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XZ. Again

the clique (X1, X2, X3, X4) stays maximal in ĤB
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Â separated by variables. The values z are estimated and thus the

boxplots for variables Z1, . . . , Z4 show the results for the marginal

probability with the estimations. For the other variables x and y the
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Statistical Matching of Categorical Data with
Markov Networks

Katrin Newger

Abstract The aim of this thesis is to research how Markov networks can be uti-

lized for statistical matching with categorical data. For this goal, I summarize the

theory of statistical matching, and the theory of probabilistic graphical models with

a focus on Markov networks. The representation of a joint probability distribution

in Markov networks is restated for the aims of statistical matching, thus this the-

sis offers an equation with which the joint probability distribution of two disjoint

datasets can be estimated. Furthermore the theory of the Ising model is explained in

detail, as the Ising model is later on used for structure estimation. Since the thesis

takes up the research of applying Bayesian networks for statistical matching, I will

recap the theory of Bayesian networks, and compare the use of Bayesian networks

and Markov networks for statistical matching.

In the practical part of this thesis, 100 disjoint datasets A and B are simulated

for applying Markov networks for statistical matching. Both the macro and the

micro approach of statistical matching are pursued. I will use and discuss several

packages of the statistical programming software R for applying Markov networks.

In a final step the results are evaluated.

The results of applying Markov Networks for statistical matching shown in this

thesis are promising. Besides discussing limitations, I will ultimately give an outlook

for future research in this area.
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1 Introduction

Statistical matching is a relevant problem of today’s data analysis. The goal of

statistical matching is either to aggregate at least two independent datasets A and

B, or to estimate the joint probability distribution that generates the observed data.

Both datasets have the same population of interest, however, some variables are

observed only in A and some other variables only in B. Another thing A and B have

in common is a block of variables observed in both A and B.

Several methods are available for this aim, which differ in their assumptions. One

assumption that enables statistical matching is that of conditional independence.

With conditional independence the problem of matching two datasets becomes solv-

able.

A theory that decodes joint probabilities by using the independence structure of

random variables is probabilistic graphical models. It seems likely that probabilistic

graphical models can be a good opportunity for statistical matching. Probabilistic

graphical models have a wide theory and offer great options in their application.

So why not use them for the aims of statistical matching? A certain variation of

probabilistic graphical models are Bayesian networks, which assume a direction of

influence. The use of Bayesian networks for statistical matching is being researched

and applied at the LMU Munich Department of Statistics.

In this thesis I want to take up what Endres and Augustin (2016) developed

for Bayesian networks, and how they can be used for statistical matching. Instead

of using Bayesian networks, this thesis will deal with Markov networks, a further

variation of probabilistic graphical models. The question of interest is how Markov

networks can be utilized for the aims of statistical matching.

The proceedings of this thesis will be as follows: In Chapter 2 I will first explain

why statistical matching can be useful, and give a brief summary of the history of

statistical matching. Furthermore I will explain the theory of statistical matching

and the initial data situation the researcher is confronted with. Beside the assump-

tion of conditional independence, there are several other options for addressing the

problem of statistical matching. At the end of this chapter I will turn to categorical

data in statistical matching, which are the basis for this thesis.

In Chapter 3 I will explain the theory of probabilistic graphical models. Starting

with the basics of graph theory, I will move on to two main variations of probabilistic

graphical models already mentioned, i.e. Bayesian networks and Markov networks.

Chapter 4 contains the theory of how probabilistic graphical models can be

applied for statistical matching of datasets. At the beginning I will summarize the

work of Endres and Augustin (2016) and explain how to utilize Bayesian networks
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for statistical matching. This is followed by a central part of this thesis: the theory

of how Markov networks can be used for statistical matching.

The idea of this thesis is to match categorical data, more specifically binary

data. Therefore Chapter 5 deals with the Ising model. The Ising model enables to

estimate the structure of a Markov network for binary data. I will also go into more

depth about estimating parameters in the Ising model, since I also apply the theory

of Markov networks.

Chapter 6 summarizes the procedure of applying Markov networks for statistical

matching. As an application I work with simulated binary data that fulfills a certain

correlation structure. I will explain how the simulation of the data works, and what

to take care for. Next I will explain how to estimate the structure of a Markov

network for binary data, and identify adequate software for this aim. Then either

the joint probability is estimated (macro approach), or the missing data values for

the specific blocks of variables are estimated to obtain a synthetic data file Â d B̂

(micro approach). This chapter ends with an evaluation of the results of the macro

and micro approach.

Chapter 7 gives a short comparison of Bayesian networks and Markov networks

for statistical matching. I will point out how one variation of probabilistic graphical

models can be superior, and list the main differences between them when used for

statistical matching.

Chapter 8 will sum this thesis up with the results gained in its course. Further-

more I will give a critical discussion of the limitations of Markov networks when used

for statistical matching. Beside these limitations, there are still a lot of possibilities

Markov networks offer. Thus finally I will give an outlook for further research in

this field.
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2 Statistical Matching

As the title of this thesis reveals, I will deal with the idea of matching two datasets.

But what does ‘matching data’ even mean? Suppose we have two different datasets,

created from different units, meaning that a person who was interviewed for the

first dataset is unlikely to be interviewed for the second dataset as well. But we do

know that the population of interest for both surveys is the same. In this situation

it could be interesting to merge the two datasets into one big dataset, in order to

gain more profound insights about our target group. Two different approaches of

matching are possible: (1) exact matching, nowadays often referred to as linking the

microdata for identical units. Identical units does not mean that the same person

is interviewed, but rather that two persons have identical answers for a block of

common variables in our original data. And (2), synthetic or stochastic linking of

our original data. That means estimating an overall probability for all variables of

the two original datasets, or estimating values to create a new synthetic data file.

This approach is often called statistical matching (Okner 1974, pp. 347).

Regardless of the two approaches, the goal of merging data is to get more detailed

information of the population of interest, or to fill gaps in the existing data. Fur-

thermore it is obvious that merging data goes along with some problems, regardless

of the exact procedure used. First of all, we have to deal with a lot of missing data:

while a block of variables is included in both samples, another block of variables is

observed in the first sample only, and the last sample contains a block of – again

– different variables. Thus the missing data appears blockwise in the two datasets

(D’Orazio et al. 2006, p. 1). Figure 1 gives a first impression of the situation.

Figure 1: Initial situation of datasets in statistical matching: highlighted in green are
the common variables X. The variables Y are just observed in dataset A (yellow),
and the variables Z are only part of dataset B (red). Depicted from D’Orazio et al.
(2006, p. 5).

Furthermore we have to ask the question to what extent our data is matchable

at all. Is the block of variables that is included in both datasets comparable in

terms of the population definition, or e.g. income concepts? Another problem is the
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time period which lies between the data collection. If the time gap between the two

surveys is too big, perhaps the population changed too much, or something ‘game-

changing’ happened, like a tax reform. A last important problem is the evaluation of

the matched data. This is a difficult one, starting with the definition of “good”. Is it

important to have a good match for each unit, or for the mean, the variance, etc.? Or

can we concentrate only on some crucial variables? Obviously we cannot compare

our matched results to some already existing data, since matching data would then

be nonsensical (Okner 1974, pp. 347ff.). The quality of the matched data has been

evoking a critical discussion since the beginning of statistical matching in 1972, e.g.

by Sims (1972). A very extensive scheme for evaluating the results of statistical

matching can be found in Raessler (2002), who evaluates the quality on four levels.

The highest quality that can be achieved is to estimate the true missing values right,

followed by estimating the true joint probability distribution right. The third level

of quality refers to the correlation structure in the data, which is at best obtained

by statistical matching, and the fourth level evaluates if the marginal distributions

of the variables are estimated right (Raessler 2002, pp. 29ff.). Nonetheless, despite

evaluation being complicated, matching data is a promising field.

This thesis will deal with the second approach of matching: statistical matching.

It had its beginnings in the mid-1960s. In 1964, Budd et al. (1973) constructed

a synthetic data file in order to gain insights about the distribution of income in

the U.S. (ibid, pp. 657ff.). Furthermore Okner (1972) produced a synthetic data

file with matching, which contained information about socio-demographic variables,

but also variables of income and tax return of families. To get this comprehensive

synthetic dataset from two independently collected datasets, i.e. the Tax File of

1966 and the Survey of Economic Opportunities of 1967, statistical matching was

performed. Ever since, the attention of statistical matching continues (D’Orazio

et al. 2006, preface).

In this chapter I want to give a first understanding of statistical matching, in-

cluding an explanation of the initial situation of data and variables. Moreover I

will formulate the two different goals of statistical matching and will introduce the

central assumption, which allows to formulate a model that is solvable for the given

data. I will also introduce how maximum likelihood estimation can be used in

general for the aims of statistical matching.

2.1 Why Statistical Matching?

Confronted with statistical matching, the question arises, why match data at all?

In the 1960s – the time statistical matching was applied for the first time – the

attention for statistical matching was quite small. A possible reason for this small
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attention could be the fact that some decades ago the choice of datasets was not that

huge. For answering a special research topic, an extra survey was conducted. But

times change, and the term Big Data can be seen and read everywhere. The access

to data is huge, and even bigger are the opportunities to collect data, e.g. over the

internet or by tracking mobile data. With the growing amount of data available,

the belief to “find something in the data” has also grown, and this in turn entails

that more data is gathered. Researchers, governments and also companies record a

lot of data. Gathering data became something like a byproduct, characterized by

volume, velocity, and variety, often referred to as the three Vs1 (de Waal 2015, p. 4).

But still it remains a problem to get information about variables that are at first

sight not connected to each other. E.g. Facebook knows a lot of personal things

about people, like hobbies, preferred music, etc., but it is hard for Facebook to

evaluate purchase behavior. Thus even Big Data companies suffer from the problem

of not having all variables of interest in one dataset. Nevertheless we should use the

available data today, and there are techniques which try to bring them in context

so that the data has even more potential: case in point, statistical matching. The

interest in data and the belief that data of good quality and extensive amount leads

to improvements in several fields, could be a reason why the attention for statistical

matching grows, even today (de Waal 2015, pp. 4ff.).

But not just the fact that access to data is easier today speaks for statistical

matching. It is also the possibility to lower the number of questions in a ques-

tionnaire, if the researcher knows that there already is a dataset including relevant

questions for this target group. This leads to two advantages: first of of all, partic-

ipants of a study are likely to give more trustful answers, and their willingness to

finish the study is higher for small questionnaires. Secondly the costs are lower if

the study has no need to be too extensive (van der Putten et al. 2002, pp. 2ff.).

As we can see, there are several reasons for using statistical matching. In the

following, we will go into more detail about this idea.

2.2 Starting Position of Statistical Matching

After a short summary of statistical matching and why to use it, I will focus in the

following on the general theory of statistical matching. As the title of this thesis

reveals, I will concentrate on categorical data, but of course statistical matching is

also possible for continuous variables. A lot of literature is available for this context,

1The term ‘volume’ refers to the tremendous size of the datasets, which is usually too big for
a normal computer to handle. The term ‘velocity’ captures the fact that new data is produced
faster and faster, and that it is available for further research nearly right after collecting. The
term ‘variety’ corresponds to the fact that in nearly all areas data is collected, e.g. machinery data,
network data, data generated by search engines, etc. (de Waal 2015, p. 4).
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see e.g. Raessler (2002) and D’Orazio et al. (2006).

In the following I will notate random variables as upper-case letters, e.g. X

represents a random variable. Realizations of random variables will be notated in

lower-case, e.g. x is a realization of the random variable X. Bold-case letters indicate

matrices or vectors, while scalars will be non-bold.

Data matching problems start with two independent sample surveys,2 let us

call them A and B. Usually these datasets are produced entirely independently of

each other, with the aim to examine different questions. The observations in both

datasets are independent and identically distributed (i.i.d.). Nevertheless they have

something in common:

1. A set of variables X is included in both samples A and B.

2. The target group of both samples is the same. Consequently the observed

data in both datasets was generated by the same joint probability distribution

PXYZ.

These two commonalities are the basis of statistical matching and have further

consequences for the statistical setting of our problem. Thus we have two datasets

A ∈ RnA×(p+q) and B ∈ RnB×(p+r), of which A includes a set of realizations of variable

Y = (Y1, . . . , Yq)
′ and a set of realizations of variable X = (X1, . . . , Xp)

′; and

B includes a set of realizations of the variable Z = (Z1, . . . , Zr)
′, and also X =

(X1, . . . , Xp)
′ like in A. In our case all variables are categorical. Since we assume

that all variables come from the same population, the random variable (X,Y,Z) is

generated by the probability PXYZ. We now assume that all observations in A and

B are generated by the joint probability distribution PXYZ, but remember that Z is

missing in A, and Y is missing in B. Figure 1 above illustrates the initial situation

of the datasets.

The aim of statistical matching is now to estimate the joint probability distri-

bution P̂XYZ, even though joint information of all three variable blocks (X,Y,Z)

does not exist. This framework leads to a dual problem: The fact that Z is missing

in A and Y is missing in B can be seen as a missing data problem, and further we

cannot revert to any joint information about P (X = x,Y = y,Z = z), thus there

is no obvious solution to finding the joint probability distribution PXYZ (D’Orazio

et al. 2006, pp. 3ff.). D’Orazio et al. (2006) explains that we can assume a ‘missing

completely at random’ mechanism (MCAR) for the missing realizations y and z,

meaning that both the observed and the unobserved units are independent from the

2It is also possible to match data of more than two datasets, but for reasons of simplicity I
will formulate the theory for matching two datasets. The procedure for several datasets is entirely
analogous (D’Orazio et al. 2006, p. 2).
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missing entries. In Appendix A I will give a short explanation why MCAR can be

assumed.3

In statistical matching we can distinguish between two different approaches,

although they are not disjoint (D’Orazio et al. 2006, pp. 2ff.):

• Micro approach: The aim of this approach is to construct a complete syn-

thetic data file ÂdB̂, in which the missing observations of Y,Z are estimated –

with uncertainty. This fact explains the term synthetic, since parts of Y,Z are

not observed directly in the survey, but are synthetically added by estimation.

• Macro approach: Here the aim is to estimate the joint probability

PXYZ, but only with our datasets A and B, thus without having joint infor-

mation.

To tackle the problems which come along with statistical matching, D’Orazio

et al. (2006) gives three ideas for general solutions:

• Assumption of conditional independence: Y and Z are independent given X.

Under this assumption an estimation model for the joint probability PXYZ is

identifiable, even though we have to deal with missing data. By using the so-

called chain rule we can estimate the joint probability (ibid., p. 13). Chapter

2.4 will deal with this assumption in more detail.

• Use of auxiliary information: As D’Orazio et al. (2006) points out, conditional

independence of Y and Z given X is vague and doubtable. The use of auxiliary

information – contained in a further dataset (besides A and B) – can solve the

problem and lead to parameter estimates that do not suffer from a possibly

incorrect assumption (ibid., p. 65).

