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Abstract
Experiments have shown that the ion energy obtained by laser–ion acceleration can be optimized by choosing either the
appropriate pulse duration or the appropriate target thickness. We demonstrate that this behavior can be described either
by the target normal sheath acceleration model of Schreiber et al. or by the radiation pressure acceleration model of
Bulanov and coworkers. The starting point of our considerations is that the essential property of a laser system for ion
acceleration is its pulse energy and not its intensity. Maybe surprisingly we show that higher ion energies can be reached
with reduced intensities.
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1. Introduction

Laser-driven ion acceleration has created enormous interest
over the last few years[1, 2]. The rapid development of
laser technology to intensities well beyond 1020 W cm−2

has enabled the generation of multi-MeV ion beams with
exceptional characteristics[3]. Visions of reaching electron
energies in the TeV[4] and even the PeV regime[5] have
been published. While the ion beams in most experiments
have exhibited extremely broad energy distributions, ad-
vanced target designs have been applied to achieve narrow
energy distributions of protons and heavier ions[6–9]. The
early, rapid developments have engendered much specula-
tion about the use of laser-driven ions for fast ignition[10–12]

and medical applications[13–17]. Laser-generated protons
have already been successfully applied for time-resolved
studies of the generation of electric and magnetic fields in the
laser–plasma interaction on a ps timescale[18–20]. Moreover,
the table-top generation of neutrons is discussed as a possible
application and has been demonstrated in early and recent
experiments[21–25].

The observation of ions emitted in laser–plasma interac-
tions can first be traced to experiments employing high-
intensity laser pulses with durations of a few ns to some
hundreds of ps[26]. With the invention of chirped pulse
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amplification (CPA)[27], laser pulses with intensities well in
excess of 1018 W cm−2 and fs durations were realized. The
new era of relativistic laser–plasma interactions had begun,
where the quiver velocity of electrons in the electromagnetic
field of the laser approaches the speed of light. Moreover,
the v × B-term of the Lorentz force becomes dominant and
pushes the electrons into the direction of laser propagation.
The generation of relativistic electrons was the fundamental
requisite for the acceleration of ions to high energy[28].
Foils of several tens of micrometer thickness which were
irradiated by relativistically intense laser pulses were found
to emit protons with energies of up to 60 MeV from the non-
irradiated surface[29]. This behavior could be described by
the target normal sheath acceleration (TNSA)[30] which has
proved to be the dominant mechanism in most experiments
performed until recent times. In recent years, competing
mechanisms for ion acceleration have been introduced and
discussed, the most prominent example being the radiation
pressure acceleration (RPA)[31–40] or light-sail regime[41–44]

which utilizes highly intense laser pulses with high contrast.
Not too differently from the original ideas on the forces due
to radiation[45–50], it seems feasible to accelerate the central
part of an ultra-thin, nm scale foil to high energies according
to the simple equation of motion[51].

Although a number of high-power, PW-class laser systems
have been built around the world, the early record energy
of 60 MeV[29] has improved little. Supported by analytical
models, we demonstrate that this is due to the optimization
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problem that is encountered in both TNSA and RPA. We
show that the key quantity of a laser system is its energy
content in a single laser pulse. The laser energy simply
is converted with a certain efficiency into a number and
energy of ions and it is not the intensity that is most
important as often intuitively assumed. This statement holds
for both TNSA and RPA. As we will show, TNSA can be
optimized by varying, even increasing, the duration of the
laser pulse (i.e., decreasing intensity) and RPA by choosing
an optimized target thickness. Although reduction of the
pulse duration for a laser system of given energy means
an increase in power and intensity, this also reduces the
acceleration time so that inertial ions cannot reach the same
final energy.

2. Target normal sheath acceleration

TNSA of ions has been extensively investigated over the last
decade. In fact, until now it has proved to be the most
effective method for ion acceleration when highly intense
laser pulses are focused onto foils with thicknesses of several
micrometers. TNSA relies on the efficient conversion of
laser energy into hot, relativistic electrons. These electrons
propagate through the target and set up fields at the target
boundaries where they exit into vacuum. The electric field
is created between the expelled electrons and the surface
charge that they induce on the target. Since the electric
field strength is of the same relative strength as the laser
electric field amplitude (TV/m) which generates the hot
electrons, most of the electrons return back into the target.
Hence an electron cloud (sheath) is formed. Ions at the
rear surface can be accelerated by the sheath fields to
multi-MeV energies in only several tens of femtoseconds.
Impurities such as hydrocarbon and water are present under
most experimental conditions at the solid surface. Due
to their higher charge-to-mass ratio, it is the protons from
these contaminants that are most readily accelerated to
high energies. However, by removing the contaminants by
different means, the acceleration of heavier ions can also
be optimized[52–55]. Due to strong spatial and temporal
variations in the acceleration fields, the observed ions usually
exhibit broad energy distributions extending from zero to a
certain maximum cut-off energy. Reduction of this energy
spread is a major challenge and some success has been
achieved by micro-machining the targets in order to allow
ions to be accelerated only in regions where the field is large
and roughly uniform[6, 7], and by the use of mass-limited
targets with an appropriate ion mixture[8, 56].

A large number of experimental results on laser-driven ion
acceleration are now available[7, 29, 57–70], which can be used
for a comparison with theoretical predictions. TNSA has
been extensively studied numerically using particle-in-cell
(PIC) simulations[71–75]. Several analytical models have also

been developed which predict the dependence of the max-
imum ion energy on laser and target parameters[57, 76–82].
Substantial advance of the field is reported in a number of
review papers available today[1, 2, 83]. In particular, the ion
energy should be dependent on the laser irradiance, focal
spot size and laser pulse duration.

2.1. Nonrelativistic TNSA

The original Schreiber model[57] is a nonrelativistic version
of TNSA and calculates the energy gain of ions in an
electrostatic field determined by the transfer of laser energy
to the expanding surface by the divergent beam of hot
electrons. This model has two main advantages. (i) Without
choosing a distribution function for the laser-accelerated
electrons, the potential that they set up depends only on
the absorbed laser power ηPL into those electrons and
the transverse size of the electron cloud Rs . (ii) Due to
the consideration of the transverse dimension Rs of the
electron cloud when it exits the rear of the target, the
resultant potential stays finite which is in contrast to most 1D
models, where for infinite acceleration times the ion energies
diverge[84]. Although the description of the potential appears
to be based on ad hoc assumptions, the model is in excellent
agreement (within a factor of 1.5 or so) with experiments
performed in a wide range of parameters covering foil
thicknesses from one to hundreds of micrometers, laser pulse
energies in the sub-joule to kilojoule level, pulse durations
from 50 to 5000 fs and ion species covering a major part
of the periodic table ranging from protons to tungsten ions.
The electric field at the rear side of the target is set up by
fast electrons produced by the laser heating at the front side
of the target. It should be noted that in general the targets
are much thicker than the skin depth or hole-boring depth
so that the laser does not interact with the rear of the target.
Let us consider that the laser produces Ne electrons with an
average energy Ee in a bunch of length L = cτL , where τL
is the laser pulse duration and the electrons are assumed to
propagate with the speed of light c. On their way through the
target, the electrons spread over a circular region with radius
Rs . When exiting into vacuum a positive surface charge
Qe is induced at the rear side of the target which yields a
returning force ∝ Qe/(πR2

s ). Electrons run up the potential
and eventually reverse their path at a distance zu above the
surface of the foil and re-enter the foil. In an equilibrium
situation 2Nezu/L electrons are permanently outside the foil.
To achieve global charge neutrality we identify this number
with the number of positive surface charges Q. The potential
of the corresponding charge density is

Φ(r, z) = Qe
4πε0πR2

s

∫ Rs

0

∫ 2π

0

r ′dr ′dφ′√
r2 + z2 + r ′2 − 2rr ′ cosφ′

.

(1)
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In the following we will concentrate on the center of the
acceleration region that is responsible for the most energetic
ions, i.e., r = 0. In that case the integration of Equation (1)
reads

−e(Φ(0, z)−Φ(0, 0))

≡ −eΦ(ξ) = E∞
(

1+ ξ −
√

1+ ξ2
)
≡ E∞s(ξ) (2)

with

E∞ = Qe2

2πε0 Rs
(3)

and ξ = z/Rs . For short distances ξ � 1 one has −eΦ ∼=
E∞ξ , which yields for the turning point zu = Ee Rs/E∞.
The total number of electrons is related to the laser energy
EL by Ne Ee = ηEL where η is the efficiency by which the
laser energy is converted into electron energy. The electrons
are provided for the duration of the laser pulse τL . With
Q = 2Nezu/(cτL) ∝ PL (the power of the laser pulse) we
obtain the potential barrier

E∞ = 2mec2

√
ηPL

PRe
. (4)

We note that Equation (4) is independent of Ee be-
cause E∞ ∝ Q ∝ Nezu = (ηEL/Ee) · (Ee Rs/E∞) =
(ηEL Rs/E∞). The essential point is that laser energy is
mainly converted into a large number of energetic electrons
(fast enough to traverse the target) which in turn build up a
dense electron sheath exhibiting extraordinary strong electric
fields. It is thus not decisive what average energies Ee are
gained by the laser. This is in contrast to the model proposed
by Bulanov et al.[85] where ions are mainly accelerated by
the longitudinal laser electric fields in a bored channel which
acts as a waveguide with conducting walls. The potential of
Equation (2) can be used to calculate the energy Ei (ξ) an
ion with charge qi gains between ξ = 0 (the surface) and ξ :

Ei (ξ) = −qi eΦ(ξ). (5)

The equation of motion yields

τL = Rs

∫ ξm

0

dξ
vi (ξ)

= Rs

∫ sm

0

dξ/ds
vi (s)

ds. (6)

Now, nonrelativistically one has

vi (s) = vi,∞
√

s (7)

with vi,∞ =
√

2Ei,∞/mi = c
√

2εi,∞. Since

dξ
ds
= 1+ (1− s)2

2(1− s)2
, (8)

one obtains

τL = τ0

∫ sm

0

1+ (1− s)2

2(1− s)2
√

s
ds = τ0

[
X +

∫ X

0

dx
(1− x2)2

]
≡ τ0 FN R(X) (9)

with τ0 = Rs/vi,∞ and X = √sm = (Ei,m/Ei,∞)1/2.
Finally, the integration yields

FN R(X) = X + X
2(1− X2)

+ 1
4

ln
(

1+ X
1− X

)
(10)

with X = (εi,m/εi,∞)1/2, where εi,m = Ei,m/(mi c2) is
the normalized maximum ion energy and εi,∞ defines the
normalized energy an ion could gain from the potential of
the sheath if it were maintained stationary, and is given
by εi,∞(τL) = qi 2mec2√ηEL/(τL PRe)/(mi c2) = 1.1 ×
10−3 (qi/Ai )

√
ηEL/(τL PRe). Here, τL and EL are the

laser pulse duration and energy respectively, qi is the ion
charge state, Ai is the nucleon number of the target, PRe =
mec3/re = 8.71 GW is the relativistic power unit (re =
classical electron radius, me = electron mass) and η is the
absorption efficiency into hot electrons. Following Refs. [86,
87], this efficiency is evaluated as η = 1.2 × 10−15 I 3/4

L ,
where IL is in units of W cm−2, up to a maximum η = 0.5.
This scaling has been validated for a laser wavelength of
λL ∼ 1 µm and pulse durations of several hundreds of
femtoseconds. We mention that a similar model has been
developed by Bulanov et al.[15] who considered a conducting
prolate ellipsoid which had been charged up by Q positive
charges. The corresponding potential is given by Landau
and Lifshitz[88]. However, there exists a major difference
from our model: since it is assumed by the ellipsoid model
that the surface is conducting, all transverse forces at z = 0
have to vanish, which can only be fulfilled by a specific
distribution of the Q charges at the surface. However, that
can be in contradiction to the laser-driven charge distribution
of hot electrons which might be very different from any
‘conducting’ equilibrium.

One major result of the model presented is that for a
given laser energy EL , the shortest laser pulses and thus
highest intensities are not necessarily optimal for TNSA.
An important point is that the normalized maximum energy
εi,∞ an ion can gain depends on the pulse duration τL which
has a strong consequence on the maximal ion energy Ei,m .
This can be seen in Figure 1(a) where experimental proton
energies Ei,m (Ref. [57]) are plotted for a constant laser
energy EL = 0.7 J as a function of the laser pulse duration
τL , showing explicitly that there exists an optimal duration
τ

opt
L . This behavior has been verified on other laser systems

as well[89] and can be understood by the following argu-
ment. The highest intensity (i.e., shortest pulse) produces the
largest acceleration field, but only for a short time. On the
other hand, a somewhat smaller field that is sustained over
a longer duration of the laser pulse can result in higher ion
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(a) (b)

Figure 1. (a) Experimental data from Schreiber et al.[57] and the prediction of the nonrelativistic TNSA model. (b) Optimal pulse duration for the specific
example of Rs = 1 µm, η = 1, Ai /qi = 2 for the nonrelativistic consideration (Equation (12), dashed) and the relativistic consideration (Equation (29),
solid). The ultra-relativistic limit is given by the dash-dotted line. For larger Rs the curves are globally shifted to respective larger optimal pulse durations.

energies. The acceleration is therefore optimized for some
intermediate τ opt

L . The solid curve in Figure 1(a) has been
obtained from Equation (9) (for details, see Ref. [57]) and
is in agreement with the experimental data, thus being able
to describe an optimizing procedure. From Equation (9),
for fixed laser energy and source radius, one can find the
optimum using the condition dEi,m/dτL |τ opt

L
= 0. For the

nonrelativistic solution, Equation (10), this leads to

(
τL

τ0

)opt

= Xopt

3

(
1+ 1

(1− X2
opt)

2

)
, (11)

where Xopt is evaluated at τL = τ
opt
L . Insertion of

Equations (11) in (10) yields the solution Xopt ∼= 0.81 with
the corresponding value for (τL/τ0)

opt ∼= 2.55. On inserting
the nonrelativistic characteristic time τ0, one obtains for the
optimum pulse duration

τ
opt
L (EL) = 195

(
Rs

c

)4/3 ( Ai

qi

)2/3 ( PRe

ηEL

)1/3

. (12)

Figure 1(b) shows the optimum pulse duration as a function
of the laser energy for Ai/qi = 2, Rs = 1 µm and η = 1. The
dashed line is the nonrelativistic solution of Equation (12).
The maximum ion energy then becomes

(ε
opt
i,m)TNSA = 1.3

qi

Ai

√
ηEL

τ
opt
L PRi

, (13)

where PRi = (m p/me)PRe = (1836)2 PRe = 29.3 PW is
the relativistic power unit for a proton. From Equation (9) it
follows that for a given laser system τ0 should be minimized
in order to obtain the largest maximum ion energy Ei,m . This
is realized for the smallest possible source size Rs = rL ,
where rL is the radius of the beam spot. Therefore, it is

convenient to use targets with thickness d much smaller than
the radius of the focal spot, which is usually of the order of
some micrometers.

2.2. Relativistic TNSA

The relativistic equation of motion is

dpi

dt
= qi eE = −qi e

dΦ
dz

(14)

with

−qi eΦ(ξ) = Ei,∞
(

1+ ξ −
√

1+ ξ2
)
≡ Ei,∞s(ξ), (15)

where ξ = z/Rs and Ei,∞ = qi 2mec2√ηPL/PRe, as before.
The resulting two coupled first-order differential equations

γ 3
i

dβi

dt∗
= εi,∞

(
1− ξ√

1+ ξ2

)
(16)

and
dξ
dt∗
= βi (17)

have to be solved simultaneously with t∗ = t/t0,R = ct/Rs
and εi,∞ = Ei,∞/(mi c2). The initial condition is t∗ = 0,
ξ = 0 and βi = 0. The ion energy is given by εi = γi − 1
with εi = Ei/(mi c2). A first integration of Equation (16)
yields ∫ βi

0
γ 3

i βi dβi = εi,∞
∫ ξ

0

ds
dξ ′

dξ ′ (18)

or

γi − 1 = εi = εi,∞s(ξ). (19)
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Now, instead of Equation (7) one has

vi (s) = c
√

1− (1+ εi,∞s)−2 (20)

and thus

τL

τ0,R
=
∫ sm

0

1+ (1− s)2

2(1− s)2
√

1− (1+ εi,∞s)−2
ds (21)

with τ0,R = Rs/c and sm = Ei,m/Ei,∞ = εi,m/εi,∞ = X2.
It is immediately seen from Equation (21) that deviations
from nonrelativistic TNSA occur for εi,∞sm = εi,m >
1 (compare Equation (9)).The essential difference is that
nonrelativistically the final ion velocity vi,∞ might become
arbitrarily large, but special relativity limits it to the speed of
light. We note that Equation (21) can be written as

τL

τ0
= √2εi,∞

∫ sm

0

1+ (1− s)2

2(1− s)2
√

1− (1+ εi,∞s)−2
ds

≡ FR(X; εi,∞). (22)

As a relativistic first-order correction to Equation (22) one
obtains

τL

τ0
=
∫ X

0

1+ (1− x2)2

(1− x2)2
dx

− εi,∞
4

∫ X

0

x2(1+ (1− x2)2)

(1− x2)2
dx

= X + X
2(1− X2)

+ 1
4

ln
1+ X
1− X

− εi,∞
4

(
X3

3
+ X

2(1− X2)
− 1

4
ln

1+ X
1− X

)
. (23)

Unfortunately the simple scaling of Equation (9) is lost
since now in FR the additional parameter εi,∞ accounts for
relativistic effects. Using the value of Xopt ∼= 0.8 of the
nonrelativistic TNSA expression as a first-order solution we
obtain a condition for the optimized pulse duration in the
case of relativistic TNSA:(

τL

τ0

)opt

= 2.5− 0.18εopt
i,∞ (24)

or
c
√

a
Rs

(τ
opt
L )3/4 = 2.5− 0.18a

(τ
opt
L )1/2

(25)

with a = 1.1 × 10−3(qi/Ai )
√
ηEL/PRe. An analytic

solution of Equation (25) reads

a = 2.5
α2
+
(
α1

α2

)2
[

1−
√

1+ 5α2

α2
1

]
(26)

with α1 = c(τ opt
L )3/4/Rs and α2 = 0.18/(τ opt

L )1/2. The
nonrelativistic TNSA-limit Equation (11) is obtained

for α2 → 0:

a ∼= 25
8α2

1
− 125

16α4
1
α2 = 3.1R2

s

c2(τ
opt
L )3/2

1− 0.45

(
Rs

cτ opt
L

)2
 .

(27)
Again, the nonrelativistic optimal ion energy (εopt

i,m)TNSA is
obtained by Equation (13). The term within the bracket is
the relativistic correction. A few things are worthy of note.
(1) The correction due to relativistic ion motion becomes
larger with decreasing optimal pulse duration, that is for
larger laser energy EL . This can be expected. However,
(2) the correction decreases the value of a; in other words,
the optimum pulse duration τ opt

L is reduced even when the
laser energy EL remains constant. This in turn means that the
optimum ion energy becomes larger if relativistic corrections
are taken into account. (3) The correction increases with
increasing Rs . Nonrelativistically τ opt

L increases with R4/3
s

(see Equation (12)), but relativistically this increase is less
strong.

Writing Equation (21) as

τL

τ0,R
=
∫ sm

0
H(s; εi,∞)ds (28)

and optimizing Equation (28) by the condition dεi,m/

dτL |τ opt
L
= 0 yields

1
τ0,R
= dsm

dτL
H(sm; εi,∞)+

∫ sm

0

∂

∂τL
H(s, εi,∞)ds. (29)

It follows that

dsm

dτL
= dεi,m

dτL

1
εi,∞
− εi,m

ε2
i,∞

dεi,∞
dτL

= sm

2τL
(30)

and

∂H
∂τL
= 1

4τL

1+ (1− s)2

(1− s)2

× εi,∞s
(1+ εi,∞s)3(1− (1+ εi,∞s)−2)3/2

. (31)

One therefore has the condition

4
τ

opt
L
τ0,R
= sopt

m (1+ (1− sopt
m )2)

(1− sopt
m )2

√
1− (1+ εopt

i,∞sopt
m )−2

+
∫ sopt

m

0

1+ (1− s)2

(1− s)2

× ε
opt
i,∞s

(1+ εopt
i,∞s)3(1− (1+ εopt

i,∞s)−2)3/2
ds

= 4
∫ sopt

m

0

1+ (1− s)2

2(1− s)2(1− (1+ εopt
i,∞s)−2)1/2

ds, (32)
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where sopt
m = ε

opt
i,m/ε

opt
i,∞ and ε

opt
i,∞ = 1.1 × 10−3(qi/Ai )√

ηEL/(τ
opt
L PRe). A numerical solution yields sopt

m with

ε
opt
i,∞ as a parameter. By inserting these solutions into

Equation (29) one obtains the required τ opt
L /τ0,R (solid line

in Figure 1(b)) and εopt
i,m .

In the highly relativistic regime, the ion velocity ap-
proaches the speed of light for approximately all the acceler-
ation time, which according to Equation (6) leads to

τL

τ0,R
= ξm (33)

or

εi,m = 1.1× 10−3(qi/Ai )

√
ηEL

mec2
Rs

re
G(ξm) (34)

with

G(ξm) =
(

1+ ξm −
√

1+ ξ2
m

)/√
ξm . (35)

The function G(ξm) has a rather broad maximum at ξm =
τ

opt
L c/Rs = 1. Whereas in the nonrelativistic regime the op-

timum pulse duration decreases with increasing laser energy
EL , see Equation (12), it becomes a constant, τ opt

L = Rs/c,
for relativistic ion energies (dash-dotted line in Figure 1(b)).
On inserting the value for G one obtains from Equation (34)
the optimal ion energy

(ε
opt
i,m)TNSA = 0.64× 10−3(qi/Ai )

√
ηEL

mec2
Rs

re
. (36)

We conclude this section with two remarks. (i) The ion
energy Ei,m is a unique function of EL and τL , i.e., for
constant laser energy a function of τL only. Thus, Ei,m might
show a maximum with respect to τL or not. However, if there
exists a maximum it is unique, i.e., there is a single-valued
Eopt

i,m = Ei,m(τ
opt
L ) only. (ii) We propose a simple equation

for the whole range,

εi,m = 1.3 · εi,∞

(
1+ τL

τ ∗
−
√

1+
(τL

τ ∗
)2
)
, (37)

with

τ ∗ = Rs/c√
1− 1

(1+εi,∞)2
. (38)

It might be that a better approximation is obtained if in the
last equation εi,∞ is replaced by εi,m . Bulanov et al.[85]

have performed detailed PIC studies of the generation of
high energy ions in overcritical targets. For strong focusing
conditions (Rs ∼= 0.75 µm), they obtained for PL = 1 PW

and a pulse duration of τL = 30 fs (i.e., a laser energy of
EL = 30 J) a proton energy of 1.3 GeV. With εi,∞ = 0.37
and τ ∗ = 3.6 fs we obtain from Equation (37) Ei,m =
430 MeV.

3. Radiation pressure acceleration

At the intensities available with present high-intensity lasers,
it seems natural to consider RPA as a means of accelerating
objects to high energy. RPA offers the most promising
approach for the acceleration of plasma bunches with near-
solid, or at least overcritical, density to relativistic velocities.
The principle of RPA is the same as was proposed to
use continuous wave lasers to drive interstellar vehicles to
relativistic velocities[31, 50]. According to Simmons et al.[31],
a body with rest mass comparable to the applied laser energy
can be accelerated close to the speed of light. For a 5 nm thin
carbon foil and a focal spot diameter of 2 µm, this would
require only 5 J of energy. Unfortunately, the picture is not
quite as simple due to the immense intensity of the applied
laser. In Section 2, we have highlighted the importance of
a high rate of absorption of laser energy into hot electrons
for TNSA. For hole-boring or RPA to work efficiently, this
heating must be suppressed, which may be achieved by the
use of high-contrast systems with circular polarization[34].
In this way the ponderomotive force that acts on the plasma
electrons is only composed of a secular term which can
effectively expel the electrons from the focal region and push
them into the target. The space charge separation in the
focal region is then maintained over the duration of the laser
pulse, or even longer when the reflection front starts to move.
During this time, electrons stay cold, i.e., they do not gain a
large longitudinal momentum spread, so they stay bound to
this initial depletion zone.

The acceleration of an object with mass M = mi ni dπr2
L

by the radiation pressure, where ni is the ion particle density,
is described by Refs. [31, 34, 35]

d(γβ)
dt
= 1

t0

1− β
1+ β , (39)

where t0 = Mc2/(2R PL) and R denotes the reflectivity with
which the laser is reflected. For a constant laser power PL ,
a solution of Equation (39) in terms of the actual time t is
not of much interest because of the retardation effect. More
relevant is a solution in terms of the retarded time tret = t −∫ t

0 β(t
′)dt ′ (Refs. [31, 34]). Thus, Equation (39) becomes

dβ
dtret
= 1

t0

1− β
γ

, (40)

with the solution for the normalized ion energy

εRPA
i,m = γ − 1 = 1

2

(
1+ ζ + 1

1+ ζ
)
− 1, (41)
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where ζ = tret/t0 = 2REL/(Mc2), since the light pulse
is terminated at the retarded time tret = τL . We note that
the interaction between the light and the plasma sheet may
continue even when the laser has finished radiating: for
relativistic velocities of the sheet the light pulse accompanies
the bunch for interaction times t = tint much longer than the
pulse duration

tint = τL

(
1+ ζ

2
+ ζ

2

6

)
. (42)

The essential point for the RPA mechanism is the assumption
that the whole target of mass M is accelerated cooperatively
as a charge-neutral plasma bunch. The physical mechanism
behind this process is the following. Due to their small mass
the electrons are accelerated by light pressure and then due to
Coulomb forces drag the ions behind them (hence the name
light-sail[43, 90]). Thus, one has to avoid the light pressure on
the electrons exceeding the restoring forces due to the charge
separation.

On inspecting Equation (41) it is readily seen that the ion
energy ERPA

i,m increases with ζ and thus with decreasing target
mass M , or with thinner target foils. However, a lower limit
will be reached if the number of ions becomes so small that
they cannot any longer retain the electrons by their Coulomb
forces. One estimates the energy E∞ to separate an electron
from a sheet of ion charge density qi ni = ne to be E∞ =
nedrLe2/(4ε0) (Ref. [57]). This estimate can also be derived
from the ‘capacitor’ model for charge separation[37, 38, 91]

assuming an effective cut-off of the induced electric field
for distances larger than the lateral extension of the sheet.
This assumption is equivalent to the demand to maintain the
balance between charge separation and radiation pressure
at least over a laser period[81, 92]. Evidently, the charge
separating energy increases with the areal density ni d while
the radiation pressure decreases like (ni d)−1, advocating
once more the use of ultra-thin targets. The ion energy can be
derived from Equation (41) in the nonrelativistic case Ei,m ∝
ζ 2 ∝ 1/M2 ∝ 1/d2. For a completely ionized carbon target
with a thickness of 1 µg cm−2 one obtains E∞ ∼= 10 MeV.
On the other hand, this estimate shows that there exists a
lower limit on the electron mass Me that can be accelerated
by radiation pressure and which remains bound to the ions.
The latter demand is essential for ion acceleration since it is
the electrons that pull the ions behind them. If Me becomes
too small, the resulting fast electrons with energies Ee =
mec2γ ∼= mec2τL/(2t0) = (me/Me)EL = EL/Ne (note that
at large electron energies the efficiency approaches 100%,
i.e., all the laser energy is converted into the kinetic energy
of Ne electrons) can surmount the potential barrier built up
by the charge separation field (note that Me = menedr2

L ).
Thus, the minimum ion mass that prohibits charge separation
and that can be accelerated as a charge-neutral plasma bunch

Figure 2. Maximum proton and carbon ion energies for varying thicknesses
of nm-thin DLC foils reported in Henig et al.[51]. The solid curve represents
the prediction for RPA, Equation (41), using the parameters Ai /qi = 2,
EL = 0.7 J, rL = 1.8 µm, R = 1, ρDLC = 2.7 g cm−3. The optimum
mass/thickness is indicated by the transition of the solid to a dashed curve.

becomes

Mmin = Ai

qi

√
4ε0 ELrL

e2 mu (43)

with the atomic mass unit mu and Ai the mass number of
the target. For a carbon target with Ai/qi = 2, EL = 1 J
and rL = 3 µm one obtains Mmin = 2.2 × 10−16 kg,
corresponding to an optimum thickness of 4 nm. This is
in strong contrast to a TNSA model of Andreev et al.[93]

who predicted an optimum thickness of about 100 nm. In
Refs. [51, 94] the maximum ion energy has been investigated
as a function of the target mass M . As expected, the ion
energy increases with 1/M , but for masses close to Mmin the
energy starts to drop rather strongly with further decreasing
target masses, thus confirming the estimate of Equation (43)
quantitatively. Figure 2 reproduces the experimental results
of Ref. [51] for the carbon energies obtained from nm-thin
diamond-like carbon (DLC) foils. The solid curve has been
obtained from Equation (41). Although the curve drops off
faster towards thicker targets (due to the increasing domi-
nation of expansion), evidently there exists an optimal foil
thickness, i.e., target mass. The estimate of Equation (43) is
indicated where the solid line breaks into the dashed line. An
estimate of the optimal and thus minimum foil thickness by
Chen et al.[95] is in essence the same as that of Equation (43).

In a very recent theory of laser ion acceleration from thin
foils[96] the dimensionless parameter

ξ = ned
ncλa0

(44)

has been introduced, which for small laser strength a0 and
thus ξ > 1 prohibits charge separation, i.e., allows collective
ion acceleration induced by electrons riding ahead of the
ions. Here, nc is the critical electron density. It is easy
to show that Equation (44) can also be written as ξ =
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M/Mmin with Mmin of Equation (43). Thus, the condition
ξ > 1 for an appropriate ion acceleration is equivalent to
demanding M > Mmin. Identifying Mmin with the optimal
target mass Mopt for RPA and inserting Equations (43) into
(41) one obtains (εopt

i,m)RPA, which can be compared with
the equivalent expression for the case of optimal TNSA.
In Figure 3 εopt

i,m has been plotted for either TNSA or RPA
versus the laser energy EL . The curves hold for Rs = rL =
1 µm (solid lines) and Rs = rL = 10 µm (dashed lines),
Ai/qi = 2 and η = R = 1. For a typical high-intensity
laser with a wavelength of λL = 1 µm, a beam spot radius
of 1 µm is close to the diffraction-limited minimum sized
beam spot. The corresponding data in Figure 3 thus represent
optimum ion energies also within this context. The extension
of available laser energies up to 10 kJ might be optimistic
but we note that in a recent paper by Tajima et al.[5] on
electron acceleration up to PeV even GJ laser energies have
been discussed. A laser with EL = 1 GJ could accelerate
by radiation pressure a carbon foil of optimal thickness of
300 µm with C ions in it up to energies of 60 TeV/ion
(γ = 5 × 103, which is close to the heavy-ion energies
of CERN’s Large Hadron Collider[97]). However, we also
note that for a pulse duration of 1 ps[5], the interaction
distance according to Equation (42) would become 5 km.
The reflected radiation has a vanishingly small frequency
and at the end of the acceleration process nearly all the
laser pulse energy is converted into kinetic energy of the
ions, EL ∼= (γ − 1)Moptc2, see also Equation (45). It
would not be easy to stop such an ion bunch. Its energy
content is large enough to heat up and finally melt 15 tons
of lead. For comparison, the 7.7 TeV protons stored in
the LHC have an energy content of 0.6 GJ[98]. An elegant
solution of such a ‘beam-dump’ problem has recently been
proposed by Wu et al.[99], relying on the deceleration of
energetic and dense particle bunches by collective electronic
interactions in an underdense plasma, promising a compact
and non-radioactive dump. However, two remarks might be
made. (i) The main contribution to the energy loss of ultra-
relativistic heavy ions is electron–positron pair creation and
not electronic stopping (‘Bethe–Bloch’)[97]. According to
the description of Ref. [97] we obtain for the case discussed
– 60 TeV carbon ions in lead – an electronic energy loss of
0.07 TeV m−1 and one by pair production of 0.3 TeV m−1.
Energy losses due to bremsstrahlung can be neglected since
the small impact parameters necessary to generate hard
photon quanta lead unavoidably to a fragmentation of the
projectile[97]. We thus estimate for the example mentioned
above a stopping length of about 570 m. In contrast, a
beam-dump length of several meters only is sufficient to
break up the projectile by nuclear inelastic interactions,
yielding a cascade of secondary particles with individual
energies much less than the primary one[100]. It is mainly
the electromagnetic component of the cascade that finally
converts the energy into heat. (ii) The essential point

Figure 3. Optimum ion energies predicted by the models for TNSA,
Equations (29)–(32) (black), and RPA, Equations (41)–(43) (red). The
parameters are Ai /qi = 2, R = η = 1, rL = Rs = 1 µm (solid) and rL =
Rs = 10 µm (dashed). Some selected experimental results are represented
by blue squares (Bin et al.[112], Henig et al.[51], Mackinnon et al.[108], Zeil
et al.[113], Ogura et al.[68], Jong Kim et al.[114], Green et al.[115], Jung
et al.[116]) and theoretical results obtained from PIC simulations are marked
by green circles (Pukhov[71], Wang et al.[117], Qiao et al.[40], Sgattoni
et al.[118], Yan et al.[75], Esirkepov et al.[35]). For details, see text.

is not to stop the bunch within a moderate distance and
thus heat the absorber but to dissipate its enormous energy
concentration without any further problem. The situation for
a laser-generated ion bunch is quite different from that of the
LHC where the particles are more or less homogeneously
distributed around the 27 km long circumference of the
storage ring: C ions within a bunch length of 300 µm
compared with 5 × 1014 protons stored within 27 km. The
corresponding pulse length of 90 µs is long enough to allow
kicker magnets to sweep the beam across the absorber.

It is readily seen that except for a minor factor over the
whole range of laser energies both optimized theories yield
the same maximum ion energies. It is therefore more a
question of practicability what kind of optimization one
chooses, τ opt

L or Mopt. There might exist technical limits: it is
certainly very difficult to obtain pulse durations shorter than
say 1 fs. According to Equation (29) this would correspond
to an upper limit of EL = 3 × 104 J, which in essence
does not pose a strong limit. On the other hand, in the case
of RPA a lower limit of Mopt is reached for a monolayer
of atoms. Assuming a carbon foil as the target (the most
popular choice) one obtains a lower limit of Mopt = 1.4 ×
10−18 kg, or from Equation (41) a lower limit of EL =
1.3× 10−4 J, which also does not have a practical influence.
We emphasize that the optimizing procedure developed in
this paper only works since the TNSA theory of Schreiber
et al.[57] does not depend on the target thickness (at least to
first order) and the RPA theory of Refs. [35, 101, 102] does
not depend on the pulse duration.

In addition, experimental results are plotted in Figure 3
demonstrating that in most cases experiments are rather far
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away from being optimal. Multi-J laser systems especially
suffer from having too long a pulse duration. We also note
that normalized ion energies εi,m > 1 or Ei,m > 1 GeV/u,
i.e., relativistic energies, are obtained for laser energies EL >
100 J only and so far have only been obtained in PIC
simulations. Finally, we note that the efficiency of RPA can
be written as

ηRPA ≡ Ei,m

EL
= Rζ

1+ ζ , (45)

i.e., in the relativistic regime with γ � 1 or with Equa-
tion (41) ζ � 1 one obtains that for R = 1, 100% of the
laser energy is converted into ion energy.

Of course, if the transverse light intensity changes, differ-
ent parts of the sail will be accelerated differently changing
an initially plane sail to a convex one. The equation of
motion of Equation (39) changes to

d(γ Eβ)
dt
= 2R PL

Mc2
1− β
1+ β En, (46)

where both PL = PL(y, z; t) and the unit vector En =
En(y, z; t) of the sail’s surface normal depend on the trans-
verse coordinates (y, z) and time t . Thus, a solution of
Equation (46) has to account for a transverse expansion of
the sail. An approximate solution of this self-consistent
problem to obtain both the final velocity β and the shape
of the sail, allowing for bowing while simultaneously sub-
mitting it to the condition of constant mass, has been given
in Ref. [103]. The essential point is that instabilities like
those of the Rayleigh–Taylor type lead to strong deviations
from a uniform plasma front, forming cusps at an early stage
of acceleration[104], resulting in emission of beamlets[105].
To avoid such instabilities Chen et al.[95] have proposed
to use thin target foils shaped initially in the transverse
direction to match the laser intensity profile. PIC simulations
by Wilks et al.[106] performed as far back as in 1992
clearly demonstrated such instabilities for light intensities
relevant to the light-sail regime. However, we remark
that the ion energy differs for every beamlet. At a later
stage the ‘plasma foil’ breaks into high-density clumps with
diffuse lower density clouds between them[104], which due
to its reduced mass may even accelerate ions to higher
energies than the original foil[103]. A similar result has been
obtained quite recently, demonstrating by PIC simulations
that ‘a relatively stable ion clump forms near the laser axis
which is efficiently accelerated’[75]. A detailed study of
Rayleigh–Taylor instabilities which yield filamentation and
their optimization with respect to maximum ion energies has
been published recently[85, 107].

4. Discussion

We are very much aware that analytic descriptions of the
complex laser-assisted acceleration process of ions are ham-

pered in many aspects. In contrast, PIC simulations describe
in much more detail the complex processes described here.
However, we also believe that an analytic description of the
multi-parameter behavior of the process and its interdepen-
dences can give a more general overlook of the strategy to
obtain the required outcomes such as, e.g., maximum ion en-
ergies. At the same time we remark that also PIC simulations
which in essence are based on a mean field theory may rather
severely suppress microscopic interactions. We also recog-
nize a significant overshoot of PIC simulations, promising
ion beams of great quality not verified by experiment hith-
erto. We cite a very recent paper: ‘as pointed out recently
in a number of papers circular polarized laser pulses can
accelerate ions very efficiently and produce sharply peaked
spectra’[75]. This hope results from PIC simulations only and
still awaits experimental verification. In the following we
will touch on some problems not considered in the analytic
description. First, there is the question of the longitudinal
and transverse extension of the laser beam. It has been
assumed that the laser power is constant during its pulse
duration, but even the use of a super-Gauss representation of
the time dependence would merely change the conclusions.
This might be rather different for the transverse extent which
for a mono-mode laser system is Gaussian. In the case of
TNSA this effect yields an electron sheet with transversely
changing field strength which accelerates ions to different
energies. Such broad spectra are not very favorable for
specific applications. A similar problem arises in the case
of RPA. The solution Equation (41) assumes that the light
pressure is in essence transversely constant. RPA for a
transverse Gaussian light beam has been investigated in
detail by Bulanov et al.[92, 103] with PIC simulations showing
in particular the buckling of an initially flat foil. Although
the RPA process itself seems to remain stable, a rather broad
ion spectrum results in this case also.

We note that such high energies as predicted by the
analytical models have not been observed yet even though
comparable laser conditions have been applied, for example
by Mackinnon et al.[108]. Proton energies of up to 25 MeV
have been obtained in the TNSA regime with micrometer
thick targets. The discrepancy may be attributed to an
absorption of laser energy into electrons much below 100%,
especially when considering the high temporal contrast em-
ployed. The results could also be an indication that the
electrons spread transversely over a size larger than Rs ∼= rL ,
even though the target thickness d was smaller than rL in
those experiments.

Hence, the studies presented here are encouraging in
view of future applications that rely on high-repetition-rate
laser systems. For example, for medical applications such
as ion tumor therapy energies exceeding 100 MeV/u are
envisioned. This energy range should be attainable even
with sub-100 J laser systems, while relativistic energies
can be achieved with energies slightly above 100 J. In



10 Schreiber et al.

order to increase the ion energy even further, i.e., above
the multi-GeV level, kJ systems such as envisioned for
the Extreme Light Infrastructure will be necessary. It
may also become necessary to consider novel methods not
discussed here. For example, once the ions move with the
speed of light, staged acceleration possibly implementing
plasma wake acceleration as used presently to accelerate
electrons may provide a more effective means to reach higher
energies[109–111]. In any case, even with lower output ion
energies as compared with conventional accelerators, laser-
accelerated ion bunches are still desirable, due to their bunch
densities which may be close to solid density. Even with
the low repetition rate of most high-power laser systems,
the high number of reactions per unit volume that would
be achievable with solid density bunches is perfectly suited
for the exploration of the field of nonlinear nuclear physics,
such as the production of exotic nuclei by fission–fusion
reactions. Another important feature is the possible short
ion bunch duration paired with the synchronism to other
laser-driven radiation sources to allow for time- and space-
resolved studies in pump–probe schemes.

5. Summary

Starting from experimental results, we have shown that
current theories of laser–ion acceleration can and should
be optimized in order to achieve maximum ion energies.
Not all theories include such a possibility, but the TNSA
theory of Schreiber et al.[57] can be optimized with respect
to laser pulse duration and the RPA theory of Bulanov
et al.[35, 101, 102] with respect to target thickness. It turns
out that both the optimized TNSA and RPA theories yield
approximately the same maximum ion energies over the
range of laser energies 0.1 J < EL < 10 kJ. It is thus a
matter of convenience whether one adjusts the optimal pulse
duration or the optimal target thickness. For both theories,
the decisive laser parameter is neither the power nor the
intensity but solely the laser energy. Relativistic ion energies,
i.e., energies beyond 1 GeV/u, can be obtained for systems
with EL > 100 J, where in addition a diffraction-limited
small spot size has to be achieved.
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