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Abstract. We present a semantics for a language that includes sentences that can talk about
their own probabilities. This semantics applies a fixed point construction to possible world style
structures. One feature of the construction is that some sentences only have their probability given
as a range of values. We develop a corresponding axiomatic theory and show by a canonical model
construction that it is complete in the presence of the ω-rule. By considering this semantics we argue
that principles such as introspection, which lead to paradoxical contradictions if naively formulated,
should be expressed by using a truth predicate to do the job of quotation and disquotation and observe
that in the case of introspection the principle is then consistent.

§1. Introduction. We are interested in languages that include sentences that can talk
about their own probabilities. In such languages contradictions can arise between seem-
ingly harmless principles such as probabilism and introspection. The sentence that is used
to display this is:

(π ) The probability of π is less than 1/2.

Caie (2013) has recently used this as a prima facie argument against probabilism. A pos-
sible (but, we will argue, wrong) response to this is to argue that the contradiction is
only due to the self-referential nature of the sentence so should not be worried about.
A natural way to account for that intuition is to prevent such sentences from appearing
in the language. However, we shall argue that the result of doing that is that one cannot
properly represent quantification or formalise many natural language assertions, so we
think that that is the wrong path to take. Instead we will suggest that such self-referential
probability assertions should be expressible, but one should work out how to deal with
this language and how to circumvent such contradictions. This is what we will do in this
paper. The language we will work with formalises the probability notion as a predicate
that applies to the codes of sentences and rational numbers; we will have a sentence like
“P�(�ϕ�, �α�)” whose intended interpretation is “The probability of ϕ is � α”.

We believe such considerations will become relevant in disciplines that use probabilistic
methods, such as formal epistemology and philosophy of science, as these disciplines start
to work with formal languages that are more expressive.

The paper is structured as follows. In Section 2 we will give the aforementioned argu-
ment that one should consider languages that are able to express self-referential probabil-
ities. In that section we will also discuss previous work on self-referential probabilities to
put this paper in context.
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HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 681

In Section 3, we will motivate and present our suggested semantics, which generalises
a very influential theory of truth that originates in a paper by Saul Kripke (1975). Kripke’s
theory of truth was developed to account for the liar sentence, which is a sentence that says
of itself that it is not true. In his paper Kripke constructs an extension of the truth predicate
by formalising the procedure of evaluating a sentence. He uses three-valued logics to build
up this extension, but the extension of the truth predicate can then be used within classical
logic to give a classical model of the language with a truth predicate. In this semantics one
will have that for some sentences, such as the liar sentence, ¬T�ϕ� and ¬T�¬ϕ� are both
satisfied. In this paper we shall present a generalisation of this semantics to also account
for probability predicates. The final semantics we propose will be classical, but for some
sentences we will only assign a range of probability values not a particular probability
value. So we might have ¬P> (�ϕ�, �0�) and ¬P< (�ϕ�, �1�), but only P�(�ϕ�, �0�)
and P� (�ϕ�, �1�). Our generalisation follows ideas from Halbach & Welch (2009) where
Halbach and Welch develop a semantics for necessity, conceived of as a predicate, by
applying Kripke’s construction to “possible world” structures in the form of Kripke models
from modal logic. We will use probabilistic modal structures to provide the background
structure for our construction. This therefore allows one to use the technical advantages of
these structures, which might have been thought to only be available when the probability
notion is conceived of as an operator (see Halbach et al., 2003).

In Section 4 we give some observations regarding the developed semantics. In Stern
(2014a, 2014b), Stern argues that when stating principles about necessity, the job of quota-
tion and disquotation should be done by a truth predicate. We argue for the same thing here:
we argue that principles such as introspection are properly expressed by using the truth
predicate. In our language the (positive) introspection principle will then be written as:

T�P�(�ϕ�, �α�)�→ P= (�P�(�ϕ�, �α�)�, �1�)

This allows one to avoid inconsistency and is well-motivated in this semantic construction.
In Section 4 we also consider σ -additive probabilities and show that if the underlying prob-
abilistic modal structure has σ -additive probability measures, then the resulting semantics
will satisfy the version of the Gaifman condition that is appropriate in our framework. The
Gaifman condition is the requirement that

P (∃xϕ(x)) = lim
n→∞ P

(
ϕ(0) ∨ ϕ(1) ∨ . . . ∨ ϕ(n)

)
.

This is interesting because the Gaifman condition has proved challenging in previous work
on self-referential probabilities (see Section 2).

In Section 5 we shall give an axiomatic theory that is intended to capture the semantics.
Such a theory is important because it allows one to reason about the semantics. As was
discussed in Aumann (1999), when one gives a possible worlds framework to formalise
a game theory context the question arises of what the players know about the framework
itself and this question is best answered by providing a corresponding syntactic approach.
Our theory complete in the presence of the ω-rule, which allows one to conclude ∀xϕ(x)
from all the instances of ϕ(n). This is needed to fix the standard model of arithmetic.
To show the completeness when the ω-rule is present we construct a canonical model. This
axiomatisation is substantially new research.

Finally, we finish the paper with some conclusions in Section 6.

§2. Self-referential probabilities. So why should such self-referential probability
sentences be expressible? Probability is a very useful concept and it is interesting to study
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682 CATRIN CAMPBELL-MOORE

languages that have at least a minimal ability to talk about probabilities. We therefore
consider languages that can at least formalise expressions such as:

The probability of the coin landing heads is 1/2.

We also want to be able to express embeddings of probabilities, as this is useful to ex-
press agents beliefs about other agents’ beliefs, or generally relationships between different
notions of probability. We will work with frameworks that assign probabilities to sentences
instead of events, which are subsets of a sample space. Although this is uncommon in
mathematical study of probability it is common in logical and philosophical work and
it will allow us to give the syntax of our language that can deal with embeddings of
probabilities, without first developing a semantics. We will then have constructions such as

PA(. . . PB(. . . PA . . .) . . .) . . .

We furthermore allow for self-applied probability notions, or higher order probabilities,
namely constructions such as

PA(. . . PA . . .) . . .

These offer us two advantages. Firstly, they allow for a systematic syntax once one wishes
to allow for embedded probabilities. Secondly, their inclusion may be fruitful, as was
argued for in Skyrms (1980). For example, we can then represent introspective abilities of
an agent, or the uncertainty or vagueness about the first order probabilities. If one disagrees
and wishes to argue that they are trivial and collapse to the first level, then one should
still not prevent them being expressed in the language, but should instead include an
extra principle to state this triviality of the higher levels, such as adding an introspection
principle, which is something formalising:

If the probability of ϕ is � α,
then the probability of “The probability of ϕ is � α” is 1.

In fact, once we have languages that can express self-referential probabilities we see that
this introspection principle, along with the analogous negative introspection principle,
cannot be satisfied,1 suggesting that the triviality of the higher levels of probability is more
substantial an assumption than it seems at first sight.

There are two ways of giving languages that can express higher order probabilities
that do not allow for self-referential probabilities. The first is to consider a hierarchy
of languages. This is given by a language L0 that cannot talk about probabilities at all,
together with a metalanguage L1 that can talk about probabilities of the sentences of L0,
together with another metalanguage L2 that can talk about the probabilities of sentences
of L1 and L0 etc. This leads to a sequence of language L0, L1, L2, . . . each talking about
probabilities of the previous languages. In ordinary language we can talk about multiple
probability notions, such as objective chance and the degrees of beliefs of different agents,
but the different notions should be able to apply to all the sentences of our language and not
have a hierarchy of objective chance notions ch0, ch1, . . . applying to the different levels
of language.

The second approach is to instead consider one language where the probability notion
is formalised by an operator. This is the approach taken in Aumann (1999), Fagin et al.
(1990), Ognjanović & Rašković (1996) and Bacchus (1990), amongst others. Each of these
differ in their exact set-up but the idea is that one adds a recursive clause saying: if ϕ is

1 If the probability notion satisfies the axioms of probability.
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HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 683

a sentence of the language then we can form another sentence of the language that talks
about the probability of ϕ. For example in Aumann (1999) and Ognjanović & Rašković
(1996) one adds the clause

If ϕ ∈ L then P�α(ϕ) ∈ L

to the construction rules of the language L .2 In this language P�α acts syntactically like ¬
instead of like a predicate so this is not a language of first order logic.

Both the typed and operator languages do not allow for self-referential probabilities but
they also cannot easily account for quantification over all of the sentences of the language.
So for example they cannot express:

Annie is certain that Billy has some non-extremal degrees of belief.

There is an alternative language for reasoning about probabilities that can express this
quantification: one can add the probability notion as a standard predicate symbol or func-
tion symbol in first order logic. This is the approach we will take. In our language, we will
be able to formalise the above by:

PA=
(�∃x(PB

>(x, �0�) ∧ PB
<(x, �1�))�, �1�

)
If one takes Peano arithmetic as a background theory, then one can derive the diagonal
lemma for this language and therefore result in admitting sentences that talk about their
own probabilities. Such self-referential probabilities therefore arise when we consider
languages that can express such quantification.

Working with languages that can express self-referential probabilities can also be an
advantage. In natural language we can assert sentences that are self-referential or not
depending on the empirical situation, and an appropriate formal language representing
natural language should be able to do this too.3

Consider the following example. Suppose that Smith is a Prime Ministerial candidate
and the candidates are campaigning hard today. Smith might say:

(1) “I don’t have high credence in anything that the man who will be Prime Minister
says today.”

Imagine further, that unknown to Smith, he himself will become Prime Minister. (1) there-
fore expresses a self-referential probability assertion analogous to π , the self-referential
probability example from Page 680. To reject Smith’s assertion of (1) as formalisable
would put serious restrictions on the natural language sentences that are formalisable.

Such discussions are not new. The possibility of self-reference is also at the heart of the
liar paradox, namely a sentence that says of itself that it is not true. This can be expressed
by:

(λ) ¬T�λ�
This liar sentence leads to contradiction under certain basic assumptions about the truth
predicate, T, namely the principles T�ϕ�↔ ϕ for each ϕ.

In Kripke’s seminal paper, he says:

Many, probably most, of our ordinary assertions about truth or falsity
are liable, if our empirical facts are extremely unfavourable, to exhibit

2 For some choice of values of α, for example the rational numbers.
3 An example of empirical self-reference in the case of truth is Kripke’s Nixon example from

Kripke (1975, p. 695).
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684 CATRIN CAMPBELL-MOORE

paradoxical features.. . . it would be fruitless to look for an intrinsic
criterion that will enable us to sieve out—as meaningless, or ill-formed—
those sentences which lead to paradox. (Kripke, 1975, p. 691–692)

Analogously, if we wish our formal language to represent our ordinary assertions about
probability we should allow for the possibility of self-referential sentences. We should then
provide a clear syntax and semantics that can appropriately deal with these sentences as
well as providing an axiomatic theory for reasoning about the language. This is what we
do in this paper.

We will now briefly mention some previous work on self-referential probabilities.
Although there is not space to give proper discussion of these papers we will sketch the
ideas so it is clearer where our work fits in.

In Leitgeb (2012), Leitgeb develops the beginnings of what might be called a revision
semantics for probability, though he only goes to stage ω. He also provides an axiomatic
theory. Revision semantics for truth is a popular alternative to the semantics that we focus
on. Our paper can therefore be seen to connect to and complement Leitgeb’s work by
seeing how the variety of theories of truth can lead to theories of probability.

In Caie (2013) and Caie (2014), Caie argues that traditional arguments for probabilism,
such as the argument from accuracy, the Dutch Book argument and the argument from
calibration all need to be modified in the presence of self-referential probabilities, and that
so modified they do not lead to the rational requirement for beliefs to be probabilistic.
Some further analysis of Caie’s modifications can be found in Campbell-Moore (2015).
In Caie (2013), Caie also presents a prima facie argument against probabilism by noticing
its inconsistency with introspection when such self-reference is present. Our proposal in
this paper, that introspection should be stated by appeal to a truth predicate, can be seen as
another response to Caie’s argument.

Lastly, the unpublished paper (Christiano et al., n.d.) also considers the challenge that
probabilism is inconsistent with introspection. In their paper, Christiano et al. show that
probabilism is consistent with an approximate version of introspection where one can
only apply introspection to open intervals of values in which the probability lies. These
authors come from a computer science background and believe that these self-referential
probabilities might have a role to play in the development of artificial intelligence.

Both at the final stage of Leitgeb’s construction and in the construction by Christiano
et al., there is a formula ϕ(x) such that P(∃xϕ(x)) = 1 but for each n P(ϕ(0) ∨ . . . ∨
ϕ(n)) = 0. This shows that they badly fail the Gaifman condition. In Section 4.2 we will
show that our semantics allows P to satisfy the version of the Gaifman condition that is
appropriate in our framework.

Since writing this paper we have seen that in Caie (2011, p. 64) Caie has presented a
semantics that also generalises Kripke’s semantics to deal with self-referential probabili-
ties. Our construction is more general, for example we work with more general background
structures and our definitions will also apply to non-consistent evaluation functions, though
we do not consider these in our paper.

§3. A semantics for languages with self-referential probabilities.

3.1. Setup: Language and notataion. The syntax of the language we work with will
be as follows:

DEFINITION 3.1. Let L be some language extending the language of Peano arithmetic.
We allow for the addition of contingent vocabulary but for technical ease we shall only
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HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 685

allow contingent relation symbols (and propositional variables) and not function symbols
or constants.4 We also only allow for a countable number of contingent vocabulary symbols
in order for our language to remain countable and the completeness proof to work.

Let LP,T extend this language by adding a unary predicate T and a binary predicate P� .

We could consider languages with multiple probability notions, then we would add the
binary predicate PA

� for each notion of probability, or agent A, but our constructions
will immediately generalise to the multiple probability languages so we just focus on
the language with one probability notion. We have included the truth predicate since it
is easy to extend the definition of the semantics to deal with truth as well as probability
and it is nice to see that the construction can give a joint theory of truth and probability.
Additionally, we shall rely on the truth predicate for our later axiomatisation and for
expressing principles such as introspection.

We need to be able to represent sentences of LP,T as objects in the language. We
therefore assume some standard Gödel coding of the LP,T expressions into the natural
numbers. We shall also assume a coding of rational numbers into the natural numbers,
which allows us to have the technical ease of having Peano arithmetic as our background
theory. We then have sentences such as P�(�ϕ�, �α�) whose intended interpretation is

“The probability of ϕ is � α.”

Since P� is a predicate and we are working in first order logic we can quantify over both
positions of the predicate P� , so we have sentences like ∃x∃aP�(x, a).5

It is important to note that although we have a language that can only talk about rational
numbers we haven’t assumed that sentences always have rational probability values. For
example we might have a model where for each rational α <

√
2/2, P> (�ϕ�, �α�), and for

each rational α >
√

2/2, P< (�ϕ�, �α�). In that case the probability of ϕ would be said to be√
2/2, which is an irrational number. The restriction is just that we cannot directly talk about

this probability value because we don’t have an object in our language standing for
√

2/2.
We now introduce the notation we will use for the construction of the semantics.6

NOTATION 3.2. We assume some coding # : Expressions(LP,T)∪Q → N that is recursive
and one-to-one. For ϕ an expression of LP,T, i.e. ϕ ∈ Expressions(LP,T) and α a rational
number, i.e. α ∈ Q, we let �ϕ� and �α� denote the numerals7 corresponding to #ϕ and #α
respectively. We use rat(n) to denote the rational number whose code is n. So rat(#α) = α.
We denote the set of codes of rational numbers by Rat and the set of codes of sentences of
LP,T by SentP,T.8

4 This does not place a restriction on the expressive power of the languages since one can replace
constants by unary predicates and n-ary function symbols by n + 1-ary relation symbols. This
restriction could be dropped, but then tN, as will be defined in Notation 3.2, would be ill-defined
and this would just complicate the presentation of the material.

5 We shall generally use variables a and b when the intention is that they quantify over rational
numbers.

6 Some additional notation will be introduced in Notation 5.1 but since that notation will only be
used in the axiomatisation we shall delay it to there to keep this section understandable.

7 The numeral of n is denoted n and it corresponds to the expression

n︷ ︸︸ ︷
S(. . . S(0) . . .), where S is the

successor symbol from Peano arithmetic.
8 We shall also occasionally use SentP,T to denote the set of sentences of LP,T (as opposed to the

codes of the sentences), but this should not cause any confusion.
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686 CATRIN CAMPBELL-MOORE

We use ¬. to represent the syntactic operation of negating a sentence,9 so ¬. �ϕ� = �¬ϕ�
is a theorem of Peano arithmetic. Similarly we use 1−. to represent “1−”, and 
 to
represent the ordering > on rational numbers.

Finally, we denote the interpretation of the term t in the standard model of arithmetic,
N, by tN, for example SnN = n + 1. This is well-defined because we assumed there were
no contingent function symbols or constants in the language L.

We now introduce the other probability predicates, which we use as abbreviations.

DEFINITION 3.3. Define for terms t and s the following abbreviations:

• P> (t, s) := ∃a 
 s(P�(t, a))

• P� (t, s) := P�(¬. t, 1−. s)
• P< (t, s) := P>

(¬. t, 1−. s
)

• P= (t, s) := P�(t, s) ∧ P� (t, s)

In a model that interprets the arithmetic vocabulary by the standard model of arithmetic,
we will have that P> (�ϕ�, �α�) holds if and only if there is some rational β > α such that
P�(�ϕ�, �β�) holds.

3.2. The construction of the semantics. We will now move to developing our seman-
tics.

Kripke’s construction in Kripke (1975) is motivated by the idea that one should consider
the process of evaluating a sentence to determine which sentences can unproblematically
be given a truth value.

To evaluate the sentence T�0 = 0� one first has to evaluate the sentence 0 = 0. Since
0 = 0 does not mention the concept of truth it can easily be evaluated so T�0 = 0� can
then also be evaluated. Kripke formalises this process of evaluating sentences. We shall say
evaluated positively (and evaluated negatively) instead of evaluated as true (and evaluated
as false) to make it clear that this is happening at the meta-level.

To evaluate P�(�ϕ�, �α�) we first need to evaluate ϕ not only in the actual state of
affairs but also in some other states of affairs. We therefore base our construction on
structures with multiple “possible worlds” and we evaluate the sentences at all the worlds.
We will assume that each world has a “degree of accessibility” relation to the other worlds.
This will be used to give us the interpretation of P� .

DEFINITION 3.4 (Probabilistic modal structure). A probabilistic modal structure for a
language L is given by a frame and an interpretation:

A frame is some (W, {mw|w ∈ W }) where W is some non-empty set, we shall call its
objects worlds, and mw is some finitely additive probability measure over the powerset of
W ,10 i.e. mw : P(W ) → R satisfying:

• mw(W ) = 1
• mw(A) � 0 for all A ⊆ W
• For A, B ⊆ W , if A ∩ B = ∅ then mw(A ∪ B) = mw(A) + mw(B)

9 Which is primitive recursive so is representable in Peano arithmetic.
10 Assuming that this is defined on the whole powerset does not in fact lead to any additional

restriction when we deal with merely-finitely additive probability measures, since a finitely
additive probability measure on some Boolean algebra can always be extended to one defined
on the whole powerset.
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HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 687

An interpretation, M, assigns to each world w, a classical model for the language L,
M(w). For the purpose of this paper we assume that each M(w) has the natural numbers
as a domain and interprets the arithmetic vocabulary in the standard way. We call such
models N-models.11

Such structures are very closely related to type spaces, which are of fundamental impor-
tance in game theory and economics. In a type space it is almost always assumed that each
mw is σ -additive. Furthermore it is often assumed that mw{v | mv = mw} = 1, i.e. the
agents are fully aware of their own beliefs, though these are often called Harysani type
spaces following Harysani’s development of them in Harsanyi (1967). We use a different
name to make it clear that we do not use these assumptions. These structures can also be
seen as quantitative versions of Kripke structures from modal logic.

We will now give an example of a probabilistic modal structure and will then motivate
our construction. The reader familiar with such structures and the Kripke construction and
who is eager to jump to our formal definition of the semantics can find that in Definition
3.6 on Page 690.

Consider the following example: Suppose we have an urn filled with 90 balls, 30 of
which are yellow, 30 blue and 30 red. Suppose that a random ball is drawn from the
urn and the agent is told whether it is yellow or not. We will give a probabilistic modal
structure that represents the agent’s degrees of belief once the ball has been drawn and
she has been told whether it is yellow or not. To formalise this example we use a lan-
guage, L , that adds to the language of Peano arithmetic the propositional variables
Y, B and R, which will stand for the propositions that a yellow, blue or red ball is drawn,
respectively. We consider three worlds that will be used to represent the colour of the
ball drawn, so we take W = {wY, wB, wR} where wY is actual if a yellow ball was
drawn, wB for the blue ball and wR for the red. The interpretation function M describes
what these worlds are like, for example the model M(wY) assigns the truth-value true
to Y and false to B and R. The other component we need to finish our description of the
probabilistic modal structure are the functions mw representing how much our agent thinks
the other worlds are possible if she is actually in the world w. If a yellow ball is actually
drawn, i.e. the agent is in the world wY, then she is told that the ball is yellow, so she
is certain that she is in wY. We therefore have that mwY({wY}) = 1, mwY({wB}) = 0
and mwY({wR}) = 0. Since there are only finitely many worlds this is enough infor-
mation to determine the full mwY .12 If a blue ball is actually drawn, i.e. the agent is in
wB, then she is told that the ball is not yellow so the only worlds she considers as still
possible are wB and wR. The agent thinks it is as likely that a blue ball is drawn as a
red ball, so we will have that mwB({wY}) = 0, mwB({wB}) = 1/2 and mwB({wR}) = 1/2,
which is again enough to determine the full mwB . The case when a red ball is actually
drawn is the same from the agent’s perspective as if a blue ball is actually drawn so
mwB = mwR .

We can represent this probabilistic modal structure by the diagram in Fig. 1. In this
example the space is finite so we can represent the measures by degree of accessibility
relations, which we have done by the labelled arrows in the diagram. We have omitted the
the arrows that would be labelled by 0.

11 This restriction of the domain allows us to have a name for each member of the domain and
therefore makes the presentation easier since we can then give the semantics without mentioning
open formulas and variable assignments. This restriction also helps for the axiomatisation.

12 Which will be given by: mwY(A) = ∑
w∈A mwY(w).
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688 CATRIN CAMPBELL-MOORE

Fig. 1. Example of a probabilistic modal structure.

At the first stage we will useM to see that B is evaluated positively in wB and negatively
in the other worlds. So using the frame, we will then be able to see that at the second stage
we should now evaluate P�(�B�, �1/2�) positively in wB and wR and negatively in wY.

To formalise the evaluation procedure we need to record how the sentences have been
evaluated at each world. We do this by using an evaluation function that records the codes
of the sentences that are evaluated positively at each world. In doing this we only focus on
those sentences that are evaluated positively and see that ϕ is evaluated negatively if and
only if ¬ϕ is evaluated positively.

DEFINITION 3.5. An evaluation function, f , assigns to each world, w, a set f (w) ⊆ N.

If #ϕ ∈ f (w), we say that f evaluates ϕ positively at w.
We can now proceed to motivate the formal analysis of the evaluation procedure. We do

this by developing a definition of 	( f ), which is the evaluation function given by another
step of reasoning. So if f gives the codes of the sentences that we have so far evaluated
positively, then 	( f ) gives the codes of the sentences that one can evaluate positively at
the next stage.

At the zero-th stage one often starts without having evaluated any sentence either way.
This can be given by an evaluation function f0 with f0(w) = ∅ for all w.

A sentence that does not involve truth or probability can be evaluated positively or
negatively by just consideringM(w). So we define:

• For ϕ a sentence of L , #ϕ ∈ 	( f )(w) ⇐⇒ M(w) |� ϕ

• For ϕ a sentence of L , #¬ϕ ∈ 	( f )(w) ⇐⇒ M(w) �|� ϕ

This will give the correct evaluations to the sentences of L , for example 0 = 0 ∈ 	( f )(w)
and ¬0 = 1 ∈ 	( f )(w).

To evaluate a sentence T�ϕ� we first evaluate ϕ. If ϕ was evaluated positively then we
can now evaluate T�ϕ� positively, and similarly if it was evaluated negatively. However,
if ϕ was not evaluated either way then we still do not evaluate T�ϕ� either way. This is
described by the clauses:

• #T�ϕ� ∈ 	( f ) ⇐⇒ #ϕ ∈ f (w)

• #¬T�ϕ� ∈ 	( f ) ⇐⇒ #¬ϕ ∈ f (w)

We therefore get that #T�0 = 0� ∈ 	(	( f ))(w) and #¬T�0 = 1� ∈ 	(	( f ))(w).
To describe the cases for probability we consider the fragment of a probabilistic modal

frame that is pictured in Fig. 2. We consider how one should evaluate P�(�ψ�, �α�) for
different values of α.
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Fig. 2. A fragment of a probabilistic modal structure representing
the information required to evaluate P�(�ψ�, �α�) in 	( f )(w0).

P�(�ψ�, �0.3�) will be evaluated positively by 	( f ) because the measure of the
worlds where ψ is evaluated positively is 1/3 = 0.333 . . ., which is larger than 0.3.13

P�(�ψ�, �0.7�) will be evaluated negatively by 	( f ) because however ψ will be evalu-
ated in w3 there are be too many worlds where ψ is already evaluated negatively for the
measure of the worlds where it is evaluated positively to become larger than 0.7. While
the evaluation function remains consistent this measure could at most become 0.666 . . . =
1 − mw {v | #¬ψ /∈ f (v)}. We evaluate P�(�ψ�, �0.5�) neither way because if ψ was to
become evaluated in w3 the measure of the worlds where ψ is evaluated positively would
become either 0.333 . . . or 0.666 . . . so we need to retain the flexibility that P�(�ψ�, �0.5�)
can later be evaluated either positively or negatively depending on how ψ is evaluated
at w3.

We therefore give the definition

• #P�(�ϕ�, �α�) ∈ 	( f )(w) ⇐⇒ mw{v | #ϕ ∈ f (v)} � α
• #¬P�(�ϕ�, �α�) ∈ 	( f )(w) ⇐⇒ mw{v | #¬ϕ ∈ f (v)} > 1 − α

In this paper we only consider consistent evaluation functions (see Definition 3.9).14 Re-
stricting to only consistent evaluation functions, we have that mw{v | #¬ϕ ∈ f (v)} > 1−α
exactly captures the requirement that the measure of the worlds where ϕ is evaluated
positively will not become � α however ϕ becomes evaluated in the worlds where it is
not currently evaluated, i.e. for all g (consistent) extending f , mw{v | #ϕ ∈ g(v)} �� α.

In this example we saw that the probability of ψ is given by a range. This is described
pictorially in Fig. 3.

We lastly need to give the definitions for the connectives and quantifiers. For example
we need to say how ϕ ∨¬ϕ should be evaluated if ϕ is itself evaluated neither way. For this
we directly use the strong Kleene three valued evaluation scheme, which is the scheme that
Kripke focused on and there has been a lot of work following him in this. Using this scheme
results in having that # ϕ ∨ ψ ∈ 	( f )(w) if and only if #ϕ ∈ 	( f )(w) or #ψ ∈ 	( f )(w),
so if ϕ is evaluated neither way then ϕ ∨ ¬ϕ will also be evaluated neither way. The
advantage of this scheme over, for example, one based on supervaluational logic is that it

13 One should really say “the measure of the set of the worlds where ψ is evaluated positively”, but
that would be cumbersome.

14 This definition will also apply when we want to work with non-consistent evaluation functions.
This is an advantage over Caie (2011). In non-consistent evaluation functions one may have, e.g.:
#P�(�λ�, �1�) ∈ 	( f )(w), #¬P�(�λ�, �1�) ∈ 	( f )(w), and #P� (�λ�, �0�) ∈ 	( f )(w).
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690 CATRIN CAMPBELL-MOORE

Fig. 3. How 	( f )(w) evaluates the probability of ϕ.

is truth functional, so for example the evaluation of ϕ ∨ ψ depends only on how ϕ and ψ
have been evaluated.

This fully defines 	( f ). We only used the question of whether ϕ can now be evaluated
positively, i.e. if ϕ ∈ 	( f ), as motivating the definition. We formally understand it as
a definition of a three valued semantics, (w, f ) |�SKP

M , and we will then later define

(w, f ) |�SKP
M ϕ ⇐⇒ #ϕ ∈ 	( f ). This is common when working with Kripke’s theory of

truth. We sum up our discussion in the formal definition of (w, f ) |�SKP
M .

DEFINITION 3.6. For M a probabilistic modal structure, w ∈ W , and f an evaluation
function, define (w, f ) |�SKP

M by induction on the positive complexity of the formula as
follows.

• (w, f ) |�SKP
M ϕ ⇐⇒ M(w) |� ϕ for ϕ an atomic sentence of L

• (w, f ) |�SKP
M ¬ϕ ⇐⇒ M(w) �|� ϕ for ϕ an atomic sentence of L

• (w, f ) |�SKP
M Tt ⇐⇒ tN ∈ f (w) and tN ∈ SentP,T

• (w, f ) |�SKP
M ¬Tt ⇐⇒ ¬. tN ∈ f (w) or tN �∈ SentP,T

• (w, f ) |�SKP
M P�(t, s) ⇐⇒ mw

{
v | tN ∈ f (v)

}
� rat(sN) and sN ∈ Rat

• (w, f ) |�SKP
M ¬P�(t, s) ⇐⇒ mw

{
v | ¬. tN ∈ f (v)

}
> 1 − rat(sN) or sN �∈ Rat

• (w, f ) |�SKP
M ¬¬ϕ ⇐⇒ (w, f ) |�SKP

M ϕ

• (w, f ) |�SKP
M ϕ ∨ ψ ⇐⇒ (w, f ) |�SKP

M ϕ or (w, f ) |�SKP
M ψ

• (w, f ) |�SKP
M ¬(ϕ ∨ ψ) ⇐⇒ (w, f ) |�SKP

M ¬ϕ and (w, f ) |�SKP
M ¬ψ

• (w, f ) |�SKP
M ∃xϕ(x) ⇐⇒ (w, f ) |�SKP

M ϕ[n/x] for some n ∈ N.

• (w, f ) |�SKP
M ¬∃xϕ(x) ⇐⇒ (w, f ) |�SKP

M ¬ϕ[n/x] for all n ∈ N
Note that we have omitted the connectives ∨, →, ↔, ∀. We shall take them as abbrevia-
tions, for example “ϕ ∧ ψ” abbreviates “¬(¬ϕ ∨ ¬ψ)”.

The only difference to the standard definition is the addition of the clauses for probabil-
ity. As a consequence of our definition and the fact that M(w) is an N-model we have that
(w, f ) |�SKP

M P> (�ϕ�, �α�) ⇐⇒ mw {v | #ϕ ∈ f (v)} > α.

We now give the definition of 	 in terms of (w, f ) |�SKP
M .

DEFINITION 3.7. Define 	 a function from evaluation functions to evaluation functions by

	( f )(w) := {#ϕ | (w, f ) |�SKP
M ϕ}.

We now consider an example of how this works for the “unproblematic” sentences.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020315000118
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 29 Nov 2018 at 15:43:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020315000118
https://www.cambridge.org/core


HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 691

Consider again the example in Fig. 1, which models an agent’s beliefs after a ball is
picked from an urn and the agent is told whether it’s yellow or not.

Take any f . Observe that:

(wB, f ) |�SKP
M B and (wR, f ) |�SKP

M ¬B

so:

#B ∈ 	( f )(wB) and #¬B ∈ 	( f )(wR).

Therefore:

(wB,	( f )) |�SKP
M P= (�B�, �1/2�) and similarly for wR.15

so:

#P= (�B�, �1/2�) ∈ 	(	( f ))(wB) and similarly for wR.

Then by similar reasoning:

(wB,	(	( f ))) |�SKP
M P= (�P= (�B�, �1/2�)�, �1�)

so:

#P= (�P= (�B�, �1/2�)�, �1�) ∈ 	(	(	( f )))(wB).

These sentences have an easy translation into the operator language. Such sentences
will be given point-valued probabilities and be evaluated positively or negatively by some
	(	(. . .	( f ) . . .)). This shows that this semantics extends an operator semantics, a min-
imal adequacy requirement for any proposed semantics.16

If one starts with f (w) = ∅ for each w ∈ W , and iteratively applies 	, then 	 will
only give evaluations to sentences that were previously evaluated neither way, it will not
change the evaluation of a sentence. This is because 	 is monotone:

LEMMA 3.8 (	 is monotone). If for all w f (w) ⊆ g(w), then also for all w 	( f )(w) ⊆
	(g)(w).

Proof. Take some evaluation functions f and g such that f (w) ⊆ g(w) for all w. It
suffices to prove that if (w, f ) |�SKP

M ϕ then (w, g) |�SKP
M ϕ. We do this by induction on

the positive complexity of ϕ. �
This fact ensures that there are fixed points of the operator 	, i.e., evaluation functions

f with f = 	( f ). These are evaluation functions where the process of evaluation doesn’t
lead to any new “information”.

DEFINITION 3.9. f is called a fixed point evaluation function if 	( f ) = f .
f is called consistent if for each w ∈ W and n ∈ N, it is not the case that n ∈ f (w) and

¬. n ∈ f (w).

COROLLARY 3.10 (	 has fixed points). For every M there is some consistent fixed
point evaluation function f .17

15 Remember “P= (�B�, �1/2�)” is an abbreviation for “P�(�B�, �1/2�)∧P�(�¬B�, �1 − 1/2�)”.
16 We can show for the natural translation function ρ from the operator language as presented in

Heifetz & Mongi (2001) to the predicate language, and f a fixed point one has

w |�M ϕ ⇐⇒ (w, f ) |�SKP
M ρ(ϕ).

17 To show that the minimal fixed point is consistent one works by induction on the generation
procedure by showing that if f is consistent then so is 	( f ).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020315000118
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 29 Nov 2018 at 15:43:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020315000118
https://www.cambridge.org/core


692 CATRIN CAMPBELL-MOORE

If ϕ is grounded in facts that are not about truth or probability then this process of
evaluation will terminate in such facts and the sentence will be evaluated appropriately in
a fixed point of 	. Such sentences will also therefore be given a point-valued probability,
as is desired. For example, 0 = 0 ∨ λ will be evaluated positively in each world and so be
assigned probability 1, i.e. P= (�0 = 0 ∨ λ�, �1�) will also be evaluated positively, even
though 0 = 0 ∨ λ is not expressible in the operator language.

The fixed points have some nice properties.

PROPOSITION 3.11. For f a fixed point of 	 we have:

#ϕ ∈ f (w) ⇐⇒ (w, f ) |�SKP
M ϕ

Therefore we have

(w, f ) |�SKP
M T�ϕ� ⇐⇒ (w, f ) |�SKP

M ϕ

(w, f ) |�SKP
M P�(�ϕ�, �α�) ⇐⇒ mw{v | (v, f ) |�SKP

M ϕ} � α

Since M(w) is an N-model we also have:

(w, f ) |�SKP
M P> (�ϕ�, �α�) ⇐⇒ mw{v | (v, f ) |�SKP

M ϕ} > α

Proof. Follows immediately from Definitions 3.6 and 3.7. �

3.3. The classical semantics. We do not propose “(w, f ) |�SKP
M ” as the semantics for

the language, instead we use the interpretation of T and P that (w, f ) |�SKP
M gives us to

determine a classical model for the language LP,T. This is common when working with
Kripke’s theory.

We will define the induced model given byM and f at w, IndModM[w, f ], by “closing
off” the model by putting the unevaluated sentences outside of the extension of T and P� .
This is described pictorially by altering Fig. 3 to Fig. 4.

Fig. 4. How IndModM[w, f ] evaluates the probability of ϕ.

It is defined formally as follows:

DEFINITION 3.12. Define IndModM[w, f ] to be a (classical) model for the language
LP,T that has the domain N, interprets the predicates from L as is specified byM(w), and
interprets the other predicates by:

• IndModM[w, f ] |� Tn ⇐⇒ (w, f ) |�SKP
M Tn

• IndModM[w, f ] |� P�(n, m) ⇐⇒ (w, f ) |�SKP
M P�(n, m)
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This will satisfy:

PROPOSITION 3.13. ForM a probabilistic modal structure, f an evaluation function
and w ∈ W ,

• IndModM[w, f ] |� ϕ ⇐⇒ (w, f ) |�SKP
M ϕ, for ϕ a sentence of L

• IndModM[w, f ] |� P> (�ϕ�, �α�) ⇐⇒ (w, f ) |�SKP
M P> (�ϕ�, �α�)

• IndModM[w, f ] |� P� (�ϕ�, �α�) ⇐⇒ (w, f ) |�SKP
M P� (�ϕ�, �α�)

• IndModM[w, f ] |� P< (�ϕ�, �α�) ⇐⇒ (w, f ) |�SKP
M P< (�ϕ�, �α�)

• IndModM[w, f ] |� P= (�ϕ�, �α�) ⇐⇒ (w, f ) |�SKP
M P= (�ϕ�, �α�)

Although these equivalences hold, IndModM[w, f ] |� differs from (w, f ) |�SKP
M be-

cause IndModM[w, f ] is classical, for example we might have that IndModM[w, f ] |�
¬P�(�ϕ�, �α�) but (w, f ) �|�SKP

M ¬P�(�ϕ�, �α�). These induced models are classi-
cal models, but the “inner logic of T”18 will not be classical and not every sentence
will be assigned a point valued probability. For example for f a consistent fixed point
we will have that ¬T�λ�, ¬T�¬λ�, ¬P> (�λ�, �0�) and ¬P< (�λ�, �1�) all satisfied in
IndModM[w, f ].

These induced models, for consistent fixed points f , are our proposal for the semantics
of the language.

§4. Observations and comments on the semantics.

4.1. Introspection. Studying introspection in languages that allow for self-referential
probabilities is interesting because if it is naively formulated it is inconsistent, a problem
discussed in Caie (2013) and Christiano et al. (n.d.).

A probabilistic modal structure that has the property that:

For all w, mw{v|mv = mw} = 1

will satisfy introspection in the operator language. That is:

P�α(ϕ) → P=1(P�α(ϕ)),

¬P�α(ϕ) → P=1(¬P�α(ϕ)).

Such probabilistic modal structures will also satisfy introspection in the predicate setting
if the principles are expressed using a truth predicate.

PROPOSITION 4.1. LetM be such that mw{v | mv = mw} = 1 for all w. Then for any
evaluation function f and world w,

• If (w, f ) |�SKP
M P�(�ϕ�, �α�) then (w,	( f )) |�SKP

M P= (�P�(�ϕ�, �α�)�, �1�)
• If (w, f ) |�SKP

M ¬P�(�ϕ�, �α�) then (w,	( f )) |�SKP
M P= (�¬P�(�ϕ�, �α�)�, �1�)

And similarly for P>, P<, P� and P=.

18 By this we mean the logical laws that hold in the inside applications of the truth predicate.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020315000118
Downloaded from https://www.cambridge.org/core. UB der LMU München, on 29 Nov 2018 at 15:43:54, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020315000118
https://www.cambridge.org/core


694 CATRIN CAMPBELL-MOORE

By the definition of IndModM[w, f ] we therefore have:19

• IndModM[w,	( f )] |� T�P�(�ϕ�, �α�)�→ P= (�P�(�ϕ�, �α�)�, �1�)
)

• IndModM[w,	( f )] |� T�¬P�(�ϕ�, �α�)�→ P= (�¬P�(�ϕ�, �α�)�, �1�)
)

And similarly for P> etc.
Therefore for f a fixed point evaluation function,

• IndModM[w, f ] |� T�P�(�ϕ�, �α�)�→ P= (�P�(�ϕ�, �α�)�, �1�)
)

• IndModM[w, f ] |� T�¬P�(�ϕ�, �α�)�→ P= (�¬P�(�ϕ�, �α�)�, �1�)
)

And similarly for P> etc.20

One might give an explanation for this as follows. To answer the question of whether

IndModM[w,	( f )] |� T�P�(�ϕ�, �α�)�→ P�(�P�(�ϕ�, �α�)�, �1�) ?

one needs only to answer the question “#ϕ ∈ f (v) ?” and use the definitions. However, to
answer the question of whether

IndModM[w,	( f )] |� P�(�ϕ�, �α�) → P�(�P�(�ϕ�, �α�)�, �1�) ?

one needs to answer both the questions “#ϕ ∈ 	( f )(v) ?” and “#ϕ ∈ f (v) ?” and use the
definitions.

This shows that when one asks for the version with the truth predicate, one only asks
about properties of the probabilistic modal structure and not about how 	 works. This is
therefore a well-motivated way to express the principle when such semantics are employed.

This is an example of a more general strategy one might employ in formulating desider-
ata such as introspection. The strategy comes from Stern (2014a) where he suggests that
following the strategy of “avoiding introduction and elimination of the modal predicate in-
dependently of the truth predicate” might allow one to avoid paradoxes. Moreover he says:

“[This strategy] seems to be well motivated if one adopts the defla-
tionist idea that quotation and disquotation are the function of the truth
predicate. Consequently, quotation and disquotation of sentences is not
the task of the modal predicate and in formulating modal principles
we should therefore avoid the introduction or elimination of the modal
predicates without the detour via the truth predicate.”

So if one accepts this as an appropriate formulation of introspection we have that intro-
spection and probabilism are compatible.21

19 In fact the quantified versions

• IndModM[w,	(	( f ))] |� ∀a∀x(TP�. (x, a) → P�(P�. (x, a) , �1�))
• IndModM[w,	(	( f ))] |� ∀a∀x(T¬. P�. (x, a) → P�(¬. P�. (x, a) , �1�))
are satisfied but we do not present this because it is not important for our point and we don’t feel
that it is worth yet introducing this general �. notation, which is introduced in Notation 5.1.

20 We could equivalently formalise the principles as

• P�(�T�ϕ��, �α�) → P= (�P�(�ϕ�, �α�)�, �1�))
• ¬P�(�T�ϕ��, �α�) → P= (�¬P�(�ϕ�, �α�)�, �1�)).

21 In fact, in such probabilistic modal structures, at fixed points f , the “positive”
principles P�(�ϕ�, �α�) → P= (�P�(�ϕ�, �α�)�, �1�) and P< (�ϕ�, �α�) →
P= (�P< (�ϕ�, �α�)�, �1�) are satisfied. However, for consistent fixed points, the “negative”
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Further work should be done to see how one should state other principles and whether
doing so allows one to avoid paradoxical contradictions arising from the self-referential
nature of the language.

We next show a nice feature of the construction, namely that it can account for the
Gaifman condition.

4.2. Gaifman condition. A function F : Sent → R is said to satisfy the Gaifman
condition if

For all ϕ, F(∃xϕ(x)) = lim
n→∞ F(ϕ(0) ∨ ϕ(1) ∨ . . . ∨ ϕ(n))

This in part captures the idea that the domain is exactly 0, 1, 2 . . .. It was called σ -additivity
in Leitgeb (2008) and Leitgeb (2012).

As was mentioned in the introduction, both Leitgeb (2012) and Christiano et al. (n.d.)
face a challenge from the Gaifman condition because both Christiano’s requirements and
the final stage of Leitgeb’s construction lead to a formula ϕ(x) such that for each
n P�ϕ(0) ∨ . . . ∨ ϕ(n)� = 0 but P�∃xϕ(x)� = 1.22

Our theory does not have this flaw. However, since our sentences are sometimes given
ranges of probabilities instead of points, we should reformulate the definition of the
Gaifman condition to apply to ranges. Let P and P denote the upper and lower bounds
of the range of probabilities assigned to ϕ. More carefully:

DEFINITION 4.2. Fix some probabilistic modal structure M, evaluation function f and
world w. Define

P(ϕ) := sup {α | IndModM[w, f ] |� P�(�ϕ�, �α�)}
P(ϕ) := inf {α | IndModM[w, f ] |� P< (�ϕ�, �α�)}

This can be seen as in Fig. 5.
Using this definition (also by comparing Fig. 5 to Fig. 4) we have that P(ϕ) =

mw {v | #ϕ ∈ f (v)} and P(ϕ) = 1 − mw {v | #¬ϕ ∈ f (v)}.
DEFINITION 4.3. We say that P as given by IndModM[w, f ] satisfies the extended
Gaifman condition if P(∃xϕ(x)) = limn→∞ P(ϕ(0) ∨ . . . ∨ ϕ(n)) and similarly for P.

If we consider a probabilistic modal structure where the measure mw is σ -additive then
the extended Gaifman condition will be satisfied.

versions, ¬P�(�ϕ�, �α�) → P= (�¬P�(�ϕ�, �α�)�, �1�) and ¬P< (�ϕ�, �α�) →
P= (�¬P< (�ϕ�, �α�)�, �1�) cannot be adopted for the problematic instances. We therefore see
that restricting to only positive assertions of introspection is an alternative way of showing that
introspection can remain consistent in this setting. We don’t suggest this strategy because it is
not a systematic solution.

22 The failure of the Gaifman condition in Leitgeb’s theory is closely related to McGee’s
ω-inconsistency result from McGee (1985). For Leitgeb a sentence displaying the bad failure

of the Gaifman condition is: ¬
n+1︷ ︸︸ ︷

T�T�. . . T�δ� . . .�� where δ is the McGee sentence, namely is a

sentence with the property that PALP,T � δ ↔ ∃n¬
n+1︷ ︸︸ ︷

T�T�. . . T�δ� . . .��. For Christiano et al. this
is given by P�ε� � 1 − 1/n where ε is a sentence with the property PALP,T � ε ↔ P�ε� < 1;
the fact the Christiano et al. face a challenge from the Gaifman condition was pointed out to me
by Hannes Leitgeb.
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Fig. 5. Definition of P(ϕ) and P(ϕ).

THEOREM 4.4. If M is such that mw is σ -additive,23 and f is a fixed point, then P as
given by IndModM[w, f ] will satisfy the extended Gaifman condition.

This is the form of the Gaifman condition that is appropriate in a context where one
deals with interval-valued probabilities. We therefore see that if we don’t restrict ourselves
to merely finitely-additive probabilities then we can account for the Gaifman condition.

4.3. P is an SK-probability. Although the models IndModM[w, f ] are classical they
loose aspects of traditional probability functions. IndModM[w, f ] does not assign partic-
ular values for the probability of ϕ but can be seen instead as providing ranges. As such
IndModM[w, f ] provides us with two functions to consider, these are P and P as given in
Definition 4.2. Both these functions loose nice properties one would expect from classical
probabilities, for example P(λ ∨ ¬λ) = 0, and P(λ ∧ ¬λ) = 1. However we can show
that P and P are non-classical probabilities in the sense of Williams (2014) over logics
that arise from Kleene’s strong three-valued evaluation scheme. In particular, P is a non-
classical probability over Kleene logic K3, which is defined by truth preservation in Kleene
evaluations, and P is a non-classical probability over L P-logic, which is defined by falsity
anti-preservation in Kleene evaluations.

§5. An axiomatic system. In the last section of this paper we present an axiomatic
theory for this semantic construction. This will allow one to better reason about this se-
mantics.

To present this we need to provide some more notation that is added to Notation 3.2.

NOTATION 5.1. We represent the interpretation function N function by ◦, but this is under-
stood not to be a function symbol in our language. We therefore have that for any closed
term t, �t�◦ = �tN� is a non-atomic theorem of Peano arithmetic.

We shall use Rat, SentP,T, and Cterm to represent, in our object language, the set
of codes of rational numbers, sentences of LP,T, and closed terms of LP,T respectively.
If � is a syntactic operation we shall assume we have a function symbol �. in our language
representing it.24 For example �ϕ�∨. �ψ� = �ϕ ∨ ψ� is a theorem of Peano arithmetic.
Exceptions are the substitution function, which we represent by x(y/v), and ◦, which we

23 We can drop the condition that mw be defined on the whole powerset of W and instead ask just
that it is defined an algebra of subsets containing the sets of the form {v | n ∈ f (v)}.

24 Observe that these are not contingent function symbols so this ensures that tN is still well-defined.
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HOW TO EXPRESS SELF-REFERENTIAL PROBABILITY 697

already introduced. We shall similarly represent operations on the rationals, for example
we have a function symbol +. .

We now present the axiomatic system.

DEFINITION 5.2. Remember we introduced the following abbreviations:

• P> (t, s) := ∃a 
 s(P�(t, a))
• P� (t, s) := P�(¬. t, 1−. s)
• P< (t, s) := P>

(¬. t, 1−. s
)

• P= (t, s) := P�(t, s) ∧ P� (t, s)

Define ProbKFC to be given by the following axioms, added to an axiomatisation of
classical logic.

• KFC, the axioms for truth: (The “C” stands for the addition of the consistency
axiom, 13.)

1 PALP,T , the axioms of Peano arithmetic with the induction schema extended to
LP,T.

2 ∀x∀y((Cterm(x) ∧ Cterm(y)) → (Tx=. y ↔ x◦ = y◦))
3 ∀x∀y((Cterm(x) ∧ Cterm(y)) → (T¬. x=. y ↔ ¬x◦ = y◦))
4 ∀x1 . . . ∀xn((Cterm(x1) ∧ . . . ∧ Cterm(xn)) → (TQ. x1 . . . xn ↔ Qx◦

1 . . . x◦
n))

for each n-ary predicate Q of L
5 ∀x1 . . . ∀xn((Cterm(x1)∧. . .∧Cterm(xn)) → (T¬. Q. x1 . . . xn ↔ ¬Qx◦

1 . . . x◦
n))

for each n-ary predicate Q of L
6 ∀x(SentP,T(x) → (T¬. ¬. x ↔ Tx)
7 ∀x∀y(SentP,T(x∨. y) → (Tx∨. y ↔ (Tx ∨ Ty))
8 ∀x∀y(SentP,T(x∨. y) → (T¬. x∨. y ↔ (T¬x. ∧ T¬y. ))
9 ∀x(SentP,T(∃. vx) → (T∃. vx ↔ ∃yT(x(y/v)))

10 ∀x(SentP,T(∃. vx) → (T¬. ∃. vx ↔ ∀yT(¬. x(y/v)))
11 ∀x(Cterm(x) → (TT. x ↔ Tx◦))
12 ∀x(Cterm(x) → (T¬. T. x ↔ (T¬. x◦ ∨ ¬SentP,T(x◦)))
13 ∀x(SentP,T(x) → ¬(Tx ∧ T¬. x))25

• InteractionAx, the axioms for the interaction of truth and probability:26

14 ∀x∀y((Cterm(x) ∧ Cterm(y)) → (TP�. (x, y) ↔ P�(x◦, y◦)))
15 ∀x∀y((Cterm(x)∧Cterm(y)) → (T¬. P�. (x, y) ↔ (P< (x◦, y◦)∨¬Rat(y◦))))

• The axioms that give basic facts about P� :

16 ∀a(∃xP�(x, a) → Rat(a))
17 ∀x(P> (x, �0�) → SentP,Tx)
18 ∀x∀a(Rat(a) → (P�(x, a) ↔ ∀b ≺ aP�(x, b)))

• Axioms and a rule that say that P acts like a probability:27

19 P�(�0 = 0�, �1�) ∧ ¬P> (�0 = 0�, �1�)

25 If one wished to drop this and also consider inconsistent fixed points one should replace this
axiom with ∀x(Tx → SentP,T(x)).

26 These should be seen as the appropriate way of extending KFC to the language LP,T, but we
include them separately to highlight them.

27 We use the axioms for 2-additive Choquet capacities because our underlying structure might be a
lattice not a boolean algebra.
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20 P�(�¬0 = 0�, �0�) ∧ ¬P> (�¬0 = 0�, �0�)
21 ∀x∀y(SentP,T(x) ∧ SentP,T(y) →

∀a

(
Rat(a) →

(
(∀b∀c( P�(x, b) ∧ P�(y, c) → b+. c � a ))

↔ (∀d∀e( P�(x∧. y, d) ∧ P�(x∨. y, e) → d+. e � a ))

))
22 Tt → Ts

∀a(P�(t, a) → P�(s, a))

We say � �ProbKFC ϕ if rule 22 is used before any members of � are used in the proof.28

These axioms are sound, i.e. all induced models satisfy the axiomatisation.

THEOREM 5.3 (Soundness of ProbKFC). LetM be a probabilistic structure, f a consis-
tent fixed point and w ∈ W , and suppose � �ProbKFC ϕ, then

IndModM[w, f ] |� � �⇒ IndModM[w, f ] |� ϕ.

Proof. By induction on the length of the proof in ProbKFC. Many of the axioms follow
from Definition 3.6 using the fact that since f is a fixed point

IndModM[w, f ] |� T�ϕ� ⇐⇒ (w, f ) |�SKP
M ϕ. �

We would additionally like to have a completeness component to the axiomatisation. To
get a completeness theorem we will add an ω-rule to the axiomatisation. This allows one
to conclude ∀xϕ(x) from all the instances of ϕ(n). It is needed to fix the standard model
of arithmetic, which we used when building the semantics.

DEFINITION 5.4. Let ProbKFCω be the system ProbKFC with the ω-rule added. This is
a rule:29

ϕ(0) ϕ(1) ϕ(2) ϕ(3) . . .

∀xϕ(x)

We say � �ω
ProbKFC ϕ if rule 22 is used before any members of �.

THEOREM 5.5 (Soundness and completeness). � �ω
ProbKFC ϕ if and only if for each

probabilistic modal structureM, consistent fixed point f , and w ∈ W ,

IndModM[w, f ] |� � �⇒ IndModM[w, f ] |� ϕ

One could also include other “global” axioms that could be used before rule 22. These
would capture facts about specific kinds of probabilistic modal structures and fixed points.
The proof of the more general result allowing global axioms � is directly analogous
but modifying the defined canonical model of Definition 5.8 by replacing �ω

ProbKFC by
�ω

ProbKFC∪�
.

28 Rule 22 is treated like the rule of necessitation in modal logic. We have this restriction because
we need Tt → Ts to hold in all worlds in order to deduce that ∀a(P�(t, a) → P�(s, a))
is satisfied in world w. � includes “local assumptions” that may only hold in world w so want
Tt → Ts to be derived before such local assumptions are used in order to ensure that it holds at all
v ∈ W .

29 The ω-rule can be used anywhere in the proof as opposed to rule 22 which can only be used before
any assumptions (see Footnote 28). We cannot state the ω-rule as an axiom simply because we
don’t have the syntactic resources to do so because our language is finitary.
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We also have other forms of soundness and completeness results:

COROLLARY 5.6. The following are equivalent:

• A |� � �⇒ A |� ϕ, whenever � �ω
ProbKFC ϕ,

• There is a probabilistic structureM, consistent fixed point f and w ∈ W such that
A is elementarily equivalent to IndModM[w, f ].30

Suppose A is an N-model.31 Then the following are equivalent:

• A |� ϕ whenever �ω
ProbKFC ϕ,

• There is a probabilistic structureM, consistent fixed point f , and w ∈ W such that
A = IndModM[w, f ].

The second of these results shows we have developed what Fischer et al. (2015) call an
N-categorical axiomatisation, although they would not consider the ω-rule as a permissible
axiom as they only consider recursively enumerable theories. Theorem 5.13 could also be
taken to show that KFC ∪ InteractionAx, which is a recursively enumerable theory, is an
N-categorical axiomatisation given the structureM.

This completeness result is proved by a canonical model construction. The fact that
we can produce a canonical model is independently interesting since it gives a systematic
structure one can use when working with these semantics.

5.1. Proof of the soundness and completeness of ProbKFCω. We quickly mention
the soundness result of ProbKFCω, before moving on to sketch a proof of the completeness
component.

THEOREM 5.7 (Soundness). LetM be a probabilistic structure, f a consistent fixed point
and w ∈ W , and suppose � �ω

ProbKFC ϕ, then

IndModM[w, f ] |� � �⇒ IndModM[w, f ] |� ϕ.

Proof. Generalise the argument in Theorem 5.3 by transfinite induction on the proof
procedure. �

We can now turn to the more interesting completeness direction.

DEFINITION 5.8. Define a probabilistic structureMc and evaluation function fc as fol-
lows:

• Wc :=
{

w ⊆ SentP,T

∣∣∣∣∣ w is maximally finitely �ω
ProbKFC-consistent,32

w is closed under the ω-rule.33

}
.34

30 I.e. IndModM[w, f ] and A satisfy all the same LP,T-sentences.
31 We still need this assumption because by assumption all IndModM[w, f ] are N-models, but

even adding the ω-rule does not fix the standard model of arithmetic, it only fixes the theory of
the standard model of arithmetic.

32 I.e. there is no finite � ⊆ w with � �ω
ProbKFC ⊥.

33 I.e. whenever {ϕ(n) | n ∈ N} ⊆ w then ∀xϕ(x) ∈ w.
34 In fact such w are exactly the maximally �ω

ProbKFC-consistent set of sentences, (see Weaver,
1992, Theorem 5), but working with this characterisation is easier. That result can also be seen as
a corollary of Theorems 5.12 and 5.7.
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• For each w ∈ Wc, find M(w) an N-model for the language L such that for each
sentence of L, ϕ,

M(w) |� ϕ ⇐⇒ ϕ ∈ w.

• fc(w) := {n | Tn ∈ w}.
• For each w ∈ Wc, find mw : P(Wc) → R a finitely additive probability measure

such that for each n,

mw({v ∈ Wc | Tn ∈ v}) = sup {α | P�(n, �α�) ∈ w} .

