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Abstract

A growing framework of legal and ethical requirements limit scientific and commercial evalu-

ation of personal data. Typically, pseudonymization, encryption, or methods of distributed

computing try to protect individual privacy. However, computational infrastructures still

depend on human system administrators. This introduces severe security risks and has

strong impact on privacy: system administrators have unlimited access to the computers

that they manage including encryption keys and pseudonymization-tables. Distributed com-

puting and data obfuscation technologies reduce but do not eliminate the risk of privacy

leakage by administrators. They produce higher implementation effort and possible data

quality degradation. This paper proposes the Trusted Server as an alternative approach that

provides a sealed and inaccessible computational environment in a cryptographically strict

sense. During operation or by direct physical access to storage media, data stored and pro-

cessed inside the Trusted Server can by no means be read, manipulated or leaked, other

than by brute-force. Thus, secure and privacy-compliant data processing or evaluation of

plain person-related data becomes possible even from multiple sources, which want their

data kept mutually secret.

1. Introduction

1.1 Background

Both scientific and commercial statistical evaluation of data in the fields of epidemiology,

pharmacology, education or economics use person-related data containing highly sensitive pri-

vate information. This comprises person-identifying data (also called person-related data like

name, address, date of birth etc.), which privacy protection rules do address, as well as person-
relatable information, which allow identifying a person by using re-identification techniques

[1]. Legislation [2] and ethical conventions [3] impose strict privacy protection rules not only

regarding person-related but also person-relatable information. While data evaluation may be

permitted by law or consent for a certain purpose [4], it has to be ensured that any other usage
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of privacy-related data is effectively prevented. Other areas with growing interest in privacy

protection are social networks [5] or highly security relevant networks e.g. for military use [6].

1.2 The problem

Privacy protection in computational environments requests to protect data and computational

processes from unauthorized human access. Current computational environments allow

access control, data-storage and -transport protection by user-authentication and user-rights

management, as well as disk- and transport-encryption. Additionally, pseudonymization per-

mits evaluation of privacy-protected data that are readable for humans. However, none of

those methods provides protection against access, infringing pseudonymization, manipulation

and theft by an administrator with root-rights on involved servers. The core problem of pri-

vacy protection and data security is the need for a system administrator with unlimited rights

to manage computers.

1.3 Existing solutions

Current solutions to this security and privacy core risk make use of data processing diversifica-

tion over multiple computational instances and obfuscation techniques:

1.3.1 Double coding pseudonymization. A data source provides pseudonymized data,

e.g. patients’ clinical data with the identifying values replaced by pseudonyms. A trusted third

party exchanges the 1st level pseudonyms with new 2nd level pseudonyms and forwards the

medical data with the 2nd level pseudonyms to the evaluating institution. The matching

between 1st and 2nd level pseudonyms is kept secret at a trusted third party so no direct depseu-

donymization can be done by members of the data source and evaluating institutions neither

accidentally or willingly [7].

1.3.2 Differential privacy. Adding non-destructive randomness to real data as well as

random data that look like real data obfuscates datasets. Ideally, this process—optionally com-

bined with pseudonymization—hinders or eliminates the identification of the person behind

these data but does not affect the statistical evaluations on certain variables [8,9].

1.3.3 Secure multiparty computation. This method uses encrypted data exchange and

complex multi-stage algorithms allowing multiple parties to commonly evaluate a function

over their respective private data without giving the other parties access to these private data.

[10]

1.3.4 DataShield. Instead of aggregating data in one place where evaluations are per-

formed, the underlying calculations are being sent to the data owners for in-place evaluation.

Only results are returned and aggregated for further processing so no confidential private data

ever leave the data owner’s infrastructure. [11]

1.4 Common disadvantages

1. All methods described in section 1.3 protect data more or less against access from system

administrators but share the weakness of increased effort for planning, implementation,

infrastructure, administration and operation. Their complexity outgrows, as more parties

will get involved.

2. Any kind of data-alteration by pseudonymization or obfuscation affects data quality. The

degree of possible data degradation can be approximately quantified by applying these

methods to publically available data and compare them to a direct naïve evaluation.
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3. Without obfuscation there is the risk of privacy leakage even from pseudonymized data

with person-relatable information.

1.5 A different approach

The human factor creates disadvantages related to the methods described in section 1.3. There-

fore, a generic, widely adaptable computational environment that works without any human

system intervention or possible access to internal data provides the needed solution. We call

such an environment the Trusted Server (TS) and define its requirements for a practical imple-

mentation as follows:

1.5.1 Standards compliance. Hard- and software-components are commonly available

and do not require low level customization or modification out of the ordinary.

1.5.2 Familiar operation. Setup, operation and usage is similar and comparably complex

to administrating a conventional server with the same configuration.

1.5.3 Full transparency. The solution is fully transparent and does not work with secrets

or obfuscation.

1.5.4 Unlimited verifiability. Users can review all components and the fully working sys-

tem in any depth desired.

1.5.5 System inaccessibility. There is no system access neither during runtime nor after

production.

1.5.6 Secure communication. The TS allows controlled submission of data and com-

mands as well as controlled response.

1.5.7 Persistent encryption. The TS uses irrevocably encrypted storage which protects

against external access by anyone at any time.

1.5.8 System verification. It is possible to verify the production system state is unaltered.

1.5.9 Backup strategy. It is possible to backup and restore a basic TS installation in a com-

fortable way.

1.6 Possible advantages of a Trusted Server

1. Data stored and processed inside TS do not need additional data- or privacy protection.

Data securely uploaded to TS after sealing, does not need to be pseudonymized, obfuscated

or encrypted.

2. This provides the unique possibility to store and evaluate unaltered plain person-related

data even from different and mutually non-trusting sources in one single computational

stage.

3. Working on plain unaltered data grants the highest information quality possible

excluding any data degradation and impact on results deriving from obfuscation or

pseudonymization.

4. There is no technical and administrative overhead caused by involving multiple parties,

pseudonymization and obfuscation.

1.7 Implications

Any data uploaded to the TS after sealing by design are inevitably lost if the TS needs a new

setup and have to be uploaded again. Depending on the data-amount this may cause serious

delay requiring alternative concepts for securely delivering large data.
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1.8 A working solution

Running sample applications of real world scenarios are provided on a reference implementa-

tion of the proposed TS. The TS is not just a new concept but an available stable production

platform for previously impossible privacy protected data evaluation on plain unaltered per-

sonal data.

2 Materials and methods

2.1 Meeting the requirements

1. The use of exclusively freely available hardware and Free Open Source Software (FOSS)

grants standards compliance, familiarity, transparency and verifiability. Our first imple-

mentation uses Debian GNU/Linux as operating system in a default installation with Linux

Unified Key Setup (LUKS) and Logical Volume Manager (LVM) disk encryption. Other

unixoid FOSS operating systems may qualify as well.

2. Simple shell scripts running at startup realize system inaccessibility. They remove all system

user accounts, block root login, remove ssh completely, and set firewall and hosts access

control to block all but https network traffic.

3. Secure communication is possible over secure and encrypted https with optional system

independent user authentication.

4. Persistent encryption is the core method. Based on LUKS disk encryption a two stage seal-

ing mechanism is established.

5. Any party concerned prior to sealing can inspect disk images of the readily prepared TS sys-

tem. Further verification of the TS features follows from inspecting comprehensive logs and

checksums after sealing. They prove the server’s unaltered state.

6. The system disk images allow restoring the system in a fast and convenient way.

2.2 LUKS based system sealing and verification

During initial operating system setup, LUKS (together with LVM) enables disk encