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Abstract

Wiéhrend Assoziationen mit Hilfe statistischer Methoden meist gut geschétzt werden
konnen, ist die Untersuchung kausaler Effekte eine komplexere Angelegenheit. Oft sor-
gen Confoundervariablen dafiir, dass eine kausale Interpretation eines gemessenen Zu-
sammenhangs nicht moglich ist. Deshalb ist es sinnvoll, solche Variablen zu identifizie-
ren und bei der Modellierung zu bertiicksichtigen. In dieser Arbeit werden verschiede-
ne Moglichkeiten zur Schéitzung kausaler Effekte dargestellt. Dabei werden sowohl die
giangigen Verfahren, IP-Weighting und Standardisierung, als auch eine Kombination der
beiden Ansétze, Targeted Maximum Likelihood Estimation, betrachtet. Letzteres Ver-
fahren kann durch Variablenselektions- und Shrinkage-Algorithmen ausgebaut werden.
Dadurch ergeben sich erweiterte Schatzverfahren, welche ebenfalls herangezogen werden.
Um die Giite der Methoden zu untersuchen und zu vergleichen, werden Simulationen
unter verschiedenen datengenerierenden Prozessen durchgefithrt. Dabei werden mehrere
Variablen erzeugt, wobei fiir die Schéitzung unklar ist, welche davon herangezogen wer-
den sollten, um das Confounding-Problem zu beheben. Eine Evaluation der Verfahren
erfolgt durch den Mean Squared Error (MSE).

Die Ergebnisse zeigen: Werden bei der Modellierung alle notwendigen Terme spezifiziert,
wird der kausale Effekt durch Standardisierung am besten geschéatzt. Die erweiterten
Schétzverfahren weisen in den meisten Fallen hohere MSE auf als Standardisierung oder
Targeted Maximum Likelihood Estimation. Bei Fehlspezifikation schneiden sie teilweise
etwas besser ab. Dies lasst darauf schliefen, dass die Einbeziehung von Variablense-
lektion und Shrinkage unter Umstdnden sinnvoll ist, sich jedoch auch negativ auf die
Schétzung auswirken kann. Eine Verbesserung gegeniiber der gewohnlichen Targeted
Maximum Likelihood Estimation kann jedoch im Groflen und Ganzen nicht bestéatigt

werden.
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Notation

Bezeichnung Bedeutung

1=1,...n Index fiir die Beobachtungseinheiten

A; Binére Treatmentvariable

Y; Outcome

Y =0 Potential Outcome ohne Treatment

Y=t Potential Outcome bei Treatment

VATE Kausaler Effekt von A auf Y (Average Treatment Effect)
L= (Li,..., L) Weitere Variablen (Potenzielle Confounder)

L) = (LY, ..., Ly,) Variablen mit Effekt auf A und auf Y (Confounder)

LA = (LA, ... LY ) Variablen mit Effekt auf A, aber nicht auf Y’

(2

LY = (LY, ....L}.) Variablen mit Effekt auf Y, aber nicht auf A

LY = (LY,... L) Variablen ohne Effekt auf A oder auf YV

T, 70, TA, Ty, TN Indizes fiir die Variablenvektoren L;, L?, LA, LY LY

Z; Verborgene Variable bzw. verborgener Variablenvektor

K Koeffizient fiir den Einfluss der Variable(n) Z auf L
Interceptvektor zur Generierung der Variablen L

v Standardabweichungsvektor zur Generierung der Variablen L

To Intercept zur Generierung/Modellierung der Treatmentvariable

T Koeffizientenvektor der einfachen Terme zur Generierung/

Modellierung der Treatmentvariable

v Koeffizientenvektor der quadratischen Terme zur Generierung/
Modellierung der Treatmentvariable

Ji Vorhersage des Exposure-Modells

H, »Clevere Kovariable“ (zur Anpassung der Outcome-Vorhersagen )

10) Parameter fiir die ,,Clevere Kovariable*
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MSE(arg,T)

MSE (WYare, Yare(T))

Intercept zur Generierung/Modellierung des Outcomes
Koeffizient der Variable A zur Generierung/Modellierung
des Outcomes

Koeffizientenvektor der (sonstigen) einfachen Terme zur
Generierung/Modellierung des Outcomes
Koeffizientenvektor der Interaktionsterme zur Generierung/
Modellierung des Outcomes

Koeffizientenvektor der quadratischen Terme zur Generierung/
Modellierung des Outcomes

Storterm zur Generierung/Modellierung des Outcomes
Varianz der Storterme

Vorhersage des geschétzten Outcome-Modells

Angepasste Vorhersage des geschétzten Outcome-Modells

Verlust nach der negativen Log-Likelihood fiir
bernoulliverteilte Zufallsvariablen

Index fiir die Teildatensétze bei M-facher Kreuzvalidierung

Parameter fiir die Stiarke der Penalisierung (Shrinkage)
Parameter zwischen 0 und 1, der das Verhéltnis
zwischen Lasso- und Ridge-Penalisierung steuert

Index tiber K + 1 verschiedene Penalisierungsstarken

Index fiir die Wiederholungen einer Simulation
Schatzung des ATE in Wiederholung j unter Schétzverfahren T’
Mean Squared Error von Schéatzverfahren T' zur Schatzung
von Yarg

Empirischer Mean Squared Error von Schatzungen unter

Schétzverfahren T' zur Schitzung von Y arg
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1 Kausalitat - Einfiihrung in die
Problematik

Den Begriff ,Kausalitat* von Begriffen wie ,,Assoziation“, ,Zusammenhang* oder ,Kor-
relation” zu trennen, ist in der statistischen Datenanalyse von grofler Bedeutung. Man
betrachte dazu folgendes Beispiel:

Fiir jeden Tag seien die Gesamtumsatzzahlen von Eisdielen gegeben. Des Weiteren liegt
pro Tag die Anzahl der Personen vor, die aufgrund von Kreislaufproblemen ins Kran-
kenhaus eingeliefert werden. Von Interesse sei die Beziehung dieser beiden Variablen.
Ein einfacher Ansatz, um diese zu untersuchen, ist die Anwendung eines linearen Re-
gressionsmodells, wobei man den Eisdielenumsatz als Einflussgrofie und die Anzahl der
Kreislauferkrankungen als ZielgroBe festlegt. Man gehe von dem (nicht ungewéhnlichen)
Fall aus, dass man fiir den Steigungsparameter einen (bedeutenden) positiven Maximum-
Likelihood-Schétzer erhélt. Die folgenden zwei Interpretationen des geschétzten Koeffi-

zienten werden betrachtet:

e ,An Tagen, an denen viel Eis verkauft wird, ereignen sich tendenziell mehr Kreis-

lauferkrankungen, als an Tagen, an denen wenig Eis verkauft wird.“

o ,FEine hohere Umsatzzahl von Eisdielen sorgt fiir eine héhere Anzahl von Kreislau-

ferkrankungen. Eis verursacht Kreislaufprobleme.“

Bei der ersten Aussage wird der Koeffizient lediglich ,assoziativ® interpretiert. Im zweiten
Fall hingegen wird auf eine Kausalitit, also eine Ursache-Wirkungsbeziehung, geschlos-
sen. Letzteres ist nicht unproblematisch: Das aufgestellte Modell schatzt die Assoziati-
on, ist jedoch nicht geeignet, um eine kausale Wirkungsbeziehung zu untersuchen. Der
Grund dafir ist, dass eine sehr wichtige Variable nicht berticksichtigt wird: Die Tem-
peratur an den betrachteten Tagen. An Tagen, an denen viel Eis verkauft wird, ist es
tendenziell warmer als an Tagen, an denen wenig Eis verkauft wird. Hohere Temperatu-
ren sorgen auflerdem fiir eine hohere Anzahl an Kreislaufproblemen. Somit gibt es noch
einen zweiten ,Weg“, der durch das aufgestellte Modell mitgemessen wird, ohne dass
dies die Absicht ist. Dieser sorgt fiir einen Zusammenhang zwischen Eisdielenumsatz

und Kreislaufproblemen, obwohl eine kausale Beziehung zwischen diesen Variablen eher



fragwiirdig ist. Wird die Temperatur als Kovariable ins Modell aufgenommen und somit

ykontrolliert”, ist zu erwarten, dass sich der Schétzer fiir den Koeffizienten dndert.

Das Beispiel zeigt bereits, dass sich ein kausaler Effekt und eine Assoziation unter
Umstadnden deutlich unterscheiden kénnen. Dies sollte sowohl bei der Wahl als auch
bei der Interpretation des Modells beriicksichtigt werden. Man sollte sich iiberlegen:
Welche Absicht steht hinter der Modellierung? Geht es vorrangig um die Prognose einer
Zielvariable mit Hilfe anderer vorliegender Variablen? Oder geht es hauptséchlich um
die Kontrolle einer Zielvariable durch andere Variablen? Steht Letzteres im Fokus, so ist
die Quantifizierung der Kausalitat von zentraler Bedeutung.

Um eine geeignete Schatzung eines kausalen Effekts zu erhalten, ist es notwendig, Va-
riablen, die weitere ,Wege“ (wie oben beschrieben) o6ffnen, zu identifizieren und bei der
Modellierung miteinzubeziehen. Solche Variablen werden als Confounder bezeichnet. Es
gibt hierfiir verschiedene Verfahren. Im Kapitel 2 der Arbeit wird der kausale Effekt
und die Problematik statistisch formuliert, ehe in Kapitel 3 die Verfahren zur Schétzung
kausaler Effekte dargestellt werden. Insbesondere werden hier auch Variablenselektions-
und Shrinkage-Verfahren ndher untersucht, da es auch Nachteile auf die Schatzung haben
kann, wenn tiberfliissige Variablen ins Modell integriert werden. Anschliefend werden in
Kapitel 4 die erlauterten Verfahren mit Hilfe von Simulationen beziiglich ihrer Giite
untersucht und verglichen. Hier werden verschiedene datengenerierende Prozesse her-

angezogen. Fine Zusammenfassung und ein Ausblick in Kapitel 5 schliefen die Arbeit
ab.



2 Kausaler Effekt - Grundlagen

2.1 Definition

Man betrachte nun einen metrischen Outcome Y und der Einfachheit halber eine binare

Treatmentvariable A:

4 1, wenn Treatment stattfindet

0, wenn kein Treatment stattfindet

,Ireatment” ist dabei im weiteren Sinne zu verstehen. Es wird angenommen, dass die
statistischen Einheiten, an denen die Merkmale erhoben werden, unabhéingig voneinan-
der sind.

Von Interesse sei der kausale Effekt der Treatmentvariable auf den Outcome. Grafisch

konnen kausale Effekte durch DAGs (directed acyclic graphs) dargestellt werden:

A > Y
Abbildung 2.1 : DAG - Kausaler Effekt

Die Ursache-Wirkungsbeziehungen werden hier durch gerichtete Wirkungspfeile veran-
schaulicht. Durch die Annahme, dass die Wirkungsstruktur azyklisch ist, wird bereits
ausgeschlossen, dass ein Pfad wieder von Y zu A fithrt. Also insbesondere wird angenom-
men, dass Y keinen (direkten oder indirekten) kausalen Effekt auf A hat. Der kausale
Effekte von A auf Y soll nun so definiert werden, dass er alle (direkten und indirekten)
Pfade erfasst, welche von A wegfiithren und bei Y enden.

Es wird festgelegt: Y*=! gibt den Potential Outcome fiir den Fall an, dass Treatment
stattfindet, und Y%= fiir den Fall, dass kein Treatment stattfindet. Dies fiihrt zur An-
nahme der Konsistenz. Im Kontext kausaler Effekte bedeutet das, dass der Potential
Outcome Y* dann dem beobachten Outcome Y entspricht, wenn A = a als Treatment-

variable beobachtet wird. Oder anders formuliert:

Y =AY 4+ (1 - A)y*=°



Somit ist pro Beobachtung immer nur einer der beiden Potential Outcomes bekannt, da
fiir eine Beobachtung entweder A = 1 oder A = 0 ist, aber nicht beides (Die Beobachtung
hat Treatment bekommen oder nicht). Eine Definition des kausalen Effekts fiir eine
bestimmte Einheit ist iiber die Differenz der Potential Outcomes moglich: Y=t — Yy =0,
Dieser Wert ist unbekannt, da nur eine der beiden Groflen vorliegen kann. Fir die
Grundgesamtheit lasst sich der kausale Effekt iiber den Erwartungswert definieren. Man
spricht vom Average Treatment Effect (ATE):

Vare = E[Y*™! - Yo~ = B[yl - B[y~

Der kausale Effekt bei binarer Treatmentvariable kann also als erwartete Differenz zwi-
schen dem Potential Outcome bei Treatment a = 1 und dem Potential Outcome bei
Treatment a = 0 einer Einheit definiert werden. Fiir jede Einheit sind zwei Y-Werte ent-
scheidend - die zwei moglichen Outcomes, von denen maximal einer beobachtet werden

kann. Der andere ist dann kontrafaktisch.

An dieser Stelle seien die bisher getroffenen Annahmen im Kontext kausaler Effekte noch

einmal zusammengefasst. Diese werden auch fiir den Rest dieser Arbeit getroffen:
o Unabhéngigkeit der Beobachtungseinheiten
o Agzyklische Struktur der Ursache-Wirkungsbeziehungen
 Konsistenz: Y = AY*=! 4 (1 — A)y*=0

Wie unterscheidet sich der kausale Effekt nun von einer Assoziation?
Eine analoge Definition der Assoziation bei bindrer Treatmentvariable ist durch die ,as-

soziative Differenz* moglich:
E[lY|A=1] - E[Y|A=0]

Diese entspricht der Differenz zwischen dem erwarteten Outcome, falls A = 1 gegeben
ist und dem erwarteten Outcome, falls A = 0 gegeben ist. Lésst sich der Zusammen-
hang durch ein lineares Regressionsmodell mit A als Einflussgrofie und Y als Zielgrofie
erklaren, also in der Form E[Y|A] = 6y + 61 A (dummykodiert), so entspricht 6; der
auf diese Weise definierten Assoziation. Im Gegensatz zum kausalen Effekt ist bei der
Assoziation fiir jede Einheit nur ein Y-Wert entscheidend - der tatséchliche. Hier werden
keine kontrafaktischen Outcomes betrachtet. Folglich kann die assoziative Differenz mit
Hilfe eines geeigneten Regressionsmodells gut geschétzt werden.

(Vgl. Hernan; 2018, Part I S. 1 - 12 und Part I S. 11/12 ) (Vgl. Schomacker; 2017,
Kapitel 1/2)



2.2 Confounding und Exchangeability

Wann unterscheiden sich kausaler Effekt und Assoziation?

Dies ist der Fall, wenn eine oder mehrere Variablen existieren, die einen sogenannten
,Backdoor-Path“ 6ffnen. Ein ,,Backdoor-Path* verbindet Treatmentvariable und Outco-
me durch eine gemeinsame Ursache. Werden die entsprechenden Variablen (sogenannte
Confounder) nicht beriicksichtigt, unterscheiden sich kausaler Effekt und Assoziation.
Der ,Backdoor-Path“ dndert nichts am ATE, da es sich nicht um einen Pfad handelt,
der bei A beginnt und bei Y endet (Wirkungsrichtung ist entscheidend!). Er beeinflusst
jedoch die Assoziation, da fiir diese die Wirkungsrichtung zwischen A und der Drittvaria-
ble nicht von Bedeutung ist. Man spricht dann vom sogenannten Confounding-Problem.
Im einfachsten Fall (ein Confounder V') kann das Problem folgendermaflen dargestellt

werden:

Vv
Abbildung 2.2 : DAG - Confounding

Die Confoundervariable V stellt eine gemeinsame Ursache der Treatmentvariable A und
des Outcomes Y dar und sorgt dadurch fiir einen Unterschied zwischen dem kausalen
Effekt von A auf Y und der Assoziation dieser beiden Variablen.

Ein zentraler Begriff in diesem Zusammenhang ist die Eigenschaft (Mean) Exchangeabi-
lity:
ElY*A=a]=E[Y" Va

Diese ist erfiillt, wenn der Erwartungswert von Y fiir die Treated-Einheiten derselbe ist
wie fiir die Untreated-Einheiten, falls sie Treatment bekommen hétten, und umgekehrt.
Exchangeability wiirde dazufiihren, dass E[Y|A = 1] = E[Y*!] und E[Y|A = (] =
E[Y =9 gilt. Somit wéren der Average Treatment Effect und die assoziative Differenz
identisch, was zur Folge héatte, dass der kausale Effekt durch eine geeignete Regression
gut geschétzt werden kann. Exchangeability ist jedoch nicht erfiillt, wenn Confounding
vorliegt.

Um einen kausalen Effekt geeignet zu schétzen, ist es notwendig, die Confoundervaria-
blen L° zu identifizieren und bei der Modellierung zu beriicksichtigen. Durch Bedingen

auf diese Variablen wird Exchangeability erreicht. Man spricht von auf L° bedingter



(Mean) Exchangeability:
ElYA=1,L"=1"l = E[Y*|A=0,L° =1°] Va,l°

Beseitigt man das Confounding-Problem und erreicht dadurch Exchangeability, kann
der ATE mit Hilfe von entsprechenden Regressionsmodellen geschéitzt werden.

In der Praxis sind die Confounder oft nur teilweise oder gar nicht bekannt. Dennoch ist es
wichtig, moglichst viele von ihnen zu erfassen, um eine geeignete Schatzung des kausalen
Effekts zu erhalten. Nun kénnte man schlussfolgern, dass jede denkbare Variable ins
Modell aufgenommen werden sollte, um die Chance auf moglichst viele Confounder zu

erhohen. Dies ist jedoch problematisch:

o FEin Collider ist eine gemeinsame Wirkung von Treatmentvariable und Outcome
(praktisch das Gegenteil eines Confounders). Auf eine Collidervariable sollte nicht
bedingt werden, da hier eine Differenz zwischen dem Average Treatment Effect und
der assoziativen Differenz erst durch das Bedingen entsteht. Bedingte Exchange-
bility liegt nicht vor, wenn in den entsprechenden Variablen Collider enthalten

sind.

o Werden iiberfliissige Variablen in das Modell integriert, kann sich die Varianz der

Schétzung erhohen.

Es kann also sinnvoll sein, Variablenselektionsverfahren in die Schatzung zu integrieren.
Im néchsten Kapitel werden die moglichen Schétzverfahren dargestellt. Diese bauen auf
den Uberlegungen in diesem Kapitel auf.

(Vgl. Hernan; 2018, Part I S. 83 - 95) (Vgl. Schomacker; 2017, Kapitel 1/2)



3 Methoden zur Schatzung kausaler
Effekte

Es wird davon ausgegangen, dass die Daten bei der Schatzung in der folgenden Form vor-
liegen: Fiir n Beobachtungseinheiten (i = 1, ...,n) sind die binédre Treatmentvariable A;,
der (tatséchliche) Outcome Y; und p potenzielle Confoundervariablen L; = (L;1, ..., L;p)
gegeben. Dabei sei nicht bekannt, welche der Variablen aus L einen Effekt auf A und/oder
auf Y haben. Die Verfahren schiatzen den Average Treatment Effect aus den Daten. Hy-

perparameter bzw. Modelle miissen fiir einzelne Verfahren zusétzlich festgelegt werden.

3.1 ,,Einfache” Methoden

3.1.1 ,,Naive Schatzung*

Unter der ,Naiven Schétzung® versteht man die Anwendung eines einfachen Regressi-

onsmodells mit Y als ZielgroBe und A als Einflussgrofie (dummykodiert):
Y;' = 90 + A191 + € mit €; ~~ N(O,O’2)

Der ATE wird in diesem Fall durch den zum Regressor A gehorigen ML-Schétzer ermit-
telt: Qﬁ are = ;. Denn unter Exchangeability gilt hier:

Yarp = E[Y*™] = E[Y*=°) = E[Y|A=1] — E[Y|A =0] = (6 + 0,) — 0 = 6,

Hier gehen zum einen die Annahmen des verwendeten Regressionsmodells ein. Zum an-
deren wird angenommen, dass kein Confounding vorliegt und Exchangeability bereits
erfiillt ist, ohne dass auf weitere Variablen bedingt wird. Ist dies nicht der Fall, entsteht
bei der Schétzung eine Verzerrung (wie in Kapitel 2.2 erldutert). Diese Methode kann

somit als ,naiv* betrachtet werden, da Assoziation und Kausalitiat gleichgesetzt werden.

Generell lassen sich fiir nicht normalverteilte Outcomes auch generalisierte lineare Mo-
delle verwenden (z.B. ein logistisches Regressionsmodell fiir bindres V). In diesem Fall

entspricht der Schatzer des ATE nicht einfach dem Regressionsschéatzer, da die Parame-



ter dann unter Umsténden anders interpretiert werden. Entsprechende Transformationen

milssen vorgenominen werden.

3.1.2 Standardisierung

Bei der Standardisierung werden die Variablen L als Kovariablen ins Modell aufgenom-
men, um ein mogliches Confounding-Problem zu beseitigen und Exchangeability zu er-
reichen. Dadurch werden diese Variablen kontrolliert und die entsprechenden ,,Backdoor-
Paths“ gegebenenfalls blockiert. Im einfachsten Fall kann dafiir ein lineares Modell ver-

wendet werden, welches lediglich einfache Terme enthélt:
Y; = 6(] + Aﬂl + Lzﬁ + € mit €; ~ N(O,O’2>

Dabei ist 8 = (1, ..., 5,) ein Vektor der Lange p.
Aber auch komplexere Modelle sind moglich. Zum Beispiel solche, die Interaktionsterme

zwischen A und L oder quadratische Terme L? enthalten:

¥ = (M,.,7p) und 6 = (41, ...,d,) sind ebenfalls Koeffizientenvektoren der Lénge p. Es
gilt (unter auf L bedingter Exchangeability): Eine Schétzung des kausalen Effekts ist

moglich, indem tiber die Variablen L in der folgenden Form ,gemittelt” wird:

EY) =Y E[Y|A=a,L =1 x P[L =1

Da zumeist sehr viele Variablen L vorliegen, von denen ein Teil auch stetig ist, muss
die Summe durch ein Integral und P[L =[] durch eine Wahrscheinlichkeitsdichte ersetzt

werden. Folgende Vorgehensweise wird bei der Standardisierung herangezogen:
1. Es wird ein Modell mit Y als Zielgrofie und A und L als Einflussgréfien geschéatzt.

2. Fiir jede Beobachtung wird A; = 1 gesetzt und auf Basis des Modells die Vor-
hersage QZ(Az = 1, L;) der Zielvariable bestimmt. Anschlieflend bildet man den
Mittelwert iiber alle Beobachtungen: %2?21 Ql(Az = 1, L;). Der errechnete Wert
ist der Schitzer fir E[Y*=!].

3. Analog werden die Vorhersagen Q(A = 0, L) gebildet und damit E[Y*=9] geschétzt.

4. Die Schitzung des ATE erfolgt geméf der Definition: E[Y =] — E[Y*=Y)].



Dieses Verfahren lésst sich auch fiir generalisierte lineare Modelle anwenden.
Verwendet man die Methode fiir den einfachen Fall (Lineares Modell, nur einfache Ter-
me), so ergibt sich 6, als Schitzer fiir den kausalen Effekt.

Die Annahmen des Standardisierungsverfahrens werden am Ende des nédchsten Ab-
schnitts zusammengefasst.

(Vgl. Hernan; 2018, Part IT S. 23 - 31) (Vgl. Schomacker; 2017, Kapitel 5)

3.1.3 IP-Weighting

Ziel beim IP-Weighting ist es, den Wirkungspfeil von den Confoundern auf die Treat-
mentvariable zu entfernen. Damit wéren die ,,Backdoor-Paths* blockiert und der kausale

Effekt wiirde der Assoziation entsprechen. Jede Beobachtung erhélt dazu ein Gewicht:
VViA =1/ f(Ai|L;)

Dies entspricht 1/P[A; = 1|L;] fir die Treated-Einheiten und 1/P[A; = 0|L;] = 1/(1 —
P[A; = 1|L;]) fir die Untreated-Einheiten. Es sollen also sozusagen Beobachtungen
stiarker gewichtet werden, bei denen die Treatmentvariable A weniger durch die Con-
founder beeinflusst wird.

P[A = 1|L] ist unbekannt und kann mit Hilfe eines logistischen Regressionsmodells
geschitzt werden. Dabei werden die Variablen L als Einflussgrofien und A als binére
ZielgroBe modelliert. Werden nur einfache Terme aufgenommen, hat das Modell die fol-

gende Form:

1

PlA;i = 1L} = 1+ exp(—(10 + L;7))

mit 7= (71, ...,7)

Dadurch ergibt sich ein Schétzer P [A; = 1|L;] fiir die Treatmentwahrscheinlichkeit jeder
Beobachtung. Man spricht auch vom Exposure-Modell und den Vorhersagen g;.

Die beobachtungsspezifischen Gewichte errechnen sich wie oben beschrieben: W, =
1/ f(Ai] L)

Anschliefend wird eine gewichtete KQ-Schéatzung des Modells E[Y|A] = 6y+61 A mit den
Gewichten W; durchgefiihrt. Der folgende Term wird dazu beziiglich (6, ¢;) minimiert:

n

Z WilY: — (6o + 91Ai)]2
i—1
Der ATE wird dann durch él geschatzt.

Im Prinzip passiert dabei Folgendes: Es wird eine Pseudo-Population erzeugt, in der

jedes Individuum zweimal beriicksichtigt wird (einmal mit @ = 1 und einmal mit a = 0).



Somit ist in dieser Pseudopopulation die Wirkung von L auf A eliminiert und die Asso-

ziation von A und Y kann kausal interpretiert werden.

Oft werden auch stabilisierte Gewichte benutzt. Diese haben folgende Form:
Wit = f(A)/f(A| L)

f(A;) entspricht dabei P[A; = 1] fiir die Treated-Einheiten und P[A; = 0] fir die
Untreated-Einheiten.

Folgende zentrale Annahmen werden beim IP-Weighting bzw. bei der Standardisierung

getroffen:

 Zunéchst einmal wird auf Modelle zurtickgegriffen. Beim IP-Weighting wird P[A =
1|L] modelliert, bei der Standardisierung modelliert man E[Y|A, L]. Dabei werden
bereits verschiedene Modellannahmen getroffen. Sind diese nicht erfiillt, so ist das
Modell fehlspezifiziert und erzeugt eine Verzerrung oder eine hohere Varianz bei
der Schétzung. Eine gewisse Fehlspezifikation ist in der Praxis oft unumganglich,

es geht zumeist nur darum, diese moglichst gering zu halten.

o Ein zweite wichtige Annahme ist, dass durch Bedingen auf L Exchangeability
erreicht wird. Dies ist beispielsweise nicht moglich, wenn Confounder existieren,
die nicht in L enthalten sind. Ist diese Annahme nicht erfiillt, entsteht wie bereits

erlautert eine Verzerrung.

o AuBlerdem wird angenommen, dass Positivitat gilt: Das bedeutet, dass die Treat-
mentwahrscheinlichkeit fiir jede mogliche Auspriagung [ der moglichen Confounder
nicht 0 sein darf. (Ebenso darf die Wahrscheinlichkeit fiir A = 0 auch nicht 0 sein.)
Eine Verletzung der Annahme entsteht somit, wenn gewisse Umsténde | vorliegen,
die fiir unmogliches oder sicheres Treatment sorgen. Aber auch sehr starke Zusam-
menhénge zwischen A und L koénnen bereits dafiir sorgen, dass die Positivitat in
den Daten praktisch verletzt ist.

Besonders das IP-Weighting ist sehr anféllig fiir Positivitdtsverletzungen.

Bei den weiteren Verfahren werden die bisher verwendeten Schétzansatze wieder aufge-

griffen und erweitert.

(Vgl. Hernan; 2018, Part IT S. 11 - 22, 28) (Vgl. Schomacker; 2017, Kapitel 6)
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3.2 Targeted Maximum Likelihood Estimation

Die Targeted Maximum Likelihood Estimation verbindet die Ansatze aus der Standar-

disierung und dem IP-Weighting. Fiir diese Methode ist es sinnvoll, den Outcome Y auf

den Wertebereich [0, 1] zu beschranken. Dies geschieht tiber folgende Transformation:
v Y — mzn

max — min

Dabei stellen maxz und min die Grenzen des Wertebereichs dar. Man geht anschlieSend

folgendermaflen vor:

1. Zunéchst wird, wie bei der Standardisierung, das Outcome-Modell E[Y'|A, L] geschétzt.
Dafiir kann (aufgrund des beschrénkten Outcomes) zum Beispiel ein logistisches
Regressionsmodell bzw. ein Quasi-Binomialmodell verwendet werden. Mit Hilfe
des Modells kann auch hier fiir jede Beobachtung eine Vorhersage QZ(AZ =1,L;)
und eine Vorhersage QZ(AZ =0, L;) berechnet werden.

2. Als Néchstes schétzt man das Exposure-Modell P[A = 1|L] wie beim IP-Weighting.
Es ergeben sich die Schitzungen §;(1|L;) = P(A; = 1|L;) und §;(0|L;) = P(A; =

0|L;) = 1— P(A; = 1|L;) fiir jede Beobachtung. Damit lasst sich eine ,Clevere

Kovariable berechnen:

Iﬁ[l(Az,Ll) _ [(Az :‘1) _ ](AZ :0)

I stellt dabei die Indikatorfunktion dar.

3. Es folgt der Update-Schritt. Man modelliert dazu:

10g< P(Y; = 1|4;, L;) ) _ 10g< Qi(A;, L)

— | + Hz A L
1—P(Yz‘:1|AiaLi) 1_Qi(Ai7Li)> ¢ ( )

Dies entspricht einer logistischen Regression mit Zielvariable Y, ,,Cleverer Kovaria-
ble* H (A, L), ohne Intercept und mit Offset (Variable, fir die der zugehorige Ko-

QALL)
1-Q(A,L)

effizient mit 1 festgelegt wird): log ( ) Dadurch erhdlt man einen Schétzer

fiir den Koeffizienten der ,,Cleveren Kovariable®: ngS
Nun kénnen die Vorhersagen fiir das Outcome-Modell Q(A = 1,L) und Q(A =

0, L) angepasst werden:

<

(

A = 1,L))
(A;=0,L;

Li))

(A

X L;) = expit(logit(
i (A

Qi (A; =1, Qi ; + oH(A; =

11



4. Zuletzt wird der ATE iiber die angepassten Vorhersagen geschéatzt:
e 1 & A x *
Vare = Y Qi(Ai=1,L;) — Q; (A =0, L)
i=1

Wurde zu Beginn eine Transformation von Y durchgefiihrt, muss %, wieder

entsprechend zurticktransformiert werden: ¥ arp = V%15 X (max—min), ansonsten

wird arp = z/AinlT g gesetzt.

Durch die Verwendung des Outcome-Modells E[Y'|A, L] und des Exposure-Modells P[A =
1|L] bekommt das TMLE-Verfahren eine zentrale Eigenschaft: Es ist doppelt robust. Dies
bedeutet, dass der Schétzer fiir den kausalen Effekt konsistent ist, wenn eines der beiden
Modelle fehlspezifiziert ist, das andere jedoch korrekt ist. Ist das Outcome-Modell be-
reits richtig spezifiziert, so ist kein Update der Vorhersagen notwendig und ¢ ~ 0. Falls
es fehlsperzifiziert ist, das Exposure-Modell jedoch richtig, so erfolgt eine Korrektur der
Vorhersagen. Konsistenz ist nur dann nicht gegeben, wenn beide Modelle fehlspezifiziert

sind.
(Vgl. Schuler; 2016, S. 65 - 68) (Vgl. Schomacker; 2017, Kapitel 9)
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3.3 Schatzung mit Variablenselektion

3.3.1 Warum Variablenselektion?

Bei allen bisher dargestellten Verfahren werden alle Variablen L benutzt, um einem
moglichen Confounding-Problem entgegen zu wirken. Wie jedoch bereits in Kapitel 2
erlautert, sollte nicht jede beliebige Variable herangezogen werden. Zum einen kénnen
Collider-Variablen einen Bias erzeugen, wenn auf diese bedingt wird (Diese Problematik
wird in der Arbeit nicht genauer untersucht). Zum anderen kénnen iiberfliissige Variablen

die Varianz der Schiatzung erhohen. Man betrachte folgende kausale Beziehungen:

—

LA > A > Y

Ly L° LY

Abbildung 3.1 : DAG - Confounder und weitere Variablen

Dabei sind L%, LA, LY und L jeweils vektoriell zu sehen. D.h. es handelt sich jeweils um
Variablenvektoren, deren Komponenten alle die entsprechenden kausalen Beziehungen

erfiillen.
o L° enthilt die wahren Confounder
« L* enthilt Variablen, die einen kausalen Effekt auf A, aber nicht auf Y haben
« LY enthilt Variablen, die einen kausalen Effekt auf Y, aber nicht auf A haben
o L% enthélt Variablen, die weder auf A noch auf Y einen kausalen Effekt haben

In dieser Situation wére es wiinschenswert, die Gruppenzugehorigkeit jeder Variable aus
L zu kennen. Liegen keine Vorinformationen vor, die Aufschluss dariiber geben, wel-
che Variablen aus L zu welcher Gruppe gehoren (was per Annahme der Fall ist), so ist
unter Umstédnden ein Schiatzverfahren sinnvoll, das Variablenselektion integriert. Varia-
blenselektion ,per Hand“ oder im Vorfeld sollte aufgrund des multiplen Testproblems
vermieden werden.

Das dargestellte kausale Wirkungsmuster wird auch bei den in Kapitel 4 durchgefiihrten

Simulationen herangezogen.
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3.3.2 CTMLE-Variablenselektionsalgorithmus

Die dargestellten Uberlegungen motivieren den iterativen CTMLE-Variablenselektions-
algorithmus:

Bei diesem gibt r den Index fiir die aktuelle Iteration an. Die Vorhersagen des Outcome-
Modells Q(r) bzw. Q’(“r) und des Exposure-Modells g,y werden bei diesem Verfahren in
jeder Iteration r neu berechnet. Dies geschieht iiber die Aufnahme zusétzlicher Variablen
ins Exposure-Modell. Fiir jede Beobachtung erfolgt die Bestimmung der Vorhersagen
jeweils unter A; = 1 und unter A; = 0. Y sollte auch hier wieder auf den Bereich [0, 1]
transformiert werden.

Wie beim TMLE-Verfahren wird zunéchst das Outcome-Modell E[Y'|A, L] geschétzt.
Dadurch erhilt man wie gewohnt initiale Vorhersagen Q(O). Fiir das Exposure-Modell
P[A = 1|L] (von hier an mit G bezeichnet) wird zunéchst ein reines Intercept-Modell
G0y ohne Kovariablen verwendet, um die Vorhersagen (o) zu bestimmen.

Fir r =0,...,p — 1 (D.h. eine Iteration pro Variable in L) wird Folgendes wiederholt:

1. Zunéachst wird mit Hilfe von Q(T) und g, ein Update-Schritt durchgefiihrt, um
dadurch die angepassten Vorhersagen QZ‘T) zu erhalten (genau wie beim TMLE-
Verfahren Schritt 3). Diese werden verwendet, um einen Verlust Ls() nach der ne-
gativen Log-Likelihood fiir bernoulliverteilte Zufallsvariablen zu bestimmen. Dafiir

werden die Vorhersagen unter der beobachteten Treatmentvariable herangezogen:

n

Ls(Y,Q") = — Y [Vilog(Q; (4, L)) + (1 — Yi)log(1 — Qi (A;, Ly))]

i=1

2. Fir jede Variable aus L, die noch nicht im aktuellen Exposure-Modell G, enthal-
ten ist, wird ein Exposure-Modell geschatzt, das zusatzlich zu den Kovariablen von
G(r) noch die jeweilige Variable als Kovariable enthalt. Dadurch entstehen p — r

neue Modelle.

3. Fir jedes dieser neuen Modelle bildet man die Vorhersagen § und fithrt mit diesen
und Q(T) einen Update-Schritt durch. Dadurch erhalt man korrigierte Vorhersagen
Q" fir jedes Modell. Mit diesen wiederum wird pro Modell ein Verlust gebildet,
woflr die Verlustfunktion aus Schritt 1 verwendet wird. Das Exposure-Modell, das

zum geringsten Verlust ES(T) fithrt, wird mit G'(r) bezeichnet.

4. Folgendes ist zu tiberpriifen:

o Ist ES(T) < Ls(y, bedeutet das, dass die Vorhersagen durch die ,optimale
aufgenommene Variable® im Exposure-Modell verbessert wurden. Man setzt

Gy = é(r) als Exposure-Modell fiir die nédchste Iteration. Daraus erge-
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ben sich neue Vorhersagen g(.41). Die nicht angepassten Vorhersagen des

Outcome-Modells bleiben unverandert: Q(TH) = Q)

o Falls ES(T) > Ls(), werden die Vorhersagen durch eine Erweiterung des
Exposure-Modells nicht verbessert. Es wird nun ein ,tatséchliches Update®
durchgefithrt. D.h. man setzt: Q(T) = Q;) und wiederholt die Schritte 3 und

4 dieser Iteration.

Zum Schluss ist noch ein letzter Update-Schritt notwendig, um QA’(kp) zu erhalten.

Die Prozedur erzeugt eine Sequenz (QE*T),Q(T);T = 0,...,p) von Vorhersagen. In jeder
Iteration wird dem Exposure-Modell eine Variable aus L als Kovariable hinzugefiigt: Je-
weils diejenige, welche fiir die grofite Verbesserung beziiglich der Verlustfunktion sorgt.
Das letzte Exposure-Modell enthélt somit alle Variablen L als Kovariablen. Die Auf-
gabe ist es nun, den optimalen Iterationsschritt r,, zu bestimmen. Dies geschieht iiber
Kreuzvalidierung, um Overfitting zu vermeiden. Der ATE bestimmt sich dann schlieflich

uber:

n 1 & Ak o
Yare = ﬁ ZQi(Topt)<Ai =1, Li) - Qi(rom)<Ai =0, Li)
i=1

Eventuell ist dann wieder eine Riicktransformation (wie beim TMLE-Verfahren) not-

wendig.
(Vgl. Schnitzer; 2017, S. 4/5)

3.3.3 Einschub: Kreuzvalidierung

Wiirde man den Algorithmus alleine nach den Verlusten der Daten, auf denen der Algo-
rithmus durchgefithrt wird, bewerten, kiime man zu dem Ergebnis, dass alle Variablen
berticksichtigt werden sollten und 7., = p ist. Jedoch sollte Uberanpassung vermie-
den werden, da diese die Varianz der Schatzung erhéht. Somit ist eine Aufteilung in
Trainingsdaten, auf denen der Algorithmus durchgefithrt wird, und in Testdaten, auf
denen evaluiert wird, sinnvoll. Kreuzvalidierung ist eine bewahrte Methode, um einen

Bias-Varianz Trade-Off zu erreichen:
o Der Datensatz wird dazu in M gleich grofle Teile geteilt.

o Flirm=1,..., M wird Folgendes durchgefiihrt:

— Der m-te Teil des geteilten Datensatzes Val(m) wird als Testdatensatz be-
nutzt. Dieser enthilt 1/M x n Beobachtungen. Die restlichen #=% x n Beob-

achtungen werden als Trainingsdaten verwendet.

— Die Trainingsdaten werden benutzt, um den Algorithmus auszufiihren.
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— Durch das zu Beginn geschétzte Outcome-Modell (auf den Trainingsdaten)
werden die initialen Vorhersagen QO fiir die Testdaten bestimmt. In jeder Ite-
ration r werden auf Basis der aktuellen (auf den Trainingsdaten geschéitzten)
Koeffizienten korrigierte Vorhersagen Q* fiir die Testdaten berechnet. Mit die-
sen wird nach der bereits verwendeten Funktion ein Verlust berechnet. Wurde
bei den Trainingsdaten in Schritt 4 einer Iteration ein tatsachliches Update
durchgefiihrt, ist zu beachten, dass die Vorhersagen der Testdaten ebenfalls

angepasst werden miissen.

Insgesamt ergibt sich der Verlust fiir eine Iteration r zu:

cvError, = Z S [Vilog(Q T (Aiy Li)) + (1 = Yi)log(1 — @;‘(T)(Ai, L))]

m=14iecVal(m)

Pro Iteration r wird jede Beobachtung genau einmal evaluiert. 7., ist die Iteration, zu
welchem der korrespondierende Verlust (cvError,,,,) am geringsten ist.
(Vgl. Schnitzer; 2017, S. 6 / 7) (Vgl. Hastie; 2009, S. 241 - 255)
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3.4 Schatzung mit Shrinkage

3.4.1 Einschub: Shrinkage-Schatzung

Shrinkage-Verfahren kommen insbesondere bei hochdimensionalen Daten und/oder Mul-
tikollinearitatsproblemen zum FEinsatz. Sie penalisieren betragsmafig hohe Schéatzer fiir
den Koeffizientenvektor und schrumpfen diese gegen bzw. komponentenweise auf 0. Dies
erzeugt einen Bias bei der Schatzung, da der Log-Likelihood ein Strafterm hinzugefiigt
wird. Jedoch kann dadurch die Varianz der Schatzung unter Umsténden verringert wer-
den.

Bei der Schatzung eines kausalen Effekts konnen die Koeffizienten auch jeweils iiber
Shrinkage-Verfahren geschétzt werden. Wie auch bei der Variablenselektion liegt der
Fokus hier beim Exposure-Modell. Man verwendet den folgenden Schétzer fiir den Koef-
fizientenvektor 7* des Exposure-Modells (7* mit Lange p+1 stellt den Koeffizientenvektor

mit Intercept 7y dar, 7 den Koeffizientenvektor ohne Intercept).

OVES argmax Z;{Ailog(gi(T*)) + (1 — A))log(1 — g:i(7"))} — Apen(r)

Dies entspricht der penalisierten Log-Likelihood fiir bernoulliverteilte Zufallsvariablen.
pen(7) stellt den Penalisierungsterm dar. Mit A wird die Starke der Penalisierung kon-
trolliert. Es gilt, dass A > 0 zu wahlen ist, wobei A = 0 bedeutet, dass keine Penalisie-
rung stattfindet und die Shrinkage-Schatzung der gewohnlichen Maximum-Likelihood-
Schatzung entspricht. Eine Herausforderung ist es somit, \ geeignet zu wéhlen bzw.
Verfahren zu konstruieren, die ein geeignetes \ bestimmen. Auf eine Penalisierung des
Intercepts wird in der Regel verzichtet.

Alternativ kann die Shrinkage-Schiatzung des Exposure-Modells auch folgendermafien

dargestellt werden:

() = axgmass | 3" {Adog(ai(r) + (1 — Ai)log(1 ("))}

=1

unter der Bedingung: pen(r) < ¢

Es wird also eine ML-Schatzung unter einer Restriktion durchgefiihrt, welche die Grofle
der Komponenten von 7 beschrankt. Der Parameter ¢ ergibt sich dabei eineindeutig aus
A

Von Bedeutung ist die Wahl des Penalisierungsterms. Besonders folgende Terme werden

haufig benutzt:

« Ridge-Penalisierung: pen(r) = >_0_, 1772
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o Lasso-Penalisierung: pen(7) = >7_; |7,
« Elastic-Net-Penalisierung: pen(7) = 3-2_ (1 — o) 172 + 7|

Bei der Ridge-Penalisierung werden die Schétzer gegen 0 geschrumpft, bei der Lasso-
Penalisierung werden manche Komponenten sogar auf 0 geschrumpft. Das Elastic-Net
kombiniert die beiden Penalisierungsterme, wobei die Gewichte der Terme durch den
Parameter o € [0, 1] kontrolliert werden. o = 0 entspricht der Ridge-Penalisierung und

a = 1 der Lasso-Penalisierung.
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Abbildung 3.2 : Lasso-Penalisierung (links) und Ridge-Penalisierung (rechts)

In der Grafik ist abgebildet, wie der Schétzer 7 gegen 0 geschrumpft wird. Die blaue Rau-
te bzw. der Kreis stellen die Beschrankung des Schatzers dar. Der Maximum-Likelihood-
Schétzer wird solange gegen den 0-Vektor geschrumpft (dargestellt durch die roten El-
lipsen), bis die Begrenzung eingehalten wird. Sobald Ellipse und Raute bzw. Kreis zu-
sammentreffen, ist der penalisierte ML-Schéitzer gefunden. Aus der Grafik wird auch
ersichtlich, warum bei der Ridge-Penalisierung die Komponenten des Schétzers nur ge-
gen 0 geschrumpft werden, wahrend sie bei der Lasso-Penalisierung komponentenweise
auf 0 geschrumpft werden. Dies liegt an der Form (Raute), welche durch die Betrags-
funktion zustande kommt.

Shrinkage kann somit als Alternative zur klassischen Variablenselektion gesehen wer-
den. Wéahrend die Variablen bei letzterem Verfahren entweder aufgenommen oder nicht
aufgenommen werden, werden die zugehorigen Koeffizienten beim Shrinkage gegen bzw.
komponentenweise auf 0 geschrumpft. Dies richtet sich nach Stédrke der Penalisierung
und Wahl des Penalisierungsterms.

(Vgl. Hastie; 2009, S. 61 - 79)
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3.4.2 CTMLE-Algorithmus mit Shrinkage-Schatzung

Der CTMLE-Algorithmus mit Shrinkage-Schétzung konstruiert eine mehrstufige Shrinkage-
Schétzung des Exposure-Modells. Man beginnt mit einer hohen Penalisierung und verrin-
gert diese schrittweise. Dies kann durch eine absteigende Sequenz von \-Werten bewerk-
stelligt werden: {\, : k =0, ..., K'}, wobei A\ = 0 (keine Penalisierung) festgelegt wird.
¢ stellt die Vorhersagen des Exposure-Modells dar, wenn eine Shrinkage-Schitzung des
Modells mit Parameter A durchgefiihrt wird (mit allen Variablen L als Kovariablen).
Zunéchst werden wie beim CTMLE-Variablenselektionsalgorithmus initiale Vorhersagen
Q(o) und ein auf [0, 1] transformierter Outcome bendtigt. Man wiederholt die folgenden
Schritte fir £k =0,..., K — 1:

1. Wie gewohnt wird mit Q(k) und §* ein TMLE-Update durchgefithrt, um die an-
gepassten Vorhersagen ka) zu erhalten. Mit diesen wird nach der negativen Log-

Likelihood fiir bernoulliverteilte Zufallsvariablen ein Verlust Ls;) berechnet.

2. Dasselbe wird fiir Q(k) und M+ wiederholt. Dadurch erhilt man einen Verlust
Lsgo.
3. AnschlieBend werden die beiden Verluste verglichen:
o Ist Es(k) < Ls(x), so bleiben die Vorhersagen des Outcome-Modells unverandert:
Qu+ = Quy
o Ist I:s(k) > L5y, so wird ein tatsdchliches Update durchgefiihrt und Q(kﬂ) =
Q(x) gesetzt.

Zum Schluss ist ein letzter Update-Schritt notwendig, um QE‘K) zu erhalten. Dadurch
erhilt man eine Sequenz von angepassten Vorhersagen: (Q%;k = 1,..., K). Auch hier
wird per Kreuzvalidierung (analog zum CTMLE-Variablenselektionsalgorithmus) die op-
timale Iteration k,,, ermittelt. Der Average Treatment Effect kann dann folgendermaflen

geschétzt werden (ggf. wieder mit Riicktransformation):
7 1 Ak Ak
Yare = n ZQi(kopt)(Ai =1, Lz’) - Qi(kopt)(Ai =0, Li)
i=1

(Vgl. Schnitzer; 2017, S. 5/6)
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3.4.3 CTMLE-Algorithmus mit komponentenweisem Shrinkage

Die Shrinkage-Schatzung kann noch flexibler gestaltet werden. Beim Shrinkage-Algorithmus
aus dem vorherigen Abschnitt werden alle Kovariablen gleich stark penalisiert. Es gibt
jedoch auch die Moglichkeit, kovariablenspezifische Werte A, zu benutzen und die Re-
gressoren dadurch unterschiedlich stark zu penalisieren. Im Fall des Exposure-Modells

kann der Schétzer dann folgendermaflen definiert werden:

(N = argTr*nax zn:{Ailog(gi(T*)) + (1= A)log(1 — g;(77))} — Ei:l/\rpen(n)

i=1
Die iiblichen Penalisierungsterme konnen wie folgt dargestellt werden:

« Ridge-Penalisierung: pen(r,) = 177

 Lasso-Penalisierung: pen(7,) = |7,
« Elastic-Net-Penalisierung: pen(r,) = (1 — )172 + o|7|

Diese entsprechen den Termen aus den vorherigen Abschnitten - mit dem Unterschied,
dass die Summe nicht mehr auftaucht und der Strafterm kovariablenspezifisch ist.

Der CTMLE-Algorithmus mit komponentenweisem Shrinkage reduziert die Penalisie-
rung schrittweise, wahlt dazu aber in jeder Iteration eine Kovariable aus, deren \-Wert
verringert werden soll. Sei A = (A\y,;k =1,..., K;r =1,...,p) eine Matrix von Penalisie-
rungsparametern. Jede Spalte enthélt eine Sequenz von absteigenden \-Werten fiir eine

bestimmte Kovariable. Des Weiteren gilt:
e t sei der Index fiir die Iterationen des Algorithmus.
. X(t) gibt den Penalisierungsvektor der Lénge p in der Iteration ¢ an.

. k:(t) entspricht dem Index des Penalisierungsparameters fiir den Regressor r in

Iteration t.

« Somit stellt )"f&y” den Penalisierungsparameter fiir die r-te Kovariable in der ¢-ten

Tteration dar.

Zu Beginn ist k fiir jede Variable gleich 1: k(;) = 1. Wie bei den anderen Algorith-
men werden zundchst mit Hilfe eines auf [0,1] transformierten Outcomes Y und ei-
nes geeigneten Outcome-Modells Vorhersagen bestimmt: Q(l). Die initialen Vorhersa-
gen gy des Exposure-Modells erhilt man durch eine Skrinkage-Schéitzung mit dem
Startvektor fir die Penalisierung;: X(l) = {)\kﬁ)”; r =1,..., R}. Anschlieflend werden fiir
t=1,..,px (K —1) die folgenden Schritte ausgefiihrt:
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1. Mit Hilfe der Vorhersagen g und Q(t) fithrt man den TMLE-Update Schritt
durch und erhélt dadurch Q?t)‘ Der Verlust Ls(;) errechnet sich dann wieder mit

der negativen Log-Likelihood fiir bernoulliverteilte Zufallsvariablen.

2. Fiir jede Variable r = 1, ..., p, fiir die k:(t) < K gilt (Das heifit: Fir jede Variable, bei
welcher man noch nicht bei der minimalen Penalisierung angelangt ist), wird ein
Exposure-Modell per Shrinkage geschétzt. Dafiir wird der Penalisierungsvektor
/\’("t) = (Ak(ltVl, "")‘k&;l,rfh)‘k(rt)‘f'lﬂ’?/\k(r:)rl,rJrl? ...,)\k&)’p) verwendet. Dies entspricht
einem Penalisierungsvektor, der sich von A nur dadurch unterscheidet, dass die

Variable r mit dem néchst kleineren A-Wert penalisiert wird.

3. Fiir jedes dieser neuen Exposure-Modelle werden Vorhersagen g gebildet. Diese
und @(t) werden verwendet, um jeweils angepasste Vorhersagen Q* zu bekommen.
Mit diesen wird nach der gewohnten Verlustfunktion pro Modell/pro Variable ein
Verlust gebildet, wofiir die Verlusfunktion aus Schritt 1 verwendet wird. Die Va-
riable, die nach diesem Prozess zum kleinsten Verlust fithrt, sei mit r* bezeichnet.

r*

Der zugehorige Verlust sei I:s(t).

4. Es wird tberpriift:

r¥*

o Ist [:s(t) < Ls(y), so wurde durch eine weniger starke Penalisierung der Va-
riable 7* eine Verbesserung der Vorhersagen beziiglich der Verlustfunktion
erzielt. Man setzt X(t+1) = Xft) and erhélt dadurch auch neue Vorhersagen
des Exposure-Modells: §;41). Die Vorhersagen des Outcome-Modells bleiben

unverédndert: QA(tH) = Q-

o Ansonsten wird ein ,tatséchliches Update* durchgefiithrt und Q(t) = szt) ge-
setzt. Mit diesen werden die Schritte 3 und 4 des Algorithmus wiederholt.

Auch hier ist noch ein letzter Update-Schritt notwendig, um prx( k—1y) zu erhalten. Um
die optimale Iteration ¢,,; zu bestimmen, wird wieder auf Kreuzvalidierung zurtickgegrif-
fen (Funktionsweise analog zu den anderen Algorithmen). Anschlieflend kann der ATE

geschétzt werden (ggf. wieder mit Riicktransformation):
n 1 A % A%
Yare = - > Qiron(Ai = 1, Li) — Qi (A = 0, Ly)
i=1

Wiahlt man fiir diesen Algorithmus K = 2 und Ay, = oo fiir alle r sowie \g, = 0 fiir alle
r, so entspricht das Verfahren dem CTMLE-Variablenselektionsalgorithmus. Bei Letz-
terem kann entweder keine Penalisierung (Variable wird aufgenommen) oder maximale

Penalisierung (Variable wird nicht aufgenommen) gewahlt werden. Dadurch wird auch
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die hohere Flexibilitat des CTMLE-Algorithmus mit komponentenweisem Shrinkage er-
sichtlich.
(Vgl. Schnitzer; 2017, S. 6)
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4 Simulationsstudie zur Untersuchung

der Schatzverfahren

In diesem Kapitel werden die in Kapitel 3 dargestellten Schétzverfahren anhand ihrer
Giite untersucht und verglichen. Als Kennzahl wird der Mean Squared Error (MSE) her-
angezogen. Da eine analytische Ermittlung des MSE fiir die Verfahren nicht moglich ist,
werden Simulationen durchgefiihrt. Mit deren Hilfe kann der MSE durch den empirischen
MSE geschatzt werden.

4.1 Aufbau der Simulationen

4.1.1 Allgemeine Struktur

Fiir eine Simulation legt man einen datengenerierenden Prozess inklusive des wahren
Average Treatment Effects v 47 g, verschiedene Schatzverfahren und eine bestimmte An-

zahl R an Wiederholungen fest. Der Prozess ist dann folgender:

e Firj=1,... R:

— Die Daten werden nach dem datengenerierenden Prozess (Zufallsprozess) ge-

bildet

— Fir jede Schatzmethode wird der Average Treatment Effect aus den Daten

geschatzt.

e Dadurch ergibt sich eine Matrix von Schéatzungen. Die Zeilen repréasentieren die
Wiederholungen und die Spalten die Schéitzmethoden. Aus der Matrix und dem
wahren ATE lasst sich der empirische MSE-Vektor (ein MSE pro Schétzmethode)

bestimmen.
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4.1.2 Generierung der Daten

Die Daten werden nach folgenden kausalen Beziehungen erzeugt:

=

LA > A > Y

LN Lo Ing

Abbildung 4.1 : DAG - Kausale Beziehungen fiir die Simulationen

Generierung der moglichen Confounder L

Fiir den Variablenvektor L (r = 1,...,p) werden pro Variable n Beobachtungen (i =
1,...,n) aus einer variablenspezifischen Normalverteilung gezogen. Im einfachsten Fall
wird Unabhéngigkeit zwischen all diesen Variablen festgelegt. Dann kénnen die Daten

fiir jede Variable L., aus L folgendermaflen generiert werden:
Lir ~ N (pr, V?)
Folgende Parameter miissen festgelegt werden:
o n: Anzahl der Beobachtungen
o p: Anzahl der Variablen in L

* Do, Pa, Py, pn: Anzahl der Variablen in jeder der 4 L-Gruppen

o = ({1, ..., ptp): Interceptvektor (unter diesen Umstanden: Erwartungswertvektor)

fiir die Normalverteilung der Variablen L

e v = (11,...,1p) : Standardabweichungsvektor fiir die Normalverteilung der Varia-
blen L

Optional kann ein Teil der erzeugten Variablen mit Hilfe von Cutpoints (Jeweils der

Median) in binire Groflen umgewandelt werden:

i 1, falls L;. > Med(L.,)

0, sonst

Optional kénnen auch Assoziationen zwischen den Variablen L simuliert werden. Dies ge-

schieht iiber verborgene Hilfsvariablen Z. Sollen die Variablen innerhalb einer L-Gruppe
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Zusammenhénge aufweisen, lasst sich dies durch folgendes kausale Wirkungsmuster rea-

lisieren:
7A > [A > A >Y
7N > [_:N EO [_:Y

Z0 A

Abbildung 4.2 : DAG - Kausale Beziechungen fiir die Simulationen bei Assoziationen
zwischen den Variablen L innerhalb einer L-Gruppe

Eine Komponente aus dem Variablenvektor Z = (Z°, Z4, ZY, ZV) hat jeweils einen kau-
salen Effekt auf alle Variablen L der zugehorigen L-Gruppe. Dies fithrt dazu, dass die
Variablen L einer Gruppe Assoziationen aufweisen, ohne in einer kausalen Beziehung zu-
einander zu stehen. Die 4 Variablen aus Z = (Z°, Z4, Z¥, ZV) werden alle aus derselben
Normalverteilung (gleicher Erwartungswert und gleiche Varianz) gezogen. Anschlieend

kénnen die Beobachtungen der Variablen L folgendermafien erzeugt werden:

~ N(p, + ZPk,v?), falls L., Variable aus L°
~ N(u, + Z#k,v?), falls L., Variable aus L4
~ N(
~ N(

pr + ZY k,v?%), falls L., Variable aus LY
)

r

pr + ZNk, 1?), falls L., Variable aus LY

T

Der Einfachheit halber wird angenommen, dass der Koeffizient, der den Einfluss von
7 widerspiegelt, fiir jede Variable aus L derselbe ist: k. Die Erwartungswerte sind also
jetzt beobachtungsspezifisch (nicht nur: ).

Auch Assoziationen zwischen allen Variablen aus L lassen sich simulieren. Dafiir wird

lediglich eine Variable Z benotigt, welche einen Einfluss auf alle Variablen aus L hat:
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Z

Abbildung 4.3 : DAG - Kausale Beziechungen fiir die Simulationen bei Assoziationen
zwischen allen Variablen L

Die Normalverteilung, aus welcher die Beobachtungen der Variablen L erzeugt werden,

ist hier beobachtungsspezifisch, jedoch nicht mehr gruppenspezifisch:
Lip| Z; ~ N(pr + Zik, v2)

Zu beachten ist: Simuliert man die Variablen nach diesem Schema (Assoziationen zwi-
schen allen Variablen aus L), so entsteht ein neuer ,Backdoor-Path“! Somit ist es in so
einem Fall nicht mehr ausreichend, die Variablen LY in die Schitzung zu integrieren.
Zusitzlich miissen entweder die Variablen L# oder LY beriicksichtigt werden. (Oder Z,

jedoch ist diese Variable per Annahme verborgen)

Mochte man Assoziationen zwischen den Variablen aus L erzeugen, so muss zusétzlich

zu den oben erwéhnten Parametern festgelegt werden:

o Erwartungswert und Varianz der Normalverteilung, aus der die Variablen Z gezo-

gen werden
e Der Koeffizient x fur den Einfluss der Variablen Z

Die Variablen Z sind in dem Sinne verborgen, dass sie in den Daten nicht auftauchen

und fiir die Schatzung somit nicht zur Verfiigung stehen.

Generierung der Treatmentvariable A

Um die Treatmentvariable zu generieren, miissen zunéchst die Variablen aus L bestimmt
werden, die einen kausalen Effekt auf die Treatmentvariable haben. Es wird festgelegt:
LAY = [LA]L]. Das heifit LA° verkniipft die Variablenvektoren L° und LA und enthilt

somit alle Variablen aus L, welche einen Effekt auf A haben. Die n Beobachtungen der
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Treatmentvariable A kénnen dann folgendermaflen generiert werden:

1
AL ~ B (1
IL; ( "1+ exp(—(m + LT + (Lf‘%%)))

A ist also bernoulliverteilt, wobei die Wahrscheinlichkeit von den Variablen aus LA°
abhangt. Dazu werden einfache und quadratische Terme verwendet. Es muss festgelegt

werden:
o T7p: Intercept fiir die Treatmentwahrscheinlichkeit
« 7: Vektor der Linge p4 + po fiir die Koeffizienten der einfachen Terme LA
o v: Vektor der Linge p4 + po fiir die Koeffizienten der quadratischen Terme (LA9)2

Generierung des Outcomes Y

Analog zur Generierung von A miissen auch hier die Variablen aus L festgelegt werden,
die einen kausalen Effekt auf ¥ haben: LY = [LY|L%]. Der Outcome wird dann nach

folgendem Schema gebildet:
Yi = 00 + AZ«91 + Lfoﬁ + Lz/oAl’}/ + ([3’0)25 + € mit €; ~ N(O, 0'2)

Einfache Terme A und LY?, Interaktionsterme A : LY? und quadratische Terme (LY?)?
werden zur Generierung von Y verwendet. Werden die Daten auf diese Weise gebildet,

so gilt fiir den Treatment Effect einer Beobachtung i:
Y =Y 0 = (Go+01+ L) B+ L) Oy +(L) °)?6+€) — (Oo+ L °f+(L) °)?6+€;) = 61+L) Oy
Somit gilt fir den Average Treatment Effect:

Yarg = BE[Y*™' =Y = E[6, + L"°y] = 6, + E[L""]y

Der Erwartungswertvektor E[LY°] wiederum lisst sich anhand von Parametern berech-
nen - je nachdem, wie die Variablen L im ersten Schritt erzeugt wurden.

Folgende Parameter werden benotigt:
o 0y Intercept fiir den Outcome
o B3: Vektor der Liange py + po fiir die Koeffizienten der einfachen Terme LY°

o ~: Vektor der Liange py + pp fiir die Koeffizienten der Interaktionsterme zwischen
LY% und A

o J: Vektor der Linge py + po fiir die Koeffizienten der quadratischen Terme (LY?)2
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« 0: Standardabweichung fiir die Storterme

o Yarg: Der Average Treatment Effect. Ist dieser festgelegt, so ergibt sich der Para-

meter ¢, auf eindeutige Weise aus den anderen Parametern.

4.1.3 Schatzung des kausalen Effekts

Es folgt die Schatzung des Average Treatment Effects. Alle Schatzmethoden verwenden
dazu die erzeugten Daten. Es muss dabei nicht nur das Verfahren selbst, sondern auch
gegebenenfalls Hyperparameter und Modelle festgelegt werden. Diese sind (im Wesent-
lichen) die folgenden:

« Naive Schétzung: Keine

Standardisierung: Outcome-Modell
o [P-Weighting: Exposure-Modell
o« TMLE: Outcome-Modell, Exposure-Modell

o CTMLE-Variablenselektionsalgorithmus: Outcome-Modell, (Volles) Exposure-Modell,
M

o CTMLE-Algorithmus mit Shrinkage-Schétzung: Outcome-Modell, Exposure-Modell,
M, A\-Vektor, «

o CTMLE-Algorithmus mit komponentenweisem Shrinkage: Outcome-Modell, Exposure-
Modell, M, A-Vektor (pro Variable), «

4.1.4 MSE-Berechnung

Nachdem die Daten R mal erzeugt wurden und der ATE mit jedem Verfahren R mal
geschitzt wurde, kann der MSE geschitzt werden. Der MSE fiir den zu schétzenden

Parameter ¥ 47 und ein Schatzverfahren T ist folgendermafien definiert:
MSEWarp, T) = E[(T —¥arp)’] = Var(T) + E[T — Yarp)?

Dies entspricht der mittleren quadratischen Abweichung des Schétzers vom zu schéitzen-
den Parameter. Der MSE kann in Varianz des Schéatzers und mittlere Abweichung des
Schétzers vom Parameter (Bias) zerlegt werden. Da der MSE (fir die meisten Verfahren)
analytisch nicht zugénglich ist, muss er jeweils durch den empirischen MSE geschatzt

werden, welcher sich aus den Simulationen ergibt. ¥ 475(T); (j = 1,..., R) sei der unter
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Schétzverfahren T geschétzte Parameter in Wiederholung j. Dann ist der empirische

MSE fiir die Schatzungen eines Verfahrens 7" zur Schatzung von ¥ arg:

R
M SE(wATanATE _ Z Dare(T); — Yare)?

J=1
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4.2 Durchfiihrung der Simulationen

In diesem Abschnitt wird erldutert, mit welchen Inputs die Simulationen tatsdchlich

durchgefithrt werden.

4.2.1 Betrachtete datengenerierende Prozesse

Zur Erzeugung der Daten werden folgende Inputs variiert:

o Die Anzahl der Beobachtungen. Gewihlt werden die Stichprobenumfénge n = 200
und n = 800.
o Die Assoziationsstruktur der Variablen L. Die folgenden drei werden betrachtet:
— Keine Assoziationen
— Assoziationen innerhalb einer L-Gruppe
— Assoziationen zwischen allen Variablen aus L
Diese Strukturen wurden bereits in Kapitel 4.1.2 genauer erlautert.
« Bildung von Outcome und Treatmentvariable. Vier verschiedene Szenarien werden
herangezogen:

1. Y und A werden jeweils nur durch einfache Terme gebildet. Das heifit v,

und v entsprechen jeweils dem 0-Vektor.

2. Y wird durch einfache und Interaktionsterme gebildet. In diesem Szenario
sind die Komponenten von v von 0 verschieden. A wird nach wie vor nur

durch einfache Terme gebildet.

3. Y wird durch einfache und quadratische Terme gebildet. Somit enthélt ¢ keine

0-en mehr. A wird nach wie vor nur durch einfache Terme gebildet.

4. Y wird durch einfache, quadratische und Interaktionsterme gebildet. A wird
durch einfache und quadratische Terme gebildet. Da die Wirkungsstruktur
hier am komplexesten ist, wird fiir diesen Fall zusétzlich eine Simulation mit

Stichprobenumfang n = 3200 herangezogen.
Die iibrigen Inputs werden folgendermafien gewahlt:

e Um den MSE moglichst gut durch den empirischen MSE zu schatzen und dadurch
ein aussagekriftiges Ergebnis zu erhalten, ist die Wahl einer hohen Anzahl an
Wiederholungen sinnvoll. Je hoher die Anzahl, desto hoher ist allerdings auch die

Laufzeit. Als ,,Kompromiss® wird R = 500 gewahlt.
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Die Anzahl der Variablen L und die Anzahl jeweils in den 4 L-Gruppen sollte im

Verhéltnis zum Stichprobenumfang nicht zu hoch sein, jedoch hoch genug, dass

Variablenselektion und Shrinkage sinnvoll erscheint:

p:107 P0:4> pY:27 pA:2> pN:2

Der Anteil der Variablen L, die jeweils in eine bindre Grofie umgewandelt werden:

0.2

Der zu schitzende Average Treatment Effect: Y 7p = 1

Weitere Parameter:

Gegebenenfalls Erwartungswert und Standardabweichung der Variablen Z: 0
und 1

Interceptvektor von L: p = (1,2,3,4,2,3,2,3,2,3)
Standardabweichungsvektor von L: v = (0.8,1,1.2,1.4,1,1.2,1,1.2,1,1.2)
Gegebenenfalls Koeffizient fir den Einfluss von Z: k =1

Intercept zur Generierung der Treatmentvariable:

—7.5, in den Szenarien 1, 2 und 3 der Treatment- und Outcomebildung,

T0 —
—14.5, in Szenario 4 der Treatment- und Outcomebildung

Koeffizienten fiir die einfachen Terme LA zur Generierung der Treatmentva-
riable:
7 =1(0.3,0.4,0.5,0.6,0.45,0.55)

Koeffizienten fiir die quadratischen Terme (LA%)? zur Generierung der Treat-

mentvariable:
(0,0,0,0,0,0), in den Szenarien 1, 2 und 3,
v =
(0.5,0.25,0.15,0.1,0.18,0.18), in Szenario 4
Intercept fiir die Generierung des Outcomes: 6y = —15

Koeffizienten fiir die einfachen Terme zur Generierung des Outcomes:
g =1(0.5,1,1.5,2,0.75,1.25)
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— Koeffizienten fiir die Interaktionsterme zur Generierung des Outcomes:

(0,0,0,0,0,0), in den Szenarien 1 und 3,
7 =141(0.6,0.9,1.3,1.7,0.75,1.25), in Szenario 2,
(0.9,0.95,0.85,1.05,1,0.8), in Szenario 4

— Koefhizienten fiir die quadratischen Terme zur Generierung des Outcomes:

(0,0,0,0,0,0), in den Szenarien 1 und 2,
(0.5,0.25,0.15,0.1,0.18,0.18), in den Szenarien 3 und 4

— Standardabweichung der Storterme: 0 =1

Der Koeffizient 6, fiir die Variable A zur Generierung des Outcomes ergibt

sich (wie bereits erlautert)

Ziel bei dieser Parameterwahl ist es, eine Confounding Situation in ausreichendem Mafl
zu simulieren. Um zu verhindern, dass sich Effekte gegenseitig ,neutralisieren, werden
nur positive Werte verwendet. Diese werden durch die negativen Intercepts einigermafien
ausgeglichen. Das heifit: Die Pradiktoren sind im Mittel ca. 0. Dies ist insbesondere bei
der Bildung der Treatmentvariable von Bedeutung. Des Weiteren sollten sich die Effekte
unterscheiden, jedoch nicht zu stark. Ein gewisser Abstand von der 0 ist wichtig. Auch
die Erwartungswerte der Variablen L sollten nicht zu nah an der 0 sein, damit man ins-
besondere bei den Interaktionstermen und quadratischen Termen nicht auf Spezialfélle

trifft. Diese konnten die Terme sonst nahezu bedeutungslos machen.

4.2.2 Verwendete Schatzmethoden

Die folgenden Methoden werden zur Schéitzung des ATE jeweils benutzt. Die spéater in

den Grafiken verwendeten Abkiirzungen sind jeweils in Klammern dahinter.
« Naive Schitzung (Naiv)

o IP-Weighting (IPW)

Standardisierung (Std)

o Targeted Maximum Likelihood Estimation (TMLE)

CTMLE-Variablenselektionsalgorithmus (VS)

CTMLE-Algorithmus mit Shrinkage-Schiatzung unter Ridge-Penalisierung (Rid)
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o CTMLE-Algorithmus mit Shrinkage-Schétzung unter Elastic-Net-Penalisierung mit
a = 0.5 (EN)

o CTMLE-Algorithmus mit Shrinkage-Schitzung unter Lasso-Penalisierung (Las)

o CTMLE-Algorithmus mit komponentenweisem Shrinkage unter Ridge-Penalisierung
(cRid)

o CTMLE-Algorithmus mit komponentenweisem Shrinkage unter Elastic-Net-Penalisierung

mit o = 0.5 (cEN)

o CTMLE-Algorithmus mit komponentenweisem Shrinkage unter Lasso-Penalisierung
(cLas)

Die folgenden Modellierungen des Outcome-Modells werden jeweils verwendet:

e Nur mit A als Kovariable

o Mit einfachen Termen A und L
Je nach datengenerierendem Prozess noch zusatzlich:

o Mit einfachen Termen A und L sowie Interaktionstermen A : L
e Mit einfachen Termen A und L sowie quadratischen Termen L2

o Mit einfachen Termen A und L sowie Interaktionstermen A : L und quadratischen

Termen L2

Da beim IP-Weighting und bei der naiven Schéitzung kein Outcome-Modell in dem Sinne
spezifiziert wird, gibt es fiir diese Methoden keine verschiedenen , Varianten“ zur Mo-
dellierung des Outcomes. Die Methode Standardisierung, bei welcher man nur A als
Kovariable modelliert, entspricht der naiven Schétzung. Zu beachten ist, dass fiir die
Modellierung (ggf.) alle Variablen aus L verwendet werden, da per Annahme keine In-
formation dariiber vorliegt, welche Variablen aus L einen Effekt auf A oder Y haben.
Dies gilt auch fiir die Interaktionsterme und quadratischen Terme.

Des Weiteren wird gewdahlt:

o Eine Modellierung des Exposure-Modells nur mit einfachen Termen L (bei allen
Verfahren)

o M = 10 Teildatensétze fiir die Kreuzvalidierung. 10 ist eine klassische Zahl, die

hierfiir haufig verwendet wird.

e Die A-Sequenz sollte auf einer Log-Skala gewéhlt werden. Hier wird auf die 10er-

Log-Skala zurtickgegriffen: {100, 10, 1,0.1,0.01,0.001, 0.0001, 0}
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4.3 Ergebnisse der Simulationen

In diesem Abschnitt werden die wesentlichen Ergebnisse der Simulationen dargestellt.
Vollstandige Tabellen mit den Ergebnissen befinden sich im elektronischen Anhang der
Arbeit.

Zu beachten ist, dass aufgrund der Anschaulichkeit teilweise unterschiedliche Skalen
fiir den MSE verwendet werden. Zudem sind die Schétzungen der Verfahren, besonders
bei der naiven Schiatzung und dem IP-Weighting, nicht immer vollsténdig abgebildet.
Die Extremwerte sind teilweise nicht alle sichtbar. Auch bei den MSE-Grafiken sind die
Balken von der naiven Schéitzung und dem IP-Weighting zumeist nicht ganz sichtbar.
Ist in diesem Kapitel vom MSE die Rede, ist der empirische MSE gemeint. Dasselbe gilt

fur Bias und Varianz.

4.3.1 Erste Ergebnisse

Hier werden die Simulationen dargestellt, bei welchen der Outcome nur durch einfache
Terme A und LY? und die Treatmentvariable nur durch einfache Terme LA° gebildet
wird und keine Assoziationen zwischen den Variablen aus L vorliegen. Es werden die
Schétzungen betrachtet, bei welchen Outcome-Modell und Exposure-Modell richtig spe-
zifiziert werden. Das heifit: Letzteres beinhaltet die Kovariablen L und Ersteres die
Kovariablen A und L. Richtige Modellspezifikation bedeutet in diesem Fall, dass alle
richtigen Terme im spezifizierten Modell enthalten sind, aber auch iiberfliissige Terme
enthalten sein kénnen (wobei sich keine Collider im Modell befinden). Man erhélt die

folgenden Schatzungen fiir den Stichprobenumfang n = 200:
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Abbildung 4.4 : Schiatzungen des ATE fiir n = 200, wobei der Outcome durch einfache
Terme A und LY generiert wird und das Outcome-Modell mit den
Kovariablen A und L spezifiziert wird

Es lasst sich feststellen, dass die naive Schatzung stark verzerrt ist. Dies ist auf das
erlauterte Confounding-Problem zuriickzufithren. Das IP-Weighting weist eine sehr hohe
Varianz auf, wihrend der ATE bei der Standardisierung sehr gut geschétzt wird: Ein
Bias ist kaum vorhanden und die Varianz ist geringer als bei den anderen Methoden.
TMLE und die erweiterten Verfahren zeigen alle ein dhnliches Bild: Die Verzerrung
ist ebenfalls sehr gering, die Varianz etwas hoher als bei der Standardisierung, jedoch
deutlich geringer als beim IP-Weighting. Bei TMLE sind Spannweite und Varianz etwas
geringer als bei den Variablenselektions- und Shrinkage-Verfahren. Eine Verbesserung
der Giite durch diese Verfahren ist hier somit nicht ersichtlich.

Als Néchstes wird dasselbe fiir den Stichprobenumfang n = 800 dargestellt.
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Abbildung 4.5 : Schitzungen des ATE fiir n = 800, wobei der Outcome durch einfache

Terme A und LY generiert wird und das Outcome-Modell mit den
Kovariablen A und L spezifiziert wird

Die Schétzungen weisen hier ein sehr &hnliches Muster auf. Die Varianz wird im Vergleich

zur Simulation mit n = 200 deutlich geringer. Dies ist sowohl an der Spannweite als auch

am Interquartilsabstand ersichtlich.

Man betrachte nun die MSE zu den Verfahren fiir die zwei Simulationen:

MSE

020

015
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0.05

0.00

n=200 n =800
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|

0.15
|
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0.10
|

0.05
|

0.00
L

MNaiv IPW Std TMLE VS Rid EN Las cRid cEN clas MNaiv IPW Std TMLE VS Rid EN Llas cRid cEN clas

Methode Methode

Abbildung 4.6 : MSE-Vergleich der Schatzungen des ATE fiir die beiden Stichprobe-

numfinge n = 200 und n = 800, wobei der Outcome durch einfache
Terme A und LY° generiert wird und das Outcome-Modell mit den
Kovariablen A und L spezifiziert wird
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Auffillig ist, dass die MSE beim Ubergang von n = 200 auf n = 800 deutlich geringer
werden. Dies liegt an der geringeren Varianz. Konsistenz lasst sich somit bei allen Verfah-
ren (aufer bei der naiven Schitzung) vermuten, wenn Outcome-Modell und Exposure-
Modell richtig spezifiziert sind. Die hier erwéhnte Konsistenz bedeutet, dass der MSE
mit steigendem n gegen 0 geht und ist nicht zu verwechseln mit der Konsistenzannahme
im Kontext kausaler Effekte, welche zu Beginn der Arbeit erwdhnt wurde. Bei richtiger
Modellspezifikation weist Standardisierung die besten Ergebnisse beziiglich des MSE auf.
Bei den erweiterten Verfahren sind die MSE sehr dhnlich und etwas hoher als bei TMLE.

Confounding wurde hier in grofem Mafl simuliert, weswegen die naive Schatzung einen
hohen Bias aufweist. Folgende Grafik zeigt das Ausmafl. Es handelt sich dabei um den-
selben Plot wie Abbildung 4.4 bzw. Abbildung 4.6 rechts, jedoch wird die Skala hier

anders gewéhlt, um den Bias der naiven Schéatzung aufzuzeigen.
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Abbildung 4.7 : Schiatzungen des ATE und MSE fiir den Stichprobenumfang n = 800,
wobei der Outcome durch einfache Terme A und LY? generiert wird
und das Outcome-Modell mit den Kovariablen A und L spezifiziert
wird, mit breiterer Skala
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4.3.2 Verschiedene Assoziationsstrukturen

Es folgt die Darstellung der Simulationsergebnisse, bei welchen Assoziationen zwischen
den Variablen aus L bestehen. Diese kommen, wie in Abschnitt 4.1.2 erlautert, durch
entsprechende verborgene Variablen Z zustande. Weisen die Variablen L einer Gruppe
Assoziationen auf, erhdlt man folgende Schatzungen fir n = 800 (Die Bildung von
Treatmentvariable und Outcome sowie die Modellspezifikation bleiben wie in Abschnitt

4.3.1):
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Abbildung 4.8 : Schatzungen des ATE fiir den Stichprobenumfang n = 800, wobei
der Outcome durch einfache Terme A und LY° generiert wird und
das Outcome-Modell mit den Kovariablen A und L spezifiziert wird
und zwischen den Variablen L innerhalb einer Gruppe Assoziationen
bestehen

Zu beachten ist, dass die Skala nun von —0.5 bis 3.5 geht und damit breiter ist als in
den Grafiken von Abschnitt 4.3.1 (AuBer Abbildung 4.7).

Es zeigt sich, dass der kausale Effekt hier durch Standardisierung und TMLE im Ver-
gleich zu den anderen Methoden sehr gut geschatzt wird. Die Variablenselektions- und
Shrinkage-Verfahren schneiden schlechter ab. Die Varianz steigt im Vergleich zum Fall
»,Keine Assoziationen zwischen den Variablen aus L*. Insbesondere sind bei diesen Me-
thoden auch einige Extremwerte nach oben zu sehen. Variablenselektion und kompo-
nentenweises Shrinkage zeigen etwas bessere Ergebnisse als nicht-komponentenweises
Shrinkage. Die Verzerrung der naiven Schatzung sowie die Varianz des IP-Weighting
nehmen im Vergleich zum Fall ohne Assoziationen zwischen den Variablen aus L zu.
Weisen alle Variablen aus L einen Zusammenhang auf, ergeben sich die folgenden Er-

gebnisse:
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Abbildung 4.9 : Schitzungen des ATE fiir den Stichprobenumfang n = 800, wobei
der Outcome durch einfache Terme A und LY° generiert wird und das
Outcome-Modell mit den Kovariablen A und L spezifiziert wird und
zwischen allen Variablen L Assoziationen bestehen

Beim Ubergang von der Struktur ,, Assoziationen zwischen den Variablen L einer Gruppe®
zum Fall | Assoziationen zwischen allen Variablen aus L* zeigt sich, dass sich die Giite
der Schétzverfahren weiter verschlechtert. Lediglich bei der Standardisierung und bei
TMLE bleiben die Schitzungen sehr dhnlich, weswegen diese auch hier deutlich besser
schétzen als die anderen Verfahren.

Von Interesse ist nun ein MSE-Vergleich unter den drei Assoziationsstrukturen:
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Abbildung 4.10 : MSE-Vergleich der Schatzungen des ATE fiir die Félle keine Assozia-
tionen, Assoziationen innerhalb einer L-Gruppe und Assoziationen
zwischen allen Variablen aus L beim Stichprobenumfang n = 800,
wobei der Outcome durch einfache Terme A und LY° generiert wird
und das Outcome-Modell mit den Kovariablen A und L spezifiziert
wird

Man sieht: Der MSE nimmt mit der Anzahl der Assoziationen unter den Variablen aus
L zu. Bei Standardisierung und TMLE ist dies nur in geringem Mafle zu beobachten,

bei den anderen Verfahren ist der Anstieg sehr deutlich.

4.3.3 Fehlspezifikation des Outcome-Modells

Bisher wurden nur die Félle betrachtet, in denen sowohl Outcome-Modell als auch
Exposure-Modell richtig spezifiziert wurden (Richtig in dem Sinne, dass alle richtigen
Terme im spezifizierten Modell enthalten sind). In diesem Abschnitt steht die Fehlspe-

zifikation des Outcome-Modells im Vordergrund. Es werden die Falle betrachtet, dass
 cinfache Terme fehlen
« Interaktionsterme fehlen
o quadratische Terme fehlen

Somit ist die Korrektur durch das Exposure-Modell in diesem Fall von grofler Bedeutung.
Das Exposure-Modell wird nach wie vor richtig spezifiziert: Bildung der Treatmentva-

riable und Modellspezifikation erfolgen jeweils durch einfache Terme.
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Fehlende einfache Terme

Der Outcome wird generiert wie in Abschnitt 4.3.1. Spezifiziert man das Modell nur mit
A als Kovariable, so fehlen alle einfachen Terme der Variablen LY. Standardisierung
enstpricht in diesem Fall der naiven Schéatzung, weshalb die Schatzungen dieser beiden

Verfahren hier identisch sind. Man erhalt folgende Schéatzungen:
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Abbildung 4.11 : Schiatzungen des ATE fiir den Stichprobenumfang n = 800 ohne As-
soziationen zwischen den Variablen aus L, wobei der Outcome durch
cinfache Terme A und LY generiert wird und das Outcome-Modell
nur mit Kovariable A spezifiziert wird

Die naive Schitzung/Standardisierung weist eine starke Verzerrung auf. Bei den anderen
Verfahren ist der Bias sehr gering. Die Korrektur durch das Exposure-Modell funktioniert
also. Von den erweiterten Verfahren schneiden der CTMLE-Variablenselektionsalgorithmus
und der CTMLE-Algorithmus mit komponentenweisem Shrinkage unter Ridge-Penalisierung
am besten ab. Die Interquartilsabsténde der beiden Verfahren sind geringer als bei der
gewoOhnlichen TMLE-Schatzung, die Varianzen sind dennoch etwas hoher.

Es folgt ein Vergleich der MSE unter dieser Fehspezifikation und unter richtiger Modell-
spezifikation wie in Abschnitt 4.3.1:
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Abbildung 4.12 : MSE-Vergleich der Schiatzungen des ATE fir die Spezifikation des
Outcome-Modells nur mit Kovariable A (Fehlende Terme) und die
Spezifikation des Outcome-Modells mit den Kovariablen A und L
(Keine fehlenden Terme) beim Stichprobenumfang n = 800 ohne
Assoziationen zwischen den Variablen aus L, wobei der Outcome
durch einfache Terme A und LY generiert wird

Bei der naiven Schiatzung und beim IP-Weighting dndert sich der MSE nicht, da bei die-
sen Verfahren kein Outcome-Modell spezifiziert wird. Bei den anderen Verfahren wird der
MSE deutlich geringer, wenn die einfachen Terme L aufgenommen werden. Dieses Ver-
halten zeigt sich bei der Standardisierung am stérksten. Wie bereits bei Abbildung 4.11
festgestellt, weisen TMLE, VS und cRid von den Schétzverfahren die besten Schétzun-

gen auf, wenn einfache Terme fehlen.

Fehlende Interaktionsterme
In diesem Abschnitt wird der Outcome durch einfache Terme A und LY° sowie Interakti-
onsterme A : LY? gebildet. Zunichst werden die Ergebnisse dargestellt, falls das Modell

fehlspezifiziert wird, indem nur einfache Terme A und L angenommen werden:
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Abbildung 4.13 : Schatzungen des ATE fiir den Stichprobenumfang n = 800 ohne As-
soziationen zwischen den Variablen aus L, wobei der Outcome durch
einfache Terme A und LY° sowie Interaktionsterme A : LY? generiert
wird und das Outcome-Modell nur mit einfachen Termen A und L
spezifiziert wird

Man sieht: Die Schatzungen der Standardisierung sind wieder verzerrt. Bei den anderen
Verfahren (auBer der naiven Schéitzung) ist der Bias dank der Korrektur des richtig spe-
zifizierten Exposure-Modells gering. TMLE weist auch hier wieder eine etwas geringere
Streuung auf als die Variablenselektions- und Shrinkage-Verfahren.

Werden Interaktionsterme A : L bei der Modellspezifikation berticksichtigt, ergeben sich

folgende Schatzungen:
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Abbildung 4.14 : Schiatzungen des ATE fiir den Stichprobenumfang n = 800 ohne As-
soziationen zwischen den Variablen aus L, wobei der Outcome durch
einfache Terme A und LY° sowie Interaktionsterme A : LY° generiert
wird und das Outcome-Modell mit einfachen Termen A und L sowie

Interaktionstermen A : L spezifiziert wird

Standardisierung schneidet nun wieder am besten ab: Verzerrung und Varianz werden
deutlich geringer, wenn Interaktionsterme bei der Modellierung beriicksichtigt werden.

Bei TMLE und den erweiterten Schéitzverfahren wird die Streuung auch etwas geringer,

jedoch nicht in so groflem Mafle wie bei der Standardisierung.

cEN

clas

Auch hier werden die MSE unter den beiden Modellspezifikationen verglichen:
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Abbildung 4.15 : MSE-Vergleich der Schiatzungen des ATE fir die Spezifikation des
Outcome-Modells nur mit einfachen Termen A und L (Fehlende In-
teraktionsterme) und die Spezifikation des Outcome-Modells mit
einfachen Termen A und L sowie Interaktionstermen A : L (Kei-
ne fehlenden Terme) beim Stichprobenumfang n = 800 ohne Asso-
ziationen zwischen den Variablen aus L, wobei der Outcome durch
einfache Terme A und LY° sowie Interaktionsterme A : LY generiert
wird

Der MSE nimmt bei der Spezifikation von Interaktionstermen ab. Diese Abnahme zeigt
sich bei der Standardisierung stérker als bei den anderen Verfahren. Nach wie vor weist
der gewohnliche TMLE-Ansatz etwas geringere MSE auf als die Variablenselektions- und
Shrinkage-Verfahren.

Fehlende quadratische Terme

Analog zum Fall ,Fehlende Interaktionsterme® wird nun die Bildung des Outcomes durch
einfache Terme A und LY° und quadratische Terme (LY%)? herangezogen. Falls das
Modell durch fehlende quadratische Terme fehlspezifiziert wird, erhédlt man folgende

Schatzungen:
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Abbildung 4.16 : Schiatzungen des ATE fiir den Stichprobenumfang n = 800 ohne As-
soziationen zwischen den Variablen aus L, wobei der Outcome durch
einfache Terme A und LY° sowie quadratische Terme (LY?)? gene-
riert wird und das Outcome-Modell nur mit einfachen Termen A und
L spezifiziert wird

Wie bei den anderen Fehlspezifikationen sind die Schétzungen der Standardisierung ver-
zerrt. Zum ersten Mal weisen die Variablenselektions- und Skrinkage-Verfahren bessere
Ergebnisse auf als der gewohnliche TMLE-Ansatz. Dies zeigt sich sowohl an einem etwas
geringeren Bias als auch an einer etwas geringeren Varianz. Die klassische Variablense-
lektion schneidet etwas schlechter ab als die Shrinkage-Algorithmen. Letztere zeigen bei
Ridge-Penalisierung etwas bessere Ergebnisse als bei den beiden anderen Penalisierungs-
termen.

Eine Beriicksichtigung der quadratischen Terme bei der Modellspezifikation fithrt zu

folgenden Schétzungen:
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Abbildung 4.17 : Schétzungen des ATE fiir den Stichprobenumfang n = 800 ohne
Assoziationen zwischen den Variablen aus L, wobei der Outcome
durch einfache Terme A und LY? sowie quadratische Terme (LY?)?
generiert wird und das Outcome-Modell mit einfachen Termen A

und L sowie quadratischen Termen L? spezifiziert wird

Standardisierung und TMLE schneiden nun wieder deutlich besser ab als die anderen

Verfahren.
Ein MSE-Vergleich bestétigt die Ergebnisse:
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Abbildung 4.18 : MSE-Vergleich der Schiatzungen des ATE fir die Spezifikation des
Outcome-Modells nur mit einfachen Termen A und L (Fehlende qua-
dratische Terme) und die Spezifikation des Outcome-Modells mit
einfachen Termen A und L sowie quadratischen Termen L? (Keine
fehlenden Terme) beim Stichprobenumfang n = 800 ohne Assozia-
tionen zwischen den Variablen aus L, wobei der Outcome durch ein-
fache Terme A und LY sowie quadratische Terme (LY°)? generiert
wird

Bei fehlenden quadratischen Termen weisen die erweiterten Methoden geringere MSE
auf als TMLE. Der MSE fiir die Standardisierung ist sehr hoch. Wird das Outcome-
Modell durch die Annahme quadratischer Terme richtig spezifiziert, werden die MSE
bei allen Verfahren geringer, besonders jedoch bei Standardisierung und TMLE, so dass

diese dann eine hohere Giite beziiglich des MSE aufweisen als die erweiterten Verfahren.

4.3.4 Fehlspezifikation von Outcome-Modell und Exposure-Modell

Die bisherigen Analysen bezogen sich auf ein richtig spezifiziertes Exposure-Modell. Es
stellt sich die Frage, wie gut die Schatzungen sind, wenn sowohl Outcome-Modell als
auch Exposure-Modell fehlspezifiziert sind. Dafiir wird Y durch einfache Terme LY,
Interaktionsterme A : LY? und quadratische Terme (LY?)? gebildet. Bei der Modellierung
werden nur einfache Terme A und L spezifiziert. A wird durch einfache Terme LA° und
quadratische Terme (LA°)? gebildet. Das Exposure-Modell wird jedoch nur mit einfachen
Termen L spezifiziert. Da die Wirkungsstruktur hier komplexer ist, wird ein hoéherer

Stichprobenumfang herangezogen: n = 3200. Es ergeben sich folgende Schétzungen:
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Abbildung 4.19 : Schitzungen des ATE fiir den Stichprobenumfang n = 3200 ohne
Assoziationen zwischen den Variablen aus L, wobei der Outcome
durch einfache Terme A und LY°, Interaktionsterme A : LY? sowie
quadratische Terme (LY?)? generiert wird und das Outcome-Modell
nur mit einfachen Termen A und L spezifiziert wird, und wobei die
Treatmentvariable durch einfache Terme LAY und quadratische Ter-
me (LA%)? generiert wird und das Exposure-Modell nur mit einfachen
Termen L spezifiziert wird

Alle Schatzverfahren sind hier verzerrt. Trotz fehlspezifiziertem Outcome-Modell zeigt
Standardisierung allerdings nur einen sehr geringen Bias. Die Verzerrung des CTMLE-
Variablenselektionsalgorithmus und der komponentenweisen CTMLE-Shrinkage-Algorithmen
ist geringer als bei der Targeted Maximum Likelihood Estimation, jedoch hoher als bei
der Standardisierung. [P-Weighting und die ,normalen* CTMLE-Shrinkage-Algorithmen
zeigen noch starkere Verzerrungen. Die Varianz ist bei der Standardisierung und bei
TMLE sehr gering, wihrend die erweiterten Schétzverfahren hohe Streuungen zeigen.
Dies ist am Interquartilsabstand und an einer hohen Anzahl von Extremwerten ersicht-
lich.

Wird das Outcome-Modell richtig spezifiziert (Das Exposure-Modell bleibt nach wie vor
fehlspezifiziert), ergeben sich folgende Schétzungen:
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Abbildung 4.20 : Schitzungen des ATE fir den Stichprobenumfang n = 3200 ohne As-
soziationen zwischen den Variablen aus L, wobei der Outcome durch
einfache Terme A und LY°, Interaktionsterme A : LY sowie qua-
dratische Terme (LY?)? generiert wird und das Outcome-Modell mit
einfachen Termen A und L, Interaktionstermen A : L sowie quadrati-
schen Termen L? spezifiziert wird, und wobei die Treatmentvariable
durch einfache Terme LA° und quadratische Terme (LA%)? generiert
wird und das Exposure-Modell nur mit einfachen Termen L spezifi-
ziert wird

Die Verzerrung wird bei allen Schétzverfahren (auBer naiv und IP-Weighting) deutlich
geringer. Der Bias ist bei TMLE nun kleiner als bei den erweiterten Schétzverfahren.
Auch die Varianz nimmt ab. Jedoch zeigen sich nach wie vor viele Extremwerte bei den
erweiterten Schatzverfahren. Diese schneiden hier nun wieder schlechter ab als TMLE.

Die MSE sehen folgendermaflen aus:
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Abbildung 4.21 : MSE-Vergleich der Schiatzungen des ATE fir die Spezifikation des
Outcome-Modells nur mit einfachen Termen A und L (Fehlende In-
teraktionsterme und quadratische Terme) und die Spezifikation des
Outcome-Modells mit einfachen Termen A und L, Interaktionster-
men A : L sowie quadratischen Termen L? (Keine fehlenden Terme)
beim Stichprobenumfang n = 3200 ohne Assoziationen zwischen
den Variablen aus L, wobei der Outcome durch einfache Terme
A und LYY Interaktionsterme A : LY sowie quadratische Terme
(LY%)? generiert wird, und wobei die Treatmentvariable durch ein-
fache Terme LA° und quadratische Terme (LA°)? generiert wird und
das Exposure-Modell nur mit einfachen Termen L spezifiziert wird

Standardisierung weist in beiden Féllen den geringsten MSE auf. VS und cRid zeigen
einen kleineren MSE als TMLE, wenn beide Modelle fehlspezifiziert sind. Dies dndert
sich, wenn das Outcome-Modell richtig spezifiziert wird. Beim Ubergang wird der MSE

bei allen Verfahren, bei welchen ein Outcome-Modell spezifiziert wird, geringer.
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5 Zusammenfassung und Abschluss

5.1 Zusammenfassung

In dieser Arbeit wurde die Problematik der Schéitzung kausaler Effekte aufgezeigt. Ist
man am kausalen Effekt einer Treatmentvariable A auf einen Outcome Y interessiert,
reicht es in der Regel nicht, eine einfache Regression mit Y als Zielvariable und A als
Einflussvariable durchzufithren. Dadurch wird lediglich eine Assoziation geschéatzt. Exis-
tieren Variablen L°, die einen Effekt auf A und Y haben, liegt Confounding vor, was
dazu fithrt, dass sich Assoziation und Kausalitdt unterscheiden. Somit ist es notwendig,
solche Variablen (Confounder) bei der Schiatzung eines kausalen Effekts zu berticksich-
tigen.

