
Master’s Thesis
Efficient and Distributed Model-Based Boosting for Large Datasets

Munich, May 7, 2018

Department of Statistics
Ludwig Maximilian University of Munich

Degree course: M.Sc. Statistics

Student: Supervisors:

Daniel Schalk Prof. Dr. Bernd Bischl
Janek Thomas, M.Sc.

STATUTORY DECLARATION
I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Munich, May 7, 2018
signature

Abstract

Component-wise boosting applies the boosting framework to statistical models, e. g., gen-
eral additive models using component-wise smoothing splines. Boosting these kinds of
models maintains interpretability and enables unbiased model selection in high dimen-
sional feature spaces. A well-known implementation of this principle is the R package
mboost.

The R package compboost is an alternative implementation of component-wise boosting
written in C++ to obtain high runtime performance and full memory control. The main
idea is to provide a modular class system which can be extended without editing the
source code. Therefore, it is possible to use R functions as well as C++ functions for custom
base-learners, losses, logging mechanisms or stopping criteria.

The main goal of this performant implementation is to enable model fitting on large
datasets which can be troublesome with the mboost package. In terms of runtime,
compboost is three to ten times faster then mboost and uses, depending on the base-
learner, less memory. Nevertheless, compboost has much unused potential like using
sparse data matrices or implementing parallel computations. These enhancements will
be implemented soon.

Contents

1. Introduction 1

2. Methodology 2
2.1. General Notation and Terminology . 2
2.2. Learning Theory Reminder . 2

2.2.1. Loss Function . 2
2.2.2. Empirical Risk . 2
2.2.3. Loss Minimization . 3

2.3. Gradient Boosting Reminder . 3
2.3.1. Forward Stagewise Additive Modelling 3
2.3.2. Gradient Boosting . 4

2.4. Component-Wise Boosting . 6
2.5. Related Work . 8

2.5.1. Software for Component-Wise Boosting 8
2.5.2. Software for Boosting Trees . 8

3. About the Implementation 10
3.1. Software Design . 10

3.1.1. Polymorphism . 10
3.1.2. Factory Pattern . 11
3.1.3. Registry Pattern . 11
3.1.4. Extending Code Without Recompilation 12
3.1.5. Armadillo as Library for Linear Algebra 14

3.2. Rcpp . 15
3.2.1. Exposing C++ Code . 15
3.2.2. Rcpp Armadillo . 17

3.3. Idea of The Main Classes . 17
3.3.1. Data Classes . 17
3.3.2. Loss Classes . 19
3.3.3. Base-Learner Related Classes . 21
3.3.4. Logger Related Classes . 23
3.3.5. Optimizer Classes . 24
3.3.6. Compboost Class . 25

3.4. Rcpp Modules in Compboost . 27

4. Use-Case 30
4.1. Data: Titanic Passenger Survival Data Set 30
4.2. Data and Factories . 31

4.2.1. Numerical Features . 31
4.2.2. Categorical Features . 32

4.3. Loss and Optimizer . 35
4.4. Logger . 35

4.4.1. Define Logger . 35

i

Contents

4.4.2. Create Logger List and Register Logger 37
4.5. Train Model and Access Elements . 38

4.5.1. Run the Algorithm . 38
4.5.2. Accessing Elements . 38
4.5.3. ROC Curve . 39

4.6. Continue and Reposition the Training . 40
4.7. Illustrating Some Results . 41

4.7.1. Inbag vs OOB . 41
4.7.2. Fare Spline Base-Learner . 43

4.8. Some Remarks . 44

5. Benchmarking Compboost 45
5.1. Runtime Benchmark . 45

5.1.1. Number of Iterations . 46
5.1.2. Number of Observations . 46
5.1.3. Number of Base-Learners . 47

5.2. Memory Benchmark . 48
5.2.1. Number of Iterations . 51
5.2.2. Number of Observations . 51
5.2.3. Number of Base-Learners . 52

6. Extending Compboost 53
6.1. Custom Base-Learner . 53

6.1.1. Using R Functions . 53
6.1.2. Using C++ Functions . 56

6.2. Custom Losses . 59
6.2.1. Using R Functions . 59
6.2.2. Using C++ Functions . 60

6.3. Logging Performance Measures . 62

7. Conclusion and Outlook 64

List of Figures 66

List of Tables 67

A. Digital Appendix 70

B. Binomial Loss Proof 71

C. C++ Files for Custom Classes 74
C.1. Custom Base-Learner . 74
C.2. Custom Loss . 75

ii

1. Introduction
Machine learning methods are, thanks to the increasing computational power of comput-
ers, some of the most powerful techniques to draw conclusions from vast amounts of data
and widely used by data scientists and statisticians around the world. Boosting is a very
important part of this tool-set. The main idea behind boosting is to approximate an un-
known data generating process by minimizing the empirical risk in function space. One
common way is to boost classification and regression trees. This is known as gradient tree
boosting [FHT01, pp. 353–358] and is famous for its high predictive power.

Beside the enormous predictive power, gradient tree boosting has a lack of interpretability.
One method for interpretable boosting is the boosting of statistical models instead of tree-
based models. This is known as component-wise boosting and comprises the core part of
this thesis. Chapter 2 provides some terminology and general theory of gradient boosting
and component-wise boosting and how this algorithm gains interpretability. Finally, a
short summary about related work is given.

The most popular R implementation of component-wise boosting is the package mboost
[HBK+17]. This package provides a huge flexibility since it allows to specify an arbitrary
custom base-learner written in R. The drawback of mboost is that it is very hard to main-
tain and the performance decreases with an increasing size of the datasets. The goal of
writing a new C++ implementation of component-wise boosting is to tackle these issues.
The implementation developed within this thesis, called compboost, is then exposed to R
by extensive use of Rcpp [Edd13]. The technical aspects, such as software design, and the
implemented classes are covered in chapter 3.

After explaining the technical details, chapter 4 includes a use-case that introduces the
reader to the R API that is generated by Rcpp. This API is a class system using R S4
objects. Nevertheless, using the S4 class system is not very user friendly, but it reflects
what happens on the C++ side.

Chapter 5 includes a benchmark how well compboost performs against mboost. This com-
parison covers runtime as well as memory aspects. Chapter 6 gives an introduction on
how it is possible to extend compboost with custom functions without recompiling the
whole package.

Compboost is in an early stage of development. Hence, many tasks, e. g. support for sparse
data matrices and parallelization, are not implemented at the moment. Chapter 7 lists
those tasks which are not supported yet after summarizing the main results. Additionally,
this chapter deals with some further ideas like visualizing the model or also exporting the
C++ source to python.

As last note, the name compboost is an abbreviation of the words component-wise and
boosting. The developer version of compboost is available on GitHub (https://github.
com/schalkdaniel/compboost). The package is unit tested and uses code coverage.

1

https://github.com/schalkdaniel/compboost
https://github.com/schalkdaniel/compboost

2. Methodology

2.1. General Notation and Terminology
Consider a p−dimensional feature space X = (X [1]×X [2]× . . .×X [p]) and a target space
Y. Suppose that there is an unknown functional relationship f between X and Y. Machine
learning algorithms try to learn this relationship using training data with observations that
have been drawn i.i.d. from an unknown probability distribution P on the joint space
X × Y. Furthermore, consider an arbitrary prediction model f̂ , fitted on some training
data to approximate f . Let D =

{(
x(1), y(1)) , . . . , (x(n), y(n))} be a train data set sampled

i.i.d. from P where n is the number of observations in the train set. Let P = {1, . . . , p}
be an index set referring to all features. We denote the corresponding random variables
generated from the feature space by X = (X1, . . . , Xp) and the random variable generated

from the target space by Y . In our notation, the vector x(i) =
(
x

(i)
1 , . . . , x

(i)
p

)T
∈ X refers

to the i-th observation which is associated with the target outcome y(i) ∈ Y.

2.2. Learning Theory Reminder
2.2.1. Loss Function
Finding f̂ requires a mapping from the training data D to a model f̂ . This mapping is
called inducer. To quantify the goodness of a prediction y = f(x), a function is required
to measure the loss of this prediction:

L : Y × X → R+

y, x 7→ L (y, f(x))

The loss function is used within the inducer to fit a function (model) f̂ using training data
D. It is worth mentioning that different loss functions transfer their properties to the in-
ducer. For instance, measuring the absolute difference between y and f(x) (absolute loss)
is more robust in terms of outliers than measuring the quadratic differences (quadratic
loss) where bigger errors get more weight.

The properties of the loss function are also used to tackle different tasks. Doing classifica-
tion requires different loss functions than regression tasks. To get an overview about the
implemented loss functions of compboost and their use see section 3.3.2.

2.2.2. Empirical Risk
It would be desirable to calculate the loss for every possible combination of x ∈ X and
the corresponding true value y ∈ Y. Using statistics, this would be measured by the
expectation of the loss function with respect to the joint distribution Pxy. This expectation

2

2. Methodology

is defined as the risk R(f):

R(f) = E [L(y, f(x))] =
∫
L(y, f(x)) dPxy (2.1)

Since Pxy is unknown it is not possible to calculate R(f). The most common way to
approximate expectations is to use the mean as empirical counterpart on the training
data (y, x) ∈ Dtrain. This is called the empirical risk Remp(f):

Remp(f) = 1
n

n∑
i=1

L
(
y(i), f(x(i))

)
(2.2)

It is also common to use the empirical risk as a summed version:

Remp(f) =
n∑
i=1

L
(
y(i), f(x(i))

)
(2.3)

In compboost the average version as in equation (2.2) of the empirical risk is used for
tracking.

2.2.3. Loss Minimization
An obvious aim is to minimize the empirical risk which is also known as loss minimization.
The result of the loss minimization is the function f̂ which minimizes Remp(f):

f̂ = arg min
f∈H

Remp(f) (2.4)

H is the space of hypotheses or all possible functions.

In component-wise boosting it is assumed that f is a function which can be parametrised
by θ ∈ Θ. Hence, the empirical risk can also be parametrised as:

Remp(θ) = 1
n

n∑
i=1

L
(
y(i), f(x(i)|θ)

)
(2.5)

Therefore, the loss minimization yields in finding a parameter setting θ̂ which minimizes
Remp(θ):

θ̂ = arg min
θ∈Θ

Remp(θ) (2.6)

2.3. Gradient Boosting Reminder
2.3.1. Forward Stagewise Additive Modelling
Generally, boosting fits an additive model [FHT01, p. 341]. This means, that the used f
in boosting can be expressed in an additive fashion

f(x) =
M∑
m=1

β[m]b
(
x, θ[m]

)
(2.7)

3

2. Methodology

where β[m], m = 1, . . . ,M , are the expansion coefficients or weights of a so-called basis
function b(x, θ) of the input x specified by the parameters θ.

The goal is to minimize Remp using this additive structure of f(x) as specified in equation
(2.7):

Remp(f) = 1
n

n∑
i=1

L
(
y(i), f(x(i))

)
= 1
n

n∑
i=1

L

(
y(i),

M∑
m=1

β[m]b
(
x, θ[m]

))
(2.8)

Furthermore, f can be parametrised by introducing a parameter vector θ0 containing all
parameters:

θ0 =
((
β[1], θ[1]

)
, . . . ,

(
β[M], θ[M]

))
(2.9)

Hence, the aim is to minimize Remp(θ0) = Remp(f) with respect to θ0. However, the
dimension of θ0 can be very large which makes it difficult to find θ̂0.

As Friedman, Hastie, and Tibshirani [FHT01, p. 342] have pointed out, “forward stagewise
additive modeling approximate the solution [...] by sequentially adding new basis functions
to the expansion without adjusting the parameters and coefficients of those that have already
been added.” This means that it is not necessary to find θ0 simultaneously. It is sufficient
to iteratively find θ[m]. This procedure is shown in algorithm 1.

Initialize f̂ [0] = 0;

for m ∈ {1, . . . ,M} do
// Fit m-th base-learner:(
β̂[m], θ̂[m]

)
= arg minβ,θ 1

n

n∑
i=1

L
(
y(i), f̂ [m−1](x(i)) + βb (x, θ)

)
;

// Update f̂ :
f̂ [m](x) = f̂ [m−1](x) + β̂[m]b(x, θ̂[m]) ;

end
Algorithm 1: Forward stagewise additive modeling.

The takeaway of forward stagewise additive modelling is the idea of sequentially cumu-
lating weak base-learners to a more powerful one. The next step is to introduce gradient
boosting as a model class that utilises this strategy.

2.3.2. Gradient Boosting
A very popular algorithm for binary classification called AdaBoost was introduced by Fre-
und and Schapire in 1997 [FS97]. The concept of gradient boosting is a generalization of
AdaBoost and can be motivated by approximating the unknown function f via optimiza-
tion in function space. As already seen, forward additive stagewise modelling optimizes
the empirical risk with respect to the latest base function at iteration m. To find a new
additive base-learner b(x, θ[m]) a common way is to use gradient descent in function space.

4

2. Methodology

As mentioned before, the goal is to find a function f that minimize the empirical Risk
Remp. This can be achieved using gradient descent with f as “parameter”:

f [m](x) = f [m−1](x)− β[m]
[

δ

δf(x)Remp(f)
]
f=f [m−1]

(2.10)

The parameter β[m] is called step size or expansion coefficient and indicates the size of
the next gradient descent step. Calculating the derivative of the risk function for a given
observation x(i), i ∈ {1, . . . , n}, yields:

δ

δf(x(i))
Remp(f) = δ

δf(x(i))

n∑
k=1

L
(
y(k), f(x(k))

)
= δ

δf(x(i))
L
(
y(i), f(x(i))

)
(2.11)

This gives the so-called pseudo residuals r[m] ∈ Rn with its elements:

r[m](i) = −
[

δ

δf(x(i))
L
(
y(i), f(x(i))

)]
f=f [m]

(2.12)

Using those pseudo residuals, a gradient descent update is done by calculating for each
i ∈ {1, . . . , n}:

f [m](x(i)) = f [m−1](x(i)) + β[m]r[m](i) (2.13)

To summarize the concept of pseudo residuals, they can be seen as weights of the obser-
vations to indicate in which direction f [m] should be updated to fit the data. This is also
the general concept of gradient boosting.

To start the algorithm it is also necessary to initialize f̂ [0]. This is done by using a
constant c ∈ R that minimizes the empirical risk. Hence, the algorithm is initialized in a
loss optimal manner:

f̂ [0] = arg min
c∈R

Remp(c) (2.14)

The common way to fit the base-learner b(x, θ[m]) is to minimize the sum of squared errors
(SSE) by fitting to the pseudo residuals r[m]:

θ̂[m] = arg min
θ∈Θ

n∑
i=1

(
r[m](i) − b(x(i), θ)

)2
(2.15)

Finally, the above concepts can be put into the final gradient boosting algorithm (algorithm
2). For a more detailed explanation see [FHT01, pp. 337 – 364].

5

2. Methodology

Result: Gradient boosting model f̂(x)
Initialize f̂ [0](x) = arg minc∈RRemp(c) ;
for m ∈ {1, . . . ,M} do

// Update pseudo residuals:
r[m](i) = −

[
δ

δf(x(i))L
(
y(i), f(x(i))

)]
f=f [m−1]

, ∀i ∈ {1, . . . , n} ;

// Fit a base-learner to the pseudo residuals r[m](i):
θ̂[m] = arg minθ∈Θ

n∑
i=1

(
r[m](i) − b(x(i), θ)

)2 ;

// Find the optimal β̂[m] using line search:
β̂[m] = arg minβ∈R

n∑
i=1

L
(
y(i), f [m−1](x) + βb(x(i), θ̂[m]

)
;

// Update the model:
f̂ [m](x) = f̂ [m−1](x) + β̂[m]b(x, θ̂[m])

end
Returns: f̂(x) = f̂ [m](x);

Algorithm 2: Gradient boosting algorithm.