• Involvement of uncertainty: It could always be that conditional independence

(CI) is at least questionable and that auxiliary information is not available. If

both is the case, the former explained methods are not appropriate. Rather

we need to try to work with our data situation by taking into account this un-

certainty in the model for the joint probability of PXYZ. Standard techniques,

e.g. Maximum Likelihood Estimation (MLE) are not applicable anymore: we

cannot estimate unit values for the parameters of the probability distribution.

Nevertheless it is possible to estimate a set or interval of possible parameters

(macro approach), or sets/intervals of possible observations for our missing

observations of Y and Z (micro approach) (ibid., p. 97).

3More general information about missing mechanisms and their consequences for statistical
matching can be found in D’Orazio et al. (2006), and generally in Rubin (1976).
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2.3 Matching Categorical Data

This thesis has the aim to match categorical data, thus I want to take a detailed

look at the distributions of categorical data. First of all, categorical data are discrete

features, meaning that the variables have a limited number of possible values. A

simple example is the variable marital status. Possible values are ‘single’, ‘married’,

or ‘widowed’. Furthermore it would be without meaning to construct a ranking

between the values, thus we cannot say that being single is better than being married

(Fahrmeir et al. 2011, pp. 16ff.). A suitable distribution for categorical data is

the multinomial distribution.4 If we deal with a categorical variable X with n

observations, distribution of counts for X given a certain number of observations

follows a multinomial distribution. A special case of the multinomial distribution

is the binomial distribution, in which just two cases are possible – e.g., the variable

smoker has two values, “yes” or “no”. In practice the binary variable can have two

values, which are coded 0/1. The value 1 occurs with probability π, and hence 0

occurs with probability 1− π (Agresti 2007, pp. 4ff.).

Definition 1 Binomial probability distribution:

The probability that a binary variable X with xi ∈ {0, 1}n is observed to be 1 exactly

x times is then

P (Xi = x) =

(
n

x

)
πx(1− π)n−x (2.1)

(Agresti 2007, pp. 4ff.).

For our setting with three variable blocks X,Y and Z, each variable is binary,

thus it holds that for variable Xi of block X we have n = nA +nB observations, with

probability πi for i = 1, . . . , p, thus

P (Xi = x) =

(
n

x

)
πxi (1− πi)n−x. (2.2)

The same holds for variable Yj of block Y, whereas we only have nA observations

and probability πj for Yj = 1, with j = 1, . . . , q, thus

P (Yj = y) =

(
nA

y

)
πyj (1− πj)nA−y; (2.3)

and for variable Zk of block Z a total of nB observations is available, with probability

4More information on the multinomial distribution can be found in Agresti (2007).
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πk for Zk = 1, k = 1, . . . , r, thus

P (Zk = z) =

(
nB

z

)
πzk(1− πk)nB−z. (2.4)

In short, we can say that Xi ∼ B(n, πi), Yj ∼ B(nA, πj) and Zk ∼ B(nB, πk).

2.4 The Conditional Independence Assumption

In research concerning statistical matching an important assumption is often made:

the conditional independence assumption (CIA). In the following I will explain what

conditional independence means, and we will see the consequences of the CIA for

the definition of the joint probability PXYZ in statistical matching.

In statistical theory, independence of two or more variables is a central concept,

which defines if random events are standing in any relation to each other. To

illustrate independence, we have two random variables X and Z of the probability

space (Ω,F , P ), with Ω being the sample space, F being the set of events, and

P being a probability measure.5 Our matter of interest is the probability P (Y ),

which tells us the probability that Y occurs. Someone informs us that Z already

has occurred. If this leads to a re-evaluation of P (Y ), the two variables Y and Z

are not independent of each other, and it holds that:

Definition 2 Dependence of two variables:

P (Y ) 6= P (Y | Z), (2.5)

in which P (Y | Z) can be interpreted as the probability of Y if Z already happened

(Meintrup and Schäffler 2005, pp. 119ff.). If the incidence of Z does not lead to a

re-evaluation of P (Y ), we can say that Y is independent of Z, and it holds that:

Definition 3 Probability of two independent variables:

P (Y ) = P (Y | Z). (2.6)

So far this was a short explanation of independence and conditional probability.

Now we will turn to conditional independence. In our former setting we just had to

deal with two variables Y and Z. To work with conditional independence, we have

to consider at least three variables Y , Z, and X of the probability room (Ω,F , P ).

We now assume that Y and Z are not independent, thus P (Y ) 6= P (Y | Z) meaning

5For reasons of simplicity in the following I will not work with blocks of variables like I do in
the statistical matching context.
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that if we are informed that Z occurs, we re-evaluate the probability of Y . However

the situation changes: Now X occurs, and with this information, the probability for

Y will not change anymore, regardless of Z. Thus Z and Y do not influence each

other anymore, given X.

Definition 4 Conditional Independence:

A variable Y is conditionallly independent of a variable Z given a variable X in P ,

which is denoted by

P |= (Y ⊥ Z | X),

if P (Y | Z,X) = P (Y | X) or if P (Z,X) = 0 (Koller and Friedman 2009, p. 24).

If P |= (Y ⊥ Z | X) holds, it follows that

P (Y, Z | X) = P (Y | X) · P (Z | X), ∀ x ∈ X ,y ∈ Y , z ∈ Z (2.7)

(Studeny 2005, pp. 9ff., and Koller and Friedman 2009, pp. 23ff.).

As I already mentioned, the CIA is of great relevance in statistical matching. Our

goal is to estimate the joint probability distribution of our common variables and

our specific variables. Since we never observed all variables at once, it is important

to use CI of the specific variables given the common variables, to make the joint

probability distribution representable in our concrete data situation.6

The assumption of conditional independence enables to use the chain rule to

make the joint probability distribution identifiable (Meintrup and Schäffler 2005,

pp. 125ff.):

Definition 5 Chain rule for conditional independence:

P (X, Y, Z) = P (Y | X) · P (Z | X) · P (X) (2.8)

(Koller and Friedman 2009, p. 18).

Equation (2.8) ca be used directly in the statistical matching context, in which

we have three blocks of variables X, Y and Z. P (Y | X) is observed in dataset A;

P (Z | X) is observed in dataset B; and P (X) is the probability observed in both

datasets A and B. We can see that the impact of the CIA is great and turns the

situation to a solvable one, given our data. In application it would be optimal to

test if CIA holds before we build a model based on this assumption. Unfortunately

6At this point it should be noted that the common variables ought to be a good predictor for
the specific variables (Raessler 2002, p. 19).
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this is not possible with our combined datasets A and B, since we do not have a

single joint observation. Thus we have to be aware that CIA does not hold at all

and we receive misleading and wrong results (D’Orazio et al. 2006, p. 13).

2.5 Parameter Estimation in Statistical Matching

2.5.1 Maximum Likelihood Estimation for Univariate Data in Statistical

Matching

In a parametric approach of statistical matching, we assume that P (X,Y,Z;θ) ∈ F
and θ ∈ Θ ⊆ RT within T ∈ N+. F is a set of parametric distributions and consists

of three factors, given CI holds, as can be seen in Equation (2.8). Hence in a

parametric approach we can write the probability as follows:

PX,Y,Z(x,y, z;θ)
i.i.d.
= PYZ|X(y, z | x; θYZ|X) · PX(x; θX)

CIA
= PY|X(y | x; θY|X) · PZ|X(z | x; θZ|X) · PX(x; θX), (2.9)

in which θX ∈ ΘX, θY|X ∈ ΘY|X, and θZ|X ∈ ΘZ|X. To estimate the density function

we have to deal with the parameter vector θ = (θX,θY|X,θZ|X) (D’Orazio et al. 2006,

pp. 14ff.). A common statistical approach for estimating parameters is maximum

likelihood estimation (MLE). The goal of MLE is to estimate the parameter vector

θ by maximizing the likelihood of θ given the observations in dataset A and B.

L(θ | A d B) =

nA∏
a

PXY(xa,ya;θ) ·
nB∏
b

PXZ(xb, zb;θ)

=

nA∏
a

PY|X(ya | xa;θY|X) ·
nB∏
b

PZ|X(zb | xb;θZ|X) (2.10)

×
nA∏
a

PX(xa;θX) ·
nB∏
b

PX(xb;θX).

It can be seen that Equation (2.10) – the likelihood – is solvable with our two

datasets A and B even though missing data for Y and Z appears (ibid.). In statistical

matching we usually are dealing with a multivariate problem, since we have several

X, Y and Z variables. In the follwing I will focus on the case of multivariate discrete

data, while D’Orazio et al. (2006, pp. 19ff.) gives an explanation of how to estimate

the parameter in a multinomial case.
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2.5.2 Maximum Likelihood Estimation for Multivariate Data in Statis-

tical Matching

In our case we assume a binomial distribution for the variables X, Y and Z. As

we can see in Equation (2.9), we are dealing with three random variable matri-

ces (Y | X), (Z | X) and X, hence we are confronted with a multivariate setting.

D’Orazio et al. (2006, pp. 23ff.) argues that a convincing way to deal with this mul-

tivariate data is to break them down to univariate data. The authors propose to

assume an appropriate saturated loglinear model to handle (Y | X), (Z | X) and X

as univariate (Y | X), (Z | X) and X (D’Orazio et al. 2006, p. 24). Loglinear models

can be used to model cell counts in contingency tables, by specifying what effect the

level of the categorical data has on the size of the cell count. Loglinear models are

also a flexible and interpretable tool for high-dimensional contingency tables, and

for modeling the association structure between the variables. In saturated loglinear

models we have no a priori constraints at all (usually some interaction effects are

missing), thus all interaction terms are included. More information about loglinear

models can be found e.g. in Andreß et al. (1997).

For transforming the multivariate case into a univariate case, we assume that X

has in total I = 2p categories, Y has in total J = 2q categories, and Z has in total

K = 2r categories. Though instead of dealing with p binary X variables, q binary

Y variables, and r binary Z variables, we are confronted with one variable X that

has now I > 2 categories, one variable Y that has J > 2 categories and one variable

Z that has K > 2 categories. If e.g. p = q = r = 2, this leads to I = J = K = 4

categories per variable X, Y and Z. Three contingency tables are then needed for

estimation: The first is just for X, the second represents Y | X, and the third

Z | X. The second contingency table for Y | X contains the data of dataset A, and

has a dimension of (I × J), wheres the third contingency table contains the data of

dataset B and has a dimension of (I ×K). The first contingency table contains all

information available for X, thus the data of A and B is summarized, and we have

a dimension of (1× I).

Furthermore nA
ij. and nB

i.k are defined as the observed marginal tables from

datasets A and B, whereas i, j, k ∈ ∆, and ∆ = {(i, j, k) : i = 1, . . . , I; j =

1, . . . , J ; k = 1, . . . , K} and θ = {θijk}. Given the likelihood (2.10), the estimated

parameters for a univariate setting for the parameter πijk are:

θ̂i.. =
nA
i.. + nB

i..

nA + nB
, i = 1, . . . I, (2.11)

θ̂j|i =
nA
ij.

nA
i..

, i = 1, . . . I; j = 1, . . . , J, and (2.12)
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θ̂k|i =
nB
i.k

nB
i..

, i = 1, . . . I; k = 1, . . . , K (2.13)

where the ‘dot’ symbol denotes marginalization of the corresponding variables

(D’Orazio et al. 2006, pp. 14ff.).

The authors also give an example of the concept for a better understanding

(D’Orazio et al. 2006, pp. 24ff.). Note that there are several more alternatives

besides MLE, which are explained for instance in D’Orazio et al. (2006) and Raessler

(2002). For applying the theory to data, there is an R-package called StatMatch,

which offers varying functions for statistical matching (D’Orazio 2016).
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3 Probabilistic Graphical Models

As the thesis title reveals, two theories come together: statistical matching, which

was part of Chapter 2, and Markov networks. The theory of Markov networks

belongs to the theory of probabilistic graphical models. In this chapter I will give

an idea what probabilistic graphical models are, and what part Markov networks

play in this theory.

3.1 What Probabilistic Graphical Models Are

As soon as we deal with real world problems, uncertainty is something we are con-

fronted with all the time. An old but also very deeply elaborated theory is probabil-

ity theory. Together with the theory of statistics, both are the basis of stochastics.

Probability theory has its interest in situations that are random. However, at first

sight this seems like an antagonism: isn’t the main characteristic of randomness

that it is not possible to calculate with? But exactly this is the idea of stochas-

tics, or probability theory: to provide a formalism for describing and working with

random events. The essential part of probability theory is to build models and

evaluate them for specific situations which are characterized by uncertainty. The

role of statistics, which is built on probabilistic models, is to infer from a certain

number of observations to the population (Meintrup and Schäffler 2005, Preface).

To simplify probabilistic models, a convincing approach is to use knowledge from in-

dependence assumptions. And here we are: probability theory, complemented with

independence assumptions, yields graphical models. Graphical models illustrate in-

dependence assumptions very intuitively. The two main categories of probabilistic

graphical models are Bayesian networks and Markov networks (Sucar 2015, pp. 5ff.).

Graphical models are a union of probability theory and graph theory. The aspect

of uncertainty is the probabilistic part, whereas the modularity of graphical models

comes from graph theory (Sucar 2015, pp. 3ff.). A basic knowledge of graph theory

is required to understand the workings of graphical models. For that reason I will

introduce the main concepts of graph theory in the following.7

3.2 Graph Theory

The main literature for this chapter is Beierle and Kern-Isberner (2006, pp. 451ff.),

and Bondy and Murty (1982, ch. 1); all definitions in this chapter come from this

literature.

7See Meintrup and Schäffler (2005) for more information on probability theory.
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The requirement to illustrate situations via diagrams is very popular: it is easy to

illustrate, very good to understand, and helps find core information and connections

for special situations or problems. Thus graphs are often used because they are able

to simplify complex situations (Bondy and Murty 1982, pp. 1ff.). Family trees, the

metro net of a city, or also social networks like Facebook, they all can be represented

as graphs. Furthermore we can distinguish between directed and undirected graphs.

Thus we have to define what exactly a graph is, for which I will first give the

definition of a directed graph, followed by the definition of an undirected graph.

Definition 6 Directed graph:

A directed graph G is an ordered pair of (V , E), with V being a set of vertices or

nodes, and E ⊆ V × V a set of pairs of nodes (V,W ), which are directed edges of G.

An undirected graph can bee seen as a special case of a directed graph. In this

thesis I will distinguish between the two by using G for a directed graph, and H for

an undirected graph.

Definition 7 Undirected graph:

An undirected graph H is an ordered pair of (V , E), with a symmetric relation E,

i.e. for all V,W ∈ V:

(V,W ) ∈ E ⇒ (W,V ) ∈ E

Throughout this thesis I will illustrate vertices/nodes as circles. The label of a node

is usually written inside the circle. The edges of a directed graph will be illustrated

as arrows, whereas the edges of an undirected graph will be represented with just a

line between two nodes. An example for both a directed and an undirected graph

can be seen in Figure 2.

If two nodes in an undirected graph are linked, they are called adjacent. In Figure

2b) the nodes (X,Z) and (Y,X) are adjacent. A further important definition – for

both directed and undirected graphs – is about paths in a graph.

Definition 8 Path, Cycle:

For either a directed graph G = (V , E) or an undirected graph H = (V , E), a path of

length S of two nodes V, V ′ ∈ V is a sequence of nodes

V0, V1, . . . , Vn

so that V = V0 and V ′ = Vn, and for each s ∈ {1, . . . S}, (Vs−1, Vs) ∈ E .
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A cycle of length n is a path from V0, V1, . . . , vn with V0 = Vn, i.e. the initial and the

final point are the same.

Figure 2: Part a) shows an example of a directed graph with six nodes, b) is an
undirected graph with six nodes.

In Figure 2b) the sequence of U–W–X–Z–V is a path, and the sequence W–Y –

X–W is a cycle.

Another concept of graph theory which is needed later for Bayesian networks

is that of directed acyclic graphs (DAGs). This means that in a directed graph G
there is no cycle at all. Further important terms in directed graphs are parent and

child/descendant.

Definition 9 Parent node, Child node:

G = (V , E) being a DAG. If for V,W ∈ V there is an edge from W to V , thus

(W,V ) ∈ E, the node W is called parent, and the node V is called child. The set of

parent nodes Pa(V ) of node V is written as

Pa(V ) = {W ∈ V | (W,V ) ∈ E}.

Figure 2b) includes several parent nodes and child nodes, e.g. Pa(Y ) = {X,W}.
The term descendant is a bit more general. For G being a DAG, and V,W ∈ G, if

there exists a path from W to V in G, then the node V is a descendant of W , or

De(W ) = {V }. In Figure 2a), De(U) = {Y }, because there is a path from U over

W to Y .

Another tool to describe undirected graphs is the idea of cliques, which is very

important for understanding Markov networks. An undirected graph H is called
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Figure 3: Part a) shows a complete undirected graph. Part b) shows an undirected
graph which is not complete.

complete if every pair of nodes in the graph is linked through an edge. Figure 3a) has

six pairs of nodes, which are (X, Y ), (X,W ), (X,Z), (Y,W ), (Y, Z), (Z,W ), and each

of these pairs is linked through an edge; this graph is thus an example of a complete

graph. Moreover we can split the graph in Figure 3a) into four complete subsets,

which are (X, Y, Z), (Y, Z,W ), (X,Z,W ) and (X, Y,W ); each of these subsets is in

turn complete.

With this knowledge we can introduce cliques. A clique C is a subset of graph

H such that C is a complete subset. Additionally if there is no node in H that can

be added to the clique C such that C remains a clique, C is called maximal.

Thus the complete subset (X, Y, Z) of the graph in Figure 3a) is not a maximal

clique, since we can add a further node W to this subset and the subset would

still be complete, meaning that every pair of nodes is linked again. If we take

a look at the graph in Figure 3b), we can find five maximal cliques, which are

(X, Y, Z), (X, Y, V ), (X,W ), (V, U), and (U,W ). If a graph is separated by cliques,

then every node of V is included in at least one clique. As we can see in the graph

in Figure 3b), it is also possible that a node is included in several cliques, e.g. the

node Y (Sucar 2015, pp. 27ff.).

This brief summary of graph theory should suffice as a basis for explaining

Markov networks and Bayesian networks, which come next.

3.3 Markov Networks

When working with uncertainty in complex systems, probability distributions are a

great way to tackle arising problems. Nevertheless if the system gets too complex,

the size of the probability distribution grows exponentially. Moreover probability



18 Statistical Matching of Categorical Data with Markov Networks

distributions themselves are complex too, and not very intuitive. Even for experts it

is hard to find important relations between variables. Hence we have to find a way

to work with probability distributions in a more intuitive way. Many experts have

a good understanding and knowledge which components of a system influence each

other and in which way. Besides, humans have a good understanding for maps and

graphs; both help to simplify context. If we put together both probabilistic inference

and graph theory, we get a powerful tool. And one way to work with probabilistic

models is undirected probabilistic models, or Markov networks (MNs) (Sucar 2015,

pp. 8ff.).

From the viewpoint of graph theory, a MN is an undirected graph H = {V , E}
like in Definition 7. The nodes in the graph H represent random variables X =

(X1, . . . , Xp)
′. At this point I will ignore the data context of statistical matching,

and will just use X, nevertheless the set of nodes V can be expanded with further

nodes. Thus if we want to build a MN for p variables, the MN will have p nodes,

one for each variable. The notation for nodes will be the same as for the random

variables, thus V = {X1, . . . , Xp}. The goal of a MN is to decode the independence

structure between X. A MN contains three types of dependences and independences:

1. variables that stand in direct relation, i.e. influence each other directly,

2. variables that stand in indirect relation, i.e. influence each other through a set

of further variables, and

3. variables that are independent of each other.

In a MN one can imagine that the probabilistic influence flows through the graph,

and with this picture in mind it is easier to understand independences represented

in a MN (Koller and Friedman 2009, pp. 71ff.). In probabilistic graphical models

we put together two ideas: (1) the concept of conditional independence, and (2) the

theory of graph separation.

Conditional independence comes from probability theory and is already explained

in Chapter 2.4. Graph separation however is part of graph theory: for three disjunct

subsets8 X,Y,Z ⊆ V , we say that Z separates X and Y, or

X ⊥H Y | Z, (3.1)

iff each path from the nodes in X to the nodes in Y passes at least one node in Z; this

is denoted by⊥H. Graph separation enables to represent direct dependences and also

8Or blocks of random variables, which are represented by three disjoint sets of nodes. For this
reason I will use bold-case letters X,Y and Z, to retain the connection to statistical matching.
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conditional independences in a MN. The ideal case is now to represent conditional

independences of the joint probability distribution P via graphical separation, thus

X ⊥H Y | Z ⇔ X ⊥P Y | Z, (3.2)

with ⊥P denoting independences in the probability distribution (Beierle and Kern-

Isberner 2006, pp. 458ff.).

3.3.1 Markov Property and Independences in Markov Networks

We are still dealing with an undirected graph H = {V , E}, and furthermore P is a

probability distribution. We can distinguish between three types of MN:

• H is called dependence map (D-map) for P , if the conditional independence

in P is represented in H:

X ⊥P Y | Z ⇒ X ⊥H Y | Z; (3.3)

• H is called independence map (I-map) for P , if sets of nodes that are separated

in the graph are indeed conditionally independent in P :

X ⊥H Y | Z ⇒ X ⊥P Y | Z; (3.4)

• H is called perfect graph for P iff H is both I-map and D-map for P :

X ⊥H Y | Z ⇔ X ⊥P Y | Z (3.5)

(Beierle and Kern-Isberner 2006, pp. 364ff.).

In turn, a MN can represent three types of conditional independences of variables:

1. pairwise independence: every strictly positive probability distribution P has

a unique MN H = 〈V , E〉 with

(X, Y ) 6∈ E iff X ⊥P Y | (V − {X, Y }), (3.6)

with (V − {X, Y }) indicating that the elements X and Y are excluded from

the set of nodes V ;

2. local independence Il(H): for a given graph H the neighbors of X are defined

as Nei(X) in H. We define the local independences associated with X in H
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to be:

Il(H) = {(X ⊥ X − {X} −NeiH(X) | NeiH(X) : X ∈ X}; (3.7)

3. global independence I(H): a set of nodes Z separates X and Y in a MN H,

denoted sepH(X; Y | Z), if there is no path between any node X ∈ X and

Y ∈ Y given Z. We define the global independences associated with H to be:

I(H) = {(X ⊥ Y | Z) : sepH(X; Y | Z)}. (3.8)

These three types of independences are the Markov property for MNs (Frydenberg

1990, pp. 337ff.). In general the types of independence are not equal, but for the case

of strictly positive probability distributions, all are equivalent (Koller and Friedman

2009, pp. 118ff.).

3.3.2 The Joint Probability Distribution of a Markov Network

Since we want to use MNs for statistical matching, the independence structure in

a MN is important for the application. Nevertheless the actual question is how the

probability P (X) can be expressed with a MN. If we want to parameterize a MN, we

are not working with conditional probability distributions directly (like in a Bayesian

network), but rather with so-called factors. Factors represent the symmetric relation

between linked nodes, and capture the affinities between variables. Note that factors

are no probabilities at all, rather factors can be seen as a degree of conformity. This

makes them hard to understand and not very intuitive in their interpretation.

Definition 10 Factor:

Let D be a set of random variables. A factor φ is defined to be a function from

possible values, V al(D) to R. A factor is non-negative if all its entries are non-

negative. The set of variables D is called the scope of the factor, and is denoted

Scope[φ].

This thesis restricts itself to nonnegative factors, thus as we see in Definition 10,

a factor can be any positive number and is not a limited number between [0, 1]. By

using factors a MN can be parameterized; in MNs the factors have a similar role as

conditional independence distributions have in Bayesian networks; this I will explain

later. To parameterize the MN we divide the MN in several subsets of variables.

For this we need another definition, which gives us more opportunities for factors

(Koller and Friedman 2009, pp. 107ff.).
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Definition 11 Factor product:

Let X, Y and Z be three disjoint sets of variables, and let φ1(X,Y) and φ2(Y,Z) be

two factors. The factor product φ1×φ2 is defined to be a factor ψ : V al(X,Y,Z) 7→
R as follows:

ψ(X,Y,Z) = φ1(X,Y)× φ2(Y,Z). (3.9)

It is important to understand that if two factors are multiplied they have to fit,

meaning that if Y is part of both factors, the value of Y has to be the same for the

factors multiplied.

With this basis we can move on to undirected parameterization of a MN, which

is done with the Gibbs distribution.

Definition 12 Gibbs distribution

A distribution PΦ is a Gibbs distribution parameterized by a set of factors Φ =

{φ1(D1), φ2(D2), . . . , φk(Dk} if it is defined as follows:

PΦ(X1, . . . , Xn) =
1

ζ
P̃Φ(X1, . . . , Xn), (3.10)

with

P̃Φ(X1, . . . , Xn) = φ1(D1)× φ2(D2)× · · · × φm(Dm)

being an unnormalized measure, and

ζ =
∑

X1,...,Xn

P̃Φ(X1, . . . , Xn)

being a normalizing constant called the partition function.

Note that the partition function is very important since the factors themselves are

not normalized: P̃Φ /∈ [0, 1]. Moreover we can see that each factor contributes a part

to the joint probability distribution (Koller and Friedman 2009, pp. 108ff.).

A question that has not been answered yet is how to choose the factors. For

the parameterization of a MN it is important that the actual structure H of a MN

is captured through the Gibbs distribution. If two nodes are linked, the Gibbs

distribution should reflect this. To reach this goal it is important that each node

is included at least once in a factor, and furthermore we need factors for direct

connections between nodes. These requirements lead to the characteristics of cliques,

which I explained in Chapter 3.2. Remember that if a graph is separated in its
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maximal cliques, each node is in at least one clique, and cliques are complete subsets

of the graph. This allows us to factorize the joint probability distribution via the

(maximal) cliques of the MN.9 By just using cliques for the factors, we can reduce

the total number of factors in the parameterization of the MN:

PΦ(X1, . . . , Xn) =
1

ζ

∏
C∈Cliques(H)

φC(XC), (3.11)

with ζ being the partition function (Koller and Friedman 2009, pp. 106ff.).

With these principles of Markov networks in mind, we can move on to Bayesian

networks. Even though the focus of this thesis is on statistical matching with

MN, the research and the idea of this thesis originates in statistical matching with

Bayesian networks.

3.4 Bayesian Networks

For introducing Bayesian networks (BNs) I will give a short example that demon-

strates the difference between BNs and MNs. The example originally comes from

Beierle and Kern-Isberner (2006).

Coin toss example:

L ∈ {head, number} and M ∈ {head, number} are two random variables both

describing the toss of a fair coin. It is obvious that the two variables are independent

of each other. There is also the random variable G: “ringing of a bell”, with

G ∈ {ringin, not ringing}, which happens if both coins have the same result, hence

(l,m) ∈ {(head, head), (number, number)}. As soon as one takes into consideration

the third variable G, L and M are not conditionally independent. We can write

this situation as

L ⊥P M | ∅, but not L ⊥P M | G. (3.12)

To represent this situation in a MN is impossible, since there is a obvious di-

rection of influence. Nevertheless another graphical representation is possible: BNs

represent such a structure in P . In the coin toss example, the result of the two coins

influences the result of the bell. This is not a symmetric relation anymore, rather a

directional component is involved. The corresponding BN for this situation is shown

in Figure 4.

In terms of graph theory, a BN is a directed acyclic graph. As with MNs, also a

9It is not necessary to use maximal cliques, as we will see in Chapter 5.1.
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Figure 4: Bayesian network for the coin toss example. The influence goes from L
and M to G. This is demonstrated with directed edges.

BN represents a set of random variables X = (X1, . . . , Xp) via nodes. Furthermore

nodes are connected with directed edges.

Pa(Xi) ⊆ V , with i = 1, . . . , p is the set of parent nodes; De(Xi) ⊆ V is the

set of descendants; and Nd(Xi) ⊆ V is the set of all non-descendants of X. A BN

encodes the following assumption of independence, also called local independences,

noted as

For each variable Xi : (Xi ⊥G Nd(Xi) | Pa(Xi)). (3.13)

Thus given the parents of a node, this very node is independent of all its non-

descendants.

At this point we can already see why BNs can be a powerful tool for statistical

matching: the commonality of conditional independences. In statistical matching

we assume CI to make our model identifiable, and BNs represent CI in a natural way.

Another thing statistical matching and BN have in common is the use of factorization

to model a probability distribution. Since a BN implies CI structures of the variables,

we are allowed to factorize a distribution P of G.10 Factorization in BNs means that

the probability for any set of values of the joint probability distribution can be

computed with a factor11 for each value. This leads to great flexibility and also less

computation capacity, since we do not have to take into consideration the whole

joint probability distribution to calculate a certain probability. The definition of the

10A proof why we can use factorization in BNs can be found in Koller and Friedman (2009, p.
62).

11In this context a factor is not to be understood as in Equation (10), but rather as a factor of
a product.
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chain rule of BNs is the following (Koller and Friedman 2009, p. 62):

Definition 13 Chain rule for Bayesian networks:

Let G be a BN graph over the variables X1, . . . , Xp ∈ V. We say that a distribution

P over the same space factorizes according to G if P can be expressed as a product

P (X1, . . . , Xp) =

p∏
i=1

P (Xi | Pa(Xi)
G). (3.14)

This equation is called the chain rule for Bayesian networks. The individual factors

P (Xi | Pa(Xi)
G) are called conditional probability distributions (CPDs).

The definition of the chain rule leads directly to the Markov assumption, which

states that each node is conditionally independent of its non-descendants, given its

parents.

We yet have to focus on independence structures presented in G. Even though

directed graphs are an intuitive tool to present distributions and dependences, it is

not obvious at first sight whether variables are independent given another variable.

Nevertheless it is important to understand the graph structure in more detail, since

the CI is the commonality between statistical matching and BN. Thus the question

is, in what kind of representation in G does (X ⊥ Y | Z) hold? To find a solution

to that question we have to talk about directed separation, in short d-separation.

In the two-variable case, there are two obvious options: (1) X and Y are not

connected to each other in any way. That implies that X and Y are marginally

independent of each other. (2) X and Y are directly connected with each other, e.g.

X → Y , meaning that X influences Y directly and thus X and Y are dependent.

As soon as a third variable Z is represented in G it is getting more complicated.

For three variables X, Y and Z there are four ways to be connected to each other.

The four options can be seen in Figure 5.

The question is now if (X ⊥ Y | Z) holds. For that aim I want to revert to an

example of Koller and Friedman (2009, pp. 70ff.):

Imagine a situation in which the student’s intelligence influences the student’s

grade. Thus for highly intelligent students it is more likely to get good grades.

Moreover we know that students with good grades are more likely to get a letter of

recommendation. Thus we have a situation like in Figure 5 a), with intelligence→
grade → letter. As long as we do not know about the student’s grades, it is

obvious that intelligence and letter are dependent. But as soon as we know about

the student’s grades (and they are good), we do not need any information on their

intelligence anymore to tell if they get a letter of recommendation. This is of course

no proof, but it helps to understand the situation of d-separation. In the case of
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Figure 5: The four possibilities how three variables X, Y and Z can be connected in
a Bayesian network structure G. Graph a) is called indirect causal effect, trail b) is
an indirect evidential effect, c) is called a common cause, and trail d) is a common
effect (Koller and Friedman 2009, p. 70).

indirect causal effect, we can say that (X ⊥ Y | Z). Since conditional independence

is symmetric, Figure 5 b) is trivial, and also (Y ⊥ X | Z) holds.

For Figure 5 c) holds that (X ⊥ Y | Z). Nevertheless I will illustrate this again

with an example of Koller and Friedman (2009, p. 70): Suppose we still have the

variables of a student’s intelligence and grade. It still holds that students with high

intelligence are likely to have good grades. We furthermore know that students with

high intelligence are also likely to have high SAT scores. Thus we are confronted

with a situation like this: grade← intelligence→ SAT . As long as we do not know

about the student’s intelligence, grade and SAT score are correlated. As soon as

we get informed about the student’s intelligence, this correlation disappears, since

actually it is the intelligence that influences both, the grade and the SAT score.

Again it holds that (X ⊥ Y | Z).

For the graph of Figure 5 d) we have to consider a further variable: the difficulty

of the tests the student wrote. It is intuitive that the less difficult a test is, the better

the grades are. Still also the intelligence influences the student’s grade. Hence we

have to deal with this situation: intelligence → grade ← difficulty. As long as we

cannot observe grade, intelligence and difficulty are independent (we can also get

to this conclusion with the graph). Thus the common effect graph is different from

the previous ones: If we cannot observe Z, then X and Y are independent. If we

observe the grade, and it is good, it is likely that the student is intelligent. But if we

now get informed that the test was also easy, the probability that the student has

high intelligence decreases, since the easy test has influence on the grade as well.

At this point I will introduce a new term: When influence can flow from X

to Y via Z, we define this trail X 
 Z 
 Y as active. To transmit this to our

graphs in Figure 5, we can summarize that for a) to c) the trails are active iff Z is

not observed, and for d) the trail is active iff either Z or one of Z’s descendants is

observed.
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This explanation of dependence structures in BNs should suffice as proof for now.

For more information I refer to Koller and Friedman (2009), since more technical

knowledge is not necessary at this point.

The definition of d-separation is given below:12

Definition 14 D-separation:

Let X,Y,Z be three sets of nodes in G. We say that X and Y are d-separated

given Z, denoted d-sepG(X; Y | Z), if there is no path between any node X ∈ X and

Y ∈ Y given Z. We use I(G) to denote the set of independences that correspond to

d-separation:

I(G) = {(X ⊥ Y | Z) : d-sepG(X; Y | Z)}

As we can see, the concept of d-separation for BNs may not be as intuitive as the

independences in MNs, but we have several more opportunities to model indepen-

dences in BNs. Furthermore BNs are capable of illustrating other dependences not

possible in MNs, and the other way around. The main difference regarding depen-

dence structure in MNs and BNs is that in MNs we are dealing with symmetric

influence, whereas in BNs the influence has a direction: the parent node influences

the child node.

This chapter paves the way for understanding of this thesis. It summarizes the

theory of probabilistic graphical models, starting with the fundamentals of graph

theory. The two main variations of probabilistic graphical models explained in this

chapter, Markov networks and Bayesian networks, are used in the context of sta-

tistical matching. The next chapter will bring both theories together: probabilistic

graphical models, and statistical matching.

12Again, I will use bold notation X,Y and Z, since they represent blocks of random variables.
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4 Statistical Matching with Probabilistic Graph-

ical Models

Probabilistic graphical models are a powerful tool for breaking down independence

structures in an intuitive way, and even the joint probability distribution is compre-

hensible. These two factors are needed for statistical matching: computing a joint

probability distribution, and assuming conditional independence. Among the first

to use probabilistic graphical models for the aim of statistical matching were Eva

Endres and Thomas Augustin (2016). I will begin this chapter with explaining their

work in this field.

4.1 Matching Discrete Data with Bayesian Networks

So far I have given a basic introduction into Bayesian networks. Endres and Augustin

(2016) were among the first to use them for statistical matching of discrete data,

and they did formal work to utilize BNs for this goal.

To bring BNs and statistical matching together, we have to remember the frame-

work of statistical matching: we are dealing with three blocks of variables. The

common variables X which are observed in both datasets A and B. And we have our

partly missing variables Y ∈ A and Z ∈ B. Since a BN implies conditional indepen-

dences, in its graph we have to use the CIA for our statistical matching scenario,

in order to bring the two concepts together. Since we are confronted with missing

data, we have no other option than to make sure that influence flows from Y to Z

via X. To guarantee this CI structure in a BN we have to restrict the directed edges

in a form such that Y 
 X
 Z. Now two or three steps are following, depending

on whether a macro or micro approach is pursued.

1. The graph structure:

Like always in graphical models we can use expert knowledge to establish a graph.

If expert knowledge is not available, we only use our data for estimation. We will

start with an estimation of a DAG just on the basis of our common variables X of

A and B. This estimation, based on all observations of X, is used to create a graph

ĜAdBX . Still missing in the graph are the variables Y and Z. The approach for Y and

Z is the same, thus I will explain it only for Y. To include Y in a DAG, we have

to use all edges ÊAdBX of ĜAdBX as prior knowledge to maintain the already estimated

BN structure of X. With this prior knowledge, a DAG for X and Y is estimated on

the observations from A, shortly ĜAXY. The same procedure is used for Z to get an

estimation ĜBXZ.
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Since the structure of ĜAdBX is included in both ĜAXY and ĜBXZ, it is easy to

combine these two DAGs into one DAG that contains all variables XYZ. These are

represented as nodes, while the edges are the union ÊAdBX ∪ ÊAXY ∪ ÊBXZ.

Endres and Augustin (2016) also worked out a second procedure for the estima-

tion of DAG bypassing the estimation of ĜAdBX , where two graphs ĜAXY and ĜBXZ are

estimated and combined. More information on the second procedure can be found

in Endres and Augustin (2016, p. 163).

2. Estimation of local parameters and the joint probability distribution:

For the estimation of the local parameters and the joint probability distribution in

a BN, we use the chain rule for BNs from Equation (3.14). For this, we have to

take into consideration which observations are used in the BN; in all other respects

we can directly transfer Equation (3.14). Thus the joint probability distribution,

which is fully described by its probability mass distribution, of a BN in a statistical

matching context is

P̂AdB(X = x,Y = x,Z = z) =

q∏
j=1

p̂ĜAXY
(yj | Pa(Yj)) ·

r∏
k=1

p̂ĜBXZ
(zk | Pa(Zk)) (4.1)

·
p∏
i=1

p̂ĜAdB
X

(xi | Pa(Xi)).

This joint probability distribution is identifiable for the data situation in statistical

matching, just as in the likelihood in Equation (2.10), since we are distinguishing

between the different datasets.

As mentioned before, for the macro approach we need two steps. If this is our

aim, we have reached their end with Equation (4.1). If we furthermore want to

construct a synthetic data file by estimating values for the missing Y and Z obser-

vations, we need an additional third step.

3. Imputation of the missing values:

The aim of this step is to create a synthetic data file, with no missing values at all

(micro approach). For that reason we have to estimate the non-observed realiza-

tions of Z in A, and also the non-observed realizations of Y in B. The approach is

rather straightforward. In the second step we obtained estimations for our posterior

distributions, which we will use now. For the goal of imputation we draw values

from P̂AdB(Y = y | X = x) and P̂AdB(Z = z | X = x) for the synthetic values of Yj,

j = 1, . . . , q, and Zk, k = 1, . . . , r, given the realization of X. With them we fill our

missing entries (ibid., pp. 162ff.).
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Applying BNs as a tool for statistical matching, with data from the Leibniz Institute

for the Social Sciences, Endres and Augustin (2016) gained some promising results.

The authors note that undirected graphical models, or MNs, can be a promising

approach for statistical matching, too.

MNs also imply CI, but without any directions between the nodes. This has two

advantages: first, the direction which is implied by a BN between nodes is not al-

ways reasonable. In MNs a symmetric connection between the nodes is represented.

Second, with undirected edges there is no differentiation of the graphs presented in

Figure 5 c) and d), since without the arrows the two graphs are the same. Hence by

application of MNs for statistical matching, we do not need to restrict the estimated

graph in this regard. For this reason the thesis at hand will work with Markov

networks as a tool for statistical matching.

4.2 Matching Categorical Data with Markov Networks

Up to now I presented the theory of both statistical matching and graphical models.

The aim of this chapter is to actually combine statistical matching with Markov

networks. I will start with the idea of how to estimate such a MN with lots of

missing data, and how the CIA will help bring both theories together.

The idea of using Markov networks for statistical matching is straightforward,

and is built on applying Bayesian networks for statistical matching in Chapter 4.1.

First we have to take the special data situation into consideration: We are dealing

with three blocks of variables which are X, Y, and Z. X is observed in both data

surveys A and B, however Y is only observed in A, and Z only in B. The assump-

tion that (Y ⊥ Z | X) brings statistical matching and MN together, thus we have

to guarantee that the MN makes exactly this assumption hold. As I explained in

Chapter 3.3, we can model this if every path Y—Z is passing at least one Xi of

X, such that Y—X—Z. For the estimation of the joint probability distribution, we

have to implement two steps.

1. The graph structure:

To ensure that Y—X—Z, we will start with modeling a MN for our variables

X = (X1, . . . , Xp)
′, for which we have nA+nB observations. The resulting graph will

be abbreviated with ĤAdB
X = (VX, ÊX), with VX = {X1, . . . , Xp}. The estimation of

HAdB
X is based on all observations X in dataset A and dataset B. The graph structure

of ĤAdB
X will be used in the following as previous knowledge.

Now we deal with our specific variables Y and Z, while it does not matter

which one is modeled first; I will start with Y. We have to model a MN for the
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variables Y = (Y1, . . . , Yq)
′ and X = (X1, . . . , Xp)

′ with the observations of dataset

A. The graph structure of ĤAdB
X will be retained and treated as previous knowledge.

We are interested especially in the edges within Y itself, and of course between

Y and X. The received graph will be abbreviated with ĤA
XY = (VXY, ÊXY), with

VXY = {Y1, . . . , Yq, X1, . . . , Xp}.

The same procedure has to be repeated for Z = (Z1, . . . , Zr)
′ and X =

(X1, . . . , Xp)
′ on the basis of dataset B, where the structure of ĤAdB

X will again be

used as previous knowledge. The graph ĤB
XZ = (VXZ, ÊXZ), with VXZ = {Z1, . . . , Zr,

X1, . . . , Xp}, will now contain edges within Z, between Z and X, and of course the

edges within X. Hence we recieve three MN structures ĤAdB
X , ĤA

XY and ĤB
XZ.

What is special about these three networks is that they all have the same MN

structure in X, since we used this structure as previous knowledge. At this point

we can assemble the ĤAdB
X , ĤA

XY and ĤB
XZ to one MN structure ĤAdB

XYZ, while the

structure of ĤAdB
XYZ is characterized by the fact that all influence flows from Y—X—

Z. Thus our assumption that (Y ⊥ Z | X) in statistical matching is fulfilled in the

MN structure ĤAdB
XYZ.

2. Estimation of the joint probability distribution:

For estimation of the joint probability distribution P̂AdB(X = x,Y = y,Z = z)

through ĤAdB
XYZ, we have to factorize it via maximal cliques C of the MN ĤAdB

XYZ:

P̂AdB(X = x,Y = y,Z = z) =
1

ζ
·
∏

C∈ĤAdB
XYZ

φ̂C(xyz), (4.2)

with C being a maximal clique in ĤAdB
XYZ.

ĤAdB
XYZ is constructed artificially, since statistical matching is characterized by

blockwise missing data. Thus there will never be a (maximal) clique within (XY Z),

but of course within (XZ) or (XY ). By considering this fact, we can split Equa-

tion (4.2) into at least three factors.1314 Maximal cliques are possible between

XY and XZ, and of course within X = (X1, . . . , Xp)
′, Y = (Y1, . . . , Yq)

′, and

Z = (Z1, . . . , Zr)
′. Furthermore we have to take into consideration the special data

situation of statistical matching, and ensure that we distinguish between the two

datasets A and B. The joint probability distribution of a MN structure in the context

of statistical matching can be expressed as follows:

13If more than two datasets are matched, Equation 4.2 also has more factors.
14The term factor relates to a factor in a product.
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P̂AdB(X = x,Y = y,Z = z) =
1

ζ
·

∏
C∈ĤA

XY\C∈Ĥ
AdB
X

φ̂C(xy)

·
∏

C∈ĤB
XZ\C∈Ĥ

AdB
X

φ̂C(xz)

·
∏

C∈ĤAdB
X

φ̂C(x), (4.3)

with C being a maximal clique in ĤAdB
XYZ.

In Equation (4.3), ζ is the partition function and C has to be a maximal clique in

ĤAdB
XYZ. The second factor contains all maximal cliques between X and Y, and those

within Y itself. The third factor contains all maximal cliques between X and Z,

and those within Z itself. The fourth factor contains all maximal cliques within X

itself. It is possible that the last factor
∏

C∈ĤAdB
X

φ̂C(x) of Equation (4.3) is omitted,

since C has to be a maximal clique in ĤAdB
XYZ and thus C ∈ ĤAdB

X can be ∅.
For better understanding of Equation (4.3), I will give two posssible examples

and explain what the single factors of Equation (4.3) are. Figures 6 and 7 show two

possible MNs ĤAdB
XYZ.

Figure 6: Possible Markov network structure for ĤAdB
XYZ, with nodes X =

(X1, X2, X3)′, Y = Y1, Y2, Y3)′ and Z = (Z1, Z2, Z3)′.

The maximal cliques C in ĤAdB
XYZ of Figure 6 are the following: (Y1, Y2), (Y2, Y3,

X1, X3), (X1, X2, X3), (X1, X2, Z1), (X2, Z1, Z2), (X3, Z3), while

• ĤA
XY contains: (Y1, Y2), (Y2, Y3, X1, X3),

• ĤB
XZ contains: (X1, X2, Z1), (X2, Z1, Z2), (X3, Z3), and

• ĤAdB
X contains: (X1, X2, X3).

Even though there was just one edge added to the graph of Figure 6, the situation

changes a lot in Figure 7 . The maximal cliques C in ĤAdB
XYZ of Figure 7 are the follow-
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Figure 7: Possible Markov network structure for ĤAdB
XYZ, with nodes X =

(X1, X2, X3)′, Y = Y1, Y2, Y3)′ and Z = (Z1, Z2, Z3)′. Compared to Figure 6 this
MN has one more edge, which is between Y3 and X2 and highlighted in purple.

ing: (Y1, Y2), (Y2, Y3, X1, X3), (Y3, X1, X2, X3), (X1, X2, Z1), (X2, Z1, Z2), (X3, Z3),

while

• ĤA
XY contains: (Y1, Y2), (Y2, Y3, X1, X3), (Y3, X1, X2, X3),

• ĤB
XZ contains: (X1, X2, Z1), (X2, Z1, Z2), (X3, Z3),

• ĤAdB
X contains: ∅.

These two examples illustrate what Equation (4.3) means for estimating the joint

probability. Furthermore I showed that the last factor of Equation (4.3) indeed can

be irrelevant.

This chapter is a central part of this thesis: It shows how probabilistic graphical

models can be utilized for the aim of statistical matching. In the first part of this

chapter I presented the work of Endres and Augustin (2016), which is built on the

theory of BNs. We have seen that the concept of d-separation in BNs fits the CIA

in statistical matching, and that we can estimate a joint probability distribution

with BNs even though missing data appears. In the second part I moved on to

utilizing MNs for the aim of statistical matching. MNs present certain independence

structures as well, which also fit the assumptions of statistical matching. We have

seen that it is possible to construct a MN that fulfills the CIA in statistical matching,

and that we can represent a joint probability distribution in MNs identifiable with

the blocks of missing values in dataset A and B. Note that the CIA is the brick

that everything is built on, and which brings probabilistic graphical models and

statistical matching together.

In Chapter 7 of this thesis I will give a discussion of using probabilistic graphical

models for statistical matching, and also compare BNs and MNs for this aim. For

now, I will move on to the estimation of the structure of MNs.



Estimation of Markov Networks for Binary Variables 33

5 Estimation of Markov Networks for Binary Vari-

ables

The aim of this chapter is to present the Ising model, which enables fitting a MN

for binary data. This model is very relevant for this thesis, since later on statistical

matching will be performed with binary data. After explaining the Ising model, I

will go on with estimation of the model’s parameters, and selecting the best model

via the extended Bayesian information criterion.

For reasons of simplicity, in this chapter I will restrict myself to just one block

of random variables X = (X1, . . . , Xp)
′, with Xi ∈ {1, 0}, i = 1, . . . , p. Furthermore

H = (V , E) is an undirected graph with a set of vertices V = {X1, . . . , Xp}. E is

a set of edges, whose elements are unordered pairs of nodes, indicated by tuples of

two nodes (Xi, Xh), i 6= h, with Xi, Xh ∈ V and i, h = 1, . . . , p.

5.1 The Ising Model

Most times in analyzing real data, the graph structure of H is unknown and has to

be explored via an appropriate data model. Especially for binary data, finding the

neighborhood of each node is not obvious.15 Nevertheless, by fitting an Ising model

the neighborhood of each node can be found step by step, and thus the complete

graph structure is revealed.

The Ising model was one of the first types of MNs, and has its origin in statistical

physics. In the original setting, the Ising model is used to describe ferromagnetic

processes in solids; the two possible values of each node are {−1,+1}, which tell the

direction of an atom’s spin. Even though the original Ising model was constructed

for ferromagnetism, it generalizes to all kinds of binary variables (Ravikumar et al.

2010, pp. 1287ff., and Koller and Friedman 2009, p. 126).16

In our case of binary data X1, . . . , Xp ∈ {0, 1} we actually work with the energy

of the so-called Boltzmann distribution. In literature the theory of the Ising model

and Boltzmann distribution is often mixed, as some authors work with the original

Ising model assuming that X1, . . . , Xp ∈ {−1,+1}, and others work directly with the

Boltzmann machine which assumes X1, . . . , Xp ∈ {0, 1}. In the end, both variants

have the same energy.17

15In the case of Gaussian data, the covariance matrix has to be inverted. This inversion is called
P , the precision matrix. Entries that aren’t zero point out an edge between the respective vertices.

16For X ∈ {0, 1} the distribution is often referred to as Boltzmann distribution. What is special
about the Ising model, or the Boltzmann distribution, is the fact that it is not working with maximal
cliques but rather with pairwise nodes (often referred to as pairwise Markov networks). More
information about the Ising model and the Boltzmann distribution can be found in Appendix C.

17Appendix C shows the connection of both.
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I will start with estimating a MN for binary data, for which it is essential to

understand the procedure of the Ising model. A popular notation while working

with MNs is the so-called energy function ε. A factor φ(Xi, Xh), with i, h = 1, . . . , p

and i 6= h can also be expressed as energy ε:

φ(Xi, Xh) = exp(−ε(Xi, Xh)), with ε(Xi, Xh) = −ln(φ(Xi, Xh)). (5.1)

Formulating this as the product over all factors results in

∏
xi∼xh

φ(xi, xh) = exp

− ∑
(xi,xh)∈E

ε(xi, xh)

 . (5.2)

For the Boltzmann machine the overall energy is defined by the Hamiltonian function

H(x) (Loh and Wainwright 2013, pp. 3024ff., and van Borkulo and Epskamp 2014,

pp. 1ff.), which is

H(x) = −

 p∑
i

τixi +
∑

(xi,xh)∈E

βihxixh

 . (5.3)

By putting together the definition of the energy in Equation(5.1), the definition of

the factor product in Equation(5.2), overall energy of the Boltzmann machine in

Equation (5.3), and the definition of the Gibbs distribution in Equation (3.10), this

leads to

P̃ (X) =
∏
xi∼xh

(exp(−ε(xi, xh)))

= exp(−(H(x))

= exp

 p∑
i

τixi +
∑

(xi,xh)∈E

βihxixh

 . (5.4)

Since in the literature some steps are usually skipped to reach the unnormalized

measure, I start at the very beginning and develop it step by step. As P̃ (X) is only

an unnormalized measure for now, we need to consider the partition function ζ next,

which sums up all possible compositions of X. Furthermore ζ is a function of our

parameters τ and β, which are summarized in a matrix Θ ∈ Rp×p:

PΘ(X) =
1

ζ
exp

 p∑
i

τixi +
∑

(xi,xh)∈E

βihxixh

 . (5.5)
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A very interesting point about the Ising model is that the factorization can also

be represented in terms of an exponential family,18 which is associated with the

clique structure of H. For binary Xi ∈ {0, 1}, i = 1, . . . , p, one can associate with

each clique C – whether maximal or not – a sufficient statistic ICC(X) ..=
∏

Xi∈C Xi.

Only if Xi = 1 for all Xi ∈ C, ICC(X) = 1. In form of the exponential family, the

sufficient statistic is weighted by the natural parameter θC ∈ R, and allows to rewrite

Equation (5.5) to

P (X) = exp

{∑
C∈C

θC ICC(X)− ln(θ)

}
, (5.6)

with C being the set of all cliques in H, and ln(θ) being the normalization constant.

In the case of pairwise interaction, Equation (5.6) reduces to Equation (5.5), the

Ising model, since each C(X) consists of two nodes (Loh and Wainwright 2013, pp.

3025ff.).

At this point we are confronted with the problem that the computation can very

quickly get very extensive. Since ζ is the sum of all possible configurations, it is hard

to calculate, as the set of all possible configurations increases exponentially – this is

challenging especially for high-dimensional data. E.g. for 12 variables, ζ has to sum

up 212 = 4096 possible configurations. And 12 variables is still a small number.

A time saving and convincing concept is to work with conditional probabilities,

and estimation of the ‘pseudo likelihood’ (Besag 1972), which is the likelihood of the

conditional probability Xi given all other nodes X−i.
19 ζ now has to sum up only

two possible states of Xi, which are 0 and 1. Hence by working with the conditional

probability P (Xi | X−i), for ζ we get

ζ(Θ) =
∑

xi∈{0,1}

exp

τxi +
∑

(xi,xh)∈E

βihxixh


= exp

τ0 · 0 +
∑

(xi,xh)∈E

β0h · 0 · xh


+ exp

τ1 · 1 +
∑

(xi,xh)∈E

β1h · 1 · xh


..= 1 + exp

τi ∑
(xi,xh)∈E

βihxh

 . (5.7)

18More information about the exponential family in general can be found in (Brown 1986).
19The notation −i in the index implies that the i-th node is excluded.
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With this partition function ζ the whole computation of the joint probability dis-

tribution simplifies tremendously. We now have

PΘ(Xi | X−i) =
exp

(
τi
∑

(xi,xh)∈E βihxh

)
1 + exp

(
τi
∑

(xi,xh)∈E βihxh

) ; (5.8)

if we substiute η = (τi
∑

(xi,xh)∈E βihxh), Equation (5.8) can be rewritten to

PΘ(Xi | X−i) =
exp(η)

1 + exp(η)
, (5.9)

which is just the popular logistic regression model20 (Fahrmeir et al. 2009, p. 192).

But how can we obtain the structure of a MN? The logistic regression model

of Equation (5.8) has to be fitted p = |V| times, thus each variable is used once

as response variable, with all remaining variables as predictors. This is the key to

finding the structure of a MN for binary data. For βih = βhi = 0, Xi and Xh are

conditionally independent. Thus in a MN graph H, the nodes Xi and Xh are not

connected. If this is not the case we have to distinguish between several options: if

both βih 6= 0 and βhi 6= 0 it is obvious that Xi and Xh are connected in H. If just

one of the two βih and βhi is unequal to zero, it is up to the applicant to decide.

The AND-rule dictates that both βs have to be unequal to zero for nodes Xi and

Xh to be connected in H, whereas the OR-rule requires only one of the βih, βhi to

be unequal to zero. With this procedure we obtain the neighborhood for each node

of V , and thus a complete MN graph H (van Borkulo 2017, pp. 22ff.). As we are in

the context of MN theory, and the independence structure holds also for the Ising

model, we can state that PΘ(Xi | X−i) = PΘ(Xi | XNei(i)).

As mentioned in the context of Equation (5.5), Θ contains τ and β. The in-

terpretation of βih is straightforward: it is a value for the effect of variable Xh on

variable Xi. More precisely, in the MN context it can be interpreted as the con-

nection strength between nodes Xi and Xh. τi is a so-called threshold of variable

Xi. For our purposes, the interpretation of the threshold is not very meaningful,

as it actually is the threshold for activation of a neuron. Only if the variable Xi

reaches an energy of −τi the variable can be activated. Thus the interpretation is

meaningful in areas like physics or chemistry, but not necessarily elsewhere.

The pseudo likelihood approach is a good option for estimation of the graph

structure. Furthermore Gidas (1988) showed the consistency of the pseudo likelihood

estimation for Gibbs distributions, which are generally used for MNs. Murphy (2012)

summarizes that the pseudo likelihood approach is applicable for most kinds of data

20A short explanation of logistic regression models in general can be found in Appendix D.
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(there are no restrictions on decomposable/chordal graphs, etc.),21 except hidden

MNs with hidden variables.

5.2 Lasso Estimation for Ising Models

Most times in analyzing data, the real MN structure is unknown. For that reason

a logistic regression is fitted for each variable Xi, with the remaining variables as

predictors (see Chapter 5.1). For estimation of Θ, the `1-regularized logistic regres-

sion, or lasso,22 is used for the pseudo likelihood of Equation (5.8).23 Thus also for

parameter estimation, we benefit from the fact that the partition function is greatly

simplified by using conditional probabilities.

Before discussing the actual estimation equation, I want to explain the idea of

lasso estimation, which is used to optimize the neighborhood selection by shrinkage

of the β-parameters towards zero. Lasso is a shrinkage method24 for the estimation

of the coefficients of a model. The estimation of β is restricted by the `1 penalty

term ∑
xh∈V−i

|βih| ≤ t. (5.10)

For t being small enough, some of the coefficients will be shrunk towards zero.

For optimization we first need the likelihood of all nodes Xi over all independent

observations s = 1, . . . , n:

L(xi | x−i; ΘXi
) =

n∏
s=1

exp(ηis)

1 + exp(ηis)

=

∏n
s=1 exp(ηis)∏n

s=1 1 + exp(ηis)

=
exp(

∑n
s=1 ηis)∏n

i=1 1 + exp(ηsi)
. (5.11)

Thus for the log-likelihood with lasso regularization, we get

llassoi (xi | x−i; ΘXi
) =

n∑
s=1

ηis −
n∑
s=1

ln (1 + exp(ηis)) + λ
∑
xh∈Vi

βih. (5.12)

21In a chordal graph all cycles with at least four nodes have an additional edge that connects
two nodes of the cycle. Note that the additional edge is not part of the cycle (Koller and Friedman
2009, p. 38).

22Least Absolute Shrinkage and Selection Operator.
23The lasso for MNs was proposed by Ravikumar et al. (2010), although first popularized by

Besag (1972; 1974).
24More information on lasso estimation can be found in Appendix E.
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In this equation, λ > 0 is the penalty parameter, which ensures shrinkage of the

coefficients (Tibshirani 1996, pp. 268ff.). For choosing the best penalty parameter,

the implementation e.g. with the R-package glmnet (Friedman et al. 2018) can be

used. glmnet uses a range of 100 penalty parameters at most. It is obvious that

with varying penalty parameters we obtain different vectors for β and τ , and thus

different neighborhoods for each node. Nevertheless we have to decide for one β and

τ and hence for one graph structure H of the MN (van Borkulo and Epskamp 2014,

pp. 4ff., and Ravikumar et al. 2010, pp. 1309ff.). A criterion for deciding on the

best neighborhood is the extended Bayesian information criterion (EBIC), which I

will introduce in the next chapter.

5.3 The Extended Bayesian Information Criterion

Beside the often used Akaike information criterion, another often used criterion is

the Bayesian information criterion (BIC) by Schwarz (1978). The BIC’s goal is to

find the right dimension of a model, given a set of observations. The BIC solves this

problem with approximate Bayesian statistics. Chen and Chen (2008) point out that

for most applications of MNs the ordinary BIC is too liberal though, resulting in

an optimal model that has too many spurious covariates. This is the case especially

for high-dimensional data with p � n. Even though I will later implement a MN

for the aim of statistical matching with p < n, I need to explain the EBIC in more

detail. The criterion is still a good choice for model selection, while the R-package

IsingFit (van Borkulo et al. 2016) I use for implementation works also with the

EBIC.

In the context of MNs for binary data, the model that minimizes

EBICγ(h) = −2`(Θ̂i) + |Nei(Xi)| · ln(n) + 2γ|Nei(Xi)| · ln(p− 1) (5.13)

is optimal. In this equation we are confronted with several new notations. `(Θ̂i) is

the well known log-likelihood for Equation (5.8), which is

`(xi|x−i; ΘXi
) =

n∑
s=1

ηis −
n∑
s=1

ln (1 + exp(ηis)) . (5.14)

Furthermore |Nei(Xi)| is the number of neighbors of node Xi, which is selected

by the logistic regression model for varying λ. And γ is a hyperparameter, with

γ ∈ [0, 1].

In Equation (5.13) it can be seen that the term 2γ|Nei(Xi)| · ln(p− 1) penalizes

for both a growing number of covariates p − 1, and a growing number of adjacent

nodes for Xi. Thus γ determines the strength of prior information on the size of
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the model space. For γ = 0 the network will be maximally extensive, resulting in

relatively many connections. Vice versa, for γ = 1 the model will have far less, if

any connections between the nodes (van Borkulo 2017, pp. 5ff.).

Note that for γ = 0 the ordinary BIC is obtained, since the BIC is a special case

of the EBIC. Thus for the following implementation, in which p < n, we would also

have the option to set γ to zero and work with the ordinary BIC.

The EBIC is an appropriate option to choose the best neighborhood. In recent

studies, the EBIC has proven good trade-off of positive selection rates (proportions

of true selected edges), and false discovery rates (proportions of false positives among

the selected edges) for the Ising model (Barber and Drton 2015, pp. 9ff.).

In this chapter I prepared the theory for the implementation of MNs. Since I will

apply statistical matching for binary data, I presented the Ising model (or the Boltz-

mann machine), which is an appropriate choice for MNs for binary data. As liter-

ature is not very consistent in this regard, I developed Equation (5.8) step by step

from the beginning. I also gave a short explanation of how to derive the structure

of a MN from the Ising model, and therefore presented the AND-rule and OR-

rule. Moreover I explained how to estimate the parameter of the model with lasso

estimation, which is a shrinkage method. Since we can choose between a set of

possible shrinkage parameters, I also introduced the EBIC, an extended version of

the ordinary and popular BIC.
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6 Applying Markov Networks for Statistical Match-

ing

An important part of this thesis is the application of statistical matching with MNs.

This chapter has the aim of explaining how the application can take place, in which

order one has to proceed for the application, and the appropriate software that deals

with MNs. Before starting with the application, we need data to work with. In this

thesis I will not work with already existing data, but rather I will simulate data to

review the results. For application I use the statistical programming software R (R

Core Team 2008) in the latest available version 3.5.1.

6.1 Data Simulation

For applying MNs for statistical matching I will work with categorical, more pre-

cisely binary data. Because of the data situation of statistical matching we have

to deal with three blocks of variables X = (X1, . . . , Xp)
′, Y = (Y1, . . . , Yq)

′ and

Z = (Z1, . . . , Zr)
′. It holds that Xi ∼ Bin(n = nA + nB, πi) with i = 1, . . . , p,

Yj ∼ Bin(nA, πj) with j = 1, . . . , q, and Zk ∼ Bin(nB, πk) with k = 1, . . . , r. For

the simulation I will work with four variables for each block, thus p = 4, q = 4 and

r = 4.

A main challenge for simulation of the data is the assumption that Y ⊥ Z | X,

since the theory I presented up to this point is built on CI. Hence I cannot simulate

independent binary values for X,Y and Z, but rather I have to consider a special

correlation structure that guarantees CI. For simulating the data we first have to

construct a correlation matrix R.

6.1.1 The Correlation Matrix R

Generally a correlation matrix R is not just a p × p matrix for p variables, which

contains values between [−1, 1]. It rather has to fulfill certain algebraic characteris-

tics:

• a correlation matrix R has to be symmetric, thus R = R>,

• the elements of the diagonal all equal 1, since the diagonal elements contain

the correlation of variable Xi, Xi, with i = 1, . . . , p, and

• R has to be a positive definite matrix: a symmetric matrix R is positive

definite iff all eigenvalues of the matrix are greater than zero. A correlation

matrix has to be positive definite because the correlation matrix is calculated



Applying Markov Networks for Statistical Matching 41

from the covariance matrix Σ, by

R = (diag(Σ))−
1
2 ·Σ · (diag(Σ))−

1
2 , (6.1)

with diag() being the diagonal elements of Σ. Equation (6.1) holds only if R

is positive definite (Bilodeau and Brenner 1999, pp. 8ff.).

Only if all these characteristics are fulfilled we can work with R for further variable

simulation.

But we have further constraints for R: With the help of R we want to simulate

data that fulfill the CIA. For that reason we need some special, blockwise structure

in R:

• the variables of block X should by highly correlated with the variables of

block Y,

• the variables of block X should be highly correlated with the variables of

block Z, and

• the variables of block Y should be barely correlated with the variables of

block Z.

It is not trivial to combine all these requirements for the correlation matrix. In my

own application, after trying to construct a correlation matrix with values between

[−1, 1] without success,25 I limited the values of correlation to positive values, thus

each element of R is a value of the interval [0, 1]. With this constraint it was

much easier to create a correlation matrix with the required structure and that also

fulfills the algebraic characteristics of a correlation matrix, especially being positive

definite. I constructed the correlation matrix with the statistical software R (R Core

Team 2008), with Table 1 showing the result for R.

As we can see, all variables X1, . . . , X4 have a correlation of 0.4, furthermore

X is correlated with both Y and Z with 0.8, and also importantly the correlation

between Y and Z is very close to zero with a value of 0.02.

6.1.2 Simulation of Correlated Variables X,Y and Z

The data simulation is done via R, and the R package bindata (Leisch et al. 2011).

The main function of this package is rmvbin(). This function works in my case

with three arguments. The first argument n determines how many realizations of

the variables should be simulated. In my case I required 500 realizations for each

25To simulate the special structure of the correlation matrix was not the problem, but as soon
as I transformed it to a positive definite matrix, the correlation structure was gone.
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X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4

X1 1.0 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
X2 0.4 1.0 0.4 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
X3 0.4 0.4 1.0 0.4 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
X4 0.4 0.4 0.4 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Y1 0.8 0.8 0.8 0.8 1.0 0.4 0.4 0.4 0.02 0.02 0.02 0.02
Y2 0.8 0.8 0.8 0.8 0.4 1.0 0.4 0.4 0.02 0.02 0.02 0.02
Y3 0.8 0.8 0.8 0.8 0.4 0.4 1.0 0.4 0.02 0.02 0.02 0.02
Y4 0.8 0.8 0.8 0.8 0.4 0.4 0.4 1.0 0.02 0.02 0.02 0.02
Z1 0.8 0.8 0.8 0.8 0.02 0.02 0.02 0.02 1.0 0.4 0.4 0.4
Z2 0.8 0.8 0.8 0.8 0.02 0.02 0.02 0.02 0.4 1.0 0.4 0.4
Z3 0.8 0.8 0.8 0.8 0.02 0.02 0.02 0.02 0.4 0.4 1.0 0.4
Z4 0.8 0.8 0.8 0.8 0.02 0.02 0.02 0.02 0.4 0.4 0.4 1.0

Table 1: Correlation matrix R, which is used to simulate data and which has the
required structure of CI. Columns and rows 1 to 4 represent X, columns and rows 5
to 8 represent Y, and columns and rows 9 to 12 represent Z. Green values indicate
a high correlation, red values indicate low correlation. It can be seen that the
correlation structure is fulfilled.

variable. The second argument is bincor, which is a matrix of p× p, with p being

the number of variables. Since I have in total 12 variables, four for each block of

variables, bincor is a 12 × 12 matrix which determines the correlation structure.

Thus I set bincor = R. The last argument of the function rmvbin() to be defined

is margprob. margprob is a vector of length p, in our case of length 12. The i-th

element of this vector contains the probability of Xi being 1, which is the marginal

probability. In my correlation matrix there is a range of [0.02, 0.8] for correlation.

To find a marginal probability that fits this range of correlation, I used the function

corrcheck() of the package GenOrd (Barbiero and Ferrari 2015). Since the variance

of a binomial distribution, which is nπ(1−π), is maximal for π = 0.5, a large range of

possible correlation is obtained for a marginal probability of e.g. π = 0.6. I checked

this with the function corrcheck(). Thus I produced a vector of length 12 with

the value 0.6 on each entry and used this vector for the argument margprob.

The result of function rmvbin() was a data matrix of dimension 500× 12, con-

taining 500 realizations for each variable. This simulation procedure was repeated

100 times, each time with a different starting value for simulation, which was de-

fined in R with the function set.seed(). As result I got an R-object of type list,

in which each element was a dataset with 500 realizations for each of the 12 vari-

ables. However, the correlation structure used for simulation was the same for every

dataset, as mapped in Table 1.

After I obtained the simulated data, I checked whether the correlation structure

of R really was transmitted to the simulated data. Table 2 contains the correlation

coefficients of Spearman, exemplarily for the simulated data of one dataset. As can
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be seen, the small correlation between Y and Z was indeed transmitted, but the high

correlation between X and Y, and X and Z was slightly scaled down in the simulated

data. This is no problem, however, since the blockwise correlation structure is still

retained. Moreover this is just one example, and the empirical correlation structure

varies among the 100 datasets.

Up to now I have 100 datasets without any missings at all. Since in statistical

matching it is assumed that the data is missing completely at random, for each row

I randomly deleted either all columns of Y or of Z. The result is a data frame in

which blockwise missings of Y or Z occurs. The first 11 rows of one dataset can be

seen in Table 3. Now I can construct datasets A and B, where A contains all the rows

in which Z is missing, and B all the rows where Y is missing, with nA = nB = 250.

Again, this step is repeated for all 100 datasets.

id X1 X2 X3 X4 Y1 Y2 Y3 Y4 Z1 Z2 Z3 Z4

1 1 1 1 1 1 1 1 1 NA NA NA NA
2 0 0 0 0 0 0 0 0 NA NA NA NA
3 1 1 1 1 NA NA NA NA 1 1 1 1
4 0 0 0 0 0 0 0 0 NA NA NA NA
5 1 1 1 1 0 1 1 1 NA NA NA NA
6 1 1 1 1 NA NA NA NA 1 1 1 1
7 1 1 1 1 NA NA NA NA 1 1 1 1
8 0 0 1 1 NA NA NA NA 1 1 1 1
9 1 1 1 1 1 1 1 1 NA NA NA NA
10 0 0 0 0 1 1 1 0 NA NA NA NA
11 1 1 1 1 1 1 1 1 NA NA NA NA

Table 3: Extract of one simulated data frame. In each row either Y1, . . . , Y4 is
missing, or Z1, . . . , Z4. X1, . . . , X4 is available in each row, since it is observed in both
datasets A and B. The red rows belong to dataset A, the yellow rows to dataset B.

6.2 Estimation of the Structure of Markov Networks with

the R Package IsingFit

With the simulation of the data succeeded, I can move on to estimating the three

MNs, which are ĤAdB
X , ĤA

XY and ĤB
XZ, and thus ĤAdB

XYZ for the simulated datasets A

and B. For estimation of the MNs I used the R-package IsingFit (van Borkulo et al.

2016). The core function of this package is called like the package itself, IsingFit().

This function implements everything I explained in Chapter 5: each vector x,y, z

is once used as response variable in Equation (5.8), with the remaining variables as

predictors. For estimation of the model parameter Θ, the `1 regularization is used



Applying Markov Networks for Statistical Matching 45

to obtain the estimates. In the end the model criterion EBIC is used to find the

best model.

The function IsingFit() comes along with several arguments. First of all, we

have to hand over the relevant data via the argument x. Furthermore we have to

decide which rule we use to receive the neighborhood for each node, thus we have

to decide for the argument AND being either TRUE or FALSE.

For the estimation of the structure I will proceed as explained in Chapter 4.2.

Thus I begin with ĤAdB
X , which has to be the first step, since we need this graph

structure as prior knowledge for the two remaining steps. For all n = 500 real-

izations of X I received an IsingFit-object, which I named x structure. This is

repeated for all 100 datasets. For the dataset of which Table 3 showed an extract,

the corresponding information object x structure is shown in Table 4.

> x structure

Estimated network:

X1 X2 X3 X4

X1 0.00 2.15 1.48 2.33
X2 2.15 0.00 1.88 1.42
X3 1.48 1.88 0.00 1.71
X4 2.33 1.42 1.71 0.00

Estimated Thresholds:

X1 X2 X3 X4

−2.79 −2.41 −2.34 −2.86

> x structure$lambda.values

X1 X2 X3 X4

0.002 0.002 0.002 0.002

Table 4: Values that are included in an object of class IsingFit, which is here
named x structure. This R-output shows the results of the IsingFit-function
for the variable block X. We can see the estimates of β (estimated network), the
estimates of τ (estimated thresholds), and the λ-values that are used by the EBIC
for estimation of the structure between X1, . . . , X4.

For one of the simulated datasets I want to explain the results in more detail.

For the remaining datasets the results can be seen in the programmed code, which

is part of the Digital Appendix G.
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As the resulting MN structure of X, we obtained for the βs that each βih > 0,

with i 6= h and i, h = 1, . . . , 4. Thus all nodes for the variables of X are connected

with each other. Furthermore we get the values τi < −1, with i = 1, . . . , 4. E.g. for

node X1, τ1 = −2.79, thus

exp(−2.79)

1 + exp(−2.79)
= 0.058,

meaning that π1 has to be greater than or equal to 0.058, otherwise X1 cannot

be activated.26 In our case π̂1 = 0.614. For the remaining nodes, the activation

threshold is about the same size. It is also possible to take a look at the chosen λ-

values of the lasso estimation. These values are chosen by the EBIC, with γ = 0.25.

The values of λ can be seen in Table 4 under x strucutre$lambda.values, and

minimize Equation (5.13) for this dataset. The network which is constructed by

putting together the estimated neighborhoods for each node X1, . . . , X4 is presented

in Figure 8.

Figure 8: Estimated Markov network for the block of common variables X. Each
variable is presented with a node of the same name as the variable. The graph ĤAdB

X

contains one maximal clique, which is (X1, X2, X3, X4).

The structure of ĤAdB
X is used in the following two steps as prior knowledge, and

thus the connections between the nodes that represent X stay the same as in Figure

8. The next MN structure is estimated for both X and Y, but only with the data of

A, to receive graph ĤA
XY. The result of the IsingFit-function is contained in the

variable xy structure; Table 5 shows the values of this object.

For the estimate values, several βs beside the diagonal are zero, hence between

the respective nodes there are no connections. The MN for these estimates can be

seen in Figure 9.