Ein géngiges Verfahren zur Schitzung kausaler Effekte ist Standardisierung. Hier werden
die moglichen Confounder L in einem Outcome-Modell E[Y|A, L] als Kovariablen mo-
delliert. Anschliefend wird iiber diese Variablen gemittelt. Beim IP-Weighting wird die
Wirkung von den Confoundern auf die Treatmentvariable eliminiert, indem P[A = 1|L],
das sogenannte Exposure-Modell, modelliert wird. Entsprechend der Vorhersagen die-
ses Modells werden die Beobachtungen bei der Schétzung des Modells E[Y|A] gewich-
tet. Targeted Maximum Likelihood Estimation kombiniert die beiden Anséatze, wodurch
es robuster gegeniiber Modellfehlspezifikationen ist als die beiden Standardverfahren.
TMLE wiederum kann erweitert werden, indem das Exposure-Modell durch Variablen-
selektion und/oder Shrinkage schrittweise aufgebaut wird. Die Idee dahinter ist, dass in
der Regel unklar ist, welche Variablen aus den Daten einen Effekt auf A und/oder auf
Y haben und demzufolge verwendet werden sollten, um das Confounding-Problem zu
beheben. Shrinkage und Variablenselektion kann auch verbunden werden: In diesem Fall
konnen Variablen unterschiedlich stark penalisiert werden (Komponentenweises Shrin-
kage).

Um die Giite der Schatzverfahren zu untersuchen, wurden Simulationen durchgefiihrt,
in welchen die Daten 500 mal erzeugt wurden und der kausale Effekte mit jeder Me-
thode 500 mal geschétzt wurde. Dadurch konnten Mean Squared Errors unter verschie-
denen datengenerierenden Prozessen geschatzt werden. 10 Variablen mit 4 enthaltenen

Confoundern wurden jeweils generiert. Bei den 6 anderen Variablen war nur ein Effekt
auf A, nur eine Effekt auf Y oder kein Effekt auf A oder auf Y vorhanden. Da fir
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die Schatzung angenommen wurde, dass die kausalen Beziehungen nicht bekannt sind,
wurden immer alle 10 Variablen in die Schétzmethoden miteinbezogen. Es wurden die
Stichprobenumfinge n = 200 und n = 800 (in einem Fall: n = 3200) und verschiedene
Assoziationsstrukturen innerhalb der moglichen Confounder L betrachtet. Zudem wur-
den sowohl richtige Spezifikationen von Outcome-Modell und Exposure-Modell als auch
Fehlspezifikationen der beiden Modelle herangezogen (wobei richtige Modellspezifikati-

on in diesem Fall bedeutet, dass alle richtigen Terme spezifiziert werden).

Die Ergebnisse bestétigen, dass eine naive Schéitzung ohne Berticksichtigung des Confounding-
Problems stark verzerrt sein kann. IP-Weighting weist tiberwiegend hohe Streuungen
der Schétzungen auf. Bei richtiger Spezifikation des Exposure-Modells ist der Bias hier
gering, ansonsten kann auch dieser sehr hoch sein. Standardisierung zeigt von den be-
trachteten Verfahren die besten Ergebnisse, wenn das Outcome-Modell richtig spezifiziert
ist: Sowohl Bias als auch Varianz sind sehr gering. Bei Fehlspezifikation des Outcome-
Modells nimmt die Verzerrung zu. Diese Zunahme kann gering, aber auch sehr hoch sein.
Bei TMLE ist der Bias nur dann hoch, wenn Outcome-Modell und Exposure-Modell
fehlspezifiziert sind. Die Methode zeigt aufgrund héherer Varianz etwas hohere MSE
als Standardisierung, wenn beide Modelle richtig spezifiziert sind. Ist nur das Outcome-
Modell fehlspezifiziert, sind die Schéitzungen besser als die in diesem Fall verzerrten
Schétzungen der Standardisierung.

Die Variablenselektions- und Shrinkageverfahren schneiden bei richtiger Modellspezifi-
kation aufgrund hoherer Varianz etwas schlechter ab als Standardisierung und TMLE.
Der Bias ist wie bei den anderen Verfahren sehr gering. Bei Fehlspezifikation zeigen sie
teilweise bessere Ergebnisse als die anderen Verfahren. Wird nur das Outcome-Modell
fehlspezifiziert, bleibt die Unverzerrtheit bestehen, weshalb diese Verfahren hier geringere
MSE aufweisen als Standardisierung. Gegeniiber TMLE zeigen sich bei Fehlspezifikation
nur in manchen Szenarien bessere Schétzergebnisse. Beispielsweise ist die Verzerrung des
CTMLE-Variablenselektionsalgorithmus und der CTMLE-Schétzung mit komponenten-
weisem Shrinkage bei Fehlspezifikation beider Modelle geringer als bei TMLE, die Vari-
anz wiederum jedoch hoher. Von den Variablenselektions- und Shrinkage-Verfahren zeigt
komponentenweise Shrinkage-Schétzung unter Ridge-Penalisierung zumeist den gerings-
ten MSE. Eine Verbesserung dieser Verfahren gegeniiber TMLE kann jedoch im Groflen
und Ganzen nicht bestatigt werden.

Hohere Stichprobenumfénge sorgen fir geringere Streuungen (Konsistenzeigenschaft bei
richtiger Modellspezifikation auler bei naiver Schitzung). Mit zunehmenden Assoziatio-
nen unter den Variablen aus L nimmt der MSE zu. Dies ist bei Standardisierung und
TMLE nur in geringem Mafle zu beobachten, bei den Variablenselektions- und Shrinka-

gealgorithmen ist es sehr deutlich zu sehen.
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5.2 Grenzen der Analysen und Ausblick

Man sieht: Der datengenerierende Prozess sowie die Modellspezifikation haben einen er-
heblichen Einfluss auf die Giite der betrachteten Methoden. Dieser Einfluss unterscheidet
sich von Schétzverfahren zu Schétzverfahren. Die Struktur ist dabei teilweise noch et-
was unklar. In der Praxis sind Modellfehlspezifikationen wohl die Regel, das Ausmaf}
einer Fehlspezifikation ist jedoch von Fall zu Fall unterschiedlich. Somit ist es zumeist
schwierig, fiir bestimmte Daten festzustellen, welches Verfahren und welche Modellspe-
zifikation verwendet werden sollte.

Zudem wurde nur ein Teil von moglichen datengenerierenden Prozessen herangezogen.

Weiterfithrende Simulationen zu den Schéatzverfahren kénnen durchgefiithrt werden:

« Collider sind, wie schon angesprochen, Variablen, die eine Verzerrung verursachen,
wenn auf diese bedingt wird. Eine Erweiterung der Simulationen kann erfolgen,
indem Collider erzeugt werden, welche dann ebenfalls in den Daten auftauchen.
Ist nicht bekannt, welche Variablen Collider sind, ist Variablenselektion von Be-

deutung.

o Es wurde angenommen, dass in den Variablen L alle Confounder enthalten sind. Es
ist jedoch moglich, dass Confounder unbekannt und/oder schwer zu erheben sind.
Demzufolge kann es sinnvoll sein, einen Teil der simulierten Confounder nicht in die
Daten aufzunehmen, die fiir die Schatzung zur Verfiigung stehen. In diesem Fall
kann Exchangeability nicht erreicht werden, da auf L bedingte Exchangeability
nicht erfiillt ist.

e In den durchgefithrten Simulationen wurden 10 Variablen L mit 4 enthaltenen
Confoundervariablen generiert. Die Anzahl der Variablen, und auch der Anteil der
Confounder kann anders gewéhlt werden. Die Simulationen konnen beispielsweise
mit einem hoheren Anteil an Variablen durchgefithrt werden, die einen (starken)
Effekt auf A haben, aber keinen Effekt auf Y (Positivitdtsverletzungen).

e Zur Erzeugung der Daten konnen auch andere Verteilungen als die gewahlten ver-
wendet werden. Hier wurde bei den Variablen L und beim Outcome Y auf die
Normalverteilung zuriickgegriffen. Fiir die bindre Treatmentvariable A wurde die
Bernoulliverteilung herangezogen. Interessant wére eine Durchfiihrung der Simula-
tionen mit anderen Verteilungen: Z.B. Poisson-Verteilung, Exponentialverteilung,
Weibullverteilung etc. Auch kann A metrisch und damit nicht mehr bernoulliver-

teilt sein. In diesem Fall muss der kausale Effekt jedoch anders definiert werden.
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o Auch wenn bereits Interaktionsterme und quadratische Terme herangezogen wur-
den, kénnen die Funktionen zur Bildung der Variablen noch deutlich komplexer
sein: Z.B. hohere Polynome, abschnittsweise Funktionen etc. In diesem Zusam-
menhang wére bei der Schatzung auch eine Anwendung von Machine-Learning-
Verfahren zur Bildung der Vorhersagen von Interesse. Oft werden sogenannte
Super Learner verwendet, welche verschiedene Vorhersagemethoden kombinieren.
Das heifit sowohl komplexere Wirkungsstrukturen zwischen den Variablen als auch
komplexere Modellspezifikationen konnen fiir die betrachteten Schétzverfahren un-

tersucht werden.

In der Arbeit wurden einige Analyseergebnisse beziiglich der Giite verschiedener Me-
thoden zur Schatzung kausaler Effekte gewonnen. Eine Struktur ist dabei teilweise zu
sehen, teilweise ist diese jedoch noch unklar. Insbesondere wann die Variablenselektions-
und Shrinkage-Verfahren der gewohnlichen TMLE vorzuziehen sind (und gegebenenfalls
welche), ist noch nicht genau ersichtlich. Es bieten sich weiterfiihrende Analysen an. Die

oben genannten Punkte bieten einige Ideen.
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Elektronischer Anhang

Der beiliegende USB-Stick enthalt die folgenden Dateien:

e Im Ordner 'R-Code’ befinden sich die folgenden R-Dateien:

— Die Datei 'simulate_CausalEffect.R’ enthélt die ,,Hauptfunktion®
(simulate_CausalEffect()), welche die Simulationen auf die beschriebene Art
durchfiihrt.

— Die Datei 'generate_data.R’ enthélt die Funktion, die die Daten nach einem
festgelegten Schema und iibergebenen Parametern erzeugt. (Unterfunktion zu
'simulate_CausalEffect()”)

— Die Datei ’estimate_Effect.R’ enthélt die Funktion, die aus bestimmten Daten
und nach einer bestimmten Methode den Average Treatment Effect schétzt.
(Unterfunktion zu ’simulate_CausalEffect()’)

— Die Datei ’estimate_simple.R’ enthalt Funktionen, die den Average Treatment
Effect mittels naiver Schiatzung, Standardisierung oder IPW aus den Daten

schédtzen. (Unterfunktion zu ’estimate_Effect()’)

— Die Datei ’estimate_tmle.R’ enthélt die Funktion, die den Average Treatment
Effect per TMLE schétzt. (Unterfunktion zu ’estimate_Effect()’)

— Die Datei ’estimate_variableselection.R’ enthélt die Funktion, die den Ave-
rage Treatment Effect per CTMLE-Variablenselektionsalgorithmus schéatzt.
(Unterfunktion zu ’estimate_Effect()’)

— Die Datei 'estimate_shrinkage.R’ enthélt die Funktion, die den Average Treat-
ment Effect per CTMLE-Algorithmus mit Shrinkage schatzt. (Unterfunktion
zu 'estimate_Effect()’)

— Die Datei ’estimate_comp_shrinkage.R’ enthélt die Funktion, die den Average
Treatment Effect per CTMLE-Algorithmus mit komponentenweisem Shrin-
kage schatzt. (Unterfunktion zu ’estimate_Effect()’)

— Die Datei 'compute_MSE.R’ enthélt die Funktion, die anhand der Schatzun-
gen und des wahren Average Treatment Effects fiir jede Methode einen em-
pirischen MSE berechnet (Unterfunktion zu ’simulate_CausalEffect()’)
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— Die Datei 'perform_simulation.R’ ruft die Funktion ’simulate_CausalEffect()’

fiir verschiedene Inputs auf und speichert die Outputs (MSE, Schatzungen)
— Die Datei "plot_simulation.R’ plottet die Outputs aus 'perform_simulation.R’

auf geeignete Weise

e Im Ordner 'R-Objekte’ befinden sich die Outputs von 'perform_simulation.R’, wel-
che die Kennzahlen der durchgefiihrten Simulationen beinhalten. Anhand des Na-

mens der R-Objekte lésst sich erkennen, welche Simulation jeweils enthalten ist:
— ,,n200“, ,n800“ oder ,,n3200“ gibt den Stichprobenumfang an
— ,no", ,insideGr* oder ,all“ gibt die Assoziationsstruktur der Variablen L an
— Bildung von Outcome und Treatmentvariable:

x einf': nur einfache Terme zur Erzeugung von Treatmentvariable und

Outcome

% inter”: einfache und Interaktionsterme zur Erzeugung des Outcomes so-

wie einfache Terme zur Erzeugung der Treatmentvariable

x ,quadr”: einfache und quadratische Terme zur Erzeugung des Outcomes

sowie einfache Terme zur Erzeugung der Treatmentvariable

x ,,complex“: einfache, Interaktionsterme und quadratische Terme zur Er-
zeugung des Outcomes sowie einfache und quadratische Terme zur Er-

zeugung der Treatmentvariable
Jedes R-Objekt ist eine Liste mit zwei Elementen:

— Estimated_Effects: Matrix der geschétzten Effekte mit R = 500 Zeilen (An-
zahl der Wiederholungen) und einer Spalte fiir jede Schiatzmethode

— MSE: Matrix von MSE, Bias und Varianz (3 Spalten) und einer Zeile fiir jede
Schatzmethode

Die Namen der Schatzmethoden geben Auskunft dariiber, um welche allgemeine

Methode es sich handelt und wie das Outcome-Modell spezifiziert wurde:
— emp“ /“empty“: Nur A als Kovariable
— ,norm“: A und L als Kovariablen
— inter: A und L als Kovariablen sowie die Interaktionsterme A : L
— ,quadr*: A und L als Kovariablen sowie die quadratischen Terme L?
— inter_quadr: A und L als Kovariablen sowie die Interaktionsterme A : L

und die quadratischen Terme L>

o Die Masterarbeit als pdf-Datei
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