2.4. Component-Wise Boosting
Component-wise boosting applies the boosting framework to statistical models, e. g., gen-
eral additive models using component-wise smoothing splines [SH08]. Boosting these kinds
of models maintains interpretability and enables unbiased model selection in high dimen-
sional feature spaces. Component-wise, also known as model-based, boosting restricts the
used base-learners to linear base-learner which can be parametrised. Therefore, a whole
set of base-learners is used:

B[m] =
{
b
[m]
j

(
x, θ

[m]
j

) ∣∣∣ j = 1, . . . , J
}

(2.16)

Since the base-learners are required to be linear they must satisfy the following property:

b
[m]
j

(
x, θ

[m]
j

)
+ b

[m′]
j

(
x, θ

[m′]
j

)
= bj

(
x, θ

[m]
j + θ

[m′]
j

)
(2.17)

This is very important since it is now possible to iteratively update the parameter of the
selected base-learner with a fixed step size β̂[m] = β (also called learning rate). Therefore,
imagine two base-learners b1 and b2 each are selected two times, b1 in iteration 1 and 3
and b2 in iteration 2 and 4. The final model has an additive structure:

f̂(x) = f̂ [0](x) + βb
[1]
1

(
x, θ̂

[1]
1

)
+ βb

[2]
2

(
x, θ̂

[2]
2

)
+ βb

[3]
1

(
x, θ̂

[3]
1

)
+ βb

[4]
2

(
x, θ̂

[4]
2

)
(2.18)

Since the base-learners are linear, each can be expressed within one final learner by accu-
mulating the parameters:

f̂(x) = f̂ [0](x) + β
[
b1

(
x, θ̂

[1]
1 + θ̂

[3]
1

)
+ b2

(
x, θ̂

[2]
2 + θ̂

[4]
2

)]
(2.19)

6

2. Methodology

This small example illustrates the main strengths of component-wise boosting very well:
• An inherent model selection. Depending on the used base-learner, the model selec-
tion also is unbiased. For instance, including categorical predictors should be done
by taking each group as single base-learner using dummy encoding. This leads to an
independent selection and estimation of the group parameter. Taking the whole set
of groups into one base-learner updates the group parameter simultaneously which
leads to a biased model selection. Taking every group as single base-learner can also
be used with categorical features having a large number of groups [HHKS11].

• The resulting model is sparse since the important models are selected first.

• The parameters are updated iteratively in each iteration. Therefore, the parameters
are estimated on the fly and can be interpreted since the base-learners are restricted
to be linear.

• Making predictions for new data is much faster since the prediction just needs to
be calculated for the selected base-learners. For the above example, only the two
contributions of b1 and b2 to the prediction have to be calculated.

This implies that component-wise boosting is also a very efficient model for data situations
where p� n, which is learning in high-dimensional feature spaces.

The extension to gradient boosting as described in algorithm 2 is that in every iteration
one base-learner has to be selected. In compboost this is done by using an optimizer opt
which maps the set of base-learner B[m] and pseudo residuals r[m] to the index j∗ of the
selected base-learner:

j∗ = opt(B[m], r[m]) (2.20)

Additionally, a fixed learning rate β̂[m] = β is used to fit the model. Applying this
extension yields the algorithm 3 to train a component-wise boosting model.

Result: Component-wise boosting model f̂(x)
Initialize f̂ [0](x) = arg minc∈RRemp(c) ;
for m ∈ {1, . . . ,M} do

// Update pseudo residuals:
r[m](i) = −

[
δ

δf(x(i))L
(
y(i), f(x(i))

)]
f=f [m−1]

, ∀i ∈ {1, . . . , n} ;

// Get index j∗ of m-th base-learner from optimizer:
j∗ = opt

(
B[m], r[m]) ;

// Add selected component to model:
f̂ [m](x) = f̂ [m−1](x) + βb

[m]
j∗

(
x, θ

[m]
j∗

)
end
Returns: f̂ [m](x);

Algorithm 3: Gradient boosting algorithm.

The common optimizer which is used is the greedy optimizer that calculates the SSE for
each base-learner and returns the index of the base-learner that yields the smallest SSE.
This is illustrated in algorithm 4.

7

2. Methodology

Result: Index of best base-learner j∗
Given a set of base-learner B[m] and pseudo residuals r[m] ;
for j ∈ {1, . . . , J} do

// Fit each base-learner b[m]
j to the pseudo residuals:

θ̂
[m]
j = arg minθj

n∑
i=1

(
r[m](i) − b[m]

j (x(i), θj)
)2

;

// Calculate the SSE of the fitted base-learner:
SSEj =

n∑
i=1

(
r[m](i) − b[m]

j (x(i), θ̂j)
)2

;

end
Returns: j∗ = arg minj=1,...,J SSEj ;

Algorithm 4: Greedy optimizer algorithm.

2.5. Related Work
2.5.1. Software for Component-Wise Boosting
The most popular R implementation of component-wise boosting is mboost [HBK+17].
This package uses algorithm 3 and the greedy optimizer to fit the model. The vocabulary
used in mboost is more from a statistical point of view. For instance, the loss functions
are given within family objects. Those families correspond to probability distributions.
In compboost we have decided to use a machine learning vocabulary like loss functions
since every distribution can be expressed as loss function but not every loss function can
be expressed as distribution. Nevertheless, mboost provides a huge number of families,
learners and methods to combine those learners to more complex ones.

Additionally, with mboost it is possible to control the complexity of some base-learners
by specifying the degrees of freedom. For instance using a P-spline base-learner requires
the specification of the penalty parameter λ. But it is not easy to specify a good value
of λ in advance. In mboost it is possible to specify the degrees of freedom which are
then mapped to a corresponding λ value using the Demmler-Reinsch orthogonalization
[HHKS11, p. 9]. Nevertheless, obtaining good values requires tuning, no matter if using
the penalty parameter or the degrees of freedom.

Mboost also offers the possibility to specify custom base-learners and families. Specifying a
custom base-learner requires a design matrix and the specification of a penalty matrix that
are used to estimate the parameters through penalized least squares estimation. To specify
a custom family requires functions for the loss, negative gradient and the risk. Using a
custom base-learner in mboost expects from the user that he cares about transforming the
data by himself.

2.5.2. Software for Boosting Trees
As mentioned above, boosting trees have huge predictive power. The whole topic is cov-
ered in [FHT01, pp. 353 – 367]. A comprehensive R package is gbm [wcfo17]. This package
also uses families to specify a loss function. Using these families, it is possible to do sur-

8

2. Methodology

vival analyses as addition to regression and classification problems.

Another implementation is xgboost (extreme gradient boosting) [CHB+18]. This pack-
age is written in C++ and has great performance using parallelization and sparse matrices.
With the pure implementation, it is also possible to run the algorithm on a GPU. A trick
xgboost uses, is to do more regularization and to use a smarter split finding technique
while building a tree [CG16]. The regularization of the tree structure is done by penal-
izing the depth and the number of terminal nodes. This reduces overfitting and yields
higher generalization. Additionally, xgboost does a smarter split finding by iterating over
quantiles instead of trying all possible split points.

Those packages are designed to achieve huge predictive power using trees as base-learners.
The package mboost as well as compboost are, on the other hand, designed to keep inter-
pretability by restricting the base-learners to be linear. Therefore, mboost and compboost
are not able to compete with gbm and xgboost in terms of performance. However, this is
not the aim of component-wise boosting.

9

3. About the Implementation

The idea of the compboost package is a modular principle in which each component can
be controlled individually as a class. The provided classes are the loss, base-learner as well
as additional classes such as optimizer and logger. Due to performance reasons, the basic
functionality is implemented in C++ which is then exported to R using Rcpp.

This chapter describes the main idea of compboost. First of all, section 3.1 gives an
overview about used programming techniques and choices for the implementation. In
section 3.2 the reader is introduced to Rcpp and how it is possible to expose C++ code.
The next section 3.3 describes which classes are implemented, how they interact and the
main functionality. Finally, section 3.4 explains how the Rcpp modules are used within
compboost as well as some idiosyncrasies that come along when using them.

For this chapter we assume that the reader is familiar with common C++ concepts and
terms such as classes, inheritance, virtual functions, heap vs. stack, different data types,
namespaces and so on. The chapter can also be read without previous knowledge. Never-
theless, knowing the basics makes it much more easier to understand the decisions which
are taken for the implementation. Furthermore, sometimes the namespaces are explicitly
addressed by writing the two colons to make clear which package (for R) or namespace
(for C++) is used.

3.1. Software Design
As mentioned above, compboost is designed by a modular principle. A suitable choice
to implement this is object-oriented programming. To use C++ has on the one hand per-
formance and memory advantages and on the other hand its seamless integration into R
using Rcpp (see section 3.2).

This section gives an introduction about the abstract principle we have used for the im-
plementation. To see what pattern is used in which class see section 3.3 about the main
classes of compboost.

3.1.1. Polymorphism
Polymorphism is used in terms of inheritance between classes [Str14, pp. 504 – 514]. The
main idea is to have different classes that act as one. For instance, we do not want to
handle all possible cases for training a new base-learner in one function or class. It is
desirable to have just one base-learner class that has a minimal functionality every spe-
cific base-learner (e. g. the spline base-learner) must have and then call that functionality
through the same API for all different base-learners. This is achieved by polymorphism.

To use polymorphism it is necessary to declare all functions which should be used through
one parent class (e. g. the train method) as virtual. Defining a member function as virtual
makes the parent class abstract. Next, a specific class (e. g. the spline base-learner) must

10

3. About the Implementation

be defined as child of the abstract parent class. This child class inherits the virtual func-
tions that must be overridden within the child class (illustrated in figure 3.1). Now, it is
possible to create a new object of the child class by storing it into an object of the abstract
parent class. The virtual functions automatically call the corresponding member function
of the child class. For example, with polymorphism it is possible to declare a spline child
base-learner objects as abstract base-learner class. Calling the train method, which is
virtual within the parent class, calls the member function of the spline child base-learner.
Therefore, the train function of the spline learner is called although the stored object is
of the base-learner class.

Figure 3.1.: Illustration of polymorphism.

One thing which is important to mention when it comes to polymorphism is that abstract
classes can just be allocated on the heap since the size of the object is not known in advance.
Creating objects on the heap guarantees that it is possible to dynamically allocate memory.
The trade-off for the dynamic memory allocation is that abstract classes can just be created
by reference. Hence, we have to work with the pointer to the object on the heap. Therefore,
it is important to keep that in mind in terms of deallocation and object destruction that
must be done by the programmer. This becomes important in combination with the
registry or factory pattern.

3.1.2. Factory Pattern
The factory pattern is a creational pattern to create new instances of another class [Gam95,
pp. 87 – 95]. This is very handy if a factory creates instances that share the same data.
To prevent copying the data again and again it is stored once in the factory while the
new instances just contain a pointer to the data in the factory. This method is used in
compboost to obtain a memory friendly structure. To be more specific, compboost uses
the factory pattern to create new base-learners that are trained using the data stored
in the factory. Classes based on the factory pattern usually have a member function
(e. g. createInstance()) which automatically allocates memory for the new instance
and creates it. Figure 3.2 illustrates that process.

3.1.3. Registry Pattern
The registry pattern is a structural pattern and can be seen as easy facade pattern [Gam95,
pp. 185 – 193]. This pattern is used to register or structure different instances within one
class object and providing an API to do something on the collection of objects. An object
designed by the registry pattern includes instances that are member of the same class ob-
ject (e. g. by including them into a hash map) as illustrated in figure 3.3. This class has a

11

3. About the Implementation

Figure 3.2.: Illustration of the factory pattern.

member function (e. g. registry()) that register a new instance and put it into the hash
map. The registry pattern can be used for any structure which collects multiple instances.
For instance, a collection of factories as it is done in compboost. The base-learner factories
are registered in a base-learner factory hash map. During the training it is then not nec-
essary to call each factory seperately, the object which contains the collection of factories
does that automatically. This becomes very powerful in combination with polymorphism
since it does not matter which specific base-learner factory type is used. For instance, the
spline base-learner factory overrides the same virtual member functions as a polynomial
base-learner factory and therefore they can be treated and stored as the same object into
the map.

Figure 3.3.: Illustration of the registry pattern.

An important thing in terms of using the registry pattern is the memory usage. It could be
important not to destruct the registered instances after the class object is deleted which
contains those instances. The instances are maybe used in other classes too. This is
especially interesting when using pointer, because destructing the registry class deletes
the pointer but does not delete the corresponding data on the heap. Nevertheless, keeping
the data on the heap could lead to memory leaks if no pointer to that object is left. This is
very crucial in compboost since a lot of polymorphism is used. But to keep in mind, calling
delete within the registry pattern on every registered object could crash the system if
another class refers to at least one of the deleted objects and wants to use it.

3.1.4. Extending Code Without Recompilation
A feature of compboost is to extend it with own base-learners or loss functions. To make
this as user friendly as possible, compboost provides methods to extend the existing classes
without recompiling the whole package. This is achieved by using the two Rcpp classes

12

3. About the Implementation

Function and XPtr. This section describes how these classes are used to set custom
functions. The custom classes are explained in section 3.3. For examples on how to use
those classes to extend compboost see chapter 6.

Function Class to use R Functions

The Function class of Rcpp provides a wrapper around R functions so that they can be
used from C++. The Rcpp::Function class acts like a function data type. Using that data
type as argument makes it possible to call any R function from C++. The important thing
here is that the R and C++ data types must match. If the R function wants a vector as
argument, then the programmer has to pass a C++ vector data type which can be handled
by Rcpp like the Rcpp::NumericVector. It is also possible, but a bit more complex, to use
arbitrary R objects as arguments. Therefore, it is necessary to store that object as SEXP
and then pass the SEXP object to the Rcpp::Function argument. Rcpp is smart enough
to translate the SEXP back to the R object. This is the disadvantage of using the Function
class, every time the function is called a conversion step from C++ to R and then back from
R to C++ is made which makes it very expensive. Nevertheless, using Rcpp::Function is
a nice addition which can be used for prototyping.

Finally, some of the classes in compboost can be defined with Function members. Those
members can be set by calling a constructor. Afterwards, that member functions can be
used just like ordinary functions of the new class. This procedure is illustrated in figure
3.4 by calling a C++ function which calls a function by using a Function argument.

Figure 3.4.: Illustration of how an R function is called from C++. Calling the R function
which was exposed by Rcpp uses .call to call the C++ function. The C++
function internally calls myRFun from R and returns the result to C++. The
final result is returned to R.

XPtr Class to use C++ Functions

A bit more advanced than the Function class is the XPtr class. This class allows to trans-
late C++ pointer to an R external pointer. The nice thing is, that the other way around
does also work. It is possible to pass that external pointer as SEXP to C++ and then use
that object as ordinary pointer. This can be used to set functions by reference using the

13

3. About the Implementation

pointer to the specific function.

To be more detailed, it is possible to write new C++ functions and compile them using
Rcpp. Next, the pointer to that functions should be exposed by using the XPtr class.
This yields an external pointer in R which can be used as argument (e. g. within a class
constructor) from R. On the C++ side the external pointer must be given as SEXP which
is then converted back to an XPtr which stores the actual C++ address of the custom
function. Finally, the custom function can be called by dereferencing the pointer. Hence,
it is possible to call a compiled C++ function by using the pointer of that function and
pass it to an arbitrary class. This procedure is illustrated in figure 3.5.

Figure 3.5.: The Object which wants the pointer to a C++ function is already loaded while
the new C++ function is defined in my_function.cpp which returns an XPtr as
external pointer in R. This pointer is then used to call a setter function of
the Object to set the function member by dereferencing the Xptr. This sets
the function of the compiled my_function.cpp function without recompiling
the code used for Object.

3.1.5. Armadillo as Library for Linear Algebra
The core functionality of C++ has no built in matrix type. But a matrix type is crucial
and therefore it is necessary to have a library which provides matrices. For this purpose
the Armadillo library [SC16] for linear algebra is used due to the following reasons:

• Huge functionality: Not just matrices are implemented but also sparse matrices,
basic linear algebra algorithms and much more.

• Easy syntax: The syntax of using Armadillo matrices and vectors is quite similar
to the R syntax of indexing vectors and matrices, both uses square brackets.

• Easy to use: Rcpp makes it easy to use Armadillo trough the package RcppArmadillo
[ES14]. For more details about RcppArmadillo see section 3.2.2.

14

3. About the Implementation

3.2. Rcpp
3.2.1. Exposing C++ Code
Rcpp was mentioned a lot previously. Now we want to explain how Rcpp is used within
the package. Basically, Rcpp is used to expose C++ functions and classes to R. To do this,
Rcpp must be told which functions or classes it should expose. Rcpp provides two ways
for doing that, the Rcpp attributes [AEF17] and the Rcpp modules [EF17]. Both are
explained within this section.

After defining what to expose, the general proceed of Rcpp is to create two files:

• RcppExports.cpp: This file collects and includes wrapper around the exposed C++
functions or classes and converts the arguments and return types to SEXP. Hence, it
is possible to pass arguments from R and also store returned values into R objects.

• RcppExports.R: This file explicitly calls the exposed C++ functions and makes them
available in R. Note that there are differences at this point between the Rcpp attributes
and Rcpp modules explained in the next subsections.

Those two files are created by calling the R function Rcpp::compileAttributes(). This
function searches for defined attributes or modules within the src folder of the package
and creates depending on the attributes or modules the RcppExports files. This procedure
is illustrated in figure 3.6.

Another thing Rcpp automatically does is to tell the compiler to include the standard
C++ libraries. Therefore, it is necessary to add Rcpp to the LinkingTo section of the
DESCRIPTION file of the package. For an extensive description about Rcpp see [Edd13].

Rcpp Attributes

Rcpp attributes are tags which are added within the comments of a .cpp file to force
an action of Rcpp. The most used attribute is the export attribute [[Rcpp::export]] to
tell Rcpp to export the followed function:

// [[Rcpp::export]]
void myFunction () { ... }

While compiling a file containing the export attribute or sourcing a .cpp file containing
that attribute, Rcpp automatically creates an entry for the function myFunction() within
the RcppExports files.

Another important tag is the dependency tag to depend on other libraries. For instance,
including RcppArmadillo is done by adding [[Rcpp::depends(RcppArmadillo)]] to de-
pend on RcppArmadillo. This tag is used to tell the compiler to also link and include the
RcppArmadillo library in C++:

// [[Rcpp::depends(RcppArmadillo)]]

#include <RcppArmadillo.h>

// [[Rcpp::export]

15

3. About the Implementation

arma::mat myArmaFunction () { ... }

There are also tags for telling the compiler to use C++ 11, C++ 14, C++ 17, embed R code or
commenting similar to roxygen (see [AEF17]). Figure 3.6 illustrates how the RcppExports
files are automatically generated by using compileAttributes() which searches for Rcpp
attributes.

Figure 3.6.: Illustration of how compileAttributes() automatically creates the
RcppExports files. The exported C++ code of mymean.cpp in
RcppExports.cpp makes sure that the conversion between R and C++
works without problems by wrapping all objects with SEXPs. Addition-
ally, the exported code to RcppExports.R calls the functions specified in
RcppExport.cpp and gets the roxygen comments. This makes it possible
to document C++ functions.

In compboost the Rcpp attributes are used to extend the package with new C++ functions
and to document the classes. For an example see chapter 6.

Rcpp Modules

The Rcpp modules are an addition to the Rcpp attributes and can be used to export com-
plete C++ classes as R S4 class. The idea is to specify which class and which members
are exported by calling a C++ function RCPP_MODULE. It is important to specify that func-
tion in the same .cpp file where the class is declared. It is not possible to split that file
into a header .h and implementation .cpp file. This is one reason why each C++ class of
compboost is wrapped by another class which is then exposed by the modules.

The modules work a bit different than the attributes. The Rcpp modules expose the mod-
ule directly as R object which contains the call to the compiled shared library. After loading
the module with Rcpp::loadModule() the class of the module is loaded as S4 object by
calling the module from the C++ side. This C++ module is created by the RCPP_MODULE
function in C++ which forces an entry within the RcppExports.cpp file. Note that the

16

3. About the Implementation

modules does not create an entry to the RcppExports.R file, the user is responsible to
load this manually by adding Rcpp::loadModule("my_module_name") in a new R file.

Internally, the Rcpp modules takes the constructors and member function and uses the
Rcpp::XPtr class to expose the C++ class [EF17, pp. 1 – 2]. Those pointer calls the func-
tions of the shared library object.

For details about the modules syntax and an example see [EF17, pp. 8 – 13].

3.2.2. Rcpp Armadillo
As mentioned in section 3.1.5 Armadillo is used as linear algebra library in C++. Hence,
two important points have to be covered:

1. Include the Armadillo library in C++ which requires linking to BLAS and Lapack as
well as include all Armadillo bits.

2. Tell R how to handle Armadillo matrices and vectors which are returned by the C++
functions.

Both are solved by RcppArmadillo [ES14]. After installing the R package it is important to
add RcppArmadillo to the LinkingTo section of the DESCRIPTION file of the package. This
tells the compiler to use the headers from the include directory of the package. Within
this directory is a subdirectory armadillo_bits which includes all important Armadillo
header files. Furthermore, using RcppArmadillo does automatically link Armadillo with
BLAS and Lapack of the installed R version.

RcppArmadillo also controls the conversion between R and C++ in terms of Armadillo
objects. For instance, returning an arma::mat is converted to an ordinary R matrix. This
also applies to vectors and sparse matrices by converting an arma::sp_mat to a dgCMatrix
by taking advantage of the R Matrix [BM17] package.

3.3. Idea of The Main Classes
This section gives an overview about the main classes and the idea how those classes
are programmed in regard to software design, dependencies to other classes or extensibil-
ity. For a complete documentation of all classes see https://schalkdaniel.github.io/
compboost/cpp_man/html/index.html.

Figure 3.7 illustrates the existing classes and the relationship between those. The diagram
shows the classes, the most important functions and the connections between the classes.

3.3.1. Data Classes
In compboost the used data are often transformed within the base-learners. Hence, an
abstraction layer for data is used to organize the data in a simple but efficient principle.
Basically, each data object consists of one data matrix (or design matrix). Therefore, it
is not possible to have raw and transformed data within one data object. The idea is to
have a data source and a data target object. The data source object includes the raw data
(e. g. the matrix of a column of a dataset) which remains untouched. The data target

17

https://schalkdaniel.github.io/compboost/cpp_man/html/index.html
https://schalkdaniel.github.io/compboost/cpp_man/html/index.html

3. About the Implementation

Fi
gu

re
3.
7.
:C

la
ss

di
ag

ra
m

of
C+

+
cl
as
se
s
an

d
th
ei
r
de

pe
nd

en
ci
es
.

18

3. About the Implementation

object gets the transformed data which is used to train the base-learner. This transforma-
tion is organized by the base-learner factory object to which the data source and target
are passed. This procedure is illustrated in figure 3.8.

Figure 3.8.: Illustration of how the data source, data target and factory interact. The
source object is able to share the raw data with different targets. Therefore
the transformData() function of the factory gets the raw data by calling
getData() of the source object and setting the transformed data by calling
setData() of the target object. The factory then just uses the target data to
create and train new models by calling its getData() method.

Every data class, no matter if source or target data, has a data getter getData() and
setter setData() which is virtual within the parent data class. Hence, the parent Data
class is abstract and polymorphism can be used. This gives the opportunity of defining
specific getters and setters. Additionally, it is possible to set public data members within
a factory to be more flexible and boost performance (see section 3.3.3). With those public
data members it is also possible to set sparse matrices (arma::sp_mat) to be more memory
friendly.

At the moment only one InMemoryData class is implemented. This class stores everything
within the RAM. Having the possibility of defining any data getter and setter, it is also
possible to create an out of memory data class to access databases or do subsampling
within the data getter.

3.3.2. Loss Classes
The loss class defines which loss is used to train the algorithm but can also be used for
logging mechanisms. As mentioned in chapter 2 the loss induces some properties of the
fitting algorithms as robustness or the task (regression or classification). Like the most
classes of compboost, the parent Loss class is abstract. It defines the three functions every
loss must have as virtual:

• definedLoss(): This function defines the loss function and calculates the loss for a

19

3. About the Implementation

given vector of true values and predictions.

• definedGradient(): This function defines the gradient of the loss function.

• constantInitializer(): This function takes the true values and returns the loss
optimal constant initialization as stated in equation (2.14). It is also possible to set
a custom offset. If a custom offset is set this function returns just the custom offset.
Hence, the constant initialization does not always initialize loss optimal.

At the moment the following child loss classes are implemented:

• QuadraticLoss: Quadratic loss for regression with y ∈ R.

Loss function:

L(y, f(x)) = 1
2 (y − f(x))2 (3.1)

Gradient:
δ

δf(x) L(y, f(x)) = f(x)− y (3.2)

Initialization:

f̂ [0](x) = arg min
c∈R

1
n

n∑
i=1

L
(
y(i), c

)
= 1
n

n∑
i=1

y(i) = ȳ (3.3)

• AbsoluteLoss: Absolute loss for regression tasks with y ∈ R.

Loss function:

L(y, f(x)) = |y − f(x)| (3.4)

Gradient:
δ

δf(x) L(y, f(x)) = sign (f(x)− y) (3.5)

Initialization:

f̂ [0](x) = arg min
c∈R

1
n

n∑
i=1

L
(
y(i), c

)
= median(y) (3.6)

• BinomialLoss: Loss for binary classification derived of the binomial distribution.
This loss can be used for binary classification. The labels have to be coded as
y ∈ {−1, 1}.

Loss function:

L(y, f(x)) = ln (1 + exp (−2yf(x))) (3.7)

Gradient:
δ

δf(x) L(y, f(x)) = − 2y
1 + exp (2yf(x)) (3.8)

20

3. About the Implementation

Initialization:

f̂ [0](x) = arg min
c∈R

1
n

n∑
i=1

L
(
y(i), c

)
= 1

2 ln
(

p

1− p

)
(3.9)

with

p = 1
n

n∑
i=1

1{y(i)=1} (3.10)

For the proof see appendix B.

• Custom(Cpp)Loss: This loss class can be used to define custom losses. Therefore,
the three required functions have to be set by giving them to the constructor. This
is possible using the Rcpp::Function class within the CustomLoss class to set R
functions or using the Rcpp::XPtr class within the CustomCppLoss to use C++ func-
tions. For an example and how the loss can be used to track performance measures
see chapter 6.

3.3.3. Base-Learner Related Classes
Abstract Base-Learner and Base-Learner Factory Class

The core of model-based boosting are the base-learners. In compboost exists an abstract
Baselearner class. This class defines the minimal functionality which every specific base-
learner must have, such as train(), initializeData() or predict(). The base-learners
are lazy, which means that they do not anything after they are initialized. To fit a base-
learner it is necessary to call its train() member function which takes the data of a data
target object and applies the specific training using that data. The result of the training
is always an arma::mat that represents the estimated parameters.

The BaselearnerFactory class is an abstract class which creates Baselearner classes.
Hence, every base-learner factory must have a corresponding base-learner that it can cre-
ate. The advantage of using the factory pattern here is that the factories are used to
manage the data required by the base-learner. This can be used to boost performance
by storing data once which are then always reused. This is done, for example, for all
base-learners that need to solve a linear system of equation. For instance, the polynomial
base-learner compute (XTX)−1XT y to estimate the parameters. If this is done more than
once it can be very expensive to calculate Z = (XTX)−1 over and over again. Since the
dimension of Z is not large for single base-learners, a simple trick is to store the inverse
Z once and reuse the inverse if a new base-learner is fitted with another response. This
becomes very handy for model-based boosting since base-learners are fitted often. This
technique is used for polynomial as well as for spline base-learners.

One thing to note is that the base-learners can just handle Armadillo matrices which are
pure numerically. Hence, it is not possible to use a categorical variable as source. This
categorical variable has to be transformed prior by the user. For instance, one can do one
hot (dummy) encoding for a specific group and pass that binary vector as data matrix.
This is done in the use-case in chapter 4.

At the moment, the following child base-learner and base-learner factory classes are im-
plemented:

21

3. About the Implementation

• PolynomialBlearner(Factory): This learner takes the polynomial order as degree
argument. Depending on the degree, the polynomial base-learner transforms the
data by taking the source data matrix and calculates the power to the degrees for
each element. This target data matrix is then used to estimate parameter. The
polynomial base-learner also stores the inverse matrix. Note that the intercept is
not part of the learner by default. The user has to manually add a column of ones
to the source data to get an individual intercept.

• PSplineBlearner(Factory): This learner implements B- and P-spline base-learners.
The parameters which can be set are the polynomial degree of the splines, the num-
ber of knots, the penalty parameter and how much differences are penalized. This
base-learner also stores the inverse matrix of XTX + λK where X is the matrix of
the spline bases, λ the penalty parameter and K the penalty matrix based on the
differences (see [FKLM13, pp. 435 – 439]). To obtain the spline bases, compboost
uses De Boor’s algorithm (see [PT12, pp. 67 – 70]).

• Custom(Cpp)Blearner(Factory): This base-learner (factory) gets, similar to the
Custom(Cpp)Loss, custom R or C++ functions. The functions which are required
are an instantiate data function, a train function and a predict function. Addition-
ally, the CustomBlearner(Factory) is able to store one SEXP which can be used
to e. g. store decision trees. Hence, it is also possible but not recommended to
boost trees since it is not possible to estimate parameter and hence they are not
interpretable through the ensemble. Like for the loss class, the convention for the
base-learner is that the CustomBlearner(Factory) uses the Rcpp::Function class
to set R functions while the CustomCppBlearner(Factory) uses the Rcpp::XPtr
class to set C++ functions.

Base-Learner Factory List

The BaselearnerFactoryList class uses the registry pattern to register base-learner fac-
tories. Therefore, it is necessary to call registerBaselearnerFactory() which takes
the pointer to a BaselearnerFactory as argument and register that pointer in a hash
map. Hence, with the base-learner factory list the set of base-learner B[m] is defined as
mentioned in equation (2.16). This list is used by the optimizer to select the best new
base-learner (see section about the Optimizer class).

Base-Learner Track

The core of the BaselearnerTrack class is a vector containing all selected base-learners
during the fitting process. Basically, this vector is the result of the main algorithm. Many
further operations as parameter estimation or getting a vector of selected learners use this
vector. Internally, this vector is a std::vector which makes it quite simple to extend it.
This is used for the retraining techniques of compboost explained within the Compboost
class section below. The only thing those retrain methods do is to push back new trained
base-learners and do the logging. Estimating the new parameters is than easily done by
accumulating over that base-learner vector.

One important thing the base-learner track does is to estimate the parameters. This is done
automatically by inserting a new base-learner. The parameter of that base-learner gets
shrinked by the learning rate and are automatically added to the cumulated ones. This is
stored within another hash map. Additionally, it is possible to get the estimated parameter

22

3. About the Implementation

at a specific iteration. Therefore, the function getEstimatedParameterOfIteration()
is used. This function becomes handy in terms of setting the whole algorithm to new
iteration as described in section 3.3.6. Figure 3.9 contains the call graph of the function
getEstimatedParameterOfIteration(). This graph illustrates which functions of other
classes calls getEstimatedParameterOfIteration().

Figure 3.9.: Call graph of the getEstimatedParameterOfIteration() function.

Note that the base-learner track gets base-learners with the real, not shrinked, estimated
parameter. For the final estimation all parameters are cumulated and multiplied by the
learning rate.

3.3.4. Logger Related Classes
Abstract Logger Class

In compboost we have dropped the classical way of stopping the algorithm after a fixed
number of iterations to be more flexible. This is achieved by the Logger class. The Logger
class is, as the most classes, an abstract class. Every child class logs something different.

The special thing about the loggers is that they are not just used to track the proceed of
the algorithm. Furthermore, each logger can be used as stopper. Therefore, every child
logger includes a defined stopping criteria. In each iteration after the logging, each logger
checks if that stopping criteria is reached. If so, the logger returns the boolean true to
indicate that the stop criteria is reached. More details about the stopping process are
explained in the next section about the LoggerList class. Available child loggers are:

• IterationLogger: This logger does just log the actual iteration. If this logger is
used as stopper it stops the algorithm if the current iteration is equal to the maximal
defined number of iterations.

• InbagRiskLogger: This logger computes the risk for the given training data D and
stores it into a vector. The empirical risk Remp for iteration m is calculated by:

R[m]
emp = 1

n

n∑
i=1

L(y(i), f̂ [m](x(i))) (3.11)

The stopping criteria is fulfilled, if the relative improvement ε[m] at the current
iteration m falls under a fixed boundary ε. The relative improvement is defined by

ε[m] = R
[m−1]
emp −R[m]

emp

R[m−1]
emp

. (3.12)

The logger stops the algorithm if ε[m] ≤ ε.

23

3. About the Implementation

• OobRiskLogger: This logger computes the empirical risk using a new out of bag
dataset Doob = {(xi, yi) | i ∈ Ioob} and stores it into a vector. The out of bag risk
Roob for iteration m is calculated by:

R[m]
oob = 1

|Doob|
∑

(x,y)∈Doob

L(y, f̂ [m](x)) (3.13)

The stopping criteria is fulfilled, if the relative improvement ε[m] at the current
iteration m falls under a fixed boundary ε. The relative improvement is defined by

ε[m] =
R[m−1]

oob −R[m]
oob

R[m−1]
oob

. (3.14)

• TimeLogger: This logger logs the elapsed time. The units which can be measured
are minutes, seconds and microseconds. The stop criteria here is quite simple.
For the current iteration m it is triggered if current_time > max_time.

The important virtual functions of the parent Logger class are reachedStopCriteria()
which checks if the stopping criteria is reached and logStep() to include the new logged
data. Since the function call must be similar within all child classes the logStep() function
gets a lot of parameter that every child member function needs from the algorithm for
logging. The given parameters are the current iteration current_iteration, the response
response, the prediction at the actual iteration prediction, the new selected base-learner
used_blearner, the constant initialization of the model offset and the learning rate.
Most of those parameters are used by the OobRiskLogger class since this one needs to
calculate the prediction on out of bag data.

Logger List

All loggers of the previous section can be combined as desired. Therefore, it is necessary
to have an object which collects all used logger. This is the purpose of the LoggerList
class. This class also uses the registry pattern to register the loggers. The logger list
is responsible to log at a current iteration as well as checking if the algorithm should be
stopped. Therefore, it is possible to use two stopping strategies. A “global” strategy which
stops the algorithm if the stop criteria of all registered loggers are fulfilled or a “local”
strategy which stops after the first stopping criteria is fulfilled. The interesting thing of
having an extra logger list class is that it is possible to e. g. define multiple risk loggers.
This can be used with a tweak to track arbitrary performance measures. For an example
see chapter 4 or chapter 6. Since it is possible to track multiple risk loggers, the user must
be aware of that only the empirical risk used with the same loss as used for the algorithm
returns the empirical risk which is minimized during the fitting process.

3.3.5. Optimizer Classes
The Optimizer class is used to select one base-learner out of the set of base-learners B[m].
Therefore, the optimizer has a virtual function findBestBaselearner() which gets the
actual pseudo residuals as response and the base-learner factory list. The function returns
a fitted base-learner corresponding to the actual pseudo residuals.

At the moment the only implemented optimizer is the GreedyOptimizer. This optimizer
takes the base-learner factory list and creates and fits a base-learner for each registered

24

3. About the Implementation

factory. In the next step the optimizer computes the sum of squared errors (SSE) for every
base-learner and returns the one with the lowest SSE (see algoritm 4).

The optimizer is called in each iteration of the algorithm and is responsible to find the
best base-learner which is then inserted at the end of the base-learner track.

3.3.6. Compboost Class
The Compboost class is the key feature of compboost. This class contains the main algo-
rithm and collects all classes which are necessary for the modelling. Figure 3.10 illustrates
which classes are used by the Compboost class. Note that these images are auto-generated
by doxygen [VH18] and since the logger list is wrapped within a hash map used_logger
it is not illustrated as dependency on the image.

Figure 3.10.: Classes used within the Compboost class.

The main algorithm 3 is implemented within the train() function. This function is used
for the first training as well as for every retraining. Basically, train() is implemented
as while loop which checks in every iteration if the logger list returns true to stop the
algorithm:

25

3. About the Implementation

void Compboost::train (parameter)
{

// Some initializations

while (! stop_the_algorithm) {

// Code needed for one iteration as calculating pseudo residuals etc.

stop_the_algorithm = ! logger_list->getStopperStatus();
}
// Additionally stuff done by the algorithm

}

The call graph of the train() function, shown in figure 3.11, illustrates what function of
which class is called by train(). In general, the individual classes during the training
(within the while loop) are responsible for:

• Loss: Calculates the pseudo residuals and is used to compute the empirical risk.

• Optimizer: Takes the base-learner factory list and returns one best base-learner.

• Baselearner: The selected base-learner is used to calculate the additive contribution
to the prediction and therefore how to update f̂ [m−1] to f̂ [m].

• BaselearnerTrack: Takes the selected base-learner, put it at the end of the vector
of all selected base-learners and estimates the new parameter.

• LoggerList: Logs the actual state of the algorithm and determines when the algo-
rithm should be stopped. The logger list is wrapped within a hash map to have the
option to use multiple logger lists for additional retraining.

Figure 3.11.: Call graph of the train() function.

The initial training function trainCompboost() is just a wrapper around the train()
function. This function removes already selected base-learner and initialize the training

26

3. About the Implementation

by calling the constantInitializer() function of the used loss. This is illustrated in
figure 3.12.

Figure 3.12.: Call graph of the trainCompboost() function.

Compboost also provides a retraining method continueTraining(). This method can be
used to train additional base-learner. Within continueTraining() the user has to pass
another logger list which is then just used for that specific training. To prevent the indi-
vidual lists from getting in each other’s way, they are included into a hash map. This also
gives the opportunity to access every logger data even if different loggers are used for the
trainings and hence the matrix of the logged data have different dimensions.

Another thing that makes compboost flexible is the possibility to set the iteration to any
integer. For this purpose compboost uses the setToIteration() function. This function
basically checks if the given new iteration is bigger than the number of already trained
models. If true, then the algorithm is retrained by automatically defining a new logger
list with just one iteration logger and continues the training using continueTraining()
till the desired iteration is reached. This automatically updates the estimated parame-
ter. Otherwise, if the new iteration was already trained it sets the estimated parameter
of the base-learner track by calling getEstimatedParameterOfIteration() (explained in
section 3.3.3). Setting the parameter is the key here since most other elements like the pre-
diction are calculated using them. Figure 3.13 shows the call graph of setToIteration().

3.4. Rcpp Modules in Compboost
In compboost the Rcpp modules are used to expose the C++ classes to R. All those classes
are wrapped within another wrapper class due to two inconvenient behaviours:

1. It is not possible to split the code into header (.h) and implementation (.cpp) file.

2. Using cross dependencies between exposed classes must also be regulated within one
.cpp file. Hence, if a wrapper class uses another wrapper class the class declarations
needs to be in one .cpp file.

27

3. About the Implementation

Figure 3.13.: Call graph of the setToIteration() function.

Especially the second point would lead to one large .cpp file which would be very hard to
maintain as well as keeping the overview about the classes.

Nevertheless, using the wrapper classes also gives some nice opportunities like exposing
just the functions which are necessary for the user or adding elements to a class on an-
other abstraction layer. For instance, think about the base-learner class. They just get
the pointer to the data target. Hence, exposing that class using the exact same construc-
tor would force the user to transform the data manually and create just one data target
object. Therefore, the wrapper base-learner class is programmed to get two data classes
which transforms the data source and passes just the data target object including the
transformed data to the real base-learner constructor. Of course this would also be possi-
ble by overloading the constructor, but since the pure implementation should be as sparse
as possible this prevents the C++ code from copy and pasting from the factory initialization.

Another idiosyncrasy is, that the exposed constructors can just have a maximum of seven
arguments (see [EF17, p. 4], section about “Exposing constructors using Rcpp modules”).
Anyway, in compboost this is enough to define all classes but one should keep this in mind
since the compiler error by disregarding this is not very instructive. Additionally, the Rcpp
modules does not expose argument names. The exposed functions take the arguments by
order using the ellipsis (...) and ignoring the argument names. For instance, it is
possible to create the same data object by arbitrary argument names within R:

X = cbind(1:10)

data.obj = InMemoryData$new(data.matrix = X, data.name = "my.data.obj")
data.obj = InMemoryData$new(data = X, data.id = "my.data.obj")

Basically, all wrapper classes follows the same principle. The constructor is very similar or
equal to the wrapped class. The constructor of the wrapper class creates an object of the
actual wrapped class and stores this object as private member. The member functions of
the wrapper class uses this object and passes the arguments to the member functions of the
wrapped class. Using the Rcpp modules here gives also the possibility to use another ex-
posed class as function argument which becomes very convenient for using object-oriented

28

3. About the Implementation

design within R. But this could also cause troubles. For instance, using a Data class ob-
ject as argument firstly copies the data object within the function scope and destroys the
copy at the end of the scope by calling the destructor. If the destructor then removes
data which is needed by the actual data class it will crash if the object tries to access
the deleted data. To avoid that issue, the most classes of compboost pass arguments by
reference. Hence, just the pointer is copied and deleted within the function scope without
deleting data from the heap.

29

4. Use-Case

Compboost was designed to provide a component-wise boosting framework with maximal
flexibility. This chapter gives an introduction to the classes that must be set and how to
access the data which are generated during the fitting process. Furthermore it describes
the C++ looking API which are generated by the Rcpp modules. The following topics are
addressed:

• Define data and factory objects.
• Define the used loss and optimizer for modelling.
• Define different loggers to track the algorithm.
• Run the algorithm and access the fitted values.
• Continue training of the algorithm and set the algorithm to a specific iteration.

To get a deeper understanding about the functionality and how the classes are related see
the C++ documentation of compboost.

4.1. Data: Titanic Passenger Survival Data Set
The titanic dataset is used with a binary classification task on survived. First of all, the
data are stored as train data. To prevent compboost from crashing, all rows which contains
NAs are removed. This is because Armadillo does not know how to handle missing data:

Store train and test data:
df.train = na.omit(titanic::titanic_train)

str(df.train)
’data.frame’: 714 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 7 8 9 10 11 ...
$ Survived : int 0 1 1 1 0 0 0 1 1 1 ...
$ Pclass : int 3 1 3 1 3 1 3 3 2 3 ...
$ Name : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John ...
$ Sex : chr "male" "female" "female" "female" ...
$ Age : num 22 38 26 35 35 54 2 27 14 4 ...
$ SibSp : int 1 1 0 1 0 0 3 0 1 1 ...
$ Parch : int 0 0 0 0 0 0 1 2 0 1 ...
$ Ticket : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" ...
$ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
$ Cabin : chr "" "C85" "" "C123" ...
$ Embarked : chr "S" "C" "S" "S" ...
- attr(*, "na.action")=Class ’omit’ Named int [1:177] 6 18 20 27 ...
.. ..- attr(*, "names")= chr [1:177] "6" "18" "20" "27" ...

In the next step, the response is transformed to values y ∈ {−1, 1}. Additionally, two
index vector for the test and train datasets are defined:

30

https://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-modules.pdf
https://schalkdaniel.github.io/compboost/cpp_man/html/index.html
https://www.kaggle.com/c/titanic/data

4. Use-Case

Response label have to be in {-1, 1}:
response = df.train$Survived * 2 - 1

Train and evaluation split for training:
set.seed(1111)
idx.train = sample(x = seq_len(nrow(df.train)), size = 0.6 * nrow(df.train))
idx.eval = setdiff(seq_len(nrow(df.train)), idx.train)

This split will be used during the training to calculate the out of bag risk.

4.2. Data and Factories
The data classes are just able to handle matrices. Hence, the user is responsible to give
an appropriate data matrix to a specific base-learner. For instance the spline base-learner
factory can just handle a matrix with one column while the polynomial base-learner fac-
tory can handle arbitrary matrices. A linear base-learner with intercept can be achieved
by defining an intercept column as addition to the data columns.

In compboost the factories accept two data objects as arguments. The first one is the data
source and the second one the data target (which should be an empty data object). The
factory then does the following:

1. Takes the data of the data source object.
2. Transforms the data depending on the base-learner (e. g. compute spline bases).
3. Write the design matrix and other permanent data into the data target object.

4.2.1. Numerical Features
The interesting numerical dependent variables for this example are the ticket price Fare
and the age of the passenger Age. Both features should be included into a spline base-
learner:

Fare:

Define data objects:
data.source.fare = InMemoryData$new(as.matrix(df.train$Fare[idx.train]), "Fare")
data.target.fare = InMemoryData$new()
Define spline factory:
spline.factory.fare = PSplineBlearnerFactory$new(data_source = data.source.fare,

data_target = data.target.fare, degree = 3, n_knots = 20, penalty = 10,
differences = 2)

Age:

Define data objects:
data.source.age = InMemoryData$new(as.matrix(df.train$Age[idx.train]), "Age")
data.target.age = InMemoryData$new()
Define spline factory:
spline.factory.age = PSplineBlearnerFactory$new(data_source = data.source.age,

31

4. Use-Case

data_target = data.target.age, degree = 3, n_knots = 20, penalty = 10,
differences = 2)

The transformed data of the target can be accessed by calling the member function
getData():

data.target.fare$getData()[1:10, 1:5]
[,1] [,2] [,3] [,4] [,5]
[1,] 0.05129428 0.5782844 0.3647084319 0.005712907 0.000000000
[2,] 0.00000000 0.0000000 0.0006755692 0.257072874 0.643271120
[3,] 0.01698981 0.4583766 0.4994167920 0.025216765 0.000000000
[4,] 0.01698981 0.4583766 0.4994167920 0.025216765 0.000000000
[5,] 0.05540938 0.5867679 0.3529886045 0.004834074 0.000000000
[6,] 0.01343305 0.4356408 0.5203777488 0.030548450 0.000000000
[7,] 0.00000000 0.0761843 0.6199726280 0.301823742 0.002019331
[8,] 0.05156756 0.5788718 0.3639106561 0.005649991 0.000000000
[9,] 0.03727759 0.5425754 0.4100317721 0.010115222 0.000000000
[10,] 0.00000000 0.0000000 0.0000000000 0.096002856 0.640825751

To get out of bag information during the fitting process it is necessary to define another
data object containing the data source of the evaluation data:

Define evaluation data objects:
data.eval.fare = InMemoryData$new(as.matrix(df.train$Fare[idx.eval]), "Fare")
data.eval.age = InMemoryData$new(as.matrix(df.train$Age[idx.eval]), "Age")

Those data sources are wrapped later to a list which is then given to the out of bag logger.

4.2.2. Categorical Features
Since there is no automated transformation of categorical features to an appropriate matrix
yet, categorical features must be handled manually. For this example the two interesting
features are sex and Pclass:

table(df.train$Sex)
##
female male
261 453
table(df.train$Pclass)
##
1 2 3
186 173 355

In component-wise boosting one possibility to encode categorical features is one hot en-
coding (dummy encoding) where each binary vector is used as source data matrix. The
appropriate base-learner to estimate group specific means is the linear base-learner (poly-
nomial with degree 1). The advantage of using every group as own base-learner is that
just important groups are selected. This procedure also reduces the bias of the model
selection which is done inherent in component-wise boosting [HHKS11].

The problem now is that for every group of the categorical features a data source and
target must be defined. For this purpose, a for loop is used to avoid copy and pasting
and to dynamically store the objects into a list. Note that the S4 setting makes it more
difficult to assign objects to a list. Therefore, an empty list must be assigned first for
creating and storing the S4 object:

32

4. Use-Case

Gender:

Unique groups:
classes.sex = unique(df.train$Sex)

Frame for the data and factory:
data.sex.list = list()

data.sex.list[["source"]] = list()
data.sex.list[["target"]] = list()
data.sex.list[["test"]] = list()
data.sex.list[["factory"]] = list()

for (class in classes.sex) {

Create dummy variable and feature name:
class.temp = ifelse(df.train$Pclass == class, 1, 0)
data.name = paste0("Sex.", class)

Define data source:
data.sex.list[["source"]][[data.name]] = list()
data.sex.list[["source"]][[data.name]] = InMemoryData$new(

as.matrix(class.temp[idx.train]), # data
data.name # data identifier

)

Define data target:
data.sex.list[["target"]][[data.name]] = list()
data.sex.list[["target"]][[data.name]] = InMemoryData$new()

Define oob data for logging:
data.sex.list[["test"]][[data.name]] = list()
data.sex.list[["test"]][[data.name]] = InMemoryData$new(

as.matrix(class.temp[idx.eval]), #data
data.name # data identifier

)

Define Factory object:
data.sex.list[["factory"]][[data.name]] = list()
data.sex.list[["factory"]][[data.name]] = PolynomialBlearnerFactory$new(

data_source = data.sex.list[["source"]][[data.name]],
data_target = data.sex.list[["target"]][[data.name]],
degree = 1

)
}

Passenger Class:

Unique groups:
classes.pclass = unique(df.train$Pclass)

Frame for the data and factory:

33

4. Use-Case

data.pclass.list = list()

data.pclass.list[["source"]] = list()
data.pclass.list[["target"]] = list()
data.pclass.list[["test"]] = list()
data.pclass.list[["factory"]] = list()

for (class in classes.pclass) {

Create dummy variable and feature name:
class.temp = ifelse(df.train$Pclass == class, 1, 0)
data.name = paste0("Pclass.", class)

Define data source:
data.pclass.list[["source"]][[data.name]] = list()
data.pclass.list[["source"]][[data.name]] = InMemoryData$new(

as.matrix(class.temp[idx.train]), # data
data.name # data identifier

)

Define data target:
data.pclass.list[["target"]][[data.name]] = list()
data.pclass.list[["target"]][[data.name]] = InMemoryData$new()

Define oob data for logging:
data.pclass.list[["test"]][[data.name]] = list()
data.pclass.list[["test"]][[data.name]] = InMemoryData$new(

as.matrix(class.temp[idx.eval]), # data
data.name # data identifier

)

Define Factory object:
data.pclass.list[["factory"]][[data.name]] = list()
data.pclass.list[["factory"]][[data.name]] = PolynomialBlearnerFactory$new(

data_source = data.pclass.list[["source"]][[data.name]],
data_target = data.pclass.list[["target"]][[data.name]],
degree = 1

)
}

Finally, all base-learner factories used for modeling have to be registered:

Create new factory list:
factory.list = BlearnerFactoryList$new()

Numeric factories:
factory.list$registerFactory(spline.factory.fare)
factory.list$registerFactory(spline.factory.age)

Categorial features:
for (lst in data.sex.list[["factory"]]) {

factory.list$registerFactory(lst)
}
for (lst in data.pclass.list[["factory"]]) {

factory.list$registerFactory(lst)

34

4. Use-Case

}

Print registered factories:
factory.list
##
Registered Factorys:
- Age: spline with degree 3
- Fare: spline with degree 3
- Pclass.1: polynomial with degree 1
- Pclass.2: polynomial with degree 1
- Pclass.3: polynomial with degree 1
- Sex.female: polynomial with degree 1
- Sex.male: polynomial with degree 1

4.3. Loss and Optimizer
To do binary classification one possibility is to use the binomial loss. This loss is used
while the training and determines how the pseudo residuals are calculated as well as the
empirical risk which is minimized:

loss.bin = BinomialLoss$new()
loss.bin
##
BinomialLoss Loss:
##
Loss function: y = log(1 + exp(-2yf(x))
##
Labels should be coded as -1 and 1!

The classical way of selecting the best base-learner within one iteration is using the greedy
optimizer:

used.optimizer = GreedyOptimizer$new()

4.4. Logger
4.4.1. Define Logger
As mentioned above, every element of the algorithm has to be defined manually. This also
includes the logger which also acts as stopper. This means, that it is necessary to define
the logger and if this logger should also be used as stopper.

Iterations logger

This logger just logs the current iteration and stops if max_iterations is reached. In this
example the algorithm should be trained for 2500 iterations:

log.iterations = IterationLogger$new(use_as_stopper = TRUE,
max_iterations = 2500)

Note that the argument max_iterations is just used if the logger also acts as stopper.
Otherwise this argument is ignored.

35

4. Use-Case

Time logger

This logger logs the elapsed time. The time unit can be one of microseconds, seconds
or minutes. The logger stops if max_time is reached, if it is used as stopper:

log.time = TimeLogger$new(use_as_stopper = FALSE, max_time = 120,
time_unit = "seconds")

In this and the next cases, when the logger is not used as stopper, the arguments which
are used to calculate the stop criteria are ignored.

Inbag risk logger

This logger logs the inbag risk by calculating the empirical risk using the training data.
Note that it is necessary to specify a loss which is used to calculate the empirical risk. To
display the empirical risk of the fitting progress it is necessary to use the same loss which
is also used later to train the model:

log.inbag = InbagRiskLogger$new(use_as_stopper = FALSE, used_loss = loss.bin,
eps_for_break = 0.05)

Out of bag risk logger

The out of bag risk logger does basically the same as the inbag risk logger but calculates
the empirical risk using another data source. Therefore, the new data objects must be a
list with data sources containing the evaluation data:

List with out of bag data sources:
oob.list = list()

Numerical features:
oob.list[[1]] = data.eval.fare
oob.list[[2]] = data.eval.age

Categorial features:
for (lst in data.sex.list[["test"]]) {

oob.list = c(oob.list, lst)
}
for (lst in data.pclass.list[["test"]]) {

oob.list = c(oob.list, lst)
}

Finally, the out of bag risk object is created by also specifying the corresponding y labels:

log.oob = OobRiskLogger$new(use_as_stopper = FALSE, used_loss = loss.bin,
eps_for_break = 0.05, oob_data = oob.list, oob_response = response[idx.eval])

Custom AUC logger

The risk logger in combination with a custom loss can also be used to log performance
measures. This is illustrated by using the AUC measure from mlr [BLK+16]:

36

https://mlr-org.github.io/mlr-tutorial/release/html/index.html

4. Use-Case

Define custom "loss function"
aucLoss = function (truth, response) {

Convert response on f basis to probs using sigmoid:
probs = 1 / (1 + exp(-response))

Calculate AUC:
mlr:::measureAUC(probabilities = probs, truth = truth, negative = -1,

positive = 1)
}

Define also gradient and constant initialization since they are necessary for
the custom loss:
gradDummy = function (truth, response) { return (NA) }
constInitDummy = function (truth, response) { return (NA) }

Define loss:
auc.loss = CustomLoss$new(aucLoss, gradDummy, constInitDummy)

Now it is possible to create a new inbag and out of bag logger to log the AUC while fitting
the model:

log.inbag.auc = InbagRiskLogger$new(use_as_stopper = FALSE,
used_loss = auc.loss, eps_for_break = 0.05)

log.oob.auc = OobRiskLogger$new(use_as_stopper = FALSE, used_loss = auc.loss,
eps_for_break = 0.05, oob_data = oob.list, oob_response = response[idx.eval])

This procedure can be used for any other risk measure. For a detailed description on how
to extend compboost with custom losses or base-learner see chapter 6.

4.4.2. Create Logger List and Register Logger
Finally, a logger list object needs to be defined in which all the loggers are registered:

Define new logger list:
logger.list = LoggerList$new()

Register logger:
logger.list$registerLogger(" iteration.logger", log.iterations)
logger.list$registerLogger("time.logger", log.time)
logger.list$registerLogger("inbag.binomial", log.inbag)
logger.list$registerLogger("oob.binomial", log.oob)
logger.list$registerLogger("inbag.auc", log.inbag.auc)
logger.list$registerLogger("oob.auc", log.oob.auc)

logger.list
##
Registered Logger:
>> iteration.logger<< Logger
>>inbag.auc<< Logger
>>inbag.binomial<< Logger
>>oob.auc<< Logger
>>oob.binomial<< Logger
>>time.logger<< Logger

37

4. Use-Case

4.5. Train Model and Access Elements
4.5.1. Run the Algorithm
After defining all objects which are required by compboost, it is now possible to define the
Compboost object with a learning rate of 0.05 and stopper rule which stops the algorithm
if the first stopper is fulfilled. This affects only the iteration logger since all other loggers
are not defined as stopper:

Initialize object:
cboost = Compboost$new(

response = response[idx.train],
learning_rate = 0.05,
stop_if_all_stopper_fulfilled = FALSE,
factory_list = factory.list,
loss = loss.bin,
logger_list = logger.list,
optimizer = used.optimizer

)

Train the model (we do not want to print the trace):
cboost$train(trace = FALSE)

4.5.2. Accessing Elements
The getEstimatedParameter() function returns the estimated parameters as list:

params = cboost$getEstimatedParameter()
str(params)
List of 4
$ Age: spline with degree 3 : num [1:24, 1] 2.093 1.665 1.586 ...
$ Fare: spline with degree 3 : num [1:24, 1] -0.9038 -0.0515 ...
$ Pclass.1: polynomial with degree 1: num [1, 1] 0.521
$ Pclass.3: polynomial with degree 1: num [1, 1] -1.02

Using str() indicates that the fitting selects four out of seven different base-learners.

With getSelectedBaselearner() it is also possible to get the trace how the base-learners
are fitted:

blearner.trace = cboost$getSelectedBaselearner()
table(blearner.trace)
blearner.trace
Age: spline with degree 3 Fare: spline with degree 3
965 754
Pclass.1: polynomial with degree 1 Pclass.3: polynomial with degree 1
257 524
blearner.trace[1:10]
[1] "Pclass.3: polynomial with degree 1"
[2] "Pclass.3: polynomial with degree 1"
[3] "Pclass.3: polynomial with degree 1"
[4] "Pclass.3: polynomial with degree 1"
[5] "Pclass.3: polynomial with degree 1"

38

4. Use-Case

[6] "Fare: spline with degree 3"
[7] "Pclass.3: polynomial with degree 1"
[8] "Fare: spline with degree 3"
[9] "Fare: spline with degree 3"
[10] "Pclass.3: polynomial with degree 1"

4.5.3. ROC Curve
To get the predicted f for new data, it is possible to reuse the list of the out of bag data
sources. That list can be used within the predict() member function of the Compboost
object. To transform f to probabilities the sigmoidal link is used:

Get predicted scores and probability (with sigmoid):
scores = cboost$predict(oob.list)
prob.scores = 1 / (1 + exp(-scores))

Calculate labels with threshold of 0.5:
pred.labels = ifelse(prob.scores > 0.5, 1, -1)

Calculate confusion matrix:
table(pred = pred.labels, truth = response[idx.eval])
truth
pred -1 1
-1 144 63
1 13 66

Looking at the confusion matrix shows that the model obtains a good sensitivity but a
bad false positive rate. Therefore it would be more informative to take a look at the AUC
and the ROC curve:

library(ggplot2)

True labels as binary vector (0, 1):
labels = (response[idx.eval] + 1) / 2
labels = labels[order(scores, decreasing = TRUE)]
myroc = data.frame(

TPR = cumsum(labels) / sum(labels),
FPR = cumsum(!labels) / sum(!labels),
Labels = labels

)

AUC:
mlr::measureAUC(probabilities = prob.scores, truth = response[idx.eval],

negative = -1, positive = 1)
[1] 0.7898583

ggplot(data = myroc, aes(x = FPR, y = TPR)) +
geom_abline(intercept = 0, slope = 1) +
geom_line(size = 2) +
ggtitle("ROC Curve")

39

4. Use-Case

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC Curve

Figure 4.1.: ROC curve for classification on survival.

4.6. Continue and Reposition the Training
The fastest way to continue the training is to use the setToIteration() function. If the
algorithm is set to an iteration bigger than the actual maximal iteration, then compboost
automatically trains the remaining base-learner:

cboost$setToIteration(k = 3000)
##
Set to a iteration bigger than already trained. Train 500 additional
base-learner.
cboost
##
Compboost object with:
- Learning Rate: 0.05
- Are all logger used as stopper: 0
- Model is already trained with 3000 iterations/fitted baselearner
- Actual state is at iteration 3000
- Loss optimal initialization: -0.25
##
To get more information check the other objects!

The drawback of using setToIteration() is, that the function does not continuing log-
ging. The logger data for the second training (from iteration 2501 to 3000) is then just a
vector including the iterations.

Additionally, it is possible to continuing the training using the continueTraining() func-
tion. This function takes a boolean to indicate if the trace should be printed and another
logger list to get more control about the retraining. For instance, the training can be
continued for three seconds. Additionally, the out of bag logger is reused:

40

4. Use-Case

Define new time logger:
new.time.logger = TimeLogger$new(use_as_stopper = TRUE, max_time = 3,

time_unit = "seconds")

Define new logger list and register logger:
new.logger.list = LoggerList$new()

Define new oob logger to prevent old logger data from overwriting:
new.oob.log = OobRiskLogger$new(use_as_stopper = FALSE, used_loss = loss.bin,

eps_for_break = 0.05, oob_data = oob.list, oob_response = response[idx.eval])
new.oob.auc.log = OobRiskLogger$new(use_as_stopper = FALSE, used_loss = auc.loss,

eps_for_break = 0.05, oob_data = oob.list, oob_response = response[idx.eval])

new.logger.list$registerLogger("time", new.time.logger)
new.logger.list$registerLogger("oob.binomial", new.oob.log)
new.logger.list$registerLogger("oob.auc", new.oob.auc.log)

Continue training:
cboost$continueTraining(trace = FALSE, logger_list = new.logger.list)
cboost
##
Compboost object with:
- Learning Rate: 0.05
- Are all logger used as stopper: 0
- Model is already trained with 11954 iterations/fitted baselearner
- Actual state is at iteration 11954
- Loss optimal initialization: -0.25
##
To get more information check the other objects!

Note: With setToIteration() it is also possible to set compboost to an iteration smaller
than the already trained ones. This becomes handy if one would like to set the algorithm
to an iteration corresponding to the minimal risk.

4.7. Illustrating Some Results
4.7.1. Inbag vs OOB
To compare the inbag and the out of bag AUC it is necessary to access the logger data:

cboost.log = cboost$getLoggerData()
str(cboost.log)
List of 3
$ initial.training:List of 2
..$ logger.names: chr [1:6] " iteration.logger" "inbag.auc" ...
..$ logger.data : num [1:2500, 1:6] 1 2 3 4 5 6 7 8 9 10 ...
$ retraining1 :List of 2
..$ logger.names: chr "setToIteration.retraining1"
..$ logger.data : num [1:500, 1] 1 2 3 4 5 6 7 8 9 10 ...
$ retraining2 :List of 2
..$ logger.names: chr [1:3] "oob.auc" "oob.binomial" "time"
..$ logger.data : num [1:8954, 1:3] 0.296 0.597 0.542 0.68 0.618 ...

This list contains all the data collected during the training and retraining. Therefore, the inital

41

4. Use-Case

training and the two retrainings yield three list elements. The interesting list element, in this
example, is the first one:

cboost.log = cboost.log[[1]]
str(cboost.log)
List of 2
$ logger.names: chr [1:6] " iteration.logger" "inbag.auc" ...
$ logger.data : num [1:2500, 1:6] 1 2 3 4 5 6 7 8 9 10 ...

To plot and compare the inbag and the out of bag risk the first list element is transformed
to a data frame:

auc.data = data.frame(
iteration = rep(seq_len(nrow(cboost.log$logger.data)), 2),
risk.type = rep(c("Inbag", "OOB"), each = nrow(cboost.log$logger.data)),
AUC = c(cboost.log$logger.data[, 2], cboost.log$logger.data[, 4]),
emp.risk = c(cboost.log$logger.data[, 3], cboost.log$logger.data[, 5])

)

p1 = ggplot(data = auc.data, aes(x = iteration, y = AUC, colour = risk.type)) +
geom_line(size = 2) +
ggtitle("AUC per Iteration")

p2 = ggplot(data = auc.data, aes(x = iteration, y = emp.risk,
colour = risk.type)) +
geom_line(size = 2) +
ggtitle("Empirical Risk per Iteration")

gridExtra::grid.arrange(p1, p2, ncol = 2)

0.65

0.70

0.75

0 500 1000 1500 2000 2500

iteration

A
U

C

risk.type

Inbag

OOB

AUC per Iteration

0.60

0.63

0.66

0.69

0 500 1000 1500 2000 2500

iteration

em
p.

ris
k risk.type

Inbag

OOB

Empirical Risk per Iteration

Figure 4.2.: Comparison of out of bag and inbag logger.

The two lines, which illustrate the AUC, show a surprising behaviour. One would expect
the out of bag AUC lower than the inbag AUC which is not the case here. If this is not
considered, the curves shows the usual behaviour. The out of bag curve of the AUC raises
till approximately 1200 iterations and then decreases. Taking a look at the empirical risk,
the out of bag risk falls till approximately 1200 and then starts to increase. These are
clear signs that for more than 1200 iterations the algorithm starts to overfit. One should
think about using the model at iteration 1200.

42

4. Use-Case

4.7.2. Fare Spline Base-Learner
One of the key advantages of component-wise boosting is to have an interpretable model.
For instance, it is now possible to illustrate the effect of fare. For that purpose the
transformData() function of the spline.factory.fare object can be used to create the
spline basis for new observations:

params = cboost$getEstimatedParameter()
params.fare = params$‘Fare: spline with degree 3‘

x.fare = seq(from = min(df.train$Fare), to = max(df.train$Fare),
length.out = 100)

x.basis = spline.factory.fare$transformData(as.matrix(x.fare))
x.response = x.basis %*% params.fare

plot.data = data.frame(x = x.fare, y = as.numeric(x.response))

mysub = "The higher the additive contribution the higher the chance of survial"
ggplot(data = plot.data, aes(x = x, y = y)) +

geom_line(size = 2) +
xlab("Ticket Costs (Fare)") +
ylab("Additive Contribution") +
labs(title = "Effect of Age on Survival", subtitle = mysub)

0

2

4

0 100 200 300 400 500

Ticket Costs (Fare)

A
dd

iti
ve

 C
on

tr
ib

ut
io

n

The higher the additive contribution the higher the chance of survial

Effect of Age on Survival

Figure 4.3.: Illustration of the fare spline effect at iteration 11954.

This curve results from taking the parameter after 11954 iterations. This could be too
much and tend to overfitting. Due to the out of bag behaviour illustrated in figure 4.2,
the model is set to iteration 1200:

Set cboost to iteration 1200:
cboost$setToIteration(k = 1200)

43

4. Use-Case

Get new updated parameters:
params = cboost$getEstimatedParameter()
params.fare = params$‘Fare: spline with degree 3‘

x.response = x.basis %*% params.fare

plot.data = data.frame(x = x.fare, y = as.numeric(x.response))

ggplot(data = plot.data, aes(x = x, y = y)) +
geom_line(size = 2) +
xlab("Ticket Costs (Fare)") +
ylab("Additive Contribution") +
labs(title="Effect of Age on Survival", subtitle = mysub)

0

1

2

0 100 200 300 400 500

Ticket Costs (Fare)

A
dd

iti
ve

 C
on

tr
ib

ut
io

n

The higher the additive contribution the higher the chance of survial

Effect of Age on Survival

Figure 4.4.: Illustration of the fare spline effect at iteration 1200.

4.8. Some Remarks
• We know that defining everything using the C++ class style is very odd, but it reflects
best the underlying C++ class system. Additionally, using the class system gives the
user maximal flexibility and control about the algorithm. An R API, which looks
more familiar to the most users, is in progress and one of the most important next
tasks.

• Since compboost is in a very early stage, the functionality is not very comprehensive.
For instance, there is just one optimizer at the moment and one loss class for binary
classification. There is also no multiclass support yet.

44

5. Benchmarking Compboost
The benchmark was made by using the R package batchtools [LBS17]. Within the
experiments the data are simulated after the following scheme:

1. The number of observations n and features p is fixed.

2. Simulate beta distributed correlations of the features:

Corr[Xi, Xj]
i.i.d∼ Beta(1, 8), i 6= j (5.1)

Hence, the expectation of the correlation equals 1/9 and therefore there are more
features which are less correlated than high correlated.

3. To get also negative correlation, sample the sign from a uniform distribution over
{−1, 1} for every correlation.

4. Simulate the data X by sampling from a multivariate Gaussian distribution with
expectation of zero and correlations as stated above.

5. Finally, the response variable is simulated by sampling p + 1 coefficients β0, . . . , βp
uniformly from [−2, 2] where the first β0 equals the intercept and β = (β1, . . . , βp)T .
To obtain the response variable y compute:

y = β0 +Xβ (5.2)

As seen in chapter 4 using compboost requires to define all objects by hand, since there is
no API at the moment which creates the classes automatically. Those classes are explained
in chapter 4. This gives different opportunities to run compboost. For this benchmark
the minimal requirements are used to run the algorithm with just using the iteration logger.

Compboost is compared with the R package mboost which also implements component-
wise boosting. Using mboost is much easier due to the R API. The complete benchmark is
included in the electronic digital (see appendix A) and was performed on a machine with
eight cores, 64 GB of RAM and took about 4 days.

The parameter settings which are used for the experiments are explained in the next sec-
tions. For section 5.1 each of the settings is evaluated five times. The hyperparameters of
the spline base-learner are set to the mboost default values with 20 knots, a spline degree
of 3 and penalty differences of 2. One exception are the degrees of freedom which are not
supported in compboost. Therefore, the penalty parameter is set to λ = 2.

5.1. Runtime Benchmark
To measure the runtime of the algorithms both algorithms are wrapped by the R function
proc.time():

45

5. Benchmarking Compboost

benchmarkCompboost = function (job, data, instance, iters, learner) {

Some preparations

time = proc.time()

Actual algorithm

time = proc.time() - time

Return statement
}

The time unit of the time object are seconds. To get a better feeling about the runtime
the seconds are transformed to minutes.

5.1.1. Number of Iterations
Table 5.1 shows the evaluated parameters. The number of rows and number of base-
learners remains at 2000 and 1000 while the number of iterations increases. Figure 5.1
illustrates the result of the benchmark. For both, linear and spline, base-learner compboost
outperforms mboost. But it is noticeable that for spline base-learner compboost runs
relatively slow compared to the linear base-learner which runs about nine times faster
while using spline base-learner is just about three times faster. A reason could be that
for a larger dimension of parameters within the base-learners the matrix multiplication,
which is not that slow within R and hence in mboost, becomes more weight than iterating
over the set of base-learners and the algorithm.

Number of rows Number of base-learner Iterations
2000 1000 100
2000 1000 500
2000 1000 1000
2000 1000 2000
2000 1000 5000
2000 1000 10000
2000 1000 150000

Table 5.1.: Used parameters for benchmarking the number of iterations.

5.1.2. Number of Observations
To reduce the runtime for an increasing number of observations, compboost stores the
inverse which is then reused over and over again as explained in section 3.3. For instance,
using a polynomial base-learner stores the matrix Z = (XTX)−1 ∈ Rp×p (p means the
number of parameters for the specific base-learner here) and uses this matrix for fitting

46

5. Benchmarking Compboost

0

25

50

75

100

100 500 1000 2000 5000 10000 15000

E
la

p
se

d
 T

im
e

in
 M

in
u

ts

Linear Base-Learner

0

25

50

75

100

100 500 1000 2000 5000 10000 15000

P-Spline Base-Learner

0

3

6

9

100 500 1000 2000 5000 10000 15000

R
el

at
iv

e
R

u
n

ti
m

e

0

3

6

9

100 500 1000 2000 5000 10000 15000

Benchmark for Increasing Number of Iterations

Number of Iterations

compboost

mboost

Figure 5.1.: Iteration benchmark using a fixed data size of 2000 observations and 1000
base-learner for 100, 500, 1000, 2000, 5000, 10000 and 15000 iterations. For
each iteration compboost was trained five times for linear and spline base-
learner. The error bars illustrate the minimal and maximal value of the elapsed
time

new base-learner to the pseudo residuals r[m]:

β[m] = ZXT r[m] (5.3)

Using this approach is less expensive since p is not too big for single base-learner. Nev-
ertheless, the runtime of the computation does depend on the size of X. Hence, it is
possible to reduce the runtime but not keeping it constant. This could be possible by
storing (XTX)−1XT . But this approach would be very expensive in terms of memory
since the dimension of (XTX)−1XT is p× n. This trick was motivated by looking at the
source of mboost which applies the same approach.

Table 5.2 shows the used parameters to benchmark the number of iterations. Figure 5.2
illustrates the result of the benchmark. The interesting behaviour is that for small data
sizes compboost performs much better than mboost. This could be due to the same fact
as for the number of iterations that the loops get more weight compared to the matrix
multiplications which are much faster in C++. For larger datasets the Armadillo matrix
multiplication scales better than the R built in matrix multiplication which explains the
increasing relative runtime for larger datasets.

5.1.3. Number of Base-Learners
Again, table 5.3 illustrates the used parameters to simulate the data while figure 5.3 shows
the results of the benchmark. And again, the spline base-learner needs relatively much

47

5. Benchmarking Compboost

Number of rows Number of base-learner Iterations
1000 1000 1500
2000 1000 1500
5000 1000 1500
10000 1000 1500
20000 1000 1500
50000 1000 1500

100000 1000 1500

Table 5.2.: Used parameters for benchmarking the number of observations/rows.

0

50

100

150

200

250

1000 2000 5000 10000 20000 50000 100000

E
la

p
se

d
 T

im
e

in
 M

in
u

te
s

Linear Base-Learner

0

50

100

150

200

250

1000 2000 5000 10000 20000 50000 100000

P-Spline Base-Learner

0.0
2.5
5.0
7.5

10.0

1000 2000 5000 10000 20000 50000 100000

R
el

at
iv

e
R

u
n

ti
m

e

0.0
2.5
5.0
7.5

10.0

1000 2000 5000 10000 20000 50000 100000

Benchmark for Increasing Number of Rows

Number of Rows

compboost

mboost

Figure 5.2.: Number of observations benchmark using a fixed number of iterations of 1500
and 1000 base-learner for 1000, 2000, 5000, 10000, 20000, 50000, and 100000
observations. For each number of observations compboost was trained five
times for linear and spline base-learner. The error bars illustrate the minimal
and maximal value of the elapsed time.

more time than the linear base-learner. The interesting fact for this benchmark is that
with mboost it was not able to evaluate the experiment for 4000 base-learner.

5.2. Memory Benchmark
To get an idea of the memory usage of compboost it is not possible to use R functions such
as object.size() from the utils package or object_size() and mem_change() from
pryr [Wic18]. Those functions could only catch memory changes within R. But since the
most memory allocations are done from C++, those functions are not able to get the real
memory usage. To measure the actual used memory, a small helper program in C++ was

48

5. Benchmarking Compboost

Number of rows Number of base-learner Iterations
2000 10 1500
2000 50 1500
2000 100 1500
2000 500 1500
2000 1000 1500
2000 2000 1500
2000 4000 1500

Table 5.3.: Used parameters for benchmarking the number of base-learner.

0

5

10

15

20

10 50 100 500 1000 2000 4000

E
la

p
se

d
 T

im
e

in
 M

in
u

ts

Linear Base-Learner

0

5

10

15

20

10 50 100 500 1000 2000 4000

P-Spline Base-Learner

0

2

4

6

10 50 100 500 1000 2000 4000

R
el

at
iv

e
R

u
n

ti
m

e

0

2

4

6

10 50 100 500 1000 2000 4000

Benchmark for Increasing Number of Base-Learner

Number of Base-Learner

compboost

mboost

Figure 5.3.: Base-learner benchmark using a fixed data size of 2000 observations and 1500
iterations for 10, 50, 100, 500, 1000, 2000 and 4000 base-learner. For each
number of base-learner compboost was trained five times for linear and spline
base-learner. The error bars illustrate the minimal and maximal value of the
elapsed time

programmed to measure the actual used memory every second and writes it into a txt file.
Those files are included into the digital appendix. The program is then executed at the
same time as compboost and mboost. While running the program, the most background
processes like anti malware software or update manager are stopped. Nevertheless, it is
not possible to completely stop all processes which affects the used memory. Therefore, a
fluctuation has to be considered.

Again, the data used in this benchmark are simulated as explained above. For each of the
following benchmarks the used memory is logged at every second and plotted against the
runtime. To get an idea of how the three parameters (number of observations, number of

49

5. Benchmarking Compboost

base-learners and number of iterations) affect the memory, each memory logging is done
for a large value using linear and spline base-learners. To be able to compare the plots,
figure 5.4 was created using small values which can be used as base-line.

Finally, mboost is able to handle sparse data which is not possible with compboost at
the moment. To get a comparison by just using dense matrices, the mboost_useMatrix
option is set to FALSE. Nevertheless, this option is set to TRUE as default and therefore
compboost is also compared to mboost by letting mboost decide which format to use.
Table 5.4 illustrates the different comparisons which were made.

Benchmark Number
of rows

Number
of base-
learners

Iterations Base-
learner

mboost
sparse
matrix

Figure

Base-line 2000 1000 1000 linear FALSE 5.4
Base-line 2000 1000 1000 spline FALSE 5.4
Base-line 2000 1000 1000 linear TRUE 5.4
Base-line 2000 1000 1000 spline TRUE 5.4

Iterations 2000 1000 5000 linear FALSE 5.5
Iterations 2000 1000 5000 spline FALSE 5.5
Iterations 2000 1000 5000 linear TRUE 5.5
Iterations 2000 1000 5000 spline TRUE 5.5

Observations 50000 1000 1000 linear FALSE 5.6
Observations 50000 1000 1000 spline FALSE 5.6
Observations 50000 1000 1000 linear TRUE 5.6
Observations 50000 1000 1000 spline TRUE 5.6

Base-learner 2000 2000 1000 linear FALSE 5.7
Base-learner 2000 2000 1000 spline FALSE 5.7
Base-learner 2000 2000 1000 linear TRUE 5.7
Base-learner 2000 2000 1000 spline TRUE 5.7

Table 5.4.: Settings for the memory benchmark.

A last note is that the C++ program which logs the used memory just runs on windows
since the memory handling on different operating systems requires different code.

Figure 5.4 illustrates the memory benchmark for small values and shows the expected
behaviour. For linear base-learners compboost allocates less memory than mboost. Addi-
tionally, using sparse matrices for linear base-learners does not make sense since the design
matrix does not contain much zeros. Using spline base-learners compboost allocates less
memory than mboost when disabling the use of sparse matrices. Enabling the use of sparse
matrices, mboost uses less memory than compboost.

50

5. Benchmarking Compboost

0

100

200

300

400

0 1 2 3

U
se

d
 M

eg
ab

y
te

s
Linear Base-Learner

0

100

200

300

400

0 2 4

Spline Base-Learner

Base-Line Memory Comparison

Elapsed Seconds

compboost

mboost (disabling sparse matrices)

mboost (enabling sparse matrices)

Figure 5.4.: Memory base-line.

5.2.1. Number of Iterations
Figure 5.5 includes the used memory over 5000 iterations. The behaviour is the same as
for the base-line. As expected, the used memory increases over the time with the number
of fitted base-learners. The behaviour and influence of sparse data is quite similar to figure
5.4.

0

200

400

600

800

0 3 6 9 12

U
se

d
 M

eg
ab

y
te

s

Linear Base-Learner

0

200

400

600

800

0 5 10 15 20 25

Spline Base-Learner

Memory Comparison using 5000 Iterations

Elapsed Minutes

compboost

mboost (disabling sparse matrices)

mboost (enabling sparse matrices)

Figure 5.5.: Memory comparison using 5000 iterations.

5.2.2. Number of Observations
Figure 5.6 shows the most interesting behaviour. The benchmark was made using 50000
observations. The curves do not have as much fluctuation as the other images since the
used memory is very high and therefore small changes in the RAM do not get much
weight. For linear base-learners the memory usage of mboost is exactly the same as for
disabling and enabling sparse matrices that, again, is not a surprise since the linear base-
learner does not take advantage of sparse matrices. Using compboost requires about 1.5
GB RAM which is much less than the about 5 GB of mboost. For spline base-learners
the used memory is much higher. But using sparse matrices has a huge impact on the
memory size which is reduced from about 17 GB to 7.5 GB within mboost. Nevertheless,
compboost does a good job by using approximately 10 GB with dense matrices. Knowing

51

5. Benchmarking Compboost

which data are stored during the fitting process gives the opportunity to calculate the
minimal memory in GB which are required to store the data:

(50000 · 23︸ ︷︷ ︸
(1)

· 1000︸︷︷︸
(2)

· 8︸︷︷︸
(3)︸ ︷︷ ︸

=9.2 GB

+ 23 · 23︸ ︷︷ ︸
(4)

· 1000︸︷︷︸
(2)

· 8︸︷︷︸
(3)︸ ︷︷ ︸

≈0.004 GB

) Bytes ≈ 9.2 GB (5.4)

Equation (5.4) is calculated by taking the number of elements of the design matrix (1)
as dense matrix multiplied by the number of base-learners (2) and allocated bytes for
numerical matrices (double) (3) which is equal to 9.2 GB. Additionally, compboost stores
the inverse matrices with dimension 23× 23 (4) which requires 0.004 GB of RAM for all
base-learners. Taking this computation, compboost uses about 800 MB to store stuff like
the estimated response, parameters, logger data and information about the fitting process.

0

5000

10000

15000

20000

0 10 20

U
se

d
 M

eg
ab

y
te

s

Linear Base-Learner

0

5000

10000

15000

20000

0 30 60 90 120

Spline Base-Learner

Memory Comparison using 50000 Observations

Elapsed Minutes

compboost

mboost (disabling sparse matrices)

mboost (enabling sparse matrices)

Figure 5.6.: Memory comparison using 50000 observations.

5.2.3. Number of Base-Learners
Quite similar as the time benchmark, it was not able to run mboost for 2000 base-learners
on the machine used for the benchmark. Therefore, figure 5.7 includes just the used
memory of compboost which is approximately two times the size of the base-line. This is
not a surprise since 2000 instead of 1000 base-learners are used.

0

200

400

600

0.0 0.1 0.2 0.3 0.4

U
se

d
 M

eg
ab

y
te

s

Linear Base-Learner

0

200

400

600

0 1 2

Spline Base-Learner

Memory Comparison using 2000 Base-Learner

Elapsed Minutes

compboost

mboost (disabling sparse matrices)

mboost (enabling sparse matrices)

Figure 5.7.: Memory comparison using 2000 base-learner.

52

6. Extending Compboost
Compboost has two main possibilities of extending it without recompiling by using R or
C++ functions. This chapter gives an overview how to use custom classes with examples
for:

• Custom base-learner.
• Custom losses.
• Custom losses to track performance measures.

6.1. Custom Base-Learner
In this section the custom classes are explained by recreating the linear base-learner. The
focus is to create new base-learner since they can be tested and trained while creating
factories is just an abstract construct needed by compboost. Defining new factories works
exactly the same as defining new base-learners. Creating base-learners and factories re-
quires source and target data. In the following examples just one source data object is
used while the target data objects are defined when they are needed. This also shows how
one data source object can be shared by different learners:

Source data:
data.source = InMemoryData$new(as.matrix(rnorm(100)), "my.feature")

Target feature:
y = rnorm(100)

Basically, the custom base-learner requires:

• A transform data function to initialize the data.
• A train function to train the base-learner.
• A predict function to predict on newdata.
• Just the R custom learners and factories have the option to use a fucntion to extract
parameter from the object created by the train function. Note that the C++ learner
requires the parameters as result of the train function.

6.1.1. Using R Functions
The easiest way to create new base-learner is to define own R functions. First, a very
inefficient way is used by using the lm() function for training. Therefore, every training
stores an S3 object of the class lm. This example illustrates how arbitrary R objects can
be used within compboost. Remember that we want to recreate the linear base-learner:

Within the linear base-learner no transformation is done:
instantiateDataFun = function (X) {

return(X)
}

53

6. Extending Compboost

The training returns the lm object:
trainFun = function (y, X) {

return(lm(y ~ 0 + X))
}

Predicting new data is done using the lm object gained by train:
predictFun = function (model, newdata) {

return(as.matrix(predict(model, as.data.frame(newdata))))
}

Required to estimate parameter during the training:
extractParameter = function (model) {

return(as.matrix(coef(model)))
}

Now define a base-learner using those custom functions:

Define target data:
data.target1 = InMemoryData$new()

Define base-learner:
custom.r.learner1 = CustomBlearner$new(data.source, data.target1,

instantiateDataFun, trainFun, predictFun, extractParameter)

That is everything which needs to be done for a custom base-learner. Finally, the base-
learner can be tested if it works correctly:

custom.r.learner1$train(y)
custom.r.learner1$getParameter()
[,1]
[1,] -0.01887205

trainFun(y, data.source$getData())
##
Call:
lm(formula = y ~ 0 + X)
##
Coefficients:
X
-0.01887

The special thing is, that the custom base-learner stores the lm object created by trainFun()
into a SEXP within C++. Then this object can be used to do further analysis. This also
gives the opportunity to, for instance, store rpart objects to boost trees. Nevertheless,
this is not recommended since there are packages which are designed to do that (see sec-
tion 2.5.2). Additionally, it is not possible to estimate parameter when boosting trees with
compboost

Defining a factory object works exactly like creating the base-learner:

custom.r.factory1 = CustomBlearnerFactory$new(data.source, data.target1,
instantiateDataFun, trainFun, predictFun, extractParameter)

54

6. Extending Compboost

This factory then can be registered and used within compboost for the training.

It is obvious that the first custom learner is highly inefficient because lm does much more
than it have to. We now want to define new functions to be more efficient. To do so,
we define the functions by hand and compute the estimator. The “model”, which is used
here, is just a parameter vector:

instantiateDataFun = function (X) {
return(X)

}

Ordinary least squares estimator:
trainFun = function (y, X) {

return(solve(t(X) %*% X) %*% t(X) %*% y)
}

predictFun = function (model, newdata) {
return(as.matrix(newdata %*% model))

}

extractParameter = function (model) {
return(as.matrix(model))

}

And again, the base-learner can be defined by passing those custom functions to the
constructor:

New data target object:
data.target2 = InMemoryData$new()

Define base-learner:
custom.r.learner2 = CustomBlearner$new(data.source, data.target2,

instantiateDataFun, trainFun, predictFun, extractParameter)

Now the base-learner can be tested if it works correctly:

custom.r.learner2$train(y)
custom.r.learner2$getParameter()
[,1]
[1,] -0.01887205

trainFun(y, data.source$getData())
[,1]
[1,] -0.01887205

Defining the factory works similar to the base-learner:

custom.r.factory2 = CustomBlearnerFactory$new(data.source, data.target2,
instantiateDataFun, trainFun, predictFun, extractParameter)

But how does those two custom learners behave compared to the pre implemented lin-
ear base-learner in terms of performance? Therefore, a small comparison using the
microbenchmark package [Mer15]:

55

6. Extending Compboost

Define new data target:
data.target.lin = InMemoryData$new()

Define pre ipmlemented base-learner:
linear.learner = PolynomialBlearner$new(data.source, data.target.lin, 1)

Small benchmark:
microbenchmark::microbenchmark(

"Custom lm learner" = custom.r.learner1$train(y),
"Custom gauss equation learner" = custom.r.learner2$train(y),
"Pre implemented learner" = linear.learner$train(y)

)
Unit: microseconds
expr min lq mean median uq
Custom lm learner 625.410 655.105 738.29513 684.929 740.738
Custom gauss equation learner 66.561 76.161 93.20555 82.817 87.425
Pre implemented learner 6.657 8.961 14.21928 12.929 15.361
max neval cld
2166.786 100 c
996.609 100 b
110.850 100 a

The base-learner which takes the lm S3 object is obviously the slowest one. The second
base-learner which computes the parameter by matrix operations is much faster than
the lm learner, but compared to the build in C++ learner it is also much slower. With
compboost it is possible to go one step further to increase performance by using custom
C++ factories/learner.

6.1.2. Using C++ Functions
Using C++ functions is technically a bit more complicated since it is necessary to write
some metacode to export external pointer. In this section a way is provided to make this
procedure as simple as possible.

The fastest way of looking at code which defines and returns the pointer to own C++
functions is to call getCustomCppExample() of the package compboost. The code which
is created by calling getCustomCppExample() is fully given in appendix C. This function
returns a character which can be used within Rcpp::sourceCpp() to load the objects
required for the CustomCppBlearner or CustomCppBlearnerFactory:

Rcpp::sourceCpp(code = getCustomCppExample(silent = TRUE))

The new objects in R are functions which return the external pointer to the C++ function:

dataFunSetter()
<pointer: 0x000000001ad1d650>
class(dataFunSetter())
[1] "externalptr"
trainFunSetter()
<pointer: 0x000000001ad1d730>
predictFunSetter()
<pointer: 0x000000001ad1d660>

56

6. Extending Compboost

These functions can be used to set the custom C++ functions by creating a new custom
cpp learner or factory. But how does that work? Lets walk through the cpp file exported
by getCustomCppExample().

The first thing is to include RcppArmadillo and tell Rcpp to depend on RcppArmadillo
using the Rcpp attributes. This tells the compiler to link to the RcppArmadillo include
files:

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

The next step is to make some type definitions. Those definitions are used to tell C++ that
e. g. trainFunPtr contains the pointer to a function which is defined later:

typedef arma::mat (*instantiateDataFunPtr) (const arma::mat& X);
typedef arma::mat (*trainFunPtr) (const arma::vec& y, const arma::mat& X);
typedef arma::mat (*predictFunPtr) (const arma::mat& newdata,

const arma::mat& parameter);

The actual definitions of the functions which defines the base-learner like training or
prediction can be written as ordinary C++ functions:

// instantiateDataFun:
// -------------------

arma::mat instantiateDataFun (const arma::mat& X)
{

return X;
}

// trainFun:
// -------------------

arma::mat trainFun (const arma::vec& y, const arma::mat& X)
{

return arma::solve(X, y);
}

// predictFun:
// -------------------

arma::mat predictFun (const arma::mat& newdata, const arma::mat& parameter)
{

return newdata * parameter;
}

Note that those functions are defined as ordinary C++ function without returning a pointer
or anything like that. Additionally, those functions are not exposed by the Rcpp::export
tag. Basically, this is the only part the user has to write by himselve. The other code
in this file is just used to export the function pointers without too much own pointer
programming.

57

6. Extending Compboost

Finally, the pointer to those functions should be exposed. Therefore, the upper functions
are wrapped by XPtr using the type definitions from above. The following code takes the
address of the custom C++ functions and returns the pointer of it:

// [[Rcpp::export]]
Rcpp::XPtr<instantiateDataFunPtr> dataFunSetter ()
{
return Rcpp::XPtr<instantiateDataFunPtr> (new instantiateDataFunPtr (

&instantiateDataFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<trainFunPtr> trainFunSetter ()
{
return Rcpp::XPtr<trainFunPtr> (new trainFunPtr (&trainFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<predictFunPtr> predictFunSetter ()
{
return Rcpp::XPtr<predictFunPtr> (new predictFunPtr (&predictFun));
}

Note that XPtr is a template of the function classes defined in the first place.

Finally, the setter functions can be used to create a new custom cpp base-learner:

Define new data target:
data.target3 = InMemoryData$new()

custom.cpp.learner = CustomCppBlearner$new(data.source, data.target3,
dataFunSetter(), trainFunSetter(), predictFunSetter())

Check if learner works correctly:
custom.cpp.learner$train(y)
custom.cpp.learner$getParameter()
[,1]
[1,] -0.01887205

This base-learner can now be compared with the build in one and a custom learner using
R functions:

microbenchmark::microbenchmark(
"Custom R learner" = custom.r.learner2$train(y),
"Custom C++ learner" = custom.cpp.learner$train(y),
"Build in learner" = linear.learner$train(y)

)
Unit: microseconds
expr min lq mean median uq max neval cld
Custom R learner 64.513 67.329 77.66888 70.145 81.921 167.425 100 c
Custom C++ learner 8.705 9.729 13.36676 11.393 13.825 94.209 100 b
Build in learner 6.401 7.169 9.06341 7.937 9.985 32.513 100 a

The new custom cpp learner is quite fast, but not as fast as the build in learner. This
is due to the data which is stored by using the build in learner. This learner stores the

58

6. Extending Compboost

matrix (XTX)−1 once while initializing the data. The inverse is then used again for the
training of the model. Hence, there is no need to recalculate the inverse. This is the only
drawback of using the custom cpp loss, it is not possible to acess the public data members
of the target data object at the moment.

6.2. Custom Losses
In this section the custom losses are explained by recreating the quadratic loss.

6.2.1. Using R Functions
The three components to define a loss function in compboost are:

• The loss function.
• The gradient of the loss function.
• The constant initializer.

The first step is to define those three function in R:

Loss function:
myLoss = function (true.values, prediction) {

return (0.5 * (true.values - prediction)^2)
}

Gradient of loss function:
myGradient = function (true.values, prediction) {

return (prediction - true.values)
}

Constant initialization:
myConstInit = function (true.values) {

return (mean(true.values))
}

Now the actual loss class can be defined by using the CustomLoss class:

my.loss = CustomLoss$new(myLoss, myGradient, myConstInit)

And basically thats it. The custom loss can be tested by calling the three test functions:

true.values = rnorm(10000)
prediction = rnorm(10000)

all.equal(
my.loss$testLoss(true.values, prediction),
as.matrix(myLoss(true.values, prediction))

)
[1] TRUE
all.equal(

my.loss$testGradient(true.values, prediction),
as.matrix(myGradient(true.values, prediction))

)
[1] TRUE
all.equal(

59

6. Extending Compboost

my.loss$testConstantInitializer(true.values),
myConstInit(true.values)

)
[1] TRUE

This method is good for writing prototypes, but the method is slower unlike the pre
implemented version.

6.2.2. Using C++ Functions
Equally to the custom base-learner, the function getCustomCppExample() can be used to
get an example of the quadratic loss. Therefore, set the example parameter to loss:

Rcpp::sourceCpp(code = getCustomCppExample(example = "loss", silent = TRUE))

This function compiles the custom loss function, the gradient and the constant initializa-
tion and returns external pointer to those functions:

lossFunSetter()
<pointer: 0x000000001ad1d490>
class(lossFunSetter())
[1] "externalptr"
gradFunSetter()
<pointer: 0x000000001ad1d770>
constInitFunSetter()
<pointer: 0x000000001ad1d720>

The code to create this setter is very similar to the base-learner code. The first part is
including RcppArmadillo and the type definitions:

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

typedef arma::vec (*lossFunPtr) (const arma::vec& true_value,
const arma::vec& prediction);

typedef arma::vec (*gradFunPtr) (const arma::vec& true_value,
const arma::vec& prediction);

typedef double (*constInitFunPtr) (const arma::vec& true_value);

Next the actual functions are defined:

// Loss function:
// -------------------

arma::vec lossFun (const arma::vec& true_value, const arma::vec& prediction)
{

return arma::pow(true_value - prediction, 2) / 2;
}

// Gradient:
// -------------------

arma::vec gradFun (const arma::vec& true_value, const arma::vec& prediction)
{

return prediction - true_value;

60

6. Extending Compboost

}

// Cosntant Initializer:
// -----------------------

double constInitFun (const arma::vec& true_value)
{

return arma::mean(true_value);
}

Finally, those functions are exposed and wrapped by setter functions which return the
external pointer:

// [[Rcpp::export]]
Rcpp::XPtr<lossFunPtr> lossFunSetter ()
{

return Rcpp::XPtr<lossFunPtr> (new lossFunPtr (&lossFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<gradFunPtr> gradFunSetter ()
{

return Rcpp::XPtr<gradFunPtr> (new gradFunPtr (&gradFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<constInitFunPtr> constInitFunSetter ()
{

return Rcpp::XPtr<constInitFunPtr> (new constInitFunPtr (&constInitFun));
}

The loss then can be defined by creating a new CustomCppLoss:

my.cpp.loss = CustomCppLoss$new(lossFunSetter(), gradFunSetter(),
constInitFunSetter())

This class can now be tested by using the test functions:

all.equal(
as.matrix(0.5 * (true.values - prediction)^2),
my.cpp.loss$testLoss(true.values, prediction)

)
[1] TRUE
all.equal(

as.matrix(prediction - true.values),
my.cpp.loss$testGradient(true.values, prediction)

)
[1] TRUE
all.equal(mean(true.values), my.cpp.loss$testConstantInitializer(true.values))
[1] TRUE

Nevertheless, defining a custom cpp learner and use this one from R does not speed up the
computation for this example of the quadratic loss. This is due to the translation of the
R vector to a vector which C++ understands:

61

6. Extending Compboost

microbenchmark::microbenchmark(
"custom R loss" = my.loss$testLoss(true.values, prediction),
"custom C++ loss" = my.cpp.loss$testLoss(true.values, prediction)

)
Unit: microseconds
expr min lq mean median uq max
custom R loss 63.489 67.4575 126.6442 70.7850 127.4890 1513.729
custom C++ loss 170.241 171.5210 196.6885 185.6015 196.7375 445.441
neval cld
100 a
100 b

However, using the custom cpp learner gives a boost in performance during the fitting
since this conversion is just done once

6.3. Logging Performance Measures
Until now, only the standard applications have been considered. But, the custom classes
in combination with R functions can also be used to do more advanced logging like tracking
performance measures.

For instance, all measures from mlr can be defined as loss functions and then be used to
log the algorithm. This works because for logging it is not necessary to define the gradient
or a constant initializer.

As before, compboost expects functions for the loss, gradient and the constant initializa-
tion. The loss function contains the performance measure:

Define custom "auc loss" using mlr’s measureAUC:
aucLoss = function (truth, response) {

Convert response on f to probs using sigmoid:
probs = 1 / (1 + exp(-response))

Calculate AUC:
mlr:::measureAUC(probabilities = probs, truth = truth,

negative = -1, positive = 1)
}

This works since the empirical risk is just the average of the vector returned by the loss
function. If this function just returns a value, like the custom AUC loss function, then
the empirical risk is exactly that value. Therefore, the logged empirical risk corresponds
to the AUC.

Besides the loss function the custom loss expects functions for the gradient and constant
initialization. Therefore, it is sufficient to take functions which returns NA as dummys:

Dummy functions for the gradient and constant initialization:
gradDummy = function (truth, response) { return (NA) }
constInitDummy = function (truth, response) { return (NA) }

Finally, those functions can be used to create a new custom loss:

62

6. Extending Compboost

Define loss:
auc.loss = CustomLoss$new(aucLoss, gradDummy, constInitDummy)

Test the auc loss:
set.seed(31415)
response = rnorm(10)
truth = rbinom(10, 1, 0.3) * 2 - 1

auc.loss$testLoss(truth, response)
[,1]
[1,] 0.7083333

This custom loss class can now be used within the InbagRiskLogger or OobRiskLogger
to track the AUC while fitting the model. For an example see section 4.

63

7. Conclusion and Outlook
As described in chapter 3 using object-oriented programming with C++ gives the user huge
flexibility by using the class system. Rcpp makes exposing those classes very easy by pro-
viding the Rcpp modules. Additionally, compboost does not have much dependencies. The
core is implemented by just using Rcpp and RcppArmadillo. With Armadillo compboost
depends on a library which is very well maintained and is constantly being developed. Ad-
ditionally, using Armadillo gives the opportunity to compile compboost using a different
BLAS or LAPACK to, for example, speed up matrix multiplication.

In chapter 5 we have compared compboost with the well-known R package mboost. Using
compboost gives a nice speed-up about three to ten times. But compboost is not just
faster than mboost, it is also more memory friendly if just dense matrices are used. En-
abling mboost to decide whether it should use dense or sparse matrices beats compboost.
Nevertheless, this is not a big surprise since compboost does not support sparse matrices
at the moment. Another advantage of compboost over mboost is, that it is possible to fit
models in huge feature spaces. With compboost it was possible to fit models using 4000
base-learners while mboost throws errors. Anyway, this depends on the used machine but
shows that compboost is able to handle a larger amount of base-learners.

If we compare compboost with mboost in terms of functionality then we prefer mboost.
This is due to the fact that compboost has much less implemented base-learners as well
as implemented loss functions than mboost. Additionally, mboost provides methods to
combine already existing base-learners to more complex ones. Other drawbacks are that
at the current state compboost does not support multiclass classification and has no R
API. Of course, it is possible to execute the algorithm in R, but it is not very user friendly
to use the S4 class system.

As mentioned above, there are still many to dos left. Implementing sparse matrices should
not just decrease the memory usage but also speed up the algorithm by some factors de-
pending on the structure of the matrix. Another important method to speed up the
algorithm is parallelization. This could be used at two different stages. The obvious one
is to parallelize the optimizer. Instead of sequentially fitting the base-learners it would
be much more efficient to do that in a parallel fashion. Nevertheless, this could lead to
increasing memory usage since each base-learner within one iteration must be stored until
all learners are fitted. Additionally, it should be possible to parallelize the data trans-
formations. This could be done directly in C++ creating, for instance, the spline bases
parallel. Another way to parallelize the data transformations could be to parallelize the
loop which takes the source data objects and transforms the data. This parallelization
would be done through the R API.

Another very important point is the R API. The most R users wants to train their models
using the formula interface with just one function to create everything automatically. Ad-
ditionally, using an R API gives us the opportunity to do memory handling directly within
R. Then the user does not have to care about memory allocations. To make compboost

64

7. Conclusion and Outlook

more user friendly we also want to write useful help pages.

As mentioned above it is also planned to implement new classes to enable multiclass clas-
sification. Therefore, it would be convenient to have another abstraction layer of the
response by introducing a new abstract class. Other useful, but not yet implemented,
classes are an out of memory data class to access data via SQL or a smarter optimizer
like momentum. All those extensions do not require too much code since the architecture
is already there.

Finally, besides the R API it is also desirable to have nice functions for plotting, predicting
and summarizing the model. Especially the visualisation of the fitted model will get a
special treatment in the future. The idea is to have an interactive graphic which visualizes
the model depending on the iteration which can be set by the user. Having such a visu-
alization should make it easy for the user to explore the model, find a good configuration
and illustrate the effect of a selected feature.

Alltogether, compboost has a solid base with a lot potential for the future. For instance, it
should be possible to speed up the algorithm by using sparse matrices and parallelization.
Another very nice add on is the possibility to expose the core implementation not just
to R but also to other programming languages like python which should be possible with
some adaptions.

With this implementation doing model-base boosting on large datasets is possible and
efficient. This is achieved by using C++ which gives full control about the memory usage
which is not always the case with R. Nevertheless, converting the R matrices to Armadillo
matrices requires copying the data. This is an example of how the R API could manage
the memory by deleting the source data objects, which contains just a copy of the R data,
after they are transformed and stored into the data target.

65

List of Figures

3.1. Illustration of polymorphism. 11
3.2. Illustration of the factory pattern. 12
3.3. Illustration of the registry pattern. 12
3.4. Illustration of how an R function is called from C++ 13
3.5. Illustration of how pointers can be used to set custom C++ functions. 14
3.6. Illustration of how to create the RcppExports files. 16
3.7. Class diagram of C++ classes and their dependencies. 18
3.8. Interaction of data source, data target and factory. 19
3.9. Call graph of the getEstimatedParameterOfIteration() function. 23
3.10. Classes used within the Compboost class. 25
3.11. Call graph of the train() function. 26
3.12. Call graph of the trainCompboost() function. 27
3.13. Call graph of the setToIteration() function. 28

4.1. ROC curve for classification on survival. 40
4.2. Comparison of out of bag and inbag logger. 42
4.3. Illustration of the fare spline effect at iteration 11954. 43
4.4. Illustration of the fare spline effect at iteration 1200. 44

5.1. Iteration benchmark. 47
5.2. Number of observations benchmark. 48
5.3. Base-learner benchmark. 49
5.4. Memory base-line. 51
5.5. Memory comparison using 5000 iterations. 51
5.6. Memory comparison using 50000 observations. 52
5.7. Memory comparison using 2000 base-learner. 52

66

List of Tables

5.1. Used parameters for benchmarking the number of iterations. 46
5.2. Used parameters for benchmarking the number of observations/rows. 48
5.3. Used parameters for benchmarking the number of base-learner. 49
5.4. Settings for the memory benchmark. 50

67

Bibliography

[AEF17] JJ Allaire, Dirk Eddelbuettel, and Romain François. Rcpp attributes. Vignette
included in R package Rcpp, URL http://CRAN. R-Project. org/package=
Rcpp, 2017.

[BLK+16] Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich
Studerus, Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning
in R. Journal of Machine Learning Research, 17(170):1–5, 2016.

[BLM+15] Bernd Bischl, Michel Lang, Olaf Mersmann, Jörg Rahnenführer, and Claus
Weihs. BatchJobs and BatchExperiments: Abstraction mechanisms for using
R in batch environments. Journal of Statistical Software, 64(11):1–25, 2015.

[BM17] Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes
and Methods, 2017. R package version 1.2-9.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[CHB+18] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang.
xgboost: Extreme Gradient Boosting, 2018. R package version 0.6.4.1.

[Edd13] Dirk Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New
York, 2013. ISBN 978-1-4614-6867-7.

[EF17] Dirk Eddelbuettel and Romain François. Exposing C++ functions and classes
with rcpp modules. Vignette included in R package Rcpp, URL http://CRAN.
R-Project. org/package= Rcpp, 2017.

[ES14] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r with
high-performance C++ linear algebra. Computational Statistics and Data
Analysis, 71:1054–1063, March 2014.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning, volume 1. Springer series in statistics New York, 2001.

[FKLM13] Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx. Regression:
models, methods and applications. Springer Science & Business Media, 2013.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of computer and system
sciences, 55(1):119–139, 1997.

[Gam95] Erich Gamma. Design patterns: Elements of reusable object-oriented software.
Pearson Education India, 1995.

68

Bibliography

[HBK+17] Torsten Hothorn, Peter Buehlmann, Thomas Kneib, Matthias Schmid, and
Benjamin Hofner. mboost: Model-Based Boosting, 2017. R package version
2.8-1.

[HHKS11] Benjamin Hofner, Torsten Hothorn, Thomas Kneib, and Matthias Schmid. A
framework for unbiased model selection based on boosting. Journal of Com-
putational and Graphical Statistics, 20(4):956–971, 2011.

[LBS17] Michel Lang, Bernd Bischl, and Dirk Surmann. batchtools: Tools for R to
work on batch systems. The Journal of Open Source Software, 2(10), feb 2017.

[Mer15] Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2015. R pack-
age version 1.4-2.1.

[PT12] Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business
Media, 2012.

[R C17] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2017. R version 3.4.0.

[SC16] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library
for linear algebra. Journal of Open Source Software, 1:26, 2016.

[SH08] Matthias Schmid and Torsten Hothorn. Boosting additive models us-
ing component-wise p-splines. Computational Statistics & Data Analysis,
53(2):298–311, 2008.

[Str14] Bjarne Stroustrup. Programming: principles and practice using C++. Pearson
Education, 2014.

[Tea99] R Core Team. Writing r extensions. R Foundation for Statistical Computing,
1999.

[VH18] Dimitri Van Heesch. Doxygen: Source code documentation generator tool.
URL: http://www. doxygen. org, Web. 2nd Mai 2018.

[wcfo17] Greg Ridgeway with contributions from others. gbm: Generalized Boosted
Regression Models, 2017. R package version 2.1.3.

[Wic09] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York, 2009. R package version 2.2.1.

[Wic18] Hadley Wickham. pryr: Tools for Computing on the Language, 2018. R package
version 0.1.4.

69

A. Digital Appendix

The following files and folders are contained by the root directory of the electronic appendix
on the CD.

• thesis.pdf: PDF version of the thesis.

• runtime_benchmark: Folder including all scripts and results used and created by
batchtools to benchmark the runtime.
– cboost_bm: Results of the benchmark created by batchtools.
– algorithms.R: The two algorithms benchmarkCompboost() and benchmarkMboost()

that are used for benchmarking.
– defs.R: Script to load all required packages and the set-up of the benchmark.
– plot_results.R: Script to reduce the results and to create the plots of section

5.1.
– runtime_benchmark: The main script to run the benchmark. This script de-

fines the problems and experiments.

• mem_benchmark: Folder including all scripts and results used and created for the
memory benchmark.
– figures: Folder containing the scripts to create the plots of section 5.2.
– memory_track: Folder containing the txt files created by running the mem_track

C++ program.
– functions.R: Script containing the two algorithms memBenchmarkCompboost()

and memBenchmarkMboost() that are used for benchmarking and a function
simData() to simulate the data.

– mem_benchmark.R: Script which starts the memory benchmark for each combi-
nation specified in table 5.4.

– mem_track.cpp: Source of the C++ program to track the memory.
– plot_results:This script defines the plot function and collects the single plot

scripts defined in figures. Those single scripts load the required memory track
and do the pre-processing for plotting.

• compboost.zip: Compressed source of compboost. This also includes the documen-
tation generated by doxygen (docs/cpp_man/html/index.html).

70

B. Binomial Loss Proof
Given the binomial loss

L(y, f) = ln (1 + exp(−2yf))

show

1.
δ

δf
L(y, f) = − 2y

1 + exp (2yf)

2.

f̂ [0](x) = arg min
c∈R

1
n

n∑
i=1

L
(
y(i), c

)
= 1

2 ln
(

p

1− p

)
with

p = 1
n

n∑
i=1

1{y(i)=1}

Proof:

1. Using the chain rule (CR) leads:

δ

δf
L(y, f) = δ

δf
ln (1 + exp(−2yf))

CR= 1
1 + exp(−2yf) exp(−2yf)(−2y)

= − 2y exp(−2yf)
1 + exp(−2yf)

exp(2yf)
exp(2yf)

= − 2y
1 + exp(2yf)

2. First, δ
δcRemp(c) = 1

n

∑n
i=1

δ
δc L(y(i), c) is rewritten by using y(i) ∈ {−1, 1} and f = c

constant:

1
n

n∑
i=1

δ

δc
L(y(i), c) = − 1

n

n∑
i=1

2y(i)

1 + exp(2y(i)c)

= − 2
n

[
n∑
i=1

1{y(i)=1}

1 + exp(2c) −
n∑
i=1

1{y(i)=−1}

1 + exp(−2c)

]

= −2 1
1 + exp(2c)

1
n

n∑
i=1

1{y(i)=1}︸ ︷︷ ︸
=:p

+2 exp(2c)
1 + exp(2c)

1
n

n∑
i=1

1{y(i)=−1}︸ ︷︷ ︸
=:p̄

= −2 1
1 + exp(2c)p+ 2 exp(2c)

1 + exp(2c) p̄

71

B. Binomial Loss Proof

Now solve δ
δcRemp(c) = 0 w.r.t. c:

δ

δc
Remp(c) = −2 1

1 + exp(2c)p+ 2 exp(2c)
1 + exp(2c) p̄

!= 0

⇔ 2 exp(2c)
1 + exp(2c) p̄ = 2 1

1 + exp(2c)p
∣∣∣∣ · (1 + exp(2c))/2

⇔ exp(2c)p̄ = p

⇔ c = 1
2 ln

(
p

p̄

)
With

p+ p̄ = 1
n

n∑
i=1

1{y(i)=1} + 1
n

n∑
i=1

1{y(i)=−1} = 1
n

n∑
i=1

1 = 1

follows that p̄ = 1− p and therefore

c = 1
2 ln

(
p

1− p

)
.

Finally, show that c really yields a minimum in Remp(c) by proving δ2

δc2Remp(c) > 0:

δ2

δc2Remp(c) = − 1
n

n∑
i=1

−2y(i) exp(2y(i)c)
(1 + exp(−2y(i)c))2 2y(i)

= 4
n

n∑
i=1

exp(2y(i)c

(1 + exp(−2y(i)c))2

(
y(i)
)2

= 4
n

[
n∑
i=1

1{y(i)=1} exp(2c)
(1 + exp(2c))2 +

n∑
i=1

1{y(i)=−1} exp(−2c)
(1 + exp(−2c))2

]

To proceed we use

exp(−2c)
(1 + exp(−2c))2 = exp(−2c)

1 + 2 exp(−2c) + exp(−2c)2

= exp(−2c)
1 + 2 exp(−2c) + exp(−4c)

exp(4c)
exp(4c)

= exp(2c)
1 + 2 exp(2c) + exp(4c)

= exp(2c)
(1 + exp(2c))2

72

B. Binomial Loss Proof

With this the computation can be finalized, that there really is a minimum in c:

δ2

δc2Remp(c) = 4
n

[
n∑
i=1

1{y(i)=1} exp(2c)
(1 + exp(2c))2 +

n∑
i=1

1{y(i)=−1} exp(−2c)
(1 + exp(−2c))2

]

= 4
n

[
n∑
i=1

1{y(i)=1} exp(2c)
(1 + exp(2c))2 +

n∑
i=1

1{y(i)=−1} exp(2c)
(1 + exp(2c))2

]

= 4 exp(2c)
(1 + exp(2c))2

[
1
n

n∑
i=1

1{y(i)=1} + 1
n

n∑
i=1

1{y(i)=−1}

]

= 4 exp(2c)
(1 + exp(2c))2 [p+ p̄]︸ ︷︷ ︸

=1

= 4 exp(2c)
(1 + exp(2c))2 > 0

�

73

C. C++ Files for Custom Classes

C.1. Custom Base-Learner

// Example for a linear base-learner:
// ----------------------------------

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

typedef arma::mat (*instantiateDataFunPtr) (const arma::mat& X);
typedef arma::mat (*trainFunPtr) (const arma::vec& y,

const arma::mat& X);
typedef arma::mat (*predictFunPtr) (const arma::mat& newdata,

const arma::mat& parameter);

// instantiateDataFun:
// -------------------

arma::mat instantiateDataFun (const arma::mat& X)
{

return X;
}

// trainFun:
// -------------------

arma::mat trainFun (const arma::vec& y, const arma::mat& X)
{

return arma::solve(X, y);
}

// predictFun:
// -------------------

arma::mat predictFun (const arma::mat& newdata, const arma::mat& parameter)
{

return newdata * parameter;
}

// Setter function:
// ------------------

// Now here we wrap the function to an XPtr. This one stores the pointer
// to the function and can be used as parameter for the
// CustomCppBlearnerFactory.

74

C. C++ Files for Custom Classes

// Note that we do not have to export the upper functions since we are just
// interested in the pointer of the functions.

// [[Rcpp::export]]
Rcpp::XPtr<instantiateDataFunPtr> dataFunSetter ()
{

return Rcpp::XPtr<instantiateDataFunPtr> (new instantiateDataFunPtr (
&instantiateDataFun));

}

// [[Rcpp::export]]
Rcpp::XPtr<trainFunPtr> trainFunSetter ()
{

return Rcpp::XPtr<trainFunPtr> (new trainFunPtr (&trainFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<predictFunPtr> predictFunSetter ()
{

return Rcpp::XPtr<predictFunPtr> (new predictFunPtr (&predictFun));
}

C.2. Custom Loss

// Example for quadratic loss:
// ---------------------------------

// [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>

typedef arma::vec (*lossFunPtr) (const arma::vec& true_value,
const arma::vec& prediction);

typedef arma::vec (*gradFunPtr) (const arma::vec& true_value,
const arma::vec& prediction);

typedef double (*constInitFunPtr) (const arma::vec& true_value);

// Loss function:
// -------------------

arma::vec lossFun (const arma::vec& true_value, const arma::vec& prediction)
{

return arma::pow(true_value - prediction, 2) / 2;
}

// Gradient:
// -------------------

arma::vec gradFun (const arma::vec& true_value, const arma::vec& prediction)
{

return prediction - true_value;
}

75

C. C++ Files for Custom Classes

// Constant Initializer:
// ------------------------------

double constInitFun (const arma::vec& true_value)
{

return arma::mean(true_value);
}

// Setter function:
// ------------------

// Now wrap the function to an XPtr. This one stores the pointer
// to the function and can be used as parameter for the
// CustomCppBlearnerFactory.

// Note that it is not necessary to export the upper functions since we are
// interested in exporting the pointer not the function.

// [[Rcpp::export]]
Rcpp::XPtr<lossFunPtr> lossFunSetter ()
{

return Rcpp::XPtr<lossFunPtr> (new lossFunPtr (&lossFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<gradFunPtr> gradFunSetter ()
{

return Rcpp::XPtr<gradFunPtr> (new gradFunPtr (&gradFun));
}

// [[Rcpp::export]]
Rcpp::XPtr<constInitFunPtr> constInitFunSetter ()
{

return Rcpp::XPtr<constInitFunPtr> (new constInitFunPtr (&constInitFun));
}

76

	Introduction
	Methodology
	General Notation and Terminology
	Learning Theory Reminder
	Loss Function
	Empirical Risk
	Loss Minimization

	Gradient Boosting Reminder
	Forward Stagewise Additive Modelling
	Gradient Boosting

	Component-Wise Boosting
	Related Work
	Software for Component-Wise Boosting
	Software for Boosting Trees

	About the Implementation
	Software Design
	Polymorphism
	Factory Pattern
	Registry Pattern
	Extending Code Without Recompilation
	Armadillo as Library for Linear Algebra

	Rcpp
	Exposing C++ Code
	Rcpp Armadillo

	Idea of The Main Classes
	Data Classes
	Loss Classes
	Base-Learner Related Classes
	Logger Related Classes
	Optimizer Classes
	Compboost Class

	Rcpp Modules in Compboost

	Use-Case
	Data: Titanic Passenger Survival Data Set
	Data and Factories
	Numerical Features
	Categorical Features

	Loss and Optimizer
	Logger
	Define Logger
	Create Logger List and Register Logger

	Train Model and Access Elements
	Run the Algorithm
	Accessing Elements
	ROC Curve

	Continue and Reposition the Training
	Illustrating Some Results
	Inbag vs OOB
	Fare Spline Base-Learner

	Some Remarks

	Benchmarking Compboost
	Runtime Benchmark
	Number of Iterations
	Number of Observations
	Number of Base-Learners

	Memory Benchmark
	Number of Iterations
	Number of Observations
	Number of Base-Learners

	Extending Compboost
	Custom Base-Learner
	Using R Functions
	Using C++ Functions

	Custom Losses
	Using R Functions
	Using C++ Functions

	Logging Performance Measures

	Conclusion and Outlook
	List of Figures
	List of Tables
	Digital Appendix
	Binomial Loss Proof
	C++ Files for Custom Classes
	Custom Base-Learner
	Custom Loss

