
2

. (54)

The resulting trial jump is accepted, if it is directed downwards to the minimum.
Nevertheless, if it is uphill, it might still be accepted depending on the acceptance
probability determined by a generalized Metropolis algorithm by Metropolis et al.
(1953), given by

pqa(xt → xt+1) = min{1, [1− (1− qa)β4E(xt)]
1
1−qa }, (55)

where β ≡ 1/kBT is a Lagrange parameter for the Boltzmann constant kB and
temperature T . E(t) is the energy spectrum at iteration t and 4E(xt) ≡ E(xt+1)−
E(xt). The acceptance probability is controlled by parameter qa. When assuming
that E(x) ≥ 0 ∀x and qa ≥ 1, pqa ∈ [0, 1] for uphill jumps, i.e. for E(xt+1) ≥ E(xt).
Moreover, pqa is equal to 1 for downhill jumps.
From GSA, CSA and FSA can be obtained by setting the acceptance parameter
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qa to 1 in both cases and the visiting parameter qν = 1 for CSA and qν = 2 for
FSA. The higher value for the latter makes cooling faster and hence the annealing
algorithm to converge faster while increasing the chance of escaping local minima
at the same time. Since GSA has a visiting parameter between 2 and 3, it has an
even higher probability to find the global minimum than CSA and FSA. Moreover,
higher negative values makes the algorithm more skeptical of uphill jumps and thus
lead more often to their refusal.
The default values for the GenSA package are qν = 2.62 and qa = −5 (see Yang
Xiang et al. (2013)). However, for the specific requirements of threshold tuning, an

task A mlr-task object
measure Performance measure to be optimized.
control Control object for mbo. Specifies runtime behaviour. Default

is to run for 160 mbo iterations or 1 hour, whatever happens
first.

par.set Parameter set. Default can be seen in Table 7.
max.nrounds Maximum number of allowed XGBoost iterations. Default is

106.
early.stopping.rounds After how many iterations without an improvement in the

OOB error should be stopped? Default is 10.
early.stopping.fraction Should the best found model be fitted on the complete

dataset? Default is FALSE.
build.final.model What fraction of the data should be used for early stopping

(i.e. as a validation set). Default is 4/5.
design.size Size of the initial design. Default is 15L

impact.encoding.boundary Defines the threshold on how factor variables
are handled. Factors with more levels than the
impact.encoding.boundary get impact encoded as in-
troduced in Section 3.1.3 while factor variables with less
or equal levels than the impact.encoding.boundary
get dummy encoded. For impact.encoding.boundary
= 0L, all factor variables get impact encoded while for
impact.encoding.boundary = Inf, all of them get dummy
encoded. Default is 10L.

mbo.learner Regression learner from mlr, which is used as a surrogate to
model our fitness function like explained in Section 3.2

nthread Number of cores to use. If NULL (default), xgboost will de-
termine internally how many cores to use.

tune.threshold Should thresholds be tuned as described in Section 3.3? De-
fault is TRUE.

Table 10: Arguments of the autoxgboost() function
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own benchmark was done to find the optimal default hyperparameters of the GenSA
algorithm for our purpose whose results will be presented in Section 5.2.2.2.

3.4. The API of autoxgboost

The core function of autoxgboost is the homonymous function autoxgboost(). Its
arguments are shown in Table 10. Obviously, the intention of autoxgboost implies
that, except to input the data in form of a mlr task, no special action is required
by the user for using the autoxgboost function. However, even though the default
values were set in order to deliver state-of-the-art performances in most cases, the
users are given fully flexibility of certain parameters. Starting with the measure
used for optimization, the user can adapt autoxgboost to his budget restrictions
for hyperparameter tuning via mlrMBO. This includes time- and tuning-iteration-
limits. Related to this, the user can replace the default tuning parameter set from
Table 7 and/or the surrogate learner by a customized one. Moreover, changes on
the algorithm’s early stopping mechanism as well as the factor encoding behaviour
are possible. Finally, since XGBoost natively supports parallel computing, the user
can set a specific number of logical cores used for training, if he does not want to
use all available ones, which are automatically detected by autoxgboost.
The autoxgboost() function returns a AutoxgbResult object, which contains the
fields shown in Table 11. Besides the optimal tuning result, which is also used
to return the final tuned learner, a final model is returned, if the user wants to.
Moreover, the measure used for tuning is returned.

optim.result Optimization result object from tuning with mlrMBO
final.learner Xgboost learner with best found hyper paramater con-

figuration.
final.model If build.final.model=TRUE in autoxgboost a mlr

model build by the full dataset and final.learner.
measure The measure used for optimization.

Table 11: Arguments of the AutoxgbResult object
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4. Further Auto-ML projects

The introduction already told us that machine learning is an analyzing tool for the
data scientist. Therefore, automating this step can obviously neither make any data
scientist obsolete nor is it possible to automate his whole work-flow. Instead, Auto-
ML projects exist to support them by considerably simplifying their workload and help
for making decisions at least for the common predictive modeling tasks regression
or classification. In order to do that, several open-source approaches were already
proposed of which the most prominent ones are introduced in this section. When
directly comparing with autoxgboost, especially methods which try to make single
algorithms parameter-free (which is basically the main function of autoxgboost),
are of special interest. Those “single-learner” approaches will be introduced in the
next part of this section, followed by more general approaches, which include several
learning algorithms into their optimization space.

4.1. Single-learner approaches

The simplest option for parameter free machine learning would be to choose a pa-
rameter free learner. While this sounds obvious, there are only few algorithms which
belong to this group. Some of them have their origin in classical statistics like linear
or logistic regression models. However, their performance is mostly poor compared to
modern machine learning algorithms, which often have plenty of parameters in return.
Hence, the better choice is to get those high-performance learners parameter-free.
Within autoxgboost, this happens by automatic factor encoding and parameter tun-
ing on a predefined parameter space.
Probst (2018) introduced the tuneranger package, which, as its name indicates,
automatically tunes a random forest by the ranger package of Wright and Ziegler
(2017). This tuning is done like autoxgboost by mlrMBO.
Furthermore, another algorithm approach is called Parameter-free STOchastic Learn-
ing (PiSTOL) and is proposed by Orabona and Pál (2016). It achieves model se-
lection while training without parameter tuning or need for cross-validation. The
concept is based on stochastic gradient descent and changes the step sizes data-
dependent over time. Orabona and Pál (ibid.) support their concept with provable
optimal convergence rates and compare their algorithm with a support vector ma-
chine in their paper. While achieving similar results, training happens up to 7 times
faster due to no need for cross-validation.
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Its focus on automatic deep learning for enterprises has Driverless AI by team (2017).
Paired with a graphical user interface, it provides data exploration following by auto-
matic feature engineering and hyperparameter tuning for best training performance.
Moreover it comes with tools for model interpretation as e.g. K-LIME, variable
importance and partial dependency plots. As a further surplus, it returns a Jupyter
notebook containing the python code of the performed feature engineering and model
building. Note, that Driverless AI is a commercially licensed product.
Directly comparable projects are rare at the moment or, like Driverless AI, they are
not open source, but commercial projects. However, when reducing to methods,
which simplify the hyperparameter tuning, independently of a prespecified learner, to
a point, where it is parameter-free, at least another concept is worth mentioning. A
Robust Bayesian Optimization framework (RoBO) by Klein et al. (2017) is one of
those and uses Bayesian optimization for model tuning. It is python based and can
be applied to several different learning algorithms like Gaussian processes, Bayesian
neural networks or random forests.

4.2. Multiple-learner approaches

The concept of multiple-learner approaches is based on two important circumstances.
First, no single machine learning method performs best on all datasets and second
that machine learning algorithms mostly rely on hyperparameter optimization to per-
form well. Hence, the underlying problem can be described as Combined Algorithm
Selection and Hyperparameter optimization (CASH). Some open-source examples
are discussed here. The advantage of this CASH concept is obvious. The user
gets as final result the optimal learner with the optimal parameter settings for his
problem. However, this is at the expense of a huge multi-dimensional optimization
space, containing all available learners and their corresponding hyperparameters. As
a consequence, a much higher budget is needed for optimization compared to single-
learner approaches like autoxgboost.
Nevertheless, a prominent example is Auto-WEKA by Thornton et al. (2013) which
was one of the first Auto-ML releases. To solve the CASH-problem, it searches for
an optimal learning algorithms of the WEKA database with tuned parameters by
Bayesian optimization.
The same tuning technique uses auto-sklearn by Feurer et al. (2015) which is python
based and uses the scikit-learn library as learner database. It also supports parallel
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computing using a shared file system.
Also the H2O-team by Kraljevic and team (2017) offers an Auto-ML interface called
H2O AutoML, which includes automatic training of several models and model ensem-
bles. Like the other Auto-ML solutions, its design only requires the user to provide
the data and to define the response vector. There exist an API for R and python.
Another python-based Auto-ML tool is called Tree-based Pipeline Optimization Tool
(TPOT) by Olson, Urbanowicz, et al. (2016) and serves as “your Data Science
Assistant”. It uses genetic programming instead of Bayesian optimization for param-
eter tuning on the same scikit-learn learner library as Auto-WEKA and auto-sklearn.
TPOT’s main advantage is that it generates standalone scitkit-learn python code of
the optimal model which can be further processed for modifications or model inspec-
tions.
A further Auto-ML framework introduced in this section is called pennAI, which is
developed by the same working group as TPOT, namely by Olson, Sipper, et al.
(2017). It will launch in 2018 and tries to bring artificial intelligence (AI) to the
mainstream. Moreover, it provides a user-friendly graphical user interface and is spe-
cialized for complex data in the biomedical and health care domains. The machine
learning part consists of six different machine learning algorithms, again from the
scikit-learn library, that is decision tree, k-nearest neighbors, support vector ma-
chine, random forest and gradient boosting for both regression and classification and
additionally logistic regression for classification and the elastic net for regression. For
model tuning, like in TPOT, genetic programming is used.
Using almost identical learning algorithms, AutoCompete is a framework mainly to
participate machine learning competitions. Hereby, it tries to serve as an easy start-
ing point for getting access to the given problem and creating first predictive models
including tuning.
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5. Benchmark experiments for optimizing
autoxgboost

The previous parts of this master’s thesis introduced the theory behind autoxgboost.
Before comparing the performance of autoxgboost directly to those of Auto-WEKA
and auto-sklearn in Section 6, major package optimizations were done first. The
following section illustrates the results of three benchmark experiments which were
done to improve two parts of the package:

(1) factor encoding and

(2) threshold tuning.

All benchmark experiments in this thesis were calculated on the Leibnitz Rechen-
zentrum (LRZ) using the R package batchtools by Lang et al. (2017) for parallel
running of different calculations, so-called jobs, which need to be compatible with
the Slurm Workload Manager. Hereby, jobs are determined by parametrization of
problems and algorithms which then can be submitted to the backend, the CooMUC2
Linux Cluster of the LRZ. To make cluster usage as efficient as possible, each job
is managed by the previously mentioned scheduling system Slurm. That means that
the user needs to assign the necessary resources to each job including the number
of CPUs, memory and wall time. Then, the job is scheduled until Slurm allocates
it to a free slot in the cluster. If the calculations of a job exceed those predefined
resources of computation time or memory, it gets canceled immediately.