We will show that this is well defined by showing that suchM(w) and mw can be found
(Lemmas 5.9 and 5.11). We will also show that fc is a consistent fixed point
(Corollary 5.14). We finally show that the model is in fact a canonical model,
i.e. IndModMc[w, fc] |� ϕ ⇐⇒ ϕ ∈ w (Theorem 5.12).35

LEMMA 5.9. For each w ∈ Wc such anM(w) can be found.

Proof. This could be seen as a corollary of Chang & Keisler (1990, proposition 2.2.12).
It can also be proved directly as follows: Take M(w) to be an N-model that interprets the
contingent relation symbols by 〈k1, . . . kn〉 ∈ QM(w) iff Q(k1, . . . , kn) ∈ w. Then one can
prove by induction on the complexity of ϕ thatM(w) |� ϕ ⇐⇒ ϕ ∈ w. �

We now present a lemma that will be useful throughout the proof.

LEMMA 5.10. If � is �ω
ProbKFC-consistent then there is some w ∈ Wc such that � ⊆ w.

Therefore, if for every w ∈ Wc we have ϕ ∈ w, then �ω
ProbKFC ϕ.

Proof. To prove this we use the Henkin method to construct some �′ ⊇ � that is
finitely �ω

ProbKFC-consistent and “decides” each instance of the ω-rule.36 This can then be
extended to a maximally finitely �ω

ProbKFC-consistent set by using Lindenbaum’s lemma.
This will then be closed under the ω-rule because it extends �′. �

LEMMA 5.11. For each w ∈ Wc such an mw can be found.

Proof. Fix w ∈ Wc. Define [ϕ] := {v ∈ Wc | T�ϕ� ∈ v}. We shall show that
{
[ϕ] | ϕ ∈

SentP,T
}

is closed under (finite) intersection and union and contains ∅ and Wc, and that
μ :

{
[ϕ] | ϕ ∈ SentP,T

} → R by

μ({v | T�ϕ� ∈ v}) := sup {α | P�(�ϕ�, �α�) ∈ w}
is a monotone 2-valuation on this.37

The interesting case is to show monotonicity, i.e. [ϕ] ⊆ [ψ] �⇒ μ[ϕ] � μ[ψ].
Suppose [ϕ] ⊆ [ψ]. Then for each v ∈ Wc, T�ϕ� → T�ψ� ∈ v . Then by Lemma 5.10,

35 In fact we shall show this before showing that fc is a consistent fixed point because it will be
used in the proof of the latter.

36 I.e. for each ϕ(x) either there is some k with ¬ϕ(k) ∈ �′ or ∀xϕ(x) ∈ �′. For details on this
construction Goldblatt (2014) can be consulted.

37 I.e. that:

• μ(W ) = 1
• μ(∅) = 0
• A ⊆ B �⇒ μ(A) � μ(B)
• μ(A) + μ(B) = μ(A ∩ B) + μ(A ∪ B).
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�ω
ProbKFC T�ϕ� → T�ψ�, so using rule 22 we have that �ω

ProbKFC ∀a(P�(�ϕ�, a) →
P�(�ψ�, a)). Therefore μ[ϕ] � μ[ψ].

This μ can therefore be extended to the Boolean closure of
{
[ϕ] | ϕ ∈ SentP,T

}
,38 and

then extended further to mw defined on the powerset of Wc.
One then needs to check that for each n this satisfies:

mw({v ∈ Wc | Tn ∈ v}) = sup {α | P�(n, �α�) ∈ w} .

When n ∈ SentP,T this will satisfy the equivalence by definition of μ. One needs to
show that the equivalence holds for n /∈ SentP,T. We can show that in that case both
the left and right hand sides equal 0. For the left hand side we use the result that �KFC
∀x(Tx → SentP,T(x))39 to show that {v | Tn ∈ v} = ∅. For the right hand side we use
axioms 3 and 20 and rule 22 to deduce that �ProbKFC P�(n, �0�) and then use axiom 17
to get the equality. �

ThisMc with fc is canonical, in the following sense.

THEOREM 5.12. For every ϕ ∈ LP,T and w ∈ Wc:

IndModMc [w, fc] |� ϕ ⇐⇒ ϕ ∈ w

Proof. We work by induction on the complexity of the formula. The atomic cases
mostly follow from the definition of the canonical model, although when checking the
equivalence for P�(t, s) we will also use axiom 18. For the induction step the quantifier
case can be shown by the fact that IndModM[w, f ] is an N-model and w is closed under
the ω-rule. For the connective cases we use the fact that w is maximally finitely �ω

ProbKFC-
consistent. �

The following lemma, along with Theorem 5.12, allows us to conclude that fc is a
consistent fixed point.

THEOREM 5.13. LetM be a probabilistic modal structure and f an evaluation function.
Then:

f is a consistent fixed point ⇐⇒ ∀w ∈ W (IndModM[w, f ] |� KFC ∪ InteractionAx)

Proof. The direction “ �⇒ ” follows from Theorem 5.7. For the other direction we
work by induction on the positive complexity of ϕ to show that if IndModM[w, f ] |�
KFC ∪ InteractionAx then

IndModM[w, f ] |� T�ϕ� ⇐⇒ (w, f ) |�SKP
M ϕ.

This and the fact that IndModM[w, f ] |� ∀x(Tx → SentP,T(x))40 allows us to conclude
that f is a fixed point. It is also consistent because of axiom 13. �

This lemma extends the useful result from Feferman that (N, S) |� KFC iff S is a
consistent fixed point. That result was generalised in Stern (2014b) where Stern shows
that KFC extended by axioms for the interaction of truth with a necessity and possibility
predicate, analogous to axioms 14 and 15, allows one to pick out the fixed points. Theorem
5.13 is a minor modification of Stern’s result.

38 See e.g. Zhou (2013) for a statement of this fact.
39 This result can be found in Halbach (2014, lemma 15.16).
40 As in Footnote 39.
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COROLLARY 5.14. fc is a consistent fixed point.

Proof. Theorems 5.13 and 5.12 �

THEOREM 5.15. If for every probabilistic modal structureM with a consistent fixed point
f and w ∈ W , IndModM[w, f ] |� � �⇒ IndModM[w, f ] |� ϕ, then � �ω

ProbKFC ϕ.

Proof. It suffices to show that every �ω
ProbKFC-consistent set of formulas is satisfiable.

Suppose � is �ω
ProbKFC-consistent. Then by Lemma 5.10 there is some w ∈ Wc such that

� ⊆ w. Then by Theorem 5.12 IndModMc[w, fc] |� �. Moreover we have shown in
Corollary 5.14 that fc is a consistent fixed point. So we have our required probabilistic
modal structure,Mc, consistent fixed point fc and w ∈ Wc that satisfies �. �

Theorem 5.5 follows from Theorems 5.15 and 5.7. The first equivalence in Corollary 5.6
is a direct corollary of Theorem 5.5, the second equivalence also uses Theorem 5.12.

§6. Conclusions. In this paper we have presented a construction of a semantics for
a language that includes sentences that can talk about their own probabilities and have
given a corresponding axiomatic theory. The semantics is developed by applying a fa-
miliar construction of a semantics for type-free truth, namely Kripke’s construction from
Kripke (1975), to possible world style structures. In this semantics some sentences are only
assigned ranges of probability values instead of a single value but this will only happen for
“problematic” sentences. In most cases, sentences one wants to work with will be grounded
so they will then be assigned a particular probability value and one can reason in a fairly
natural way. We provided an axiomatisation that allows one to reason about these semantics
in a clear way. One could also use this axiomatisation to show what assumptions about
probability would lead to inconsistencies.

We showed that if one expresses introspection principles by using a truth predicate to
do the job of quotation and disquotation these introspection principles are consistent. Al-
though we have only considered introspection principles here, we believe the phenomenon
is quite general. For evidence of this we can see in Stern (2014a, 2014b) that the strategy
worked well in the case of necessity. In future work we would like to investigate exactly
how one should express principles in order to avoid the paradoxical contradictions.

One limitation of this construction is that it does not yet have the ability to account
for conditional probabilities. Furthermore, it is not clear that it would be possible to add
conditional probabilities and give a good definition of (w, f ) |�SKP

M P�α(�ϕ�|�ψ�) in
the style of strong Kleene three valued scheme. One might overcome this limitation by
instead using a supervaluational evaluation scheme. This would also result in a notion of
probability that acts as an imprecise probability. Analysis of this option is left for future
work.
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