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Abstract

The human immunodeficiency virus (HIV) is one of the biggest pandemic of our

time. As there exists a therapy that can suppress the viral load, it is important

to identify as many HIV positive people as possible since the majority does not

know about their condition. To gather information, national health services (NHS)

conduct surveys which include a voluntary HIV test. It would be desirable to be

able to predict the result of that test for people who did not attend it.

To achieve this, first multiple imputation is used to accommodate the missing data

in co-variables. Then, machine learning methods are applied. Five models are

deployed to construct classifiers. The models are a logistic regression model, a mixed

effects logistic regression model, random forests, boosted trees and naive Bayes.

Additionally, sampling techniques are used to accommodate the highly imbalanced

data of the HIV test result.

With none of the techniques was it possible to construct a satisfactory classifier.

All classifiers predicted all missing test results as negative. Though it is possible

to classify some cases as positive, this comes at a high cost of many false predicted

positive test results.
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1 Introduction

Since the first description of the human immunodeficiency virus (HIV) in 1983, it

has become a worldwide epidemic. Until today, it was not possible to develop a

cure or vaccination. Although, globally, the epidemic reached its highest rate of

new infections in 1997 and has been falling ever since, as of 2010 there are still 2.4

million to 2.9 million new infections and 1.6 million to 1.9 million deaths per year.

[1]

In Nigeria, 150 000 to 310 000 new infections and 110 000 to 230 000 deaths, related

to the acquired immune deficiency syndrome (AIDS), occurred in 2016. HIV preva-

lence rates, the proportion of a population being infected by HIV, fell from 5.8%

in 2001 to 2.9% (2.1%-4.0%) in 2016. Nigeria has the second largest HIV epidemic

in the world. While there exist countries with much higher HIV prevalence rates,

especially in Sub-Saharan Africa, the size of the Nigerian population means that

there are between 2.3 and 4.3 million people living with HIV. Only South Africa has

a higher population that is HIV positive. [2]

As there exists an antiretroviral therapy (ART) that can suppress the viral load,

it is important to identify the people who have HIV to decrease further spread of

the disease. A suppressed viral load means that a person’s viral load is reduced to

an undetectable level. In Nigeria, 1.1 million people live with HIV and know their

status, which equals a rate of 34% (25%-46%) of the total estimated population of

HIV positives. Of this 1.1 million, 970 000 are on ART and 780 000 have suppressed

viral loads. [2]

The goal of this work is to predict HIV for respondents of the National HIV &

AIDS and Reproductive Health Survey (NARHS), who refused to take part in the

HIV test. To achieve this, missing values among the data set will be imputed. The

structure of this thesis is as follows: First the theoretical aspects of this work are

highlighted and then the practical aspects. More precisely, theory about missing

data and concepts to handle missing data are introduced, followed by models and

measures to validate the predictive properties of these models. Then the data is

described and results are presented.

2 Missing Data

2.1 Missing Mechanisms

Ignoring missing data as well as an inappropriate handling of it may lead to biased

estimates, incorrect standard errors and incorrect inferences and results. Therefore,

an appropriate handling of missing data is quite important. As all missing data

handling methods require a certain missing data mechanism, it is crucial to know as
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much as possible about the reasons for missing data. Therefore, three missing data

mechanisms were introduced by Rubin (1987). [20]

The first one is the missing not at random (MNAR) mechanism. The assumption

of MNAR is the existence of a systematic relationship between the probability of

missing data on a variable Y and the values of Y , even after controlling for other

variables. It is not possible to test for MNAR. This is due to the fact that there

is no way to confirm the MNAR mechanism without knowing the missing values

themselves. [8, p.8]

If the underlying missing data mechanism is MNAR, then the data mechanism is

said to be non-ignorable, as it is required to model the missing data mechanism as

part of the estimation process. The denotation of the MNAR mechanism looks as

follows:

p(R|Y obs, Y mis, φ)

with Y obs being the observed part of the data and Y mis the missing part of the

data. Further R ∈ {0, 1} is the missing data indicator, where R = 1 indicates that

the data is available and R = 0 indicates that the data is missing. φ is a set of

parameters describing the relationship between R and the data. [8, p.11]

Another missing data mechanism is the missing at random (MAR) mechanism.

MAR assumes a systematic relationship between the probability of missing data

and one or more measured variables. Furthermore, the probability of missing data

on a variable Y is not related to the values of Y itself. As for MNAR, it is not possible

to test the MAR assumption due to the fact that it is not possible to confirm that

the probability of missing data on Y are solely a function of other measured values.

[8, pp.6,11] The MAR mechanism is denoted as follows:

p(R|Y obs, φ)

The last missing data mechanism is called missing completely at random (MCAR).

MCAR is more restrictive than MAR as it assumes that there is no (systematic)

relationship between the probability of missing data on a variable Y and the variable

itself or other variables in the dataset. MCAR is the only missing data mechanism

that can be tested for. [8, pp.7f.,12]

The MCAR mechanism is denoted as follows:

p(R|φ)

If the underlying missing data mechanism is MAR or MCAR, then the mechanism

is said to be ignorable. For both of these missing mechanisms, it is not needed to

model the missing data mechanism as part of the estimation process.
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Generally, with given data, it is not possible to determine whether the missing

data mechanism is MAR or MNAR. Using missing data methods that require MAR

and/or MCAR (like the methods used in this work) might cause bias if the missing

data mechanism is in reality MNAR. If performing such missing data methods is

problematic depends on the kind of MNAR. A confounder, an unmeasured variable

that correlates with outcome and missingness, is not as severe as long as the corre-

lation between the missing outcome and the unmeasured variable is not relatively

strong (i.e. below 0.4). However, if the correlation is relatively strong or if there

exists a direct relationship between missingness and outcome, then using MAR miss-

ing data methods is problematic. According to some researchers, serious violations

of MAR are relatively rare. If there exists a confounder and this variable would be

observed, then this MNAR scenario would become a MAR scenario. [8, pp.14ff.]

2.2 Tests on MCAR

There exist some tests on the MCAR assumption. One possibility to test for missing

completely at random are univariate t-tests or chi-squared tests. The latter have the

advantage that they are as well usable with only categorical data. The idea behind

the t-tests is to separate missing and complete cases of a variable and use a t-test

to examine group mean differences on other variables. In case of the chi-squared

test it is tested if there are differences in the frequency in other variables between

the missing and complete cases. As the t-test, it always tests one variable against

one of the variables with missing data. If the test statistic is significant, then this

proves that the underlying mechanism is not MCAR, but MAR or MNAR. If the

test statistic is insignificant, then the underlying mechanism is MCAR. This is valid

for both t-test and chi-squared test. [8, pp.18f]

Another possible test is Little’s MCAR Test, which is a multivariate extension of

the t-test. It is a global test of MCAR. If the statistic is significant, then this is

evidence against MCAR. [8, pp.19ff.] A problem with Little’s MCAR Test is that

it cannot identify specific variables that violate MCAR.

2.3 Overview of Missing Data Handling Methods

Complete Case Analysis and Available Case Analysis

There exists the list-wise deletion or complete case analysis and the pairwise deletion

or available case analysis. The difference between both is that list-wise deletion elim-

inates all cases with missing data while pairwise deletion only eliminates all cases

with missing data in a variable that is important for the desired statistic. These

approaches are the default in many statistical programs for missing data handling.
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These approaches require a MCAR-mechanism and produce biased parameter esti-

mates if data is not MCAR. [8, pp.37-42]

Single Imputation

Imputation replaces missing values with possible values and therefore does not throw

data away as above approaches do. Generally said, single imputation tends to un-

derestimate standard errors. There exist many imputation methods of which some

are introduced below.

Arithmetic Mean Imputation

Missing values are replaced by the mean of their variables. This distorts resulting

parameter estimates and underestimates variance and correlations.

Regression Imputation (Conditional Mean Imputation)

Missing values are imputed using regression on the missing variables with complete

case analysis. No missing values are allowed in the predictors. With multiple vari-

ables with missing values, one has to estimate a model for each missing data pattern.

This imputation method is superior to mean imputation, but has also bias. There

is perfect correlation on imputed values and it tends to overestimate R2 and cor-

relations. Further it can underestimate (co-)variances, but less severe than mean

imputation. [8, pp.44ff]

Stochastic Regression Imputation

This approach is like regression imputation, but augments each predicted score with

a normally distributed residual term. With the addition of residuals to the imputed

values, the lost variability can be restored and therefore the bias of the regression

imputation approach can be eliminated. Studies show that stochastic regression im-

putation gives unbiased parameter estimates when the missing mechanism is MAR.

It tend to attenuates standard errors.[8, pp.46ff]

Hot-Deck Imputation

This method takes ’similar’ scores from other observations that share the same back-

ground variables. This means they are a random draw of a sub sample of respondents

that have similar scores on a set of matching variables. Hot-deck imputation under-

estimates standard errors. Further it is bad for estimating measures of association

and can result in biased regression coefficients and correlations. [8, p.49]

Predictive Mean Matching

This approach is kind of a combination of regression and hot-deck imputation. It

is similar to the regression method except that for each missing value, it imputes

a value randomly from a set of observed values whose predicted values are closest

to the predicted value for the missing value from the simulated regression model.

Or shortly said it takes the observed value from someone with a similar predicted

value. The advantage of this approach is that imputed values are possible even in

the case of bounds. [16]
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Multiple Imputation

Multiple imputation generates several copies of the data and for each copy it imputes

the estimates of the missing data values. Imputation itself in each of the copies is

carried out using single imputation methods. Multiple imputation requires a MAR

or MCAR mechanism. This method will be used in this work. Further details about

this method can be found in chapter 3. [8]

Maximum Likelihood

Unlike most above mentioned methods, maximum likelihood does not impute the

missing values. It does not fill in missing values in the data. Moreover it is used to

calculate a statistic in a missing value case but is only returning estimates of the

statistics like the mean, variance or correlation. Like multiple imputation it requires

a MAR or MCAR mechanism. Additional information on maximum likelihood im-

putation can be found in Enders (2010). [8, p.113]

Random Forest

Random forest missing data approaches use random forest techniques for imputa-

tion. They can give unbiased results for MAR and MCAR mechanisms. Further,

they are able to accommodate for e.g. interactions. One of the random forest miss-

ing data approach strategies is for example as follows. At the begin the data should

be preimputed, then for each variable with missing values a forest is grown and

further used to predict the missing values. The missing values get updated with the

predicted values and finally this procedure is iterated for improved results. Further

information on random forests is available in chapter 4.5. Additional information

specifically on random forest imputation techniques can be found in Tang (2017) [21].

Algorithms for MNAR Data

Examples of algorithms for MNAR data are the selection models and the pattern

mixture model. These algorithms attempt to describe the probability of missingness

and the joint distribution of the data. The problem is that selection models rely

on distributional assumptions that cannot be tested on. Pattern mixture models

require users to specify assumed values for at least one inestimable parameter. For

both cases, it is impossible to test on these assumptions. Violations or wrong spec-

ifications of these assumptions can introduce more bias than a MAR-based analysis

such as multiple imputation. Specifying wrong values can produce considerable bias

even with MAR-data. [8, pp.326ff]

For more information on the pattern mixture model see Little (1993) [15]. For more

information on the selection models see Heckman (1976) [12].
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3 Multiple Imputation

Multiple Imputation (MI) was developed by Rubin (1987) [20] within the Bayesian

framework. It assumes at least a missing at random (MAR) mechanism [8, p.187].

MI generates several copies of the data and for each copy it imputes the estimates

of the missing data values. Imputation itself in each of the copies is done by imput-

ing values for missing data using single imputation methods. An advantage is that

multiple imputation can reflect uncertainty about the values to impute. It reflects

sampling variability which would also exist if there were no missing data and it

can also reflect variability that exists due to the uncertainty about the reasons of

non-response. [19, p.38]

There are three phases of the multiple imputation analysis. The first phase is the

imputation phase. It is an iterative procedure, relying on Bayesian estimation prin-

ciples, to create m copies of the data set. The second phase is the analysis phase.

Here, complete data methods are used to perform the desired analysis for each copy

of the data set. The last phase is the pooling phase, where the m estimates of the

analysis phase are combined to a single set of results. [8, p.187]

3.1 Introduction to Bayesian Estimation

As already mentioned, multiple imputation is a Bayesian estimation approach. In

a Bayesian framework a parameter is a random variable with its own distribution.

This is the difference to many disciplines, where a parameter is a fixed characteris-

tic of the population. This changes the interpretation of for example the confidence

interval, or Bayesian credible interval. The interpretation of such an interval is that

the parameter falls between the values of the lower boundary and the upper bound-

ary. A credible interval attaches the probability to the parameter itself instead of

the data. [8, p.165]

The three steps of a Bayesian analysis are the following. First, a prior distribution

for the parameter of interest is specified. Second, a likelihood function summarizes

the data’s information for the parameter of interest. Third, the information of the

likelihood and the prior are combined to construct the posterior distribution that

describes the relative probability of different parameter values. [8, p.165]

Posterior ∝ Prior × Likelihood (1)

For the specification of the prior distribution three hyperparameters are needed.

They are the location of the distribution (e.g. the mean), the spread of the distri-

bution (e.g. the variance) and the number of hypothetical data points. [8, p.169]
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Often a non-informative prior distribution is used. This non-informative prior is also

called Jeffrey’s prior. Jeffrey’s prior changes for different likelihoods. Using conju-

gate distributions has the advantage that the posterior distribution also belongs to

the same distribution family as the likelihood and the prior. [8, p.173]

The basic idea behind the posterior distribution is to weight each point on the like-

lihood function by the magnitude of the prior [8, p.167]. The underlying Bayes

theorem is

P (θ|Y ) =
P (θ)P (Y |θ)

P (Y )
⇒ Posterior =

Prior × Likelihood
ScalingFactor

(2)

where θ is the parameter of interest, Y is the sample data, P (θ) is the prior distri-

bution of the parameter, P (Y |θ) is the likelihood, P (Y ) is the marginal distribution

of the data and P (θ|Y ) is the posterior distribution. [8, p.170]

Note that equation (1) equals equation (2), only that the denominator is left out.

3.2 Imputation Phase

There exist a number of algorithms for the imputation phase. The algorithm that

will be used in this work is called fully conditional specification (FCS). FCS is also

referred to as sequential regression (multivariate) imputation (SRMI) or chained

equations. It is a semi-parametric approach that specifies the multivariate imputa-

tion model by a series of conditional models. [22, p.219]

Its big advantage is that every variable with missing data gets its own model. This

ensures that it is quite easy to handle non-normal data such as categorical variables.

Therefore it is an approach that imputes the data on a variable-by-variable basis.

It can produce unbiased parameter estimates and standard errors.

Generally said, it is a Bayesian approach that specifies an explicit model for each

variable with missing values in a manner that they are conditional on the fully

observed variables and their prior distribution. The result is a posterior predic-

tive distribution of the missing values conditional on the observed values for each

variable. The imputations are drawn from the posterior distribution. Thus, this

approach is fully conditional on all the observed information. In many cases a non-

informative prior will be used. [18]

Let X = (X1, ..., Xl) be a vector of l complete variables and let Y = (Y1, ..., Yk)

be a set of k incomplete variables. The matrix x with dimension n × l is an i.i.d.

sample of the vector X and the matrix y with dimension n × k is an i.i.d. sample

of the vector Y . The matrix y can also be illustrated by the vectors y = (y1, ..., yk)

with yi = (yi1, ..., yik). The part of the missing data in y is denoted ymis and the

observed part yobs. Let y−j = (y1, ..., yj−1, yj+1, ..., yk) be the k − 1 variables in y
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except yj. Furthermore, let R = (R1, ..., Rk) be a set of response indicators with

R−j = (R1, ..., Rj−1, Rj+1, ..., Rk). For the response indicator Rj holds

Rj =

1, Yj is observed

0, Yj is missing

The imputation of ymisj is based on the relation between the predictors y−j =

(y1, ..., yj−1, yj+1, ...., yk) and x and the incomplete variable yj. This is the MAR

missing data scenario.

To create multiple imputations y∗ of ymis the following procedure is applied.

1. Calculate the posterior distribution P (θ|x, yobs, R) of θ based on the observed

data yobs, the complete variables x and the response indicator R.

2. Draw a value θ∗ from P (θ|x, yobs, R).

3. Draw a value y∗ from the conditional posterior distribution of ymis given θ = θ∗,

x and R, P (ymis|x, yobs, R, θ = θ∗).

For multiple imputations steps two to three are repeated M times.

In the case of multivariate y, explicitly or implicitly getting the multivariate dis-

tribution of θ is the main problem. To obtain a posterior distribution of θ, FCS

samples iteratively from separate conditional distributions of the form

P (Yj|X, Y−j, R, θj) for each variable Yj, j = 1, ..., k. (3)

The parameters θj are taken as specific to the respective conditional densities. They

are not necessarily the product of some factorization of the true joint distribution

P (Y,X,R|θ). It is possible to draw values from the conditional distributions in

equation (3) through a Gibbs sampler. A Gibbs sampler is sampling from a condi-

tional distribution, because that is simpler than marginalizing by integrating over a

joint distribution. In this scenario, a Gibbs sampler is used to sample values θ∗ and

y∗. The initial values can be determined randomly. From there on, it samples each

θ∗j and y∗j from distributions conditioned on all other components,

θ
∗(t)
1 v P

(
θ1|x,R1, y

obs
1 , y

(t−1)
2 , ..., y

(t−1)
k

)
y
∗(t)
1 v P

(
ymis1 |x,R1, y

obs
1 , y

(t−1)
2 , ..., y

(t−1)
k , θ

∗(t)
1

)
...

θ
∗(t)
k v P

(
θk|x,Rk, y

obs
k , y

(t)
1 y

(t)
2 , ..., y

(t)
k−1

)
y
∗(t)
k v P

(
ymisk |x,Rk, y

obs
k , y

(t)
1 , ..., y

(t)
k−1, θ

∗(t)
k

)
, (4)

where t resembles the t-th iteration of the Gibbs sampler. Samples of variable j

in the t-th iteration are based on its observed part, the complete variables x, the
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parameter θ
∗(t)
j of the t-th iteration and the completed variables y−j of the t-th it-

eration, if they were sampled before variable j, or of iteration t − 1 if they will be

sampled after variable j. The Gibbs sampler returns the final imputation value y∗

from step 3 in above described procedure.

To generate M multiple imputations, the iterations of equation (4) are executed M

times in parallel. An assumption of this approach is that the joint distribution is

specified by equation (3) and the Gibbs sampler in equation (4) draws from this

joint distribution. Note that the algorithm includes already imputed data as com-

plete data. This means that for the first imputation of Y2 in iteration one Y obs is

updated by Y1. Starting with the last variable to impute at iteration one, the model

for imputation of missing values at that variable uses all available data. In iteration

two and later, every model for missing values at any Yj, j = 1, ..., k, will use all

available data. This also means that in iteration one for the first variables only a

subset of cases with complete data in all predictor variables is used. [23]

Compatibility

There exists the possibility that a set of conditional distributions has no multivari-

ate density. This so called incompatibility of conditionals is a theoretical weakness

of FCS. This is due to the fact that in this scenario the multivariate distribution,

the implicit joint distribution to which the algorithm converges, is unknown. This

could make the assessment of convergence ambiguous. Compatibility in data can

be destroyed e.g. by rounding errors. However van Buuren et al. (2006) [23] show

that FCS is quite robust against violations of compatibility in a set of simulations.

If the conditionals are compatible, FCS is guaranteed to work. [22]

Convergence

Monitoring convergence is achieved by plotting the draws in each of the M sampling

streams against the iterations. The paths should be inspected for any absence of

trend and be freely intermingled with each other. [24, p.37]

Ignorability

The imputation model for variable j is P (Yj|X, Y−j, R). It utilizes relations between

X, Y and R. It is only possible to fit models for P (Yj|X, Y−j, R = 1) and not for

P (Yj|X, Y−j, R = 0). However, imputations have to be drawn from

P (Yj|X, Y−j, R = 0). Under MAR or MCAR it is possible to simply set

P (Yj|X, Y−j, R = 0) = P (Yj|X, Y−j, R = 1). If this is not possible, because the data

is MNAR and therefore the assumption of ignorability does not hold, MI will still

work if it is possible to specify P (Yj|X, Y−j, R = 0) so that it reflects the missing

mechanism. Errors in the specification of P (Yj|X, Y−j, R = 0) would introduce bias

to the imputations. [22]
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Advantages and Disadvantages

One advantage of FCS is its flexibility in creating multivariate models. Specialized

imputation methods that are difficult to formulate as part of a multivariate density

P (X, Y,R|θ) can be used. FCS gives the possibility to preserve unique features in

the data such as bounds, interactions or skip patterns. Furthermore, constraints

between variables to avoid logical inconsistencies in the imputed data can be main-

tained. [22]

A disadvantage is that FCS requires some modeling effort, as each model needs to

be specified. Another disadvantage is its lack of a satisfactory theory. [22]

Number of Covariates

Rubin said that ”the advice has always been to include as many variables as possible

when doing multiple imputation.” [8, p.133]

It is of importance that especially all variables that will be taken as predictors in

the analysis phase are already included in the imputation phase. The same applies

for any interactions or transformations like e.g. quadratic predictors.

Number of Imputations

Originally five was considered to be enough from an efficiency point of view. How-

ever, as multiple imputation standard errors decrease as the number of imputations

M increase, it is favourable to create more imputed data sets. A large M can also

improve power. [8, p.212]

3.3 Imputation Methods

For this chapter, y will be the vector of the dependent variable and x will be a

matrix of the independent variables.

Logistic Regression Imputation

For binary variables a Bayesian logistic regression model is used in this work, as

proposed in Rubin (1987) [20]. Let y be the dependent binary variable whose miss-

ing values should be imputed and let x1, ..., xp be the set of numerical predictor

variables. For these predictors, possible categorical variables are replaced by their

corresponding dummies. The general logistical regression model is

ln

(
π

1− π

)
= β0 + β1x1 + ...+ βpxp
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where π = P (y = 1|x1, ..., xp) is the conditional density that y = 1 given the values

of the predictor variables x1, ...., xp and β = (β0, ..., βp) is a vector of regression co-

efficients. More on the general logistic regression model is presented in chapter 4.1.

The regression model is calculated only for observed data. If all missing data in the

predictor variables is already in imputed, then the regression model is calculated on

all available data. An imputation y∗ is generated according to the following scheme:

First fit a logit model and calculate β̂ = (β̂0, ..., β̂p), the maximum likelihood esti-

mator of β = (β0, ..., βp), by an iterative least square algorithm and estimate the

posterior covariance matrix of β, V (β̂).

Second draw β̂∗ = (β̂∗0 , β̂
∗
1 , ..., β̂

∗
p) from the approximate posterior distribution

N
(
β̂, V (β̂)

)
. Third calculate

π∗i =
1

1 + exp(−(β̂∗0 + β̂∗1Xi1 + ...+ β̂∗pXip))

for i = 1, ..., nmis, where nmis represents the number of missing observations in y.

Finally draw ui ∼ unif(0, 1), i = 1, ..., nmis. If ui > πi, impute y∗i = 0, otherwise

y∗i = 1. [6, pp.93f.]

Polytomous Regression Imputation

For categorical variables with more than two levels polytomous (multinomial) logistic

regression was applied. Let y be the dependent categorical variable with unordered

categories 0, ..., s − 1 whose missing values should be imputed and let x1, ..., xp be

the set of numerical predictor variables. For this x, possible categorical variables

are replaced by their corresponding dummies. Polytomous regression is modeled

as a set of s − 1 separate logistic regression models against a baseline category 0

according to

ln

(
P (y = j|x)

P (y = 0|x)

)
= βj0 + βj1x1 + ...+ βjpxp, for j = 1, ..., s− 1.

An imputation Y ∗ is generated according to the following scheme:

First draw β̂∗ from the approximate posterior distribution N
(
β̂, V (β̂)

)
, where V (β̂)

is the estimated covariance matrix of β̂ and β̂ is the maximum likelihood estimator

of β. Note, that in this case β is a vector of regression coefficient vectors βj =

(β1, ..., βs−1) where each βTj = (βj0, ..., βjp) corresponds to the regression coefficients

of each separate logistic regression model. Thus, β is a matrix with dimension

p× n− 1. Second, let

πmisij =
exp(−(β̂∗j0 + β̂∗j1x

mis
i1 + ...+ β̂∗jpx

mis
ip ))

1 +
∑s−1

ν=1 exp(−(β̂∗ν0 + β̂∗ν1x
mis
i1 + ...+ β̂∗νpx

mis
ip ))

,
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where i = 1, ..., nmis and j = 0, ..., s − 1, with β̂T0 = (β̂00, ..., β̂0p) = 0. This means

that πij is the probability that the i-th missing data entry is equal to the j-th cate-

gory of y corresponding to the drawn regression coefficients β̂∗j .

Third generate imputations y∗i for each missing data entry yi, such that y∗i = j with

probability πmisij for i = 1, ..., nmis and j = 0, ..., s− 1. [6, pp.94f.]

Proportional Odds Regression Imputation

For ordered categorical variables proportional odds logistic regression was applied

in this work. The algorithm follows basically the one for unordered categorical

variables with the biggest difference being the use of a proportional odds logistic

regression model instead of a polytomous logistic regression model.

In all three imputation methods data augmentation according to the method of

White, Daniel and Royston (2010) [26] is used in order to avoid bias due to perfect

prediction.

3.4 Analysis Phase

In the analysis phase complete data-methods are used to analyze the filled-in data

sets from the preceding step. The statistics of interest are calculated M times, once

for each filled-in data set from the imputation phase. The results are M statistics

of interest. The M statistics of interest differ only because the imputations differ.

[8, pp.218f.]

3.5 Pooling Phase

The pooling phase is returning a single estimate of the statistics of interest. This

is achieved by combining the M statistics of interest from the analysis phase. The

pooling parameter estimate or multiple imputation point estimate for the estimates

from the regression phase is often the arithmetic average of these estimates. [20]

Its formula is

θ̄ =
1

M

M∑
m=1

θ̂m (5)

where θ̄ is the pooled estimate and θ̂m is the parameter estimate from data set m

[8, p.219]. In the multivariate case, θ̂m and θ̄ are column vectors [8, p.234].

The pooled sampling variance consists of two parts. The within-imputation variance

and the between-imputation variance.
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The equation of the within-imputation variance VW is

VW =
1

M

M∑
m=1

SE2
m (6)

where SE2
m denotes the square of the sampling variance from data set m. It is

the mean of the M estimated sampling variances from the analysis phase. So the

within-imputation variance estimates the variance that would have resulted if there

were no missing data. Its multivariate analogous, the within-imputation covariance

matrix looks like this:

VW =
1

M

M∑
m=1

var(θ̂m)

where VW is the average within-imputation covariance matrix and var(θ̂m) is the

parameter covariance matrix from data set m. [8, p.234]

The between-imputation variance is the part of the variance that results from the

fact that there is missing data. It resembles the variability of the M parameter

estimates. Its equation is

VB =
1

M − 1

M∑
m=1

(θ̂m − θ̄)2 (7)

with VB being the between-imputation variance, θ̄ being the point estimate from

equation (5) and θ̂m being the parameter estimate from data set m. The multivariate

analogous is the between-imputation covariance matrix:

VB =
1

M − 1

M∑
m=1

(θ̂m − θ̄)(θ̂m − θ̄)T (8)

where θ̂m and θ̄ are vectors and VB is a covariance matrix. The diagonal elements

of VB contain the between-imputation variance estimates and the off-diagonal ele-

ments qualify the relationship between two between-imputation fluctuations in two

parameters. [8, pp.234f.]

The total sampling variance is a combination of these two variances, in detail:

VT = VW + VB +
VB
M

(9)

The VB/M from (9) is due to the sampling variance of the mean. The mean or

average parameter estimate θ̄ from (5) also has a sampling error. This term serves

as a correction factor for using a finite number of imputations. [8, pp.222f.]

In the multivariate case VT becomes the total parameter covariance matrix which
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reflects the total sampling fluctuation in a set of parameter estimates. Again, the

diagonal elements contain sampling variances and the off-diagonal elements contain

covariances between pairs of estimates. [8, p.235]

3.6 Fraction of missing information

The fraction of missing information describes the influence of missing data on the

sampling variance of a parameter estimate. More precisely it is the proportion of the

total sampling variance that exists due to missing data. Its equation for an infinite

(very large) number of imputations is as follows:

FMI =
VB + VB

M

VT

If the number of imputations is finite, the equation changes to:

FMI =
VB + VB

M
+ 2

ν+3

VT

with ν being the number of degrees of freedom. The degrees of freedom can be

calculated as follows:

ν = (M − 1)

(
1 +

VW

VB + VB
M

)2

= (M − 1)

(
1

FMI2

)
(10)

The degrees of freedom ν increase as the number of imputations M increase or the

fraction of missing information FMI decreases.

As the multiple imputation degrees of freedom can substantially exceed the complete

data degrees of freedom (in small and moderate samples), an adjusted version of the

MI degrees of freedom can be used to correct this problem:

ν1 =

(
1

ν
+

1

ν̃

)−1

where

ν̃ = (1− FMI)

(
dfcom + 1

dfcom + 3

)
dfcom

and dfcom is the number of degrees of freedom of the complete data case. [4]

The adjusted degrees of freedom increase as the sample size increases and never

exceeds the complete data degrees of freedom. Typically the missing data rate is

higher than the fraction of missing information. This is valid especially if the vari-

ables in the imputation model are predictive of the missing values because then the

correlations mitigate the information loss.
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It is a useful diagnostics tool, as it influences the convergence of the data augmenta-

tion algorithm. Parameters which have high rates of missing information normally

converge more slowly.

The fraction of missing information tends to be noisy and untrustworthy, especially

for less than 100 imputations. [8, pp.225f.]

4 Models

In the following, classification models that can be used in the analysis phase will

be presented. Classification is a fundamental issue in machine learning and data

mining. The goal is to construct a classifier, given a set of training examples, to

predict the class of future cases. The outcome in this work is of binary nature,

meaning it has two classes. This is a typical framework of machine learning, where

first a model is trained and its accuracy of predictions is tested on some test set, to

find the best model. Subsequently predictions are made on new data that was not

used in training or testing.

All the following models can produce classifiers that return a discrete class label but

also a real valued prediction.

4.1 Logistic Regression

Logistic regression is a special case of the generalized linear model. In binomial

logistic regression a single binary outcome variable yi, i = 1, ..., n follows a Bernoulli

probability function, yi ∼ Bernoulli(yi|πi) where

P (yi = 1) = πi =
1

1 + exp(−xTi β)
. (11)

In equation (11), xTi is a vector of independent variables and β is a vector of re-

gression coefficients including an intercept. Together they form the linear predictor

which is referred to as ηi = xTi β. The matrix equivalent of xTi is denoted X with

dimension n× p. The inverse of equation (11) is the log odds or logit link function

g(πi) = ln

(
πi

1− πi

)
= ηi = xTi β.

Logically, the equation of the odds is as follows:

odds =
πi

1− πi
= exp(xTi β).
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This implies that, if xk is increased by one, then the chance for y is changed by

exp(βk).

The parameters are estimated by maximum likelihood which assumes independence

of the observations. The equation of the likelihood is denoted as follows:

L(β) =
n∏
i=1

πyii (1− πi)1−yi .

The log-likelihood function becomes

l(β) = ln(L(β)) =
n∑
i=1

yiln(πi) + (1− yi)ln(1− πi). (12)

The maximum likelihood estimate, β̂ML, is then calculated by deriving the log-

likelihood from equation (12) and equaling it to zero. [14]

4.2 Logistic Regression with Mixed Effects

Mixed effects models are models that include random effects and fixed effects. Let

X be the model matrix for p fixed effects with dimension n×p and let Z denote the

model matrix for the q random effects with dimension n× q. The main difference to

the logistic regression model is that a stochastic component is included in the linear

predictor:

η = Xβ + Zb, (13)

where b is a vector of unknown random effects that usually is assumed to be normally

distributed, b ∼ N(0,Σ(θ)), where Σ resembles the variance-covariance matrix with

dimension q × q and θ resembles a parameter vector determining Σ(θ). In same

notation as above equation (13) becomes

ηi = xTi β + zTi b, (14)

where xi is the i-row of X and zi is the i-th row of Z. Logit link function and odds

are calculated in the same way as for logistic regression in chapter 4.1, the only

difference being the linear predictor. However, the likelihood changes as now there

are two parameters β and θ that need to be maximized given the observed data y.

The likelihood is the numerically equivalent to the marginal density of y given β

and θ. It is denoted as

L(y|β, θ) =

∫
p(y|β, b)f(b|Σ(θ))db, (15)
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where f(b|Σ) is the probability density at b and p(y|β, b) is the probability mass

function of y, given β and θ. If p(y|β, b) is binomial, the integral in equation (15)

has no closed-form solution and as a result must be approximated. One of the

possibilities for this is the Laplace approximation. The conditional modes of the

random effects are determined for given values of β and θ by

b̃(β, θ) = arg max
b

p(y|β, b)f(b|Σ(θ)). (16)

These are the values of the random effects that maximize the integrand of equation

(15). [5]

A penalized iteratively reweighted least squares algorithm (PIRLS) can be used to

determine the conditional modes of equation (16). In this algorithm, an offset, Xβ,

is applied to incorporate the contribution of the fixed effects parameters β. To

incorporate the contribution of the variance components, θ, a penalty term in the

weighted least squares fit is used. For a detailed description of the PIRLS algorithm

see Bates (2011) [5].

To get approximate values of the maximum likelihood estimate for the parameters

and the corresponding conditional modes of the random effects Laplace approxima-

tion is used. The Laplace approximation to the likelihood in equation (15) is carried

out by replacing the integrand of that likelihood. It is replaced by the second order

Taylor series approximation to the log of the integrand at the conditional modes of

equation (16). The approximation on the scale of the deviance (negative twice the

log-likelihood) is

−2l(β, θ|Y ) = −2log

{∫
p(y|β, b)f(b|Σ(θ))db

}
≈ 2log

{∫
exp

{
−1

2

[
d(β, b̃, y) + b̃T b̃∗ + b̃TD−1b

]}
db

}
= d(β, b̃, y) + b̃∗T b̃∗ + log|D|,

where b̃∗ are the conditional modes from the PIRLS algorithm at convergence and

D is an approximation of the variance-covariance matrix of these conditional modes.

Furthermore, d(β, b̃, y) = −2log(p(y|β, b)) is the deviance function from the linear

predictor only. The sum of the deviance residuals can be used for the evaluation of

this quantity. [5, pp.27-31]

4.3 Decision Trees

A decision tree can be seen as a representation of a decision procedure with the aim

of determining the class of a given instance. It consists of nodes and links (branches).
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Figure 1: Exemplary decision tree, source: [11, p.306]

Hereby, nodes represent a feature or attribute and each branch represents a decision

or rule. The leafs represent the outcome. In best case scenarios leafs are pure and

contain only a single outcome.

Building a tree starts with finding the single variable that best splits the data in two

groups. This variable should then serve as the root node. In the simple example of

Figure 1 with two continuous input variables X1 and X2 and a continuous output,

the first split is taken at X1 = t1 where t1 is a threshold of some sort that splits the

data in two. This serves as the root node.

The data gets separated by this criterion and then separately the single variable

that best splits each subgroup is used to split the data further. Here this means

that the region X1 > t1 is split at X1 = t3 and the region X1 6 t1 is split at X2 = t2.

This process is applied until no improvement can be made or the subgroups reach

a minimum size. Here, on the left side such criteria are already met and the results

are the leaves or terminal nodes that correspond to regions R1 and R2. On the right

hand side, the region where X1 > t3 is split further at X2 = t4 which results in

the terminal nodes corresponding to R4 and R5. The region where X1 6 t3 already

reached its terminal node this node corresponds to R3. [11, pp.305f.]

Let the outcome be a categorical variable with K levels. For each of the n observa-

tions, the data consists of p inputs and a response, (xi, yi), with xi = (xi1, xi2, ..., xip)

for i = 1, 2, ..., n. The partition consists of M regions, R1, R2, ..., RM .

The proportion of observations corresponding to class k, k = 1, ..., K in node m,
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m = 1, ...,M is

p̂mk =
1

nm

∑
xi∈Rm

I(yi = k), (17)

where nm is the number of observations in region Rm. The majority class in node

m is classified by the observations in this node to class k(m) = arg maxk p̂mk. Node

impurity measures Qm(T ), where T represents the tree, include the Gini index,

QGini
m (T ) =

∑
k 6=k′

p̂mkp̂mk′ =
K∑
k=1

p̂mk(1− p̂mk) = 1−
K∑
k=1

p̂2
mk,

and the cross entropy or deviance,

QCE
m (T ) = −

K∑
k=1

p̂mklogp̂mk.

In the case of K = 2 with p being the proportion in the second class, the measures

are 2p(1 − p) for the gini index and −p log(p) − (1 − p)log(1 − p) for the cross

entropy.

The minimum value of the Gini index is zero. This equals the case of perfect

separation where all data belongs to the same class. The maximum value would be

at 1 − 1/k. The maximum resembles the case when all target classes are equally

distributed. Perfect classification is achieved at an entropy of zero. A higher entropy

has higher potential for improvement of the classification.

The node impurity measures must be weighted by the number of observations in the

child nodes that were created when splitting node m, namely nmL
and nmR

. They

replace nm in equation (17).

To build the tree, the impurity measure is calculated for the whole data set, using

nm in equation (17). Later this will be calculated for the existing branch before

the consequent split and not any more for the whole data. To find the best split,

the impurity measure is calculated for each input, using the weights of the child

nodes. The input with the lowest impurity measure is chosen for the split if its

impurity measure value is lower than the one of the whole data set. This procedure

is repeated until the final, large tree T0 is built. The splitting process is stopped as

soon as some minimum node size is reached.

The size of the tree is important, as a small tree could be insufficient to capture the

structure of the data. On the other hand, a large tree might overfit the data. The

optimal tree size should be chosen from the data. One approach to find the optimal

tree size is pruning. [11, pp.307-311]

Once the large tree T0 is created, it gets pruned. One pruning approach is cost-
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complexity pruning. This approach defines a sub-tree T ⊂ T0. This can be any

tree that can be obtained by pruning the large tree T0. Pruning can be achieved by

collapsing any number of its internal nodes. The terminal nodes itself are indexed

by m representing the corresponding region Rm with Nm observations. A common

way to define the cost complexity criterion is:

Cα(T ) =

|T |∑
m=1

NmQm(T ) + α|T |,

where |T | is the number of terminal nodes in the sub-tree T and Qm(T ) is either

the Gini index or cross entropy. Further, α ≥ 0 is a tuning parameter governing the

trade-off between tree size and the corresponding goodness of fit to the data. For

each α, the idea is to find the sub-tree Tα ⊆ T0 that minimizes Cα(T ). Small values

of α result in bigger trees Tα with the full tree T0 as solution if α = 0. Large values

of α result in smaller trees Tα. For each α there exists a unique smallest sub-tree

Tα that minimizes the cost complexity criterion Cα(T ). To find Tα, weakest link

pruning is carried out. It works by collapsing the internal node with the smallest

per-node increase in
∑

mNmQm(T ). This procedure is continued until the single

root node tree is produced, resulting in a finite sequence of sub-trees. This sequence

must contain Tα. The estimation of α is achieved by cross validation. More on cross

validation can be found in chapter 5.2. The final tree is Tα̂, where α̂ is the value to

minimize the cross validated impurity measure.

Splitting a categorical predictor with q unordered levels into two groups, gives

2q−1−1 possible partitions of these values which could lead to prohibitive computa-

tional time for large q. With a binary outcome this can be simplified. The predictor

classes are ordered according to the proportion falling in outcome class one. Then

the predictor gets split as if it were an ordered predictor. Among the 2q−1−1 splits,

this results in the optimal split.

Categorical predictors with large q tend to be favoured by partitioning algorithms.

The reason for this behaviour is that the number of partitions grows exponentially in

q, increasing the chance to find a good one for the data at hand. As a consequence,

severe overfitting can occur if a predictor has many levels, making such variables

sub-optimal.

So far, splits were supposed to be binary, but it is also possible to have splits with

more links. A problem with such multi-way splits is that they divide the data too

quickly, which could lead to insufficient data at the next level down the tree. How-

ever, multi-way splitting can be achieved by a series of binary splits like X1 in

Figure 1. [11, pp.307-311]

Above two node impurity measures were described. This is due to the fact that

there exist two major algorithms to build trees. CART (Classification and Regres-
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sion Trees) and C5.0. The latter uses information-based criteria like the entropy as

metrics to find the best split while the first uses the Gini index as a metric. [27, p.4]

C5.0 has a unique feature to derive rule sets. It is sometimes possible to simplify

the set of rules that define a terminal node. This can be executed if one or more

condition can be dropped, but the subset of observations that fall into the same

node is not changed. If the set of rules can be simplified, they no longer follow a

tree structure.

Advantages of decision trees are that it is possible to understand how decisions

are derived at each node. A disadvantage of decision trees is their high variance.

Small changes in the data can make huge differences. This is due to the hierarchical

structure of trees. Changes in the split defining the root node or one of the early

nodes will propagate down to all the following splits. A solution could be to build

multiple trees and average their results. One such approach is boosting which will

be described in the following chapter. [11, p.312]

4.4 Boosted Trees

Single decision trees are prone to changes in the data and seldom provide the best

possible achievable predictive accuracy. The idea behind boosting is to build many

trees and take the weighted average over all trees which should be a lot more robust

to changes in the data.

Boosting trees can dramatically improve their accuracy while maintaining many

desirable properties. However, boosted trees sacrifice speed and interpretability.

[11, p.352]

One of the most popular boosting approaches is called ”AdaBoost.M1”. This is the

boosting approach taken in the C5.0 algorithm. In short words, misclassified events

are re-weighted and the new tree is built with the re-weighted events. Furthermore,

each tree is assigned to a score which will be used as weight when averaging over all

trees.

AdaBoost starts with initializing observation weights ωi by ωi = 1/n, i = 1, 2, ..., n.

The algorithm will iterate over the number of the (weak) classifiers Gm(x), m =

1, 2, ...,M . In each iteration round a classifier Gm(x) using weights ωi is fitted to

the training data. In this work boosting is carried out with trees as classifiers. This

classifier is then used to compute the corresponding weighted error rate,

errm =

∑N
i=1 ωiI(yi 6= Gm(xi))∑N

i=1 ωi
.

Then a weight

αm = log((1− errm)/errm)
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is computed that will be used to weigh Gm(x) at the calculation of the final classifier

G(x). Now, the individual weights get updated for the next iteration:

ωi ← ωiexp(αmI(yi 6= Gm(xi))).

The idea is to increase the relative influence of observations that were misclassified

by Gm(x) when inducing the next classifier Gm+1(x). This is achieved by scaling

their weights by the factor exp(αm). As iterations proceed, the influence of observa-

tions that are difficult to classify correctly will increase. This forces each successive

classifier to concentrate on the training observations that were misclassified by pre-

vious ones. The final classifier,

G(x) = sgn

(
M∑
m=1

αmGm(x)

)
,

is the weighted average over all classifiers Gm(x) with sgn being the signum function.

[11, pp.337ff.]

4.5 Random Forest

Random forests construct many decision trees at training and return the class that

is the majority vote of the classes at testing. A difference to boosted trees from the

previous chapter is the random selection of features at the nodes as only a subset of

all possible features is available at each node. Decision trees in random forests are

independent, whereas in boosted trees they depend on each other. Unlike boosting,

where bias is reduced because trees are grown in an adaptive way, the bias in random

forests is the same as that of any of the individual trees. Therefore, improvements in

prediction are solely a result of variance reduction. Variance reduction is achieved

by averaging over many trees and further by reducing the correlation between trees.

The latter is achieved through random selection of input variables at the nodes in

the progress of tree-growing. Before each split, l 6 p of the input variables are

chosen at random as candidates for splitting. In classification, typical values for l

are
√
p and the minimum value is one. [11, pp.587ff.]

In detail, classifications in random forests are achieved as follows. For the number

of random forest trees, B, first a bootstrap sample Z∗ of size N is drawn from

the training data. Then a random forest tree Tb, b = 1, ..., B is grown to the

bootstrapped data. To grow the tree, for each terminal node of it the following

steps are recursively repeated until the minimum node size is reached.

Out of the l selected variables, the one which produces the best split is picked and

the node is split into two daughter nodes.
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The output is the ensemble of trees {Tb}B1 . To make predictions at a new point x,

random forest obtains a class vote from each tree. The prediction is the majority

vote,

ĈB
rf (x) = majority vote{Ĉb(x)}B1 ,

where Ĉb(x) is the class prediction of the b-th random forest tree. [11, p.588]

Random forests should further correct the habit of overfitting to the training set

that occurs with decision trees. Hereby, an important aspect is that increasing B

does not cause the random forest sequence to overfit. [11, p.596]

4.6 Naive Bayes

The idea behind naive Bayes classification is to calculate the conditional probabilities

for every factor given an event occurred. The outcome with the highest probability

is then selected.

In this chapter, a case E is represented by a tuple of attribute values (variables)

(x1, x2, ..., xp). The classification variable or outcome is represented by C and c are

the values of C. As the outcome in this work is binary, C is binary with the two

classes positive and negative. Recall the Bayes theory in chapter 3.1. Equation (2)

stated the Bayes theorem,

P (c|E) =
P (E|c)P (c)

P (E)
,

describing the frequency of class c given case E = (x1, ..., xp). This is the probability

that case E will be in class c. All attributes are assumed independent which leads

to

P (E|c) = P (x1, x2, ..., xp|c) =

p∏
j=1

P (xj|c). (18)

The shape of P (xj|c) in equation (18) depends on the type of the data xj. If xj

is binary, than P (xj|c) is assumed to have the shape of a Bernoulli probability

mass function which would lead to P (xj|Ck) = π
xj
kj (1 − πkj)

(1−xj) for class k. If

xj is categorical with more than two categories, P (xj|c) could have the shape of

a multinomial probability mass function. If xj is continuous, it might typically be

assumed to be Gaussian distributed.

A case will be classified positive, if P (C = positive|E) ≥ P (C = negative|E). The
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resulting naive Bayes classifier is:

fnb(E) =
P (C = positive)

P (C = negative)

p∏
j=1

P (xj|C = positive)

P (xj|C = negative)
.

If fnb(E) ≥ 1, a case will be classified positive.

The assumption of independence between attributes means that the algorithm can-

not learn the relationships between them. This is a disadvantage of naive Bayes

as this assumption often does not hold in real-world applications. Its advantage

is speed as it is a fast, highly scalable algorithm which is at the same time quite

simple. [28]

5 Measures for Validation

As the classification problem is dichotomous, in the following mostly special cases

for dichotomous outcome are regarded. Note that many of these techniques function

as well on and are easy to adapt to categorical data with more than two classes.

5.1 Sampling Techniques

Most statistical classification models assume both classes to appear with more or

less equal frequencies. If this is not the case, then the data is called imbalanced. The

problem is that in imbalanced situations the minority class is typically of primary

interest. Models induced over imbalanced data sets tend to have poor predictive ac-

curacy with respect to the minority class. Therefore, sampling techniques are used

to achieve a (almost) balanced data set. There are different sampling techniques

available.

Oversampling

One approach is called oversampling. This approach randomly duplicates cases from

the minority class to increase their population. The problem is that the increase of

the total size of the data set is achieved by duplicates of existing data which may

lead to over-fitting. As a result variables may appear to have lower variances than

in reality.

Under-sampling

Another approach is under-sampling. The majority class is randomly down-sampled

until the data set is balanced. A disadvantage is that valuable data gets thrown away

which may lead to bias. Furthermore, independent variables can appear to have a

higher variance than in reality. According to literature, under-sampling the majority

class leads to better classifiers than oversampling the majority class. [7, p.326]
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Synthetic Sampling

Synthetic sampling synthesizes new samples instead of resampling existing ones to

achieve class equality. One such approach is the SMOTE (Synthetic Minority Over-

sampling TEchnique) algorithm. Basically the SMOTE approach works as follows.

Among the minority class, find the l nearest neighbors of a data sample, ignoring

cases from the majority class. Take the difference between the feature vector (sam-

ple) and its nearest neighbors and multiply it with a random number between zero

and one. The result will be added to the feature vector under consideration and

define a sample along the line segment between the two data samples. Repeat this

procedure for each data sample in the minority class. If more synthetic samples are

desired, the above process will be repeated, resulting in more than one new sample

between two existing ones. [7]

So far this resembles an oversampling approach. But this approach can be combined

with an under-sampling one, by first down-sampling the majority class to a certain

amount and then oversampling using SMOTE. [7]

Important to remember about SMOTE is that it can only generate new samples

within the body of existing minority samples.

In the case of nominal features, the above mentioned difference between nearest

neighbors is not as self-explanatory as in the continuous case. In the nominal case

a modified version of Value Difference Metric (VDM) is used. This metric looks at

the overlap of feature values over all feature vectors. It creates a matrix that defines

the distance between feature values. Certain distance elements of this matrix, δ are

defined as follows.

δ(V1, V2) =
n∑
i=1

|C1i

C1

− C2i

C2

|k, (19)

where k is a constant, usually set to one, V1 and V2 are the two corresponding feature

values, Cji is the number of occurrences of feature value Vj for class i and Cj is the

total number of occurrences of feature value Vj, with j = 1, 2. Equation (19) equals

a geometric distance on a fixed, finite set of values. Between two feature vectors X

and Y the distance ∆ is defined as follows:

∆(X, Y ) = ωxωy

N∑
i=1

δ(xi, yi)
r, (20)

where ωx and ωy are the exemplar weights in the modified VDM. r = 1 yields the

Manhattan distance and r = 2 yields the Euclidean distance. For a new feature

vector, the weight is ωy = 1 and the weight ωx is the bias towards more reliable

feature vectors with ωx ≈ 1 for more accurate feature vectors. [7, pp.349ff.]

27



The weights in equation (20) are mostly ignored as SMOTE is not directly used for

classification purposes. They can be redefined if the weight of the minority class

feature vectors falling closer to the majority class feature vectors should be increased

to make them appear further away. [7, pp.349ff.]

Another approach for imbalanced data would be to change the cost function in a

way that increases the cost for misclassifications of minority instances in comparison

to misclassifications of majority instances.

5.2 Cross Validation

Cross validation is a model evaluation method that can be used to compare different

models or a set of different parameters for one model. In the latter case it can be

used for getting the best parameter set of a model. Cross validation further gives

an evaluation of the ability for predictions of the model.

The problem in the normal model fitting approach is that it is not possible to eval-

uate the performance of the model on new data, as all data was used to train the

model. Therefore, the idea is to split the data and hold a (small) part of it back to

test the fitted model. Cross validation partitions the data into a training set and a

test set. The model is first fitted on the training set and then it is used to predict

the unseen data of the test set. As the data of the test set is known, the predicted

values can be evaluated.

One approach to cross validation is called k-fold cross validation. For this approach

the original data is partitioned into k folds or sub-samples of equal size. One of the

k sub-samples is then retained for the test set and the remaining k − 1 folds are

used as the training data. This process is then repeated k times such that each of

the k sub-samples is once used as the test set. The k results are finally averaged to

produce a single estimation. The measures used for validation of the methods will

be introduced in the following sub-sections. [10]

The parameter k must be chosen carefully as poorly chosen values for it may result

in high bias or high variance. Generally, the choice of k is a bias-variance trade-off,

as both cannot be minimized at the same time. High variance occurs if too little

data is left in the test set. This could lead to over-fitting and an untrustworthy

estimate of error. High bias could appear if too much data was hold-out for the test

set, leaving not enough information for a solid model in the training set. Therefore,

increasing k generally reduces this bias as the test set gets smaller. Typically k = 5

or k = 10 is chosen. These values have been shown to yield estimates that suffer

neither from very high variance nor high bias. [13, p.184]

The sub-samples can be partitioned randomly or in a stratified manner. For the

latter it means that the mean response value is approximately the same in all folds.

In the case of categorical data this means that the proportion of each class is roughly
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the same in each fold.

For repeated k-fold cross validation the above procedure is repeated multiple times.

The number of repetitions depends on the data itself but also on the computational

power at hand as repeated k-fold cross validation can be very time-consuming, es-

pecially with larger data sets. In general, more repetitions reduce the probability

that the results are the outcome of a certain partitioning of the data. This improves

the validity of the results.

Another possible approach to cross validation is called leave-one-out cross valida-

tion. In this scenario k is set to the number of data points, n, and in each run one

data point is assigned to the test set while the training set consists of n − 1 data

points. Thus leave-one-out cross validation is run n times. [10]

All steps of the algorithm of the model must be repeated in each cross validation

loop. Prior specifying implies significant bias. [25]

As an example take a combination of cross validation with oversampling. It is im-

portant that the sampling technique is carried out in each run of cross validation and

not once before it. The reason is that in oversampling, cases from the minority class

are duplicated to achieve equal proportions between both classes in the data. If this

is carried out before the folds are defined, then it is very likely that the fold with the

test data consists partly of duplicated data which was already used to calculate the

method. This clearly counteracts with the concept of testing the calculated method

on unseen data.

5.3 Confusion Matrix

A confusion matrix is a special kind of contingency table in the field of machine

learning and especially supervised learning in classification problems. Each column

represents the actual classes while each row represents a predicted class. It is an

easy measure to see how good predictions actually are. Table 1 is an exemplary

confusion matrix for a dichotomous outcome. Note that false positives (FP ) re-

semble type I error while false negatives (FN) are equivalent to type II error. For

the following equations, TP denotes the true positives and TN denotes the true

negatives. Further, P is the number of real positive cases in the data and N will be

the number of real negative cases in the data. [9]

Actual Positive Actual Negative
Predicted Positive True Positives False Positives
Predicted Negative False Negatives True Negatives

Table 1: Confusion Matrix
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5.4 Measures from a Confusion Matrix

The commonly used measure for validation in dichotomous classification problems

is accuracy which simply describes the percentage of correctly predicted cases. Its

calculation is:

accuracy =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
.

In general this is a good measure as it describes exactly the desired properties but

in a case where the (dichotomous) data is highly imbalanced the accuracy may

not be the right measure. This is due to the fact that in the case of unbalanced

data accuracy is high if all data is predicted to be in the majority class. If the

proportion between the two classes is 99 to one, then accuracy would be as high as

99 percent as only one percent would have a wrong prediction since it is originally in

the minority class. Predicting cases to the minority class often comes at the cost of

misclassifications of cases from the majority class which can easily reduce accuracy.

In the following, measures will be introduced that may be superior for imbalanced

data. One of these measures is the sensitivity or true positive rate (TPR),

TPR =
TP

P
=

TP

TP + FN
. (21)

Another name for this measure is recall. Another measure called specificity is cal-

culated as:

specificity =
TN

N
=

TN

TN + FP
. (22)

Precision is the proportion of true positives among all positive predicted cases:

precision =
TP

TP + FP
. (23)

Another often seen measure is the F1 score which is the harmonic mean of precision

and sensitivity,

F1 =
2

1/precision+ 1/TPR
=

2TP

2TP + FP + FN
.

[9]

5.5 ROC Curve

The receiver operating characteristics (roc) curve is created by plotting the true

positive rate (TPR) against the false positive rate (FPR) at various thresholds. The
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Figure 2: Exemplary roc curves, model 1 has an auc of 0.927 and model 2 has an
auc of 0.641

equation for the false positive rate is

FPR =
FP

N
=

FP

FP + TN
= 1− specificity.

The definition of the specificity can be found in equation (22) and TPR is defined

in equation (21). The underlying idea behind roc curves is that distributions for

positives and negatives are not equal. When choosing the rounding threshold, it is

important to decide what is worse, increasing the false positives (false alarms) or

the false negatives (misses).

Figure 2 depicts exemplary roc curves. Best prediction would go through the point

(0,1) indicating that there are no false positives while all positives are depicted

correctly. Generally said, a steep curve is desired. The angle bisector in the plot

is the line for chance accuracy. If the curve follows this line, the underlying model

has the predictive precision of coin flips. The graph shows that model one is clearly

a better classifier than model two. It is not possible to directly read the threshold

from a roc curve, but the TPR and FPR can be read directly. From there the best

threshold can directly be read from the data.

Figure 3 depicts an example of the distributions of two classes. On the x-axis is the
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Figure 3: Density plot for model 1 from Figure 2, the blue filled area is the area
for the false positives and the red filled area is the area for the false negatives at a
threshold of 0.465

predicted probability for a positive test result. Depicted is a case that minimizes the

total number of false classifications. If the cost for false negatives would be higher,

then the threshold would be lowered and the red area (false negatives) be decreased.

At the same time the blue area (false positives) would increase. The area for the

true positives is the whole area under the red curve to the right of the threshold and

the area for the true negatives is the whole area under the blue curve to the left of

the threshold. The area under the curve or auc is a summary statistic of the roc

curve which should depict in one number the quality of the classifier. It equals the

probability that a random positive example will be ranked above a random negative

example. Like the name implies the auc is the area under the curve and is calculated

as follows:

auc =

∫
ROC(t)dt,

where ROC(t) is the roc curve of a classifier t. The auc ranges between 0.5 and 1,

where 0.5 is equivalent to random predictions and one to perfect predictions. Note

that the underlying model from Figure 3 has a high auc of 0.927. [9]
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For some specific cost and class distributions the classifier with the highest auc may

not be the best. [7]

For the predicted cases it is best to get the probabilities instead of the classifications

themselves. Classifications are just the rounded probabilities which were assigned

to the class labels. Normally rounding is done with a 0.5 rounding threshold which

may not be the best threshold for the available data. The optimal case would be to

set the threshold such that the precision from equation (23) is one, because in that

case there exist no false positives. At the same time the sensitivity from equation

(21) should be high.

6 Description of Study and Descriptive Analysis

6.1 Description of Study

The National HIV & AIDS and Reproductive Health Survey (NARHS) is a nation-

ally representative survey on human immunodeficiency virus (HIV) and acquired

immunodeficiency syndrome (AIDS) in Nigeria [17]. There, it was the first such

survey on HIV and AIDS [3, p.621].

The major objectives of the NARHS studies are to obtain HIV prevalence estimates

and information on risk factors related to HIV infection. Other objectives are to

monitor trends and changes in behavior which influence HIV & AIDS intervention

strategies and to identify information gaps which need further exploration. Such

knowledge determines Nigeria’s response to the HIV & AIDS epidemic as it guides

the development of appropriate HIV & AIDS intervention strategies. [17, pp.48f.]

The NARHS study consists of two parts. A survey on knowledge and behavior in

fields that are relevant for HIV and a voluntary HIV test. Data was collected on

sexual and reproductive health indicators. Respondents were females aged 15-49

years and males aged 15-64 years in Nigeria. Selection of respondents was based on

a probability multi-stage sampling method, ensuring that respondents come from

all over the country. [17, p.49]

HIV testing was carried out using five finger prick blood samples stored as dried

blood spots (DBS) on the same filter paper. For identification a unique random

identification number was assigned to each DBS and questionnaire. Testing itself

was carried out using the enzyme-linked immunosorbent assay (ELISA) test of DBS

of 10% of non-reactive, all reactive and all discordant specimens. [17, pp.53f.]

6.2 Description and Preparation of Data

In this work data of 2007 NARHS Plus and 2012 NARHS Plus II is used containing

a total of 42756 respondents and 24 variables. Only data from respondents who were
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successfully interviewed is included in the data set. This means that they answered

to at least a subset of questions and did not refuse the interview totally.

There are 11521 respondents from the 2007 study and 31235 from the 2012 study.

Respondents in both studies could attend a voluntary and free HIV test which 9610

or 22.48% of them refused to take. The percentage of deniers was quite similar in

both studies. Item non-response does not only occur at the variable for the HIV test

result but also at many other of the given variables. The given subset of variables

from the two original studies includes variables representing the state, zone and lo-

cation of living, the wealth, education, religion, age, gender and marital status of

the respondent, the year of the study, his or her sexual behavior, the age at first sex

as well as his or her knowledge about condoms and HIV, the result of the HIV test

and if the respondent had contact with sexual transmittable infections in the last

12 months.

The data contains more variables but they do not contain additional information as

they are mostly binary variables of categorical variables listed above. The variable

Religion, which is mentioned above, was created using two variables with informa-

tion if respondents are Muslims, Christians or have another religion.

There is also a categorical version of the age and a continuous version of the variable

AgeSexcat, the age at first sex. For the age, the continuous version was used as it

contains more information than the categorical version of the age. For the age at

first sex, the categorical version was used, as the continuous version does not contain

information about people who never had sex. At variable AgeSexcat, the level ”No

response” was removed and treated as missing values.

Further details about the given variables can be found in Table 2. Unit non-response

does not exist in the available data set as every respondent answered the question-

naire at least partly.

In the data some illogical combinations could be found. Therefore, it was possible

to do logical imputation in some cases. In detail, this was possible for eight respon-

dents, who claimed to not have heard of condoms or did not answer to this question,

CDHeard, but answered one of the sub-questions, CD-AIDS, CD-STD, CD-Obtain or

CD-Afford, which were only possible to answer if a respondent had in fact heard

of condoms. Respondents who had never heard of condoms, had originally miss-

ing values at sub-questions. To solve this, they were assigned to the level ”Don’t

Know”. For variable CD-Afford, this level did not exist and had first to be created.

They were not assigned to a new level, for example ”Not heard of CD”, because this

would have caused problems in some models later. The reason for these problems

is that the new levels would contain the exact same observations as the level ”No”

in variable CDHeard and therefore would not add any new information but repeat

already existing information. Further, a new variable, CDagree, was created as the

overlap of data between the levels of the questions on condoms is rather big. This
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new variable simply counts how often a respondent agreed to the statement in the

sub-variables. The new variable has a continuous scale and no missing values. If

there was a missing value at one of the variables used to create CDagree, it simply

got ignored. The sub-variables are the same as above, namely CD-AIDS, CD-STD,

CD-Obtain and CD-Afford. If respondents had ever heard of condoms, i.e. the

variable CDHeard is not included in the variable CDagree.

For variables HeardHIV and the corresponding sub-variable CompknoHIV the same

procedure as above was applied. The sub-variable had one level ”Not comprehen-

sive”. This level got renamed ”Not comprehensive/No knowledge” and all respon-

dents who did not know about HIV were assigned to this new level.

Questions about sexual behavior had originally little less than 20% missing cases.

This could be reduced dramatically to around 0.6% per variable because everybody

who claimed that he or she never had had sex in his or her life at variable AgeSexcat

had not responded to any of the questions about sexual behavior. Their missing val-

ues could be set to ”No” at all four questions about sexual behavior, as a ”Yes” on

any of these would imply that they in fact had sex at least once in their life. Ques-

tions about sexual behavior include the variables Sexgift, MultSex, Sex12m and

NonmarSex1. One of the variables, NonmarSex1, changed all the missing cases to a

denial of non-marital sex and therefore this variable became complete.

For subjects who were 15 years old (Respage=15), claimed to not have had sex in

the last year (Sex12m=No) and that they were 15 years or older when they first

had sex (AgeSexcat=15 years and above), their age at first sex was set to the level

”Below 15 years”. This was valid for 12 cases. The column with the missing values

in Table 2 has already incorporated the above changes. The portion of missing cases

is calculated after logical imputation.
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Variable Description Scale of

Measurement

Detail of Categorical

Variables

Missing

Values

Method of

Imputation

wealthq Wealth Quintile Ordinal Poorest to Wealthiest 0.17% polr

zone Geopolitical Zone Categorical South West (reference),

South South, South East,

North West, North East,

North Central

location Locality of residence Dichotomous Rural or Urban

State State/district of

residence

Categorical 36 States and the Federal

Capital Territory (FCT)

Sexgift Had sex in exchange

for gift

Dichotomous Yes or No 0.61% logreg

MultSex Had multiple sex

partners

Dichotomous Yes or No 0.62% logreg

Sex12m Had sexual intercourse

in the last 12 months

Dichotomous Yes or No 0.63% logreg

NonmarSex1 Had sex with

non-marital partner

Dichotomous Yes or No

CDHeard Ever heard of condom Dichotomous Yes or No 0.32% logreg

CD-AIDS CD protects against

AIDS

Categorical Don’t Know (reference),

Agree, Disagree

0.33% polyreg

CD-STD CD protects against

STDs

Categorical Don’t Know (reference),

Agree, Disagree

0.33% polyreg

CD-Obtain CDs are easy to obtain Categorical Don’t Know (reference),

Agree, Disagree

0.35% polyreg

CD-Afford CDs are affordable Categorical Don’t Know (reference), Not

Affordable, Affordable

0.39% polyreg

CDAgree Number of Agree at

CD variables

Continuous

AgeSexcat Age at first sex Categorical Below 15 years (reference),

Can’t Remember, 15 years

and above, Never

1.31% polyreg

educ-cat Educational

attainment

Categorical No formal education

(reference), Quranic,

Primary, Secondary, Higher

0.16% polyreg

ExpSTIs Experienced STIs in

the last 12 months

Dichotomous Yes or No 0.58% logreg

RespAge Respondent’s age Continuous

HIVTest-res HIV test result Dichotomous Positive or Negative 22.48% logreg

HeardHIV Heard of HIV Dichotomous Yes or No 0.58% logreg

CompknoHIV Comprehensive

knowledge of HIV

Dichotomous Comprehensive knowledge

(reference), Not

comprehensive/No

knowledge

0.64% logreg

Yearstud Year of study Dichotomous 2012 or 2007

Marital-cat Marital status Categorical Currently Married

(reference), Formerly

Married, Never Married

1.03% polyreg

Male Gender Dichotomous Male (reference), Female

Religion Religion Categorical Others (reference),

Christian, Muslim

Table 2: Description of variables, STI: Sexual Transmittable Infections and STD:
Sexual Transmittable Diseases, CD: Condom, polr: proportional odds regression,
logreg: logistic regression, polyreg: polytomous regression
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Figure 4: HIV test refusal in Nigeria by states in percent

6.3 Descriptive Analysis

According to the study design the number of females and males is almost equal, with

the percentage of males at 50.89%. Two thirds of the respondents live in a rural

environment. The number of respondents in each state ranges between 796 in Ondo

to 1599 in Kano. In Figure 4 the percentage of respondents who refused the HIV

test is plotted for each state. It shows that the proportion of respondents refusing

the HIV test varies strongly between the different states of Nigeria. It can be seen,

that the percentage of HIV test deniers is higher in many northern states and some

southern ones. In Sokoto less than 50% of the respondents participated in the HIV

test. More than one third of the respondents refused testing in the following states:

Katsina, Niger, Abia and Kano. The lowest rates of denial can be found in mostly

eastern and southern states. In Akwa Ibom, Adamawa and Enugu less than 10% of

the respondents denied HIV testing. On the national level, 22.47% of respondents

in Nigeria refused to take the HIV test. The corresponding plot of HIV test deniers

on the zone level can be found in Appendix A.

Among the respondents who attended the HIV test, 3.4% were tested positive. In
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Figure 5: HIV prevalence rate in Nigeria by states in percent, no HIV test refusals
were regarded

Figure 5 the HIV prevalence rate among respondents who participated in the HIV

test is plotted on the state level. The highest prevalence rates can be found in Rivers,

Taraba, Kaduna and Nasarawa and central and southern-eastern states, while many

northern and southern states have lower prevalence rates, with the lowest rate in

Zamfara.

In Figure 6 the HIV prevalence rate for the different zones of Nigeria is plotted. It

can be seen, that differences in HIV prevalence rates are lower between the zones

than between states. The prevalence rate in the north central region is more as

double the prevalence rate in the south east region. In south east, south west and

north west zones the prevalence rates are lower than the national prevalence rates.

Further, a gap between the three regions with the lowest HIV prevalence rates and

the three zones with the highest prevalence rates can be observed. Note, that only

those who participated in the HIV test are regarded.

Figure 7 shows the distribution of the respondent’s age for the possible HIV test

results, positive and negative and for the deniers of that test. While the lines for
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Figure 6: HIV prevalence rate in Nigeria by zones in percent, no HIV test refusals
were regarded

negative and refusal are overlapping with the ticks in negative being larger, the line

for positive has its maximum value at a higher age and is smoother.

Figure 8 shows a mosaic plot giving information about the HIV test result and if

respondents had sex in exchange for gifts. On the x-axis the proportion of the vari-

able Sexgift is drawn and on the y-axis the corresponding proportion of the HIV

test result is drawn. Only a small portion of the respondents had sex in exchange for

gifts, but their probability for having a positive test result is higher than for those

who did not have sex in exchange for gifts. Respondents who had sex in exchange

for gifts had a higher probability to participate in the HIV test. For the variables

MultSex and NonmarSex1 the mosaic plots look quite similar. The portion of re-

spondents ticking ”Yes” at one of these variables is higher than for variable Sexgift,

but people who ticked ”Yes” have higher probability for being tested positive and

also a higher probability to participate in the test. The corresponding mosaic plots

can be found in Appendix A.
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Figure 7: Density plot for HIV test result and respondents age

Figure 8: Mosaic plot for HIV test result and sex in exchange for gifts
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Figure 9: Mosaic plot for HIV test result and the highest educational level

Figure 9 is the mosaic plot for the highest educational level and the result of the

HIV test. The educational levels are none, quranic, primary, secondary and higher

with none being the short for no formal education from variable educ-cat in Table

2. The biggest group for the highest educational level is secondary, followed by none

and primary. Quranic education as the highest level is the smallest group. Regard-

ing the outcome of the HIV test, differences between the groups are rather small,

but respondents in the primary group seem to have the highest rate of positive test

results, while respondents from the quranic group have the highest proportion of

test refusals.

In Figure 10 a stacked bar plot for the result of the HIV test result according to

the groups in the variable ExpSTIs can be seen. The y-axis gives the proportion

of each possible outcome of the HIV test result, refusal, negative and positive, in

each of the levels for the variable ExpSTIs on the x-axis. There exist big differences

between the levels of ExpSTIs. Respondents who experienced sexual transmittable

infections (STIs) in the last year have a probability of 12.61% to be tested positive.

Note that this value does not correspond to the one in Figure 10, as the 12.61%

correspond to the portion of respondents with positive test result among all who

attended the test in the group of people who experienced STIs. This is the HIV

prevalence rate for this group, as respondents refusing HIV testing have to be seen

as missing values. The portion drawn in Figure 10 for positive test result and expe-
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Figure 10: Bar plot for HIV test result and experienced sexual transmittable infec-
tions in the last 12 months

rienced STIs is 10.94%. This value corresponds to the percentage of all respondents

who experienced STIs to be tested positive, whether or not they attended the HIV

test. The value of 10.94% itself is not important, however the general expression

that respondents who experienced STIs have a higher probability for being tested

positive is valid. Further, one can read the percentage of people refusing the HIV

test from Figure 10, which is 22.31% for those who did not experience STIs, 13.28%

for those who did and 55.02% for those who did not answer to this question. This

shows that those who experienced STIs have a higher probability to attend the HIV

test and those who did not respond to the variable ExpSTIs have a high probability

to not attend the HIV test. The variable ExpSTIs is extreme, as almost all data

can be found in the level ”No”. The proportion of respondents who experienced

sexual transmittable infections in the last year is as low as 0.3% and the proportion

of missing values is as low as 0.58%.

Figure 11 is the mosaic plot for the marital status and result of the HIV test includ-

ing the refusal of the test. More than half of the respondents are currently married,

a big part of the rest was never married and few are formerly married. Respondents

who were formerly married seem to have a higher probability for being tested posi-

tive than those who were never or are currently married. Overall, differences in the

HIV test results are rather small between the levels in the marital status.

Figure 12 depicts the mosaic plot for religion and the result of the HIV test. Most
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Figure 11: Mosaic plot for HIV test result and marital status of respondent

Figure 12: Mosaic plot for HIV test result and religion
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respondents are either Christian or Muslim and only a few have another religion.

It can be seen that Christians refused the HIV test with a lower probability than

Muslims or those with other beliefs. Christians also seem to have a higher probabil-

ity for being tested positive. Overall, the differences between the different religious

groups with regard to the result of the HIV test including denial of the test, are

rather small.

Mosaic plots like the ones above can be found in Appendix A for all variables. As

in the plots shown above there are not big differences between the groups, for many

plots the differences are smaller than for the figures shown above. Worth mentioning

is that respondents who claim to never having sex in their life have only a slightly

smaller probability for being tested positive on HIV.

6.4 Missing data

After the data preparation steps of chapter 6.2, 24.33% of observations had missing

data at at least one variable. Regarding only the amount of missing data in all vari-

ables except the one of the HIV test leaves 2.82% of cases with missing data. As can

be seen in Table 2 in chapter 6.2, missing values occurred in the following variables:

educ-cat, wealthq, CDHeard, CD-AIDS, CD-STD, CD-Obtain, CD-Afford, ExpSTIs,

HeardHIV, Sexgift, MultSex, Sex12m, CompknoHIV, Marital-cat, AgeSexcat and

HIVTest-res. The highest missing data rate exists in variable HIVTest-res, the

variable of the result of the HIV test, at 22.48%. Besides HIVTest-res, the variables

AgeSexcat and Marital-cat are the only ones with more than 1% missing values.

All other variables with missing values have less than 1% missing cases.

For the respondents who have missing values at one or more items, except the HIV

test result, the probability for being tested positive is at 3.28%. This is a little lower

than the 3.44% among the respondents without missing values. The probability to

refuse the HIV test for respondents with missing values is 34.38%. This is higher

than the probability for respondents without missing values, whose probability is

22.13%.

Figure 13 gives a graphical overview over the existing missing data patterns. On

the x-axis the variables which have missing values are drawn and on the y-axis re-

spondents who have at least one missing value are drawn. This means that only a

subset of the data was used. More precisely, 24.33% of the observations are used

and those without missing values are excluded for this plot. Black color indicates

missing values and gray color indicates observed values. It can be seen that variable

HIVTest-res has the biggest portion of missing values. If a respondent has missing

values at one variable that is not the HIV test result, there are often missing values

at other variables as well. In total, there exist 94 missing data patterns, which can

be studied in detail in Table 9 in appendix B.
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Figure 13: Missingness Map, where black color indicates missing values, grey color
indicates observed values, only cases and variables with missing values were used for
this plot

7 Results

R was used for every particular step and result in this and the previous chapter.

7.1 Test on MCAR

Whether or not the data is MAR cannot be ascertained as there exist no tests to

distinguish between MAR and MNAR. However, it is possible to test on MCAR,

thus Little’s MCAR Test was applied to the data and showed a significant test re-

sult. This means that there is at least one variable that is not MCAR which was

expectable considering the variables.

Next it was tested for dependencies between certain variables. Therefore, chi-

squared tests were applied as all of the variables with missing values were categorical.

For every variable with missing values the chi-squared test was significant with at

least one other variable, meaning that there exists some dependency between the

variables. This is further proof that the underlying missing data mechanism for

all variables is either MAR or MNAR. There is not enough information to specify
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a MNAR mechanism and therefore, the data is assumed to be missing at random

(MAR).

7.2 Imputation

Multiple imputation as described in chapter 3 was applied to impute the missing

values. In the imputation phase, the fully conditional specification (FCS) algorithm

was applied through its implementation in the mice package in R. The assumption

of MAR is assumed to hold, although it has to be remembered that there is no

proof for this. The sub-variables of the variable about the knowledge of existence of

condoms were excluded for the multiple imputation process. That is, the variables

CD-AIDS, CD-STD, CD-Obtain and CD-Afford were excluded from the imputation

process and variable CDagree was used instead. All other variables, from Table 2,

except the ones mentioned before were used in the imputation phase. Zones are a

grouping of states in Nigeria which means that each zone would be regarded as a

combination of states. When applying to a (imputation) model, some coefficients

would not be available. The result would be NAs (Not Available), which should be

avoided. Due to this reason only one of both can be used in imputation. As every

variable included in any model in the analysis phase should also be included in the

imputation phase, multiple imputation was applied twice. One time the zones are

excluded from imputation and the other time states are excluded.

The variable CompknoHIV was excluded in the imputation of the variable HeardHIV,

because HeardHIV serves as a screening variable for CompknoHIV. Excluding it should

prevent to simply impute the same values as in the previous iteration. It is pos-

sible to post-process imputations in each iteration if they take on an implausible

value. This is achieved by checking directly after the imputation in each iteration if

they match the criterion and correct them if not. After this check the imputation

model of the next variable starts. For the variable about comprehensive knowledge

about HIV this means that it is checked if someone who has never heard of HIV got

imputed into the group ”Not comprehensive/No knowledge”. If not and this ob-

servation got imputed to be in the ”Comprehensive knowledge” category, then this

observation got post-processed to the ”Not comprehensive/No knowledge” category.

For variables Sexgift, MultSex and Sex12m, post-process checked if an observation

that never had sex before was set to ”Yes” at any of these variables. If that is the

case, this observation was set to ”No” at the corresponding variable about sexual

behavior. The same applies vice versa for the age at the first sex-variable. If an

observation was imputed to ”Never”, but in any of the four questions about sexual

behavior ticked at least once ”Yes”, then it was set to ”Can’t Remember” at variable

AgeSexcat.

The order of the imputations is monotone from the lowest amount of missing values
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Figure 14: Trace line plot for imputations of variable Sex12m with covariable State

each line represents one of the M imputations of this variable

to the biggest. It was made sure that the variable HeardHIV got imputed before the

variable CompknoHIV.

An advantage of the FCS-algorithm is that it can incorporate individual models

for each variable. For variables with a dichotomous scale of measurement, logistic

regression was the imputation method used. For categorical variables polytomous

regression was utilized and for ordinal variables proportional odds regression. Con-

tinuous variables did not have missing values. See Table 2 in chapter 6.2 for the

imputation method of each variable.

The number of imputations is determined by the number of cores of the computer

as it is possible to parallel the imputation sets. The computer used has eight cores

which led to M = 8 imputation sets. 30 iterations were used which proved to be

sufficient.

The reasoning is demonstrated exemplary for variable Sex12m. Figure 14 portrays

a trace line plot of variable Sex12m. This is the imputation process, were State

was a covariable. In a trace line plot for multiple imputation, the imputed values

of a variable are plotted against the iteration number. Each line represents one of

the M replications. Plotted is the mean and the standard deviation of the variable

Sex12m. To calculate the mean and standard deviation, the variable is assumed

continuous. The levels of Sex12m are represented by a one for ”No” and a two for
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”Yes”. On convergence, the streams should be free of any trend and intermingle.

Here, the streams intermingle pretty soon, but until iteration 20 a negative trend

for the mean and a positive trend for the standard deviation can be observed. For

30 iterations, convergence is achieved. The trace line plots for all variables with

imputed values for both imputation runs can be found in appendix C.

The result of the imputation phase were eight complete data sets. Once for the

imputation with State and once for imputations using variable zone. The outcome

variable, HIVTest-res, was imputed along with every other variable with missing

data during the imputation phase of multiple imputation. For the following models

the imputations on the outcome variable were removed.

7.3 Models

As mentioned above, the imputations of variable HIVTest-res were removed in all

eight imputed data sets. The following models were applied to the eight imputed

data sets.

All observations with missing values in HIVTest-res were excluded from the data

set and saved for later prediction. The data set for model training and testing steps

consisted of 33146 observations.

Models were trained using repeated 10-fold cross validation (cv). The number of

repetitions was between 15 and 50, depending on the computational effort of the

model. Increasing the number of repetitions did not seem to improve the predictive

power of the models. Some models could be tuned in cross validation, for others

cross validation was only used to have an idea of the predictive power. At the end of

the cross validation process, the final model was calculated using all available data.

An algorithm was constructed to be able to execute these steps in parallel. The final

model was used to predict the result of the HIV test. Predictions were given in the

form of probabilities, not classes. This ensures that the rounding threshold can be

set manually to optimize the predictions. For each of the eight models, the optimal

threshold was determined. Then each model predicted the probability for the miss-

ing cases of variable HIVTest-res. Next, their eight results were averaged, as well

as the eight thresholds. If the probability for a positive test result was higher as the

threshold, then it was set to ”Positive”. If it was lower, it was set to ”Negative”.

The outcome variable for all following models was HIVTest-res, the HIV test result

with levels ”Positive” and ”Negative”. The task was to get a high precision. This

is the proportion of true positives among all positive predicted cases.

If SMOTE was used, the minority class was over-sampled by a factor of five and

the majority class was down-sampled such that the ratio between both was almost

50:50. Under-sampling and over-sampling also reached this ratio.

48



Figure 15: ROC curve of logistic regression with mixed effects model

The variable State has a total of 37 levels which lead to the idea on testing mixed

effects models with State serving as the random variable. Since variable State had

to be included in the predictors, this model was not applied with the variable zone.

The model was calculated using the glmer-function from package lme4 in R. To

eliminate errors and warnings in the code, the continuous variables got rescaled and

the optimizer was chosen to be ”bobyqa” with the maximum number of function

evaluation set to 10000 to prevent convergence failures. 25 replications on 10-fold

cross validation were used resulting in 825168 observations on which the predictive

power of the model was tested.

The summary of the pooled model can be found in appendix D. The summary

contains information about the parameter estimates, their standard error, degrees

of freedom, t-test and the corresponding p value, the lower and upper bound of a

confidence interval and the fraction of missing information.

Figure 15 plots the corresponding roc curve. In this case only one roc curve is plot-

ted, because the roc curves for all M = 8 are indistinguishable. Table 3 gives the

area under the curve (auc) of all eight roc curves. The auc ranges between 0.7027

and 0.7034, which is quite similar. It is not exactly similar, due to the different

imputations in each data set, but the differences are rather small, as the portion

49



ROC Curve of Imputation Set
1 2 3 4 5 6 7 8

auc 0.7032 0.7034 0.7030 0.7034 0.7027 0.7032 0.7030 0.7029

Table 3: Area under the curve of all eight roc curves for the mixed effects logistic
regression model

of missing data was as well quite small. An auc of 0.703 is not very good, which

can also be seen when regarding the possible thresholds for rounding. The maxi-

mum probability for a positive test result among all test cases was 0.4132 and was

in reality a respondent who had a negative test result. Table 4 depicts the real

test result for the cases that had highest predicted probability to be tested positive.

The two respondents with highest probability are in fact HIV negative and would

be classified wrong. For a rounding threshold of 0.41, four respondents would be

classified positive, two correctly and two falsely. The precision would be maximized

at this point at a value of 0.5. Reducing the threshold further would decrease the

precision, as can be seen in Table 4 for ten cases. If the threshold would be set such

that 100 cases are predicted positive, precision would be a lot lower at 0.18. For a

threshold of 0.41 the sensitivity or true positive rate would be at 0.00007. The F1

score for this case is 0.00014. The measures prove the point that this result is far

from good. As the precision is maximized at a threshold of 0.41, this will be the

threshold chosen for the prediction of the respondents who refused HIV testing.

Among those who refused to take the HIV test, the maximum probability to be

Real Class Positive
1 Negative 0.4180
2 Negative 0.4172
3 Positive 0.4151
4 Positive 0.4104
5 Negative 0.4079
6 Negative 0.4053
7 Negative 0.3973
8 Positive 0.3958
9 Negative 0.3941

10 Positive 0.3913

Table 4: The ten cases in testing with highest probability for positive HIV test and
their real result

HIV positive was as low as 0.1313 with a mean of 0.0175. At a threshold of 0.41,

everybody got classified negative. The above results are represented at one of the

eight imputations. The results of the other imputation sets were pretty similar. The

maximum probability in testing was slightly different, between 0.4132 and 0.4254.

Seven of the eight chose the same cut point resulting in a precision of 0.5. One max-

imized the precision at a cut point were five respondents were classified positive,
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ROC Curve of Imputation Set
Sampling 1 2 3 4 5 6 7 8

State

0.7029 0.7032 0.7028 0.7032 0.7024 0.703 0.7027 0.7026
down 0.6957 0.696 0.6955 0.696 0.6952 0.6957 0.6955 0.6954

SMOTE 0.6964 0.6967 0.6963 0.6967 0.696 0.6965 0.6962 0.6961
up 0.7032 0.7035 0.7030 0.7035 0.7027 0.7032 0.7030 0.703

Zone
up 0.6226 0.6224 0.6217 0.6217 0.623 0.622 0.6218 0.6222

0.6239 0.6236 0.6229 0.6228 0.6242 0.6231 0.623 0.6234

Table 5: Area under the curve of all eight roc curves for the logistic regression model

Actual Positive Actual Negative
Predicted Positive 39 226
Predicted Negative 22741 639914

Table 6: Confusion Matrix for up-sampled logistic regression model with rounding
threshold 0.881

two of them correctly.

One of the models to be tested was logistic regression. The auc values of the differ-

ent sampling approaches to logistic regression can be seen in Table 5. If no sampling

method is given, then no sampling method was applied. The table shows the auc

for all eight models that derive from the use of multiple imputation. It can be seen

that the usage of the data set that included the variable State results in higher

auc values than those with variable zone. Figure 16 depicts the corresponding roc

curves. Only two are plotted. This is due to the fact that roc curves between the

eight models are indistinguishable and in this case also roc curves between different

sampling approaches but with the same co-variable are indistinguishable.

The problem is that the predictions are quite inaccurate. For all models, it was

maximal possible to get some true positive predictions for the first 4 to 15 highest

predicted probabilities. If a threshold was chosen that high to achieve a high pre-

cision according to testing in cross validation then the threshold was too high for

any predicted probability for the unknown test results. The result was that all are

classified ”Negative”.

The Confusion Matrix in Table 6 depicts this. To construct it, the threshold was

chosen to be the highest predicted value for the unknown test results. The given

probability was 0.881. The underlying model showed one of the best results as it

depicted 12 of the highest 15 probabilities in cv-testing correctly. The correspond-

ing table can be found in appendixD along with the pooled model coefficients. The

model used the variable zone and up-sampling. The threshold derived was 0.94 and

thus higher than the highest probability among the respondents with unknown test

result. Choosing the threshold at 0.881 resulted in 39 true positive classifications

and 226 false positive classifications. This yields a precision of 0.1472 which is low.
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Figure 16: ROC curve of logistic regression

Figure 17 shows the densities of the two classes of variable HIVTest-res for above

model. It can be seen that both densities overlap and are not as distinguishable as

desired.

Fore boosted decision trees the algorithm ”C5.0” was applied. Predictions with this

algorithm were very inaccurate. For SMOTE sampling and in the case without any

sampling many cases were predicted to a probability of one, making it impossible to

distinguish between them. For the models including the variable zone, all models

were totally inaccurate. The corresponding table with the auc values and the figure

with the roc curves can be found in appendix D.

For random forests, the number of variables that get randomly selected at each node

were tuned with cross validation. The number of trees was set to 2000. The measure

for the best model was the auc. For seven out of eight models on the imputed data

sets, the best auc was achieved with 12 selected variables at each node. In one model

13 variables at each node showed best auc. However, differences were rather small,

as all auc values were between 0.65 and 0.67. The roc curve in Figure 18 resembles

the auc values from Table 7. The curve is rather close to the angle bisector. Pre-

dictions from testing in cross validation are quite underwhelming, as the cases who

got assigned the highest probability to be positive, are in fact negative. To predict
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Figure 17: Density plot for logistic regression with up-sampling and co-variable zone

at least one true positive, on average 62 have already been predicted false positive.

This results in a low precision and makes predictions on unknown data rather un-

trustworthy. The first to be predicted true positive had an probability of 0.725 with

very little variation between the eight models. As precision was the measure to be

maximized, one could argue that infinity would be the best threshold as the real

maximum in precision holds many misclassifications. For example, if the threshold

would be chosen to be at 0.6, over 17% of the positive classified cases would be true

positives. This result is far from the desired case to correctly predict HIV positive

cases with a small to no false positive rate. For the predictions of the HIV test result

for respondents who refused testing, the maximum probability was at 0.68 and the

ROC Curve of Imputation Set
Sampling 1 2 3 4 5 6 7 8

State

0.664 0.6644 0.664 0.6644 0.6633 0.6647 0.6639 0.6631
SMOTE 0.6618 0.6628 0.6617 0.6619 0.6622 0.6626 0.6613 0.6611

down 0.6882 0.6884 0.6882 0.6886 0.6881 0.6879 0.6879 0.6877
zone down 0.615 0.6153 0.6153 0.6149 0.6162 0.6157 0.6144 0.6156

Table 7: auc values for all eight random forest models
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Figure 18: ROC curves for random forests

mean was at 0.04.

Random forests were also executed using the sampling method SMOTE. The num-

ber of trees was the same as above, 2000. In seven out of eight models, five was

found to be the best number of variables that were chosen at random as candidates

for splitting the node. In one case two variables were found to be best. As above,

differences in the auc between different numbers of candidates for splitting were

small. Although the auc values were quite close to the ones above, prediction was

improved. In average, it took 19 false positives to classify the first true positive. In

one of the eight models, it was possible to predict one true positive before predict-

ing false positives. However, this would hold a threshold of 0.961. This threshold

would yield only false positive classifications in all other model runs. Predicting the

probability of a positive test result for respondents with missing values at variable

HIVTest-res resulted in a maximum estimate of 0.9545 which would be lower than

above threshold and thus classify all as ”Negative”.

Applying under-sampling resulted six times in choosing two variables and two times

in choosing nine variables as candidates for splitting. The number of trees was con-

stant at 2500 trees. Down-sampling yielded the highest auc values, as can be seen

in Table 7. In average it took 19 false positives to classify one true positive. This
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would result in a low precision which would would make predictions untrustworthy.

So far all random forests were made using the variable State as a possible split

variable and zone being excluded. Now random forests are applied with the possi-

ble split variable zone instead of State. The data was down-sampled before model

tuning. Three variables were considered as candidates at each split in all eight mod-

els and the number of trees was set to 2500. In average it took 14 false positives to

classify one true positive. This approach has the lowest auc, but is in comparison

to the other random forest approaches the most promising in terms of predictive

power. The mean of the predicted probabilities on HIV test deniers was 0.43 which

is rather high. At the same time the maximum was 0.9 and no sensible threshold

was found as cross validation showed that respondents with high probability have

mostly a negative HIV test result. In all approaches to random forest models, the

auc was rather small and the predictive power was poor.

The results of the naive Bayes classifier matched the ones from the other models.

The roc curve, the auc values and the density plots to naive Bayes models with

down-sampling and SMOTE can be found in appendix D. Table 8 shows the proba-

bility, observation and ID of the cases that got highest probability in cross validation

testing. Assume that all of them would be classified ”Positive”. Out of the ten cases

with highest probability, four of the five true positives come from the same obser-

vation in different resamples. Three of the six false positives are also from only one

observation. The problem is that these cases may be outliers which have very high

probabilities and could possibly pull the threshold up, making it harder that the

threshold is reached by the unknown cases.

Generally said, predicted probabilities were higher in combination with sampling

obs Positive ID
1 Positive 0.9964 33111
2 Positive 0.9960 33111
3 Negative 0.9960 31361
4 Positive 0.9957 32876
5 Negative 0.9955 31361
6 Negative 0.9951 4472
7 Positive 0.9951 33111
8 Negative 0.9947 20503
9 Positive 0.9946 33111

10 Negative 0.9946 31361

Table 8: The ten cases in testing with highest probability for positive HIV test and
their real result and case number for naive Bayes with down-sampling

approaches. However, this did not improve anything as all probabilities were in-

creased. Results between the models for the eight imputed data sets were rather

small. ROC curves were indistinguishable and as a result auc values were almost
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identical. The predicted values for variables were also quite close. The respondents

yielding the high probabilities to be HIV positive in each prediction were often the

same.

Besides the above mentioned models, the following models were tested: Logistic

regression with step AIC, ridge regression, lasso and elastic net, gradient boosting

models and elastic net. All of these models did not perform superior to the ones

mentioned above and are quite CPU-intensive.

Not all combinations between sampling methods and models were tried as especially

oversampling was very CPU-intensive. As literature implies that under-sampling the

majority class leads to better classifiers than oversampling the majority class, focus

was more on under-sampling. The combination of cross validation and model tuning

is also very time-consuming.

8 Conclusion

In this work, first missing data and missing data handling methods, particularly

multiple imputation was described. Multiple imputation consists of three phases:

the imputation phase, the analysis phase and the pooling phase. Subsequently mod-

els that can be used in the analysis phase were described along with techniques to

improve models and measures to validate them. Finally these concepts were applied

to HIV data with the goal to predict the result of a HIV test for respondents who

refused to participate.

Unfortunately, this was not possible as the predictive power of all tested models

was far from optimal. In all models there were many false positives at the highest

probabilities and in many the highest probability for a positive result was among

observations that had in fact a negative result. In cases were the highest probability

for a positive result was by an observation with an observed positive result, the

rounding threshold was too high for predictions on data with unknown result.

Improved predictive power may be achieved with more parameters. The given vari-

ables lacked indications to risk groups. HIV statistics indicate that homosexuality

among men and/or drug abuse increase the probability for having HIV. However,

these variables were not included in the data set.

Another possible problem is weather or not the data can be trusted. The given data

set contains variables to sensitive information like sexual behavior. In general, in

topics of sensible data, the chance of incorrect data is increased. This issue is valid

for HIV risk-groups like homosexuals and drug addicts, especially since both are not

legal and criminalized in Nigeria.
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Figure 19: HIV test refusal in Nigeria by zones
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Figure 20: Density plot for HIV test result and respondents age at first sex

Figure 21: Mosaic plot for HIV test result and location of living
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Figure 22: Mosaic plot for HIV test result and wealth quintile

Figure 23: Mosaic plot for HIV test result and sex in the last 12 months
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Figure 24: Mosaic plot for HIV test result and multiple sex partners

Figure 25: Mosaic plot for HIV test result and non-marital sex
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Figure 26: Mosaic plot for HIV test result and CDHeard

Figure 27: Mosaic plot for HIV test result and CD-AIDS
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Figure 28: Mosaic plot for HIV test result and CD-STD

Figure 29: Mosaic plot for HIV test result and CD-Obtain
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Figure 30: Mosaic plot for HIV test result and CD-Afford

Figure 31: Mosaic plot for HIV test result and age at first sex
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Figure 32: Mosaic plot for HIV test result and HeardHIV

Figure 33: Mosaic plot for HIV test result and CompknoHIV
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Figure 34: Mosaic plot for HIV test result and the year of the study

Figure 35: Mosaic plot for HIV test result and gender
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Figure 36: Mosaic plot for HIV test result and CDagree
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53 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 4 1

54 1 1 1 0 0 1 0 1 1 1 1 1 1 0 1 1 4 1

55 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 4 1

56 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 4 2

57 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 5 4

58 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 1 5 1

59 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 5 1

60 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 5 29
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62 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 5 1

63 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 5 2

64 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 5 1

65 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 5 6

66 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 5 6

67 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 6 1

68 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 6 2

69 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 6 21

70 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 6 2

71 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 7 1

72 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 7 10

73 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 7 1

74 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 7 2

75 1 1 0 0 0 0 0 1 1 1 1 1 1 0 1 0 7 5

76 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 8 3

77 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 8 19

78 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 8 1

79 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 9 1

80 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 9 1

81 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 1 9 1

82 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 10 2

83 1 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 10 1

84 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 11 1

85 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 11 1

86 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 12 6

87 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 12 1

88 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 13 2

89 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 27

90 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 14 2

91 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 32

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 5

93 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8

NAs 69 73 136 143 143 148 167 246 249 259 264 269 273 442 560 9610

Table 9: Table of the missing data patterns

C Appendix to Chapter 7.2
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Figure 37: Trace line plot for imputations of variables educ-cat, wealthq, CDHeard
and HeardHIV with covariable State

Figure 38: Trace line plot for imputations of variables ExpSTIs, AgeSexcat, Sexgift
and MultSex with covariable State
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Figure 39: Trace line plot for imputations of variables Sex12m, Marital-cat,
CompknoHIV and HIVTest-res with covariable State

Figure 40: Trace line plot for imputations of variables educ-cat, wealthq, CDHeard
and HeardHIV with covariable zone
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Figure 41: Trace line plot for imputations of variables ExpSTIs, AgeSexcat, Sexgift
and MultSex with covariable zone

Figure 42: Trace line plot for imputations of variables Sex12m, Marital-cat,
CompknoHIV and HIVTest-res with covariable zone
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D Appendix to Chapter 7.3

est se t df Pr(> |t|) lo 95 hi 95 fmi
(Intercept) -3.6245 0.3635 -9.9706 31478 0 -4.3370 -2.9120 0.0033

wealthq2 0.0285 0.1041 0.2738 32959 0.7842 -0.1755 0.2325 0.0010
wealthq3 0.2719 0.1084 2.5095 31340 0.0121 0.0595 0.4843 0.0034
wealthq4 0.3262 0.1189 2.7434 31849 0.0061 0.0931 0.5592 0.0029
wealthq5 0.3613 0.1317 2.7424 31223 0.0061 0.1031 0.6195 0.0035
location2 -0.0258 0.0824 -0.3132 33064 0.7541 -0.1873 0.1357 0.0005
Sexgift2 0.0831 0.1150 0.7227 31541 0.4699 -0.1423 0.3086 0.0032

MultSex2 0.1525 0.0845 1.8050 31851 0.0711 -0.0131 0.3181 0.0029
Sex12m2 -0.0757 0.1060 -0.7139 30284 0.4753 -0.2835 0.1321 0.0044

NonmarSex12 0.0791 0.1147 0.6902 32817 0.4901 -0.1456 0.3039 0.0013
CDHeard2 0.2211 0.1199 1.8438 19410 0.0652 -0.0139 0.4560 0.0122

AgeSexcat2 0.0522 0.1194 0.4373 30092 0.6619 -0.1818 0.2862 0.0046
AgeSexcat3 -0.3299 0.1822 -1.8109 32244 0.0702 -0.6869 0.0272 0.0023
AgeSexcat4 0.1178 0.1510 0.7802 9728 0.4353 -0.1782 0.4139 0.0226

educ cat2 0.0846 0.1567 0.5400 33056 0.5892 -0.2225 0.3918 0.0006
educ cat3 0.3503 0.1074 3.2633 31985 0.0011 0.1399 0.5608 0.0027
educ cat4 0.2315 0.1110 2.0847 31842 0.0371 0.0138 0.4492 0.0029
educ cat5 0.0387 0.1397 0.2771 31679 0.7817 -0.2351 0.3125 0.0031
ExpSTIs2 0.9772 0.2996 3.2620 33083 0.0011 0.3900 1.5643 0.0004
RespAge -0.0237 0.0429 -0.5526 32618 0.5805 -0.1078 0.0604 0.0018

HeardHIV2 -0.0555 0.1406 -0.3945 14720 0.6932 -0.3311 0.2202 0.0163
CompknoHIV2 -0.1221 0.0719 -1.6981 21688 0.0895 -0.2630 0.0188 0.0105

Yearstud2 -0.1352 0.0693 -1.9500 33097 0.0512 -0.2711 0.0007 0.0003
Marital cat2 0.4503 0.1429 3.1500 8321 0.0016 0.1701 0.7305 0.0252
Marital cat3 -0.2542 0.1212 -2.0978 32865 0.0359 -0.4917 -0.0167 0.0012

Male2 -0.1899 0.0710 -2.6739 33076 0.0075 -0.3291 -0.0507 0.0005
Religion2 0.0081 0.2699 0.0299 33097 0.9761 -0.5210 0.5371 0.0003
Religion3 -0.1919 0.2759 -0.6955 33096 0.4868 -0.7325 0.3488 0.0003
CDagree 0.0182 0.0509 0.3579 30389 0.7204 -0.0816 0.1180 0.0043

Table 10: Pooled mixed effects logistic regression model
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obs Positive ID
1 Positive 0.9948 33111
2 Negative 0.9932 8881
3 Positive 0.9905 33111
4 Negative 0.9905 24281
5 Negative 0.9885 4472
6 Negative 0.9863 23105
7 Negative 0.9854 4472
8 Positive 0.9853 33111
9 Positive 0.9844 32184

10 Negative 0.9841 8881
11 Negative 0.9835 23105
12 Positive 0.9824 33111
13 Negative 0.9819 3853
14 Negative 0.9803 11362
15 Negative 0.9795 684
16 Negative 0.9792 3853
17 Negative 0.9792 30612
18 Negative 0.9789 4348
19 Positive 0.9779 32876
20 Negative 0.9776 30612
21 Negative 0.9774 3853
22 Positive 0.9773 32184
23 Negative 0.9759 8881
24 Positive 0.9753 32876
25 Negative 0.9753 7236

Table 11: The cases in testing with highest probability for positive HIV test and
their real result and case number for naive Bayes with down-sampling and covariable
zone
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obs Positive
1 Positive 0.9450
2 Positive 0.9428
3 Positive 0.9428
4 Positive 0.9425
5 Positive 0.9425
6 Positive 0.9424
7 Positive 0.9421
8 Positive 0.9417
9 Positive 0.9414

10 Positive 0.9411
11 Negative 0.9406
12 Positive 0.9385
13 Positive 0.9373
14 Negative 0.9370
15 Negative 0.9361
16 Negative 0.9358
17 Negative 0.9345
18 Positive 0.9343
19 Positive 0.9341
20 Negative 0.9339

Table 12: The cases in testing with highest probability for positive HIV test and their
real result and case number for logistic regression with up-sampling and covariable
zone
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est se t df Pr(> |t|) lo 95 hi 95 fmi
(Intercept) -0.2564 0.0977 -2.6240 1447.0000 0.0088 -0.4482 -0.0647 0.0700

wealthq2 0.0314 0.0277 1.1330 8518.0000 0.2572 -0.0229 0.0857 0.0269
wealthq3 0.2425 0.0290 8.3708 13691.0000 0.0000 0.1857 0.2992 0.0201
wealthq4 0.2878 0.0317 9.0690 9373.0000 0.0000 0.2256 0.3500 0.0254
wealthq5 0.3317 0.0347 9.5657 10446.0000 0.0000 0.2638 0.3997 0.0238

zone2 0.2243 0.0280 8.0194 40547.0000 0.0000 0.1695 0.2792 0.0079
zone3 -0.0179 0.0299 -0.5980 31726.0000 0.5499 -0.0764 0.0407 0.0106
zone4 -1.0229 0.0332 -30.7960 26180.0000 0.0000 -1.0880 -0.9578 0.0126
zone5 -0.3537 0.0279 -12.6603 53401.0000 0.0000 -0.4084 -0.2989 0.0046
zone6 -0.5615 0.0286 -19.6286 63682.0000 0.0000 -0.6176 -0.5054 0.0007

location2 0.1535 0.0216 7.0913 24093.0000 0.0000 0.1111 0.1960 0.0135
Sexgift2 0.1361 0.0342 3.9814 2216.0000 0.0001 0.0691 0.2031 0.0560

MultSex2 0.1695 0.0242 7.0159 2601.0000 0.0000 0.1221 0.2169 0.0515
Sex12m2 -0.0685 0.0326 -2.0987 124.0000 0.0379 -0.1330 -0.0039 0.2496

NonmarSex12 0.0569 0.0321 1.7703 1294.0000 0.0769 -0.0062 0.1199 0.0742
CDHeard2 0.2235 0.0313 7.1491 5300.0000 0.0000 0.1622 0.2848 0.0351

AgeSexcat2 0.0757 0.0331 2.2864 978.0000 0.0224 0.0107 0.1407 0.0858
AgeSexcat3 -0.3519 0.0489 -7.1889 2506.0000 0.0000 -0.4478 -0.2559 0.0525
AgeSexcat4 0.1523 0.0471 3.2366 91.0000 0.0017 0.0588 0.2458 0.2921

educ cat2 0.0770 0.0394 1.9539 42608.0000 0.0507 -0.0002 0.1542 0.0074
educ cat3 0.4239 0.0287 14.7821 9254.0000 0.0000 0.3677 0.4802 0.0256
educ cat4 0.2937 0.0291 10.0845 11016.0000 0.0000 0.2366 0.3508 0.0231
educ cat5 0.1158 0.0370 3.1328 16584.0000 0.0017 0.0433 0.1882 0.0177
ExpSTIs2 1.0749 0.1179 9.1135 54580.0000 0.0000 0.8437 1.3060 0.0043
RespAge -0.0005 0.0010 -0.5118 16471.0000 0.6088 -0.0024 0.0014 0.0178

HeardHIV2 -0.0658 0.0374 -1.7588 1550.0000 0.0788 -0.1393 0.0076 0.0675
CompknoHIV2 -0.0948 0.0213 -4.4537 199.0000 0.0000 -0.1367 -0.0528 0.1954

Yearstud2 -0.1374 0.0185 -7.4298 62104.0000 0.0000 -0.1737 -0.1012 0.0018
Marital cat2 0.4925 0.0534 9.2270 45.0000 0.0000 0.3850 0.6000 0.4199
Marital cat3 -0.1442 0.0333 -4.3317 1206.0000 0.0000 -0.2094 -0.0789 0.0769

Male2 -0.1777 0.0189 -9.4013 52222.0000 0.0000 -0.2148 -0.1407 0.0049
Religion2 0.1836 0.0698 2.6307 43112.0000 0.0085 0.0468 0.3203 0.0073
Religion3 -0.2033 0.0710 -2.8644 39162.0000 0.0042 -0.3425 -0.0642 0.0083
CDagree 0.0357 0.0078 4.5744 9994.0000 0.0000 0.0204 0.0510 0.0244

Table 13: Pooled logistic regression model with up-sampling and zone as covariable

82



obs Positive
1 Positive 0.3818
2 Positive 0.3760
3 Positive 0.3687
4 Positive 0.3603
5 Negative 0.3498
6 Positive 0.3495
7 Positive 0.3487
8 Positive 0.3466
9 Positive 0.3454

10 Positive 0.3451
11 Positive 0.3441
12 Positive 0.3430
13 Positive 0.3411
14 Negative 0.3292
15 Positive 0.3288
16 Positive 0.3278
17 Negative 0.3260
18 Negative 0.3228
19 Negative 0.3214
20 Positive 0.3194
21 Positive 0.3163
22 Positive 0.3161
23 Positive 0.3140
24 Negative 0.3138
25 Negative 0.3132
26 Negative 0.3117
27 Negative 0.3115
28 Negative 0.3098
29 Negative 0.3094
30 Negative 0.3089

Table 14: The cases in testing with highest probability for positive HIV test and
their real result and case number for logistic regression with covariable zone
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est se t df Pr(> |t|) lo 95 hi 95 fmi
(Intercept) -3.4632 0.3553 -9.7475 32606.0000 0.0000 -4.1595 -2.7668 0.0018

wealthq2 0.0045 0.1035 0.0438 32920.0000 0.9651 -0.1983 0.2073 0.0011
wealthq3 0.2194 0.1070 2.0516 32855.0000 0.0402 0.0098 0.4291 0.0012
wealthq4 0.2690 0.1168 2.3033 32783.0000 0.0213 0.0401 0.4979 0.0014
wealthq5 0.3424 0.1285 2.6646 32763.0000 0.0077 0.0905 0.5943 0.0015

zone2 0.2205 0.0990 2.2261 33100.0000 0.0260 0.0263 0.4146 0.0002
zone3 0.0573 0.1105 0.5189 33083.0000 0.6038 -0.1592 0.2738 0.0004
zone4 -1.0359 0.1293 -8.0103 33098.0000 0.0000 -1.2894 -0.7824 0.0003
zone5 -0.3882 0.0979 -3.9638 33087.0000 0.0001 -0.5802 -0.1962 0.0004
zone6 -0.6090 0.1069 -5.6953 33105.0000 0.0000 -0.8186 -0.3994 0.0001

location2 0.1396 0.0813 1.7183 33051.0000 0.0858 -0.0196 0.2989 0.0006
Sexgift2 0.1411 0.1137 1.2404 30625.0000 0.2149 -0.0819 0.3640 0.0041

MultSex2 0.1843 0.0842 2.1883 31676.0000 0.0287 0.0192 0.3494 0.0031
Sex12m2 -0.0575 0.1060 -0.5425 13996.0000 0.5875 -0.2652 0.1502 0.0170

NonmarSex12 0.0780 0.1139 0.6844 29950.0000 0.4937 -0.1454 0.3013 0.0047
CDHeard2 0.2562 0.1193 2.1483 31447.0000 0.0317 0.0225 0.4900 0.0033

AgeSexcat2 0.0621 0.1182 0.5253 30982.0000 0.5994 -0.1696 0.2938 0.0038
AgeSexcat3 -0.3473 0.1809 -1.9194 31970.0000 0.0549 -0.7020 0.0074 0.0027
AgeSexcat4 0.1870 0.1489 1.2565 12083.0000 0.2090 -0.1047 0.4788 0.0192

educ cat2 0.0337 0.1544 0.2180 33083.0000 0.8274 -0.2690 0.3363 0.0004
educ cat3 0.3684 0.1072 3.4374 32578.0000 0.0006 0.1584 0.5785 0.0018
educ cat4 0.2605 0.1110 2.3470 32412.0000 0.0189 0.0430 0.4781 0.0021
educ cat5 0.0647 0.1400 0.4618 32766.0000 0.6442 -0.2098 0.3391 0.0014
ExpSTIs2 1.1015 0.2939 3.7472 32975.0000 0.0002 0.5253 1.6776 0.0009
RespAge -0.0023 0.0036 -0.6377 32740.0000 0.5236 -0.0094 0.0048 0.0015

HeardHIV2 -0.0583 0.1384 -0.4208 27731.0000 0.6739 -0.3296 0.2131 0.0064
CompknoHIV2 -0.1225 0.0711 -1.7243 25253.0000 0.0847 -0.2618 0.0168 0.0081

Yearstud2 -0.1657 0.0684 -2.4228 33105.0000 0.0154 -0.2997 -0.0316 0.0001
Marital cat2 0.4699 0.1431 3.2840 3471.0000 0.0010 0.1893 0.7504 0.0429
Marital cat3 -0.2084 0.1207 -1.7262 29985.0000 0.0843 -0.4449 0.0282 0.0047

Male2 -0.2006 0.0711 -2.8226 33068.0000 0.0048 -0.3400 -0.0613 0.0005
Religion2 0.2039 0.2683 0.7602 33105.0000 0.4472 -0.3219 0.7298 0.0001
Religion3 -0.2185 0.2732 -0.8000 33105.0000 0.4237 -0.7540 0.3169 0.0001
CDagree 0.0392 0.0289 1.3551 32786.0000 0.1754 -0.0175 0.0958 0.0014

Table 15: Pooled logistic regression model with zone as covariable

ROC Curve of Imputation Set
Sampling 1 2 3 4 5 6 7 8

State

0.6895 0.6904 0.6881 0.689 0.6879 0.6876 0.6889 0.6879
SMOTE 0.6789 0.6796 0.6792 0.6792 0.6801 0.6797 0.6794 0.6792

down 0.6882 0.6881 0.6882 0.6861 0.6858 0.6862 0.6866 0.688

Table 16: Area under the curve of all eight roc curves for boosted trees
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Figure 43: ROC curves for Boosted Tree Model

ROC Curve of Imputation Set
Sampling 1 2 3 4 5 6 7 8

State
SMOTE 0.6457 0.6467 0.646 0.6465 0.6466 0.6469 0.6462 0.6453

down 0.6748 0.6751 0.6746 0.675 0.6744 0.6748 0.6745 0.6744
zone down 0.6057 0.6056 0.6053 0.6051 0.6062 0.6056 0.6054 0.6056

Table 17: Area under the curve of all eight roc curves for naive bayes with covariable
State
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Figure 44: ROC curves for naive Bayes
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Figure 45: Density plot for naive Bayes with SMOTE and co-variable State
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Figure 46: Density plot for naive Bayes with down-sampling and co-variable State
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E R-Code

The ’R’ code used for the calculations can be found on a CD attached to the last

page.
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