The last step of the estimation of the MN structure is based on dataset B, and

26However, this meaning of the interpretation is not very useful in our case – see Chapter 5.1.
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> xy structure

Estimated network:

X1 X2 X3 X4 Y1 Y2 Y3 Y4

X1 0.00 1.73 0.90 1.70 0.00 0.98 0.00 0.00
X2 1.73 0.00 1.61 1.20 0.78 0.00 0.27 0.00
X3 0.90 1.62 0.00 1.82 0.43 0.00 0.99 0.00
X4 1.70 1.20 1.82 0.00 0.00 0.42 0.00 1.04
Y1 0.00 0.78 0.43 0.00 0.00 1.55 1.42 0.61
Y2 0.98 0.00 0.00 0.41 1.55 0.00 0.90 1.15
Y3 0.00 0.27 0.99 0.00 1.42 0.90 0.00 1.00
Y4 0.00 0.00 0.00 1.04 0.61 1.15 1.00 0.00

Estimated Thresholds:

X1 X2 X3 X4 Y1 Y2 Y3 Y4

−1.99 −2.67 −2.83 −3.43 −2.23 −2.90 −1.66 −2.19

> xy structure$lambdavalues

X1 X2 X3 X4 Y1 Y2 Y3 Y4

0.039 0.023 0.017 0.003 0.028 0.003 0.014 0.002

Table 5: Values that are included in an object of class IsingFit. Estimation with
data of A, thus xy structure contains all structure information for a MN with
nodes X1, . . . , X4, Y1, . . . , Y4.

Figure 9: Markov network for the variables of X and Y of dataset A. It can be seen
that the clique (X1, X2, X3, X4) is again present in ĤA

XY. Also for ĤA
XY the clique

(X1, X2, X3, X4) stays maximal.
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thus creates the graph ĤB
XZ. Again Equation (5.8) was implemented for the variables

X and Z via the function IsingFit. The values of this function are now retained

in a variable named xz structure, and can be seen in Table 6.

> xz structure

Estimated network:

X1 X2 X3 X4 Z1 Z2 Z3 Z4

X1 0.00 1.90 1.53 2.21 0.00 0.00 0.00 0.77
X2 1.90 0.00 1.17 0.93 0.6 0.00 0.00 0.50
X3 1.53 1.17 0.00 0.52 0.52 1.47 0.95 0.22
X4 2.21 0.93 0.52 0.00 0.69 0.84 0.23 0.00
Z1 0.00 0.60 0.52 0.69 0.00 1.04 1.05 0.74
Z2 0.00 0.00 1.47 0.84 1.04 0.00 0.68 1.07
Z3 0.00 0.00 0.95 0.23 1.05 0.68 0 00 1.00
Z4 0.77 0.50 0.22 0.00 0.74 1.07 1.00 0.00

Estimated Thresholds:

X1 X2 X3 X4 Z1 Z2 Z3 Z4

−3.05 −2.22 −3.44 −2.7 −2.57 −1.93 −1.72 −1.99

> xz structure$lambdavalues

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0.012 0.011 0.001 0.021 0.002 0.006 0.004 0.002

Table 6: Estimated parameters for the Markov network structure based on data
in B, thus xz structure contains all structure information for a MN with nodes
X1, . . . , X4, Z1, . . . , Z4.

Again we receive all connections between the variables of X, which is important

to be able to put together the different graphs in the last step. The corresponding

MN ĤB
XZ is shown in Figure 10.

The last step that remains is to put together graphs ĤA
XY and ĤB

XZ to the

graph ĤAdB
XYZ. This step is rather straightforward, since both graphs have the same

structure ĤAdB
X that is the clique (X1, X2, X3, X4). This procedure guarantees that

there is no direct connection between any node of Y and Z, so that the assumption

of conditional independence Y ⊥ Z | X indeed holds. Figure 11 shows the complete

graph. Once again, the whole estimation procedure is done for all 100 simulated

datasets. The results presented are for the dataset shown in part in Table 3.
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Figure 10: Markov network for the variables of X and Z of dataset B. It can be
seen that the clique (X1, X2, X3, X4) is again present in ĤB

XZ. Again the clique
(X1, X2, X3, X4) stays maximal in ĤB

XZ.

Figure 11: Markov network for the variables of X, Y and Z of dataset A and B. The
prior knowledge of the clique (X1, X2, X3, X4) ensures the CIA. In the upper half of
the graph are all four nodes of variable Z. In the lower half of the graph are the
nodes of variable Y. Each connection between them has to pass at least one node
of X.

6.3 The Macro Approach: Estimation of the Joint Proba-

bility Distribution

After estimating the network structure it is now possible to estimate all elements of

the joint probability distribution, which is described by its probability mass distri-

bution P̂ (X = x,Y = y,Z = z) for each dataset. For that aim we use the structure

of graph ĤAdB
XYZ. This network will be the foundation for the estimation of the joint

probability. Up to this point I only have matrices containing the β-values for the

structure of ĤAdB
X , ĤA

XY and ĤB
XZ. This information enables to construct a matrix

containing all β-values of ĤAdB
XYZ though, since there is not any connection Y –Z.



50 Statistical Matching of Categorical Data with Markov Networks

This matrix is necessary to estimate the joint probability distribution. Hence the

first task is to merge the matrices containing β-values of Tables 4, 5 and 6 to one

matrix for the MN ĤAdB
XYZ. This matrix contains β-values for Xi, i = 1, . . . , 4, which

can be seen for the example dataset in Table 4, for Xi, Yj, j = 1, . . . , 4, illustrated

in Table 5, and for Xi, Zk, k = 1, . . . , 4, from Table 6, and additionally β-values be-

tween Yj, Zk which are all equal to zero, since they are not connected. This matrix

is stored in an object I called xyz structure and can be seen in Table 7, under the

heading Estimated network.

Also required are the thresholds for each variable; Table 4 shows the thresholds

for the variables X1, . . . , X4, Table 5 shows the thresholds for Y1, . . . , Y4, and Ta-

ble 6 shows the thresholds for Z1, . . . , Z4. The thresholds for the joint probability

distribution are summarized in Table 7 under the heading Estimated Thresholds.

The object xyz structure contains everything needed for the estimation of the

joint probability distribution. For estimation of the joint probability function I used

the R-package IsingSampler (Epskamp 2015). With the function IsingLikelihood()

this package enables to estimate a joint probability distribution for the Ising model.

For estimation, IsingLikelihood needs a matrix with all the β-values and a vector

that contains the thresholds; in my case the object xyz structure contains both.

Since we have 12 variables in total, with each being either 0 or 1, the joint proba-

bility distribution P (X = x,Y = y,Z = z) has 212 = 4096 probability components.

An extract of the estimated joint probability distribution can be seen in Table 8.

The sum of all probability components has to be 1, which is always the case. Again,

the estimation of the joint probability distribution is applied for all 100 estimated

Markov networks.

6.4 The Micro Approach: Estimation of the Missing Values

in Dataset A and B

After estimating the joint probability distribution, the estimation of the missing

values in A and B is the final step of the statistical matching procedure. The basis

of estimating the missing values is the joint probability function of Chapter 6.3.

There are two ways to obtain estimates: (1) drawing concrete values from the

joint probability distribution, or (2) for a given set of observations (thus for one row

in the simulated data) the missing values are estimated by maximizing the probabil-

ity, given the restriction of the observed data. If the missing observations of dataset

A should be estimated, i.e. z, we can draw values from the joint probability distri-

bution with the restriction of the existing observations. For estimating the missing

observations of dataset B, missing values for y have to be estimated, thus again we
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have to restrict the joint probability distribution to the existing observations. For

this thesis I estimated the missing values with option (2).

I started with the estimation of the missing z in dataset A. Everything I need

for the estimation is the joint probability distribution. For each row of dataset A, x

and y are given and used as restriction. Given these observations, each probability

component of the joint probability distribution that fulfills this restriction is needed.

The values of Z of the probability component with the highest probability to appear

is then used as estimates for the missing z in dataset A. This is done for each row of

A, resulting in a dataset Â in which the observation x and y are identical to A, and

the observation z is estimated. The same procedure is used to estimate the missing

y in dataset B, resulting in an estimated dataset B̂ in which the observation x and

z are identical to B, and the observation y is estimated via the joint probability

distribution.

This last step ends the application of Markov networks for the aim of matching

data. What I have done is simulate 100 datasets, containing 12 binary variables, four

for each block. Each dataset contains 500 observations of the variables. Furthermore

for simulating the datasets, a special correlation structure was used to guarantee that

CIA is fulfilled. For all 100 datasets a Markov network was constructed, as explained

in Chapter 4.2. Since the simulated data is binary I used the Ising model (see

Chapter 5.1) for structure estimation. After a Markov network has been obtained

for all 100 datasets, I estimated the joint probability distribution (macro approach).

After this step, the estimation of the missing values is possible, which is done via

the estimated joint probability distribution (micro approach). Throughout Chapter

6 I show extracts of the results for a single dataset, while each step is actually

applied for all 100 datasets. Since I am working with simulated data, it is possible

to evaluate the results of the macro and micro approach, which I will do now.

6.5 Evaluation of Applying Markov Networks for Statistical

Matching

In this chapter I will summarize the evaluation of applying MNs for statistical match-

ing. Raessler (2002, pp. 29ff.) lists four quality levels for evaluating the quality of

matched data:

1. First level: preserving the individual values,

2. Second level: preserving joint distribution,

3. Third level: preserving correlation structures,

4. Fourth level: preserving marginal distributions.
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For the purposes here, I will focus on the first and the fourth level. I will start with

the evaluation of the marginal distribution.

For simulating the data I used a fix correlation structure between the variables,

and transmitted a fix marginal probability to each variable. In this thesis, for each

variable I used a marginal probability of 0.6 for being 1. Hence, for evaluation we

would expect estimates for marginal probabilities around 0.6 for each variable.27

Figure 12: Boxplots of the marginal probability of the 100 estimated datasets Â sep-
arated by variables. The values z are estimated and thus the boxplots for variables
Z1, . . . , Z4 show the results for the marginal probability with the estimations. For
the other variables x and y the values of A and Â are always identical, hence also
the boxplots are the same as in Figure 13.

Figure 12 shows boxplots of the marginal probability for all 100 estimated data-

sets Â, while for comparison Figure 13 shows boxplots of the marginal probabilities

for the true 100 datasets A. In datasets A and Â the observations x and y are the

same, thus also the boxplots are the same for these variables. In Figure 13 we can see

that the median of all variables of Z is very close to 0.6, and also for Â the median

of the variables of Z is around 0.6 (see Figure 12). Moreover, in Â the distribution

of the marginal probabilities for the 100 datasets is much more heavy-tailed as for

the original dataset, and also is not unimodal but slightly bimodal.

Also for the 100 datasets B the missing observations for Y are estimated, and 100

datasets B̂ are created. Figure 14 shows the boxplots for the marginal probabilities

of x and z, which are the same as in Figure 15. Figure 15 shows the boxplots for the

27The true original datasets indeed had marginal probabilities of 0.6.
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Figure 13: Boxplots for the marginal probabilities of the true 100 datasets A without
any missings for Z.

100 true datasets B, which contain no missing observations for Y. It can be seen

that for the true datasets B the median of the marginal probabilities is very close to

0.6 for all variables. In Figure 14 we can see that the median for the estimated values

of y is also around 0.6. Nevertheless the distribution of the marginal probabilities

for y are more heavy-tailed.

Also the ratio of correctly estimated values z in Â and y in B̂ is of interest. For

that goal I compared the values in Â with the true values in A, and the values in

B̂ with the true values in B, again for all 100 simulated datasets. In Figure 16 we

can see that the median of not correctly estimated values z is around 0.22. For the

100 datasets I received for Â, the best result was a ratio of not correctly estimated

values of around 0.14, while worst results were around 0.30. Thus even in the worst

case, the results of the micro approach are still much better than just guessing. In

Table 9 we can see that the mean for all four variables of not correctly estimated

values is around 0.22, which is very close to the median (this can be explained by

the symmetric distributions).

In Figure 17 we can see that the median of not correctly estimated values for y is

around 0.23. For the 100 datasets I received for B̂, the best result was a ratio of not

correctly estimated values of around 0.14, while the worst results were around 0.30.

Even though the results are slightly worse than for the estimation of z, also here the

estimation is still much better than just guessing. In Table 10 we can see that also

the mean of not correctly estimated values is around 0.23, just like the median.
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Figure 14: Boxplots of the marginal probability of the 100 estimated datasets B̂ sep-
arated by variables. The values y are estimated and thus the boxplots for variables
Y1, . . . , Y4 show the results for the marginal probability with the estimations. For
the other variable blocks X and Z the values of B and B̂ are identical, hence also
the boxplots are the same as in Figure 15.

Figure 15: Boxplots for the marginal probabilities of the true 100 datasets B without
any missings for Y.
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Figure 16: Boxplots for the ratio of not correctly estimated values z in dataset Â.
The median is about 0.22.

Z1 Z2 Z3 Z4

Mean 0.226 0.222 0.226 0.225

Table 9: Mean of not correct estimates for z for the micro approach.



58 Statistical Matching of Categorical Data with Markov Networks

Figure 17: Boxplots for the ratio of not correctly estimated values y in dataset B̂.
The median is around 0.23.

Y1 Y2 Y3 Y4

Mean 0.236 0.222 0.224 0.232

Table 10: Mean of not correct estimates for y for the micro approach.
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7 Comparing Bayesian Networks and Markov Net-

works for Statistical Matching

The aim of this thesis is to continue the work of Endres and Augustin (2016), which

focused on BNs for matching data. Instead of using BNs, this thesis researches if

MNs are also appropriate for the aims of statistical matching. Both variations of

probabilistic graphical models have in common that they simplify a joint probability

distribution in their representation by using the (in)dependence structure of the

components of the joint probability distribution. The general goal of both is to find a

perfect map, meaning that a graph is both I-map and D-map. In statistical matching

the problem of blockwise missing data is characteristic and therefore indispensable.

The fact that there is not a single observation of (XYZ) implies that we do not know

what kind of (in)dependence structure the joint probability distribution has. In fact,

it is the CIA that allows to estimate a joint probability distribution. But this also

goes along with disadvantage that it is not possible to test if CI is really fulfilled

in the data. Hence with having so little information about the joint probability

distribution, it is not possible to know what kind of (in)dependence structure is

present.

As I explained in Chapter 3, BNs and MNs represent different kinds of structure

in the data. For some data only a BN is able to find a perfect map for the joint

probability distribution, and the other way around. In the case of chordal graphs,

both BNs and MNs can be a perfect map (Koller and Friedman 2009, pp. 139ff.).

Given the fact that in statistical matching we just do not know what kind of

structure the joint probability distribution has, it is not possible to make a general

statement which variation of probabilistic graphical models is superior for the aims

of statistical matching.