5.1. Factor encoding benchmarks

The first benchmark had two goals: first, the best performing encoding method
should be found. Second, if the benchmark showed that it could be useful to ap-
ply a different method for factor features with a high compared to those with low
cardinality, an optimal value for a boundary between both methods should be de-
termined. Such a boundary could for example mean to dummy encode all factor
variables whose number of factor levels are below this boundary and to impact en-
code the rest. Another possibility could be to apply impact encoding to all factor
features while additionally dummy encode low cardinality features.
In order to get adequate results, the benchmark was performed with several different
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settings on various datasets. The detailed benchmark configuration is discussed in
the following.

5.1.1. Benchmark configuration

Since we were especially interested in benchmark results which are useful for the
autoxgboost package, we reduced the experiments to only one learner, that is XG-
Boost. Moreover, we enabled the early-stopping function, to act like the package’s
xgboost.earlystop learner described in Section 3.2.2. However, to concentrate on
the different encoding methods, no further hyperparameter tuning was performed.
Nevertheless, 35 different encoding settings were tested as shown in Table 12 includ-
ing integer, dummy and impact encoding. Here, as explained above, two different
kinds of boundaries were benchmarked. The first one, the impact.boundary means,
that only features with a number of factor levels above the boundary are impact en-
coded, while the rest of the factor features is dummy encoded. The dummy.boundary
works the other way around. While all factors are impact encoded, all features, whose
number of factor levels are below the boundary, are additionally dummy encoded.
Note, that the same boundaries were benchmarked for both impact encoding varia-
tions. This includes the method of Micci-Barreca (2001), simply referred as “impact
encoding” for this benchmark as well as the vtreat method of Mount and Zumel
(2016), denoted by “vtreat”.
When looking back to the introduction of impact encoding in Section 3.1.3, the new
impact values for a certain factor level are a composition of conditional and prior
probabilities of the class level of this specific observation. Its ratio is determined by
the function λ(), which depends, besides the factor level’s cell size, on two param-
eters, namely the slope and the trust parameter. Since in general, it is not clear,

Encoding configurations

Encoding simple impact.boundaries dummy.boundary

integer
dummy
impact yes/no 1, 2, 3, 4, 5, 7, 10 3, 4, 5, 7, 10, 20
vtreat 1, 2, 3, 4, 5, 7, 10

Table 12: Different encoding methods and boundary configurations used for the
benchmark.
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how to set their values, we set a fixed threshold λ = 0.5 between both probabilities
(simple = no in Table 12). Moreover, we set λ = 1, resulting in determining the
new impact values for a factor level for observation i , exclusively by the conditional
probability of the target’s class level of observation i , given the factor level. We
denote this setting with impact simple (simple = yes in Table 12).
In order to make the benchmark meaningful, 12 datasets, including 3 regression, 7

binary and 2 multiclass classification problems, were chosen. All were taken from the
OpenML platform. For this, the corresponding R-package OpenML by Casalicchio
et al. (n.d.) was used. Table 13 shows the properties of each dataset. Note, that
all regression datasets have −1 as number of class levels. For dataset selection,
some major properties were key. Most important, each dataset needed to contain
at least one factor variable with not less than 10 unique factor levels to test the im-
pact boundaries. Datasets including high cardinality factor features were even more
desirable to get insights in the general effects of impact encoding on those features
and the resulting prediction performance.
Note, that the three KDD datasets appetency, churn and upselling containing the
exact same features. They only differ on the target variable.
As performance measure, the multiclass Area Under the Curve (multiclass AUC) was
used for classification tasks and the mean squared error (mse) for regression tasks.
Together with XGBoost as the only learner, the jobs of this benchmark were hence
determined by

#{Datasets} × #{Impact encoding methods}
= 12 × 35 = 420.

Encoding benchmark datasets

Name Classes Features Instances NAs Numerics Factors Max fact. levels Min fact. levels Median fact. levels

credit-g 2 21 1000 0 7 13 10 2 4
adult 2 15 48842 6465 2 12 41 2 5.5
KDD_appetency 2 231 50000 8024152 192 38 15415 1 17.5
KDD_churn 2 231 50000 8024152 192 38 15415 1 17.5
KDD_upselling 2 231 50000 8024152 192 38 15415 1 17.5
bank-marketing 2 17 45211 0 7 9 12 2 3
Amazon 2 10 32769 0 0 9 7518 67 343
eucalyptus 5 20 736 448 14 5 27 8 14
cjs 6 35 2796 68100 32 2 57 10 33.5
ozone_level −1 73 2536 0 1 72 1688 56 267.5
nasa_numeric −1 24 93 0 4 20 14 2 4
KDD98 −1 479 191260 5587563 347 131 25847 2 8

Table 13: Datasets used for the encoding benchmark and their properties.
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Each job was calculated on a single core, the wall time was not limited in the end,
i.e. the wall time was increased if the initial set value of two hours was not enough.
The memory usage was limited by 62GB, which was not enough for some datasets,
for which all factor features were dummy encoded.
Within each job, a wrapped learner depending on the encoding method was created
and afterward trained via repeated cross-validation with 10 folds and 10 repetitions.
Hence, withing each job, 100 models where trained and evaluated on the corre-
sponding cross-validation test sets using the weighted average 1 vs. 1 multiclass
AUC, short multiclass AUC, for classification and mse for regression tasks. This was
done to suppress stochastic effects, which could interfere with the results, if only few
models were trained.

5.1.2. Benchmark results

The benchmark was evaluated by comparing the raw performances of each run for
each dataset first. Several datasets did not provide a significant trend towards a
single encoding method. The boxplots for those datasets are shown in the appendix
in Figure 19 to Figure 26 in order of their appearance in Table 13. Also the results
for the datasets KDD_churn and KDD_upselling can be found there, because of
the similar look of the plots compared to the one of the KDD_appentency, which
is showed in this section. Note, that for all KDD datasets, dummy encoding of the
included high cardinality factor features required more than 62 GB memory which
led to an error for all related jobs due to their resources limitations.
The remaining boxplots are shown in the following and offer clearer results. Starting
with Figure 11, we see that for the appetency dataset integer encoding works very
well and is significantly better than all other encoding methods. Moreover, since
the number ob features is not changed compared to the original data, it is also the
fastest method. All other encoding variations are not significantly different amongst
themselves.
When looking at the amazon data in Figure 12, things are changed since dummy
and integer encoding are clearly worse than all impact or mixed encoding methods.
Between dummy and integer encoding and between all other encodings, it is however
very close and not significantly different.
The results for the cjs datasets, shown in Figure 13, indicate a larger difference
between integer and dummy encoding on the one side and the impact encodings on
the other one. Moreover, it can be clearly seen that both methods have a much
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Figure 11: Benchmark results for KDD appetency dataset.

smaller deviation during the 100 runs. The multiclass AUCs for the impact encoding
methods are widely spread between 0.6 and 0.9. In contrast, the performance for
dummy and integer encoding lies for all runs close to 1 which means an enormous
difference. However, this extreme result might be an indicator for a broken dataset
which somehow includes the class levels within a factor feature in a hidden manner.
This could explain why dummy and integer encoding work in such an impressive way.
Nevertheless, similar results like for KDD_appetency are provided by the boxplots of
the KDD98 regression task, illustrated in Figure 14. It shows, that integer encoding
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Figure 12: Benchmark results for Amazon dataset.

does not only work for classification tasks. Again, it is significantly better than impact
encoding or a mixed variation of impact and dummy encoding. While also for this
dataset, pure dummy encoding needed to much memory than allowed, all encoding
methods except integer encoding are not significantly different among themselves.
As a result, it is not clear, which encoding method is really the best one. Hence,
Figure 15 shows the ranks of each encoding methods averaged over the single ranks
achieved on all datasets. Note, that for datasets for which dummy encoding produced
errors due to memory limitations, dummy encoding got automatically rank 35. This
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Figure 13: Benchmark results for cjs dataset.

explains, why its average rank is found in the rearmost midfield with an average rank
of 20.21.
Figure 15 shows that integer encoding is the best performing encoding variation with
an average rank of 11.25 in total for all datasets. Hence, because of all discussed
results it is chosen to be implemented within autoxgboost for the following benchmark
in Section 6.
When looking more precisely on Figure 15 and especially at impact encoding, one
cannot see a clear pattern of the well performing methods. While, a dummy boundary
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Figure 14: Benchmark results for KDD98 dataset.

of 4 performed best after integer encoding, it is followed by simple impact encoding
with additional dummy encoding below a boundary of 7 factor levels.
With an average rank of 14.17,the best pure impact encoding method, i.e. impact
boundary = 1, was the one proposed by Micci-Barreca (2001) for a value of 0.5 for
rate λ, However, the method included in the vtreat package, proposed by Mount
and Zumel (2016) with an average rank of 15.08 for a boundary of 1 is not far away
In general, these results need to be taken with due care since the boxplots only
indicated a significant difference between integer encoding (and dummy encoding
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Figure 15: Average ranks of all methods on all datasets.

where applicable) and impact encoding for some datasets. Ranks are ordinal values
which means that the difference between two values cannot be interpreted. Hence,
they should not be overrated. Moreover, those results are only valid for the used
XGBoost learner. For different learning algorithms, results may look different. This
also yields for the chosen performance measure. When using the balanced error rate
(ber) for the classification tasks, things changes completely. This is illustrated in
Figure 16, where the pure vtreat impact encoding performs best with an average rank
of 11.29. Moreover, integer encoding is only in the midfield with a rank of 17.00.
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Figure 16: Average ranks of all methods on all datasets using ber and mse as perfor-
mance measure.

Even worse performs dummy encoding by being last with a rank of 26.08. This
strongly reveals the need for a more general benchmark as part of future research,
including several learning algorithms, more datasets and different measures.
Furthermore, feature hashing might be worth a closer look as well. Its ability to
combine multiple categorical features into only few new ones reveals much potential,
especially for reducing the time for model training. A package, which should be
considered for implementing further preprocessing operations is mlrCPO by Binder

55



5. Benchmark experiments for optimizing autoxgboost

(2018), where CPO stands for Composable Preprocessing Operators. The packages
provides a wide range of preprocessing methods which can be attached as wrappers
to mlr learner objects.
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5.2. Threshold tuning benchmarks

When first setting up benchmarks for autoxgboost, we quickly recognized, that even
though tuning the threshold improves the predictive performance of autoxgboost,
it takes a lot of computational time. Hence, we tried to improve the tuning algo-
rithm in the way that it might not only improve the speed of the whole procedure
significantly, but also potentially increase the predictive performance even further.
Since the optimizing process is not as time consuming for binary class problems, we
concentrated on multiclass threshold tuning for improvements.

5.2.1. Algorithm benchmark

As a first step we generally had to improve the multiclass threshold tuning algorithm
by finding a fast optimizer, delivering the best possible performance. The special
requirements for such a black-box function optimizer were already discussed in Sec-
tion 3.3. Hence, we chose different optimizing algorithms for the benchmark.
While this general approach was already introduced in Section 3.3, this section shows
the results of two benchmarks, which led to choosing the GenSA package for mul-
ticlass threshold tuning and finding the algorithm’s optimal hyperparameters.

5.2.1.1. Benchmark configuration
Both benchmarks used the same datasets whose properties are shown in Table 14.
They were chosen from the OpenML database, based on several criteria. First of all,
all datasets needed obviously to be multiclass classification problems with a number
of unbalanced class levels between 3 and 20. Moreover, they should have a moderate
number of features and observations without missing values.
To get general results which are not biased by the chosen learning algorithm, four
different learners were chosen for the benchmark. Those are rpart, randomForest,
ksvm and naiveBayes which are all included in mlr. For model evaluation, the mean
misclassification error (mmce), balanced error rate (ber), kappa and weighted kappa
(wkappa) were used as performance measures. For measures, which originally need
to be maximized (kappa and wkappa), the achieved performance was multiplied by
−1.
The benchmark algorithms were reduced to the optimization of the performance func-
tion. For this purpose, a learner was trained via holdout split on the training data and
predicted on the test set. These predictions were then used to measure and improve
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Threshold tuning benchmark datasets

Name Classes Features Instances

car 4 7 1 728
splice 3 62 3 190
analcatdata_authorship-a4 4 71 841
rmftsa_sleepdata 4 3 1 024
cardiotocography 10 36 2 126
volcanoes-a1 5 4 3 252
autoUniv-au6-750 8 41 750
autoUniv-au6-1000 8 41 1 000
cardiotocography 3 36 2 126
thyroid 3 22 3 772

Table 14: Datasets used for the threshold tuning benchmark and their properties.

the performance by optimizing the threshold, This means, that the interesting part
of the benchmark was reduced to comparing how fast and well the different algo-
rithms are able to improve the performance depending on the threshold. For that, the
starting threshold for each algorithm was the vector tstart = (1/k, . . . , 1/k)︸ ︷︷ ︸

k−times

, where

k is the number of class levels of the datasets’ target variable. Moreover, since the
threshold values naturally sum up to 1, each algorithm was given the corresponding
lower and upper value bounds as restrictions for the value space.
The first algorithms of the benchmark was the preliminary in mlr implemented Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) which was introduced by
Hansen and Ostermeier (1996). The underlying evolution strategy approach is based
on the principle of biological evolution, consisting of variation and selection. Variation
happens in each iteration (generation) of the algorithm by stochastically drawing new
candidate solutions from a multivariate normal distribution, generated by the current
“parental” values. At those new candidate points, the objective function gets evalu-
ated, and based on their performance, the best candidates become the next parents
in the following iteration. Thus, the mean and the covariance matrix of the distribu-
tion are updated such that the likelihood of previously successful candidate solutions
is maximized. Updating the latter is done by the method of Covariance Matrix Adap-
tion (CMA). Within mlr, the CMA-ES algorithm was implemented by the cma_es()
function of the cmaes package by Trautmann et al. (2011).
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Another CMA-ES implementation in R, which is also part of the benchmark, is given
by the function cmaes() of the cmaesr package by Bossek (2016). This function
also allows restarts.
A further stochastic algorithm, which was benchmarked, was the GenSA algorithm
by Yang Xiang et al. (2013) which was already introduced in detail in section Sec-
tion 3.3.2.
The last benchmarked algorithm was hydroPSO by Zambrano-Bigiarini and Rojas
(2013), where PSO stands for Particle Swarm Optimization. It is implemented by
the hydroPSO() function of the hydroPSO package by Zambrano-Bigiarini (2014).
As a stochastic population-based algorithm, it shares similar properties with the evo-
lutionary algorithm of CMA-ES. Its was discovered while investigating simulations
of the social behavior of bird flocks and was introduced by Kennedy and Eberhart
(1995). The method is frequently used due to its efficiency and flexibility. In con-
trast to CMA-ES, PSO does not include evolutionary parts for variability. Instead, it
searches new solution candidates on the basis of individual and neighborhood-based
velocity and position. The advantages of PSO lead to developing several different
variations.
For this benchmark, a job was defined as dataset - learner - optimization algortihm
- measure combination. In order to antagonize stochastic effects, each job was
replicated ten times. Hence, the number of jobs was

#{Datasets} × #{Learners} × #{Optimizers}
× #{Measures} × #{Replications}

= 10× 4× 4× 4× 10 = 6400 .

Each job was running on a single core machine of the LRZ Linux Cluster.

5.2.1.2. Benchmark results
Since the datasets were of moderate size, it was possible to set the maximal iterations
for each algorithm to 20000. The idea behind this was to find out how fast each
algorithm converges at some point and hence to get an overview over the elbow point
of each optimizer. This point is the optimal ratio between the achieved performance
and the time needed to reach it. Hence, an optimal optimization algorithm which
would be likewise the fastest and best performing one would have its elbow point
above and before the other algorithms, when looking at the evaluation measure.
In order to compare the results for different datasets, measures and learners, first,
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the best value of each objective function was determined and regarded as global
optimum. Afterward, three ε-neighborhoods, 10%, 5% and 1%, were defined around
each optimum. Each experiment was then scored at each function evaluation, i.e.
for a performance function value inside a neighborhood, it got 1 point inside the 10%

neighborhood, 2 points inside the 5% and 3 points inside the 1% neighborhood. If
no neighborhood was reached, no point was scored. The trace for each experiment
was then used to calculated the success rate per algorithm, for an iteration i :

sri(Algorithm) =
achieved points at iteration i by the algorithm

maximal possible points at iteration i

=

∑
traces points(i|Algorithm)

3 points×#{Datasets} ×#{Learners} ×#{Measures}

This success rate indicates how many percent of a problem an algorithm has solved
at iteration i. Figure 17 shows the mean (left) and individual success-rates of all
benchmarked algorithms.
Clearly, the GenSA algorithm outperformed the other methods when looking at the
success rates. However, it was the last one which reaches its elbow point. Never-
theless, is offered the most potential for this kind of optimization problem.
When looking at the individual curves for the 10 replications, one can see that this
result is even significant at the end. Surprisingly, the previously default of mlr, the
cmaes algorithm performed significantly worst in the whole benchmark.
Having found the best performing algorithm for multiclass threshold tuning, we were
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Figure 17: Mean (left) and individual success-rate comparison between the bench-
marked optimization functions.
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interested in further improving it by finding the optimal hyperparameters of function
GenSA(). This was done in a second benchmark, which will be discussed in the next
parts of this section.

5.2.2. Hyperparameter benchmark

While the GenSA algorithm already outperformed its competitors in the main bench-
mark, it might be further improved for the special optimization problem of threshold
tuning when an optimal hyperparameter setting is used. Moreover, a default setting
for mlr’s integrated threshold tuning should be found, which provides good results
while being fast.

5.2.2.1. Benchmark configuration
One idea to find the optimal hyperparameters for the GenSA function was to tune it
with iterated F-racing (irace) by López-Ibáñez et al. (2016), but in order to get a
better insight in how each parameter works for the algorithm, the idea of making a
benchmark experiment for a large parameter grid was pursued. The corresponding
parameters and benchmarked values can be seen in Table 15. Each combination was
applied to the GenSA function for tuning the threshold using the predictions of a
10-fold cross-validation on the same datasets, which were previously used for the
main threshold tuning benchmark of Section 5.2.1. Remember, their properties were
illustrated in Table 14.

GenSA Parameterset

Name values Description

smooth TRUE/FALSE TRUE when the objective function is
smooth, or differentiable almost every-
where in the region of par, FALSE oth-
erwise.

temperature 250, 1000, 5000, 10000 Initial value for temperature.
visiting.param 2.1, 2.3, 2.5, 2.7, 2.9 Parameter for visiting distribution.
acceptance.param 0,−3,−6,−9,−12,−15 Parameter for acceptance distribution.
simple.function TRUE/FALSE FALSE means that the objective func-

tion is complicated with many local min-
ima.

Table 15: GenSA hyperparameters and ranges for the benchmark
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Additionally to the previous learners, XGBoost was used for model training. With
the two evaluation measures mmce and ber, the jobs of this benchmark were given
by

#{Datasets} × #{Learners}
× #{Measures} × #{Parameter combinations}
= 10× 5× 2× 480 = 48000.

Each job was calculated on a single core machine without special wall time or mem-
ory limitations.
To get a good overview over the algorithm’s progress during optimization, the maxi-
mal function calls for the GenSA algorithm were set to 30 000. Again, the aim of the
benchmark is to find a parameter setting which provides the best trade-off between
performance speed and quality.

5.2.2.2. Benchmark results
Within this benchmark experiment, each of the 480 parameter configurations was
used on the 100 different dataset/learner/measure settings. For each of these set-
tings, the best achieved value was determined and used as maximal score. Afterward,
for each parameter configuration, the achieved score per iteration averaged on all
100 settings was calculated. These score traces of all 480 parameter configurations
were finally compared. The result is illustrated in Figure 18. One can see in Fig-
ure 18a that the performance of all parameter configurations mostly improve up to
the first 10000 function calls of the objective function. Therefore, this interesting
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Figure 18: Overview and detailed view of each GenSA parameter configuration per-
formance.
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Best GenSA parameter configurations (out of 480)

ID smooth simple temp visit accept best at

133 FALSE TRUE 250 2.5 -15 2.5k and 5k
56 FALSE FALSE 1000 2.9 -12 10k
13 FALSE FALSE 250 2.5 -15 20k to end

Table 16: Best GenSA parameter configurations.

sector is shown in more detail in Figure 18b. Three parameter configurations are
highlighted in both plots whose details are shown in Table 16. The red one (ID 133)
provides the best performance after 2 500 and 5 000 function calls, while the yellow
one (ID 56) is the best at 10 000 and the blue one (ID 133) is the best performing
configuration after 20 000 function calls all the way up to the last function evalua-
tion. Clearly, parameter configuration 133 achieves its maximal performance already
at around 3 000 function calls. Even though the other two configurations are able
to pass it before 10 000 and 20 000 function calls, the difference in performance is
only little. Hence, parameter configuration 13 was chosen as best trade-off between
computational time and optimization performance and hence built intomlr as default
parameter configuration.
Besides only looking on the scores, one can also look on the average rank of a param-
eter configuration per function call. This was done on Figure 27 to Figure 30, which
can be found in the appendix, first for all datasets and then split into 3 dataset groups.
The first contains all 3-class datasets, while the other figures show the ranks for the
4/5-class and 8/10 class datasets. Below each illustration, the parameter settings of
the best performing configurations can be found in Table 19 to Table 22 in the ap-
pendix. The plots and tables support the previously found influence and connections
of the different GenSA parameters. We can see that setting the simple.function
argument to TRUE, the algorithm generally increases its performance fast resulting
in low ranks. The speed is also improved by setting a big absolute negative value
to the acceptance parameter, which reduces the acceptance of uphill jumps. In
contrast, setting simple.function to FALSE increases the probability to get best
overall performance, not being trapped in a local optimum. However, that comes at
the expense of a long run-time.
Another indication about the structure of the threshold objective function is that
almost all well performing parameter configurations have smooth set to FALSE.
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6. Autoxgboost benchmarks

After optimizing autoxgboost, its performance is compared to the other Auto-ML
solutions Auto-WEKA by Thornton et al. (2013) and auto-sklearn by Feurer et al.
(2015),

6.1. Benchmark configuration

In order to assure the best possible comparability, we tested autoxgboost on the same
datasets as the other two competitors used within their papers. This includes the
same training- and test-data splits in combination with a holdout strategy and the
same performance measure. The datasets are presented in Table 17. Moreover, like
in the paper of Thornton et al. (2013), 25 runs were performed.
The parameter settings of autoxgboost were mostly set to the default values, which
are known from Table 10. However, the tuning budget was increased to 150 mlrMBO-
iterations and stopped after 10 hours, if tuning was not complete until then. For

Autoxgboost benchmark datasets

Name Factors Numerics Classes Train instances Test instances

Dexter 20 000 0 2 420 180
GermanCredit 13 7 2 700 300
Dorothea 100 000 0 2 805 345
Yeast 0 8 10 1 038 446
Amazon 10 000 0 49 1 050 450
Secom 0 591 2 1 096 471
Semeion 256 0 10 1 115 478
Car 6 0 4 1 209 519
Madelon 500 0 2 1 820 780
KR-vs-KP 37 0 2 2 237 959
Abalone 1 7 28 2 923 1 254
Wine Quality 0 11 11 3 425 1 469
Waveform 0 40 3 3 500 1 500
Gisette 5 000 0 2 4 900 2 100
Convex 0 784 2 8 000 50 000
Rot. MNIST + BI 0 784 10 12 000 50 000

Table 17: Datasets used for the comparison benchmark of autoxgboost, Auto-WEKA
and auto-sklearn.
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this, the XGBoost hyperparameters corresponded to the default ones from Table 7.
Additionally to autoxgboost, the featureless learner of mlr was trained as a baseline.
Furthermore, a random forest of the randomForest package and a decision tree from
the rpart were trained with their default hyperparameters set.
Also this benchmark was performed on the LRZ Linux Cluster. Given the benchmark
configuration described above, 1600 jobs were created, determined by

#{Datasets} × #{Learners} × #{Repetitions}
= 16 × 4 × 25 = 1600.

The tree, random Forest and featureless learner were all trained on a single-core
machine with a maximum memory of 62GB. No time limit was set for those learners.
In contrast, due to the native support for parallelization, autoxgboost was running
on the parallel cluster on 28 cores also using 62GB of memory. Nevertheless, the
overall time budget was limited to 12 hours.
As seen in Table 17, the chosen datasets are very different regarding the number
of numeric and factor features, but also when looking at the number of target class
levels and the train and test dataset sizes. Hence, the datasets chosen by Thornton
et al. (2013) should serve as an adequate heterogeneous base to test autoxgboost’s
performance on different situations.

6.2. Benchmark results

As mentioned before, each job was repeated 25 times. Afterward, 100 000 bootstrap
samples were drawn of those runs of which 4 random runs were selected for each
bootstrap sample. Then, the one of these four runs with the best performance was
saved. Finally, the median of those 100 000 mean misclassification error values is
returned and presented in Table 18. The bold numbers in each row indicates the best
performing algorithm for the specific dataset. Training of the decision tree and the
random forest failed on the datasets Dexter and Dorothea. Hence, no comparison
values for those combinations are available in Table 18.
Obviously, the featureless learner is not a real competitor but an indicator that all
other learners work as they should, i.e. they should significantly outperform this
baseline learner. As we can see easily in Table 18, only for the datasets Dorthea and
Secom, the featureless learner achieves surprising results by providing better per-
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Autoxgboost benchmark results

Dataset baseline rpart randomForest autoxgboost Auto-WEKA auto-sklearn

Dexter 52,78 Error Error 12.22 7.22 5.56
GermanCredit 32.67 29.67 26.33 27.67 28.33 27.00
Dorothea 6.09 Error Error 5.22 6.38 5.51
Yeast 68.99 42.25 37.30 38.88 40.45 40.67
Amazon 99.33 74.22 22.00 26.22 37.56 16.00
Secom 7.87 10.43 8.30 7.87 7.87 7.87
Semeion 92.45 36.06 6.92 8.38 5.03 5.24
Car 29,15 5.98 1.54 1.16 0.58 0.39
Madelon 50.26 21.41 25.64 16.54 21.15 12.44
KR-vs-KP 48.96 2.92 1.77 1.67 0.31 0.42
Abalone 84.04 75.98 75.26 73.75 73.02 73.50
Wine Quality 55.68 48.40 32.68 33.70 33.70 33.76
Waveform 68.80 28.33 15.73 15.40 14.40 14.93
Gisette 50.71 7.33 2.57 2.48 2.24 1.62
Convex 0.50 48.80 23.43 22.74 22.05 17.53
Rot. MNIST + BI 88.88 78.19 53.43 47.09 55.84 46.92

Table 18: Benchmark results are median percent error across 100 000 bootstrap
samples (out of 25 runs) simulating 4 parallel runs. Bold numbers indicate
best performing algorithms. Best Auto-ML results are represented by blue
numbers

formances than other learning algorithms. As a consequence, the results on those
datasets should be questioned and the datasets further investigated.
When concentrating on the other learners, and especially on the rpart at first, one
can see that it is significantly outperformed on almost all datasets by all automatic
machine learning algorithms and the random forest. Only on the Madelon dataset,
it performs at least better than the random Forest, but still clearly worse than au-
toxgboost and auto-sklearn.
The biggest surprise of this benchmark is the performance of the random Forest.
While this learner is known for its strong performance without any parameter tuning,
it provided the best performance of all methods on three datasets. Moreover, the
performance difference is generally not very large on most datasets.
When looking only on the automatic machine learning algorithms autoxgboost, Auto-
WEKA and auto-sklearn, one can concentrate on the blue numbers in Table 18. On
half of the 16 datasets, auto-sklearn provides the best results. So does Auto-WEKA
on four and autoxgboost on two datasets. On one of the two remaining datasets,
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Secom, all Auto-ML algorithms deliver the same performance, while autoxgboost and
Auto-WEKA slightly perform better than auto-sklearn on the wine quality dataset.
Consequently, auto-sklearn has been identified as superior Auto-ML method beneath
all benchmarked ones in this thesis. Given the fact, that Auto-WEKA and auto-
sklearn are both CASH methods, whose optimization includes learner selection and
hyperparameter tuning, they can be directly compared regarding their time require-
ments and computational complexity. As a result, there is every indication that
auto-sklearn should be favored over Auto-WEKA.
In contrast, the problem space of autoxgboost is much smaller due to its restriction
on a single gradient boosting learner. Hence, results should require significant less
resources than a CASH algorithm. When looking again at Table 18, autoxgboost
provides similar results than its two competitors on more than half of all datasets.
Hence, it’s right to exist is based on the case where e.g. resources are limited. On
the other hand, when resources are not an issue for the data scientist, auto-sklearn
should yet be preferably used.
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7. Conclusion

When automating a specific process or work-flow, one needs to handle all possible
potential sources of error. For automating gradient boosting with XGBoost, this
means to encode factor variables as a first step. Different methods for doing this
task where introduced in Section 3.1 and compared by a benchmark experiment in
Section 5.1. Surprisingly, none of the more complex impact encoding variations, but
simple feature hashing delivered not only the best performance, but also was the
fastest method and was hence chosen for autoxgboost. However, this benchmark
must be understood as a starting point for further research. This includes more
and better datasets which are probably not that much unbalanced as e.g. the KDD
datasets or the Amazon one. Moreover, more suitable measures should be consid-
ered for evaluating the results, since we saw that different measures might lead to
different results.
As a second part, multiclass threshold tuning was improved within the mlr pack-
age. The starting point was a benchmark in Section 5.2.1 which compared different
optimization algorithms which can handle potentially complex multimodal functions.
With Generalized Simulating Annealing of the GenSA package winning this bench-
mark regarding speed and optimization quality, a second benchmark in order to deter-
mine its optimal hyperparameters was performed in Section 5.2.2. Interestingly, the
parameter indicates, that the black-box threshold functions are of a rather simple,
but non smooth structure.
After optimizing autoxgboost, it was compared in a last benchmark experiment in
Section 6 with its competitors Auto-WEKA and auto-sklearn. These final results
showed that while autoxgboost is outperformed on most datasets by auto-sklearn,
it is able to compete with both on some datasets, providing state-of-the-art per-
formance with only one learning algorithm instead using a whole library of learners.
This last property makes autoxgboost much faster to perform, since the optimization
space of autoxgboost is much smaller than the Combined Algorithm Selection and
Hyperparameter optimization (CASH) problem, which Auto-WEKA and auto-sklearn
are trying to solve.
When comparing XGBoost with other gradient boosting implementations in Sec-
tion 2.6, we saw that especially lightGBM and CatBoost are two algorithms which
are worth a look. Due to their superior predictive performance they might be able
to replace XGBoost for our automatic gradient boosting package, but only, if this
does not come at the expense of computational speed. While lightGBM already
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claims to meet both demands, CatBoost comes with advanced categorical feature
handling which frequently outperforms XGBoost and lightGBM. However, installa-
tion and implementation of both gradient boosting machines seem do not seem to
be that easy. Further research on this topic including real world data benchmark ex-
periments to compare the R-implementation of all three learning algorithms should
be part of future work in order to improve our automatic gradient boosting package
even more. This, together with an improved factor encoding could provide this extra
performance needed to fully compete with auto-sklearn.
The benchmark experiments in this master’s thesis indicated that the reliability on
their results is not always guaranteed easily. Especially the choice of the datasets
and performance measures requires great care, since little changes might have large
effects. As a consequence, an even wider diversification of datasets and measures,
but also learning algorithms should be considered for further benchmark experiment
based research.
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A.1. Additional figures of the factor encoding benchmark
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Figure 19: Benchmark results for credit-g dataset.
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Figure 20: Benchmark results for adult dataset.
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Figure 21: Benchmark results for KDD churn dataset.
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Figure 22: Benchmark results for KDD upselling dataset.
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Figure 23: Benchmark results for bank-marketing dataset.
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Figure 24: Benchmark results for eucalyptus dataset.
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Figure 25: Benchmark results for ozone dataset.
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Figure 26: Benchmark results for nasa dataset.
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A.2. Additional figures and tables of the GenSA tuning
benchmark
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Figure 27: Average ranks of overall best GenSA parameter settings

Best GenSA parameter configurations (out of 480)

ID smooth simple temp visit accept best at

128 FALSE TRUE 250 2.3 -12 Overall best
87 FALSE FALSE 5000 2.9 -9 End
45 FALSE FALSE 1000 2.5 -9 20k
139 FALSE TRUE 250 2.7 -15 10k
133 FALSE TRUE 250 2.5 -15 5k
146 FALSE TRUE 250 2.9 -12 2.5k

Table 19: Best overall GenSA parameter settings
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Figure 28: Average ranks of best GenSA parameter settings 3-class-datasets

Best GenSA parameter configurations (out of 480)

ID smooth simple temp visit accept best at

209 FALSE TRUE 5000 2.9 -3 Overall
88 FALSE FALSE 5000 2.9 -6 10k to end
206 FALSE TRUE 5000 2.9 -12 2.5k

Table 20: Best GenSA parameter settings for datasets with 3 classes
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Figure 29: Average ranks of best GenSA parameter settings 4- and 5-class-datasets

Best GenSA parameter configurations (out of 480)

ID smooth simple temp visit accept best at

411 TRUE TRUE 1000 2.7 -9 5k, 10k and overall
17 FALSE FALSE 250 2.5 -3 End

162 FALSE TRUE 1000 2.3 0 20k
240 FALSE TRUE 10000 2.9 0 2.5k

Table 21: Best GenSA parameter settings for datasets with 4 and 5 classes
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Figure 30: Average ranks of best GenSA parameter settings 8- and 10-class-datasets

Best GenSA parameter configurations (out of 480)

ID smooth simple temp visit accept best at

128 FALSE TRUE 250 2.3 -12 5k and overall
13 FALSE FALSE 250 2.5 -15 End
175 FALSE TRUE 1000 2.9 -15 20k
139 FALSE TRUE 250 2.7 -15 10k
133 FALSE TRUE 250 2.5 -15 2.5k

Table 22: Best GenSA parameter settings for datasets with 8 and 10 classes
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A.3. Repositories containing the R-Code of this thesis

autoxgboost
https://github.com/ja-thomas/autoxgboost

mlr
https://github.com/mlr-org/mlr

autoxgboost benchmark
https://github.com/ja-thomas/autoxgb_benchmark

Threshold tuning benchmark
https://github.com/berndbischl/tune_threshold_benchmark

GenSA parameter optimization benchmark
https://github.com/Coorsaa/GenSA_tuning_benchmark
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