The work of both Endres and Augustin (2016) and this thesis was executed with

the statistical software R (R Core Team 2008). At the moment it seems like the

available add-ons for applying BNs in R offer more functions and possibilities to

work with. However, I want to note that this is just a personal impression, which is

only grounded in the use of categorical data. Furthermore this need not not apply

to other software, since I did not compose an overview what other programming

software, e.g. Python (Python Core Team 2015) can offer to simplify application of

probabilistic graphical models.

An advantage BNs indeed have compared with MNs is the intuition of the the-

ory. The fact that the chain rule for Bayesian networks, see Equation (3.14), works

with conditional probabilities is more intuitive than the definition of factors in Def-

inition 10, which are needed to formulate the joint probability distribution in Equa-
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tion (3.10). Furthermore the estimation of the joint probability distribution can be

quite extensive, since the partition function ζ has to be calculated. This step is not

neccesary for BNs, but also for the Ising model the partition function simplifies a

lot.

By applying BNs for statistical matching, cycles in the graph structure G are not

allowed. Endres and Augustin (2016) present a second, more individual procedure

to estimate the structure of GAdBXYZ (Endres and Augustin 2016, pp. 163ff.), through

which cycles are indeed possible by putting together all information. This is a

problem for the estimation of the joint probability that can not occur with MNs,

since a MN may well contain cycles. Nevertheless, with the procedure of estimation

for G, I explained in Chapter 4 that this problem will not occur either.

After all I cannot give a recommendation what kind of method to use. In some

cases expert knowledge may be available that justifies the use of BNs over MNs or

vice versa, but as long as this is not the case, both versions are equally appropriate.
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8 Discussion

The end of this thesis is a discussion. The goal of this thesis was to research how

Markov networks can be utilized for statistical matching, and to apply Markov net-

works for statistical matching with simulated datasets. For that reason I summarized

the theory of statistical matching in Chapter 2, and also the theory of probabilistic

graphical models in Chapter 3. In Chapter 4 I explained the work of Endres and

Augustin (2016) that deals with Bayesian networks for statistical matching. I then

focused on a fundamental part of this thesis: the theory of using Markov networks

for statistical matching. The goal was to match categorical, more precisely binary

data, thus Chapter 5 covered the problem of structure estimation of a Markov net-

work for binary data. In Chapter 6 I explained how I simulated the datasets, which

I matched by utilizing Markov networks. Moreover I summarized the results of the

evaluation of matching. In Chapter 7 I briefly compared the two main variations of

probabilistic graphical models, being Bayesian networks and Markov networks, and

how they differ in their application for statistical matching.

8.1 Summary of Results and Conclusion

This thesis tries to utilize Markov Networks for the aims of statistical matching.

Even though this was just a first try, we can see that the assumption of conditional

independence, which makes the joint probability distribution solvable in statistical

matching, is strongly connected to the independence structure a Markov Network

represents. This is the main reason why Markov networks can be used for matching

disjoint datasets. Furthermore the theory of Markov networks, especially the rep-

resentation of the joint probability distribution, can be manipulated in a way that

fits the special data situation in statistical matching. Equation (4.3) shows how the

representation of the joint probability distribution is still solvable for the statistical

matching situation.

By applying Markov networks for statistical matching I worked with 100 simu-

lated datasets. For all of them I used the same marginal probability and correlation

structure for simulation. For the application, in each case I matched two datasets

A, with z missing, and B with y missing. In a situation where the CIA holds (as in

my case), the results of matching the datasets were quite good. The estimated joint

probability distribution and also the ratio of correctly estimated observations for the

missing entries in A and B were good. However, this was a first try and improvement

is likely after further research for using Markov networks for statistical matching.

For the case of binary data appropriate software in R already exists, and works

for the goal of matching data. However, I want to note that the package I used was
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the only one I could find for the aims of this thesis.

All in all I can state: Markov networks offer promising results when it comes

to statistical matching. The representation of the joint probability distribution by

graphs is very intuitive, and the theory is suitable for statistical matching.

8.2 Limitations

Even though the application worked well, there are some limitations of applying

Markov networks for statistical matching. In this thesis I worked with binary data,

but if one is working with differently scaled data a lot changes. For structure es-

timation I used the Ising model, which is only suitable for binary data. Thus for

differently scaled data the applicant has to look which kind of model is appropriate

for the data. The use of a different model for structure estimation also goes along

with the need of other software, or other packages. The statistical programming

software R (R Core Team 2008) offers a great variety of packages, but still it is es-

sential to find the right one. Additionally I made the experience during this thesis

that the variety for packages that deal with Markov networks is not that big, espe-

cially when it comes to categorical data. I also took a short look at what Python

(Python Core Team 2015) can offer for the application of Markov networks, but this,

too, seemed meager. In my opinion software is more manifold for the application of

Bayesian networks.

8.3 Outlook

For this thesis I only applied simulated data that fulfills the assumption of condi-

tional independence of statistical matching. This is a strong assumption which is

not guaranteed to be fulfilled in practice, and additionally could not be tested for

the data situation in statistical matching. Hence it is of great relevance to research

what happens if this assumption is not fulfilled. Do Markov networks handle this

problem and still perform well?

As mentioned above, the Ising model is just appropriate for binary data, but often

the applicant is confronted with differently scaled data or even a mix of differently

scaled data. For that reason suitable methods for structure estimation are needed

in theory and application.

And of course, the theory and software I used in this thesis can be researched

in more detail. There are several more arguments in R-functions I used, for which

I set a fix value for all 100 datasets. Thus it would be interesting to see how these

function-parameters can influence and maybe improve the results. I hope that soon

a more complex simulation study will be able to answer these questions.
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A The Missing Data Problem in Statistical Match-

ing

The goal of statistical matching is to receive either a synthetic dataset ÂdB̂, or to es-

timate the joint probability distribution. By simply putting together both datasets,

Figure 1 shows that there are blockwise missing values for either realizations of Y

or Z. Thus the dataset AdB confronts the researcher with a missing data problem.

Rubin (1976) defines three mechanisms that cause the problem of missing data:

Missing completely at random (MCAR), Missing at random (MAR), and Missing

not at random (MNAR). As soon as dealing with missing data, the first step is to

analyze which mechanism provokes the missing data, since this has to be considered

in further analysis or inference.

In the context of statistical matching, observed data is generated by a joint

probability distribution PXYZ, and the observed data is independent and identically

distributed. We can assume that MCAR is the mechanism that causes the missings,

since the reason lies in the way the data was collected: we cannot observe (XYZ)

simultaneously, because e.g. the questionnaire or the interviewer did not ask for

(XYZ), but rather for either (XY) or (XZ). For MCAR the missing values are

independent of both the observed realizations of X,Y and Z, but also of the unob-

served realizations. A more mathematical explanation is given by D’Orazio et al.

(2006, pp. 6ff.).

MCAR allows to formulate the likelihood via the observed probability distribu-

tion of A d B as

L(θ | A d B) =

nA∏
a

PXY(xa,ya;θ) ·
nB∏
b

PXZ(xb, zb;θ). (A.1)

Thus all information to estimate θ is included in the observed data AdB (Raessler

2002, pp. 76ff.).
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B The Multinomial Distribution

In statistical matching we are confronted with three blocks of variables, being

X = (X1, . . . , Xp)
′, Y = (Y1, . . . , Yq)

′, and Z = (Z1, . . . , Zr)
′. For dealing with

this multivariate setting, D’Orazio et al. (2006) argues that working with saturated

loglinear models reduces the multivariate problem to an univariate one. But instead

of working with binomially distributed variables Xi, Yj, Zk, with i = 1, . . . , p, j =

1, . . . , q, k = 1, . . . , r, the univariate variables X, Y, Z are now multinomially dis-

tributed. While for a binomial distribution a Bernoulli experiment has two mutually

exclusive outcomes (usually coded with 0/1), the experiment of a multinomial distri-

bution has A1, . . . , Am mutually exclusive outcomes; this experiment is repeated for

a certain time n. The outcome Al has a probability to occur of πl, with l = 1, . . . ,m.

In general a random variable Wl counts the number of occurrences of outcome

Al, with l = 1, . . . ,m. This experiment is independently repeated n times, while πl

is the probability that outcome Al occurs. The joint probability distribution for the

Wl is then

P (W1 = w1, . . . ,Wm = wm) =
n!

w1! . . . wm!
πw1

1 . . . πwm
m . (B.1)

This distribution is called multinomial distribution and is actually a multivariate

distribution. If a random variable W = (W1, . . . ,Wm) is multinomially distributed,

this is denoted

W = (W1, . . . ,Wm) ∼M(n,π) (B.2)

(Tutz 2000, pp. 13ff.).
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C A Short Summary of the Ising Model

Originally, the Ising model was established for statistical physics by the German

physician Ernst Ising (1925). It was one of the first models for a Markov random

field, or for probabilistic graphical models more generally. The goal of the Ising

model is to explain empirically observed facts about ferromagnetic materials. From

a one-dimensional perspective a ferromagnetic material can be simplified as a line

with a certain number of points. Each point represents a so-called spin, which at

any moment can have one of two possible positions: the points xi of a grid with n

spins can be seen as realizations of the random variables Wi, with n = 1, . . . , n and

each Wi ∈ {−1,+1}.

The original formulation of the Ising model is for ferromagnetic material with

sample space Ω of all sequences

ω = (ω0, ω1, . . . , ωn), (C.1)

with ωi ∈ {−1,+1} indicating whether a spin is of positive or negative charge. The

energy of the Ising model ε(ω) is written as

ε(ω) = −J
∑
i,j

ωiωj︸ ︷︷ ︸
(1)

−mH
∑
i

ωi︸ ︷︷ ︸
(2)

, with i 6= j. (C.2)

In Equation (C.2), J is a constant for the property of material being considered.

The first term, marked with brace (1) is the energy caused by interaction of two

neighboring spins ωi and ωj. The second term in brace (2) is the effect of an external

magnetic field of intensity H, while m > 0 is a constant for the property of material

of the external field.

If the constant J > 0, the Ising model is in a so-called active case, meaning that

neighboring spins are aligned to have the same charge. Meanwhile J < 0 results in

a repulsive case, which tends to reinforce pairs in which spins are of opposite charge.

Ising (1925) showed that the probability measure on Ω is given by

P (ω) =
1

ζ
exp

(
1

kT
(−ε(ω))

)
, (C.3)

with k being a universal constant, and T being the temperature (Kindermann and

Snell 1980, pp. 1ff.).
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The energy of the Ising model can be reformulated in terms of the Ising model

with

ωi = 2xi − 1⇔ xi =
ωi + 1

2
. (C.4)
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D The Logistic Regression Model

If the outcome of response variable yi is to be modeled via linear regression, the

assumption of normal distribution is not appropriate. For binary response variables,

logistic regression is suitable.

Suppose a data situation in which the response variable yi, i = 1, . . . , n is binary

and independent given the covariates xi1, . . . , xip, p being the number of covariates.

The goal is to model the probability πi = P (yi = 1 | xi1, . . . , xip). The linear

predictor ηi = β0 + β1xi1 + · · · + βpxip is linked with the response function h(·), so

that h(η) ∈ [0, 1]. Thus it is possible to model

πi = h(ηi). (D.1)

In a logistic regression model the response function is the logistic function, which is

π = h(η) =
exp(η)

1 + exp(η)
, (D.2)

or the logit link function, which is

g(π) = log

(
π

1− π

)
. (D.3)

In Equation (D.3), g(·) is the so called link function (Fahrmeir et al. 2009, pp.

189ff.). It can be seen that for the case of binomial data logistic regression is

very convenient. By working with conditional probabilities in the Ising model, the

estimation of the structure of a MN is greatly simplified, since this enables to work

with the well known logistic regression model.
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E Lasso Estimation

I will briefly explain lasso estimation for the popular case of a linear regression

model, which is

Y = Xβ + ε, (E.1)

with Y = (Y1, . . . , Yn)′. X is a design matrix with n rows and p columns, n being

the number of observations and p the number of variables. ε ∼ N(0, σ2) is an error

term, which is normally distributed with a mean of 0 and variance of 1. The goal

is now to estimate β. A popular method for that is the ordinary least squares

estimator βols, which is an unbiased estimator with minimal variance compared to

other unbiased estimators (Fahrmeir et al. 2013, pp. 178ff.). But one characteristic

of the least squares is to tend to overestimate β, thus ‖βols‖ ≥ β. This can be

a disadvantage, since even very small effects translate to the model for Equation

(E.1), and the interpretability of the model suffers (Tibshirani 1996, pp. 283).

If the applicant wants to select between several possible models, and also aims

for shrinkage of effects towards zero, lasso estimation (also often referred to as `1-

estimation) is a useful version of ordinary least squares estimation for β (Efron et al.

2004, p. 409). The characteristic of the lasso estimator is simultaneous shrinkage

of the β values towards zero. This is achieved by using an additional constraint,

which formulates an upper bound for the sum of length of the β values. The lasso

estimation equation is under the constraint that
∑p

j=1 |βj| ≤ t, and t ≥ 0:

β̂lasso = arg min
β

{
(Y −Xβ)′(Y −Xβ) + λ

p∑
j=1

|βj|

}
, with λ ≥ 0. (E.2)

The term λ
∑p

j=1 |βj| is a penalty term; for greater values of λ this term has more

effect. For estimation varying values for λ are used, which leads to different β.

By using a selection criterion, the λ value that leads to the best result is chosen

(Fahrmeir et al. 2013, pp. 208ff.). The parameter t controls the amount of shrinkage;

together with tols ..=
∑p

j=1 |β̂olsj | it holds that

• for t < tols: some values of β are shrunk exactly to zero, and

• for t ≥ tls: β̂lasso = β̂ols

(Fahrmeir et al. 2013, pp. 208ff.).
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F List of Software Used

The application of Markov networks for statistical matching was carried out with

R (R Core Team 2008) in the at this point most recent version 3.5.1. Moreover,

several R-packages were used for application. I will list the used packages below,

although some of them automatically involve several other packages. The directly

used packages are:

• bindata, version 0.9-19 (Leisch et al. 2011),

• GenOrd, version 1.4.0 (Barbiero and Ferrari 2015),

• igraph, version 1.2.2 (Csárdi and Nepusz 2006),

• IsingFit, version 0.3.1 (van Borkulo et al. 2016),

• IsingSampler, version 0.2 (Epskamp 2015),

• matrix, version 1.2-14 (Bates et al. 2018),

• matrixcalc, version 1.0-3 (Novomestky 2015),

• qgraph, version 1.5 (Epskamp et al. 2018).
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G Digital Appendix

The digital appendix contains the following files:

• the electronic version of this thesis, in the document “Thesis.pdf”,

• programming code for the statistical software R (R Core Team 2008):

– a document called “READ ME”, which contains information about the

R-code in general, and about the order of running the R-code,

– “1. Correlationmatrix.R”,,

– “2. Data Simuation.R”,

– “3. Structure Estimation.R”,

– “4. Estimation of Joint Probability.R”,

– “5. Imputation of the Missing Data.R”,

– “6. Evaluation.R”,

• the file “Workspace final.RData”, containing all R objects produced with the

above files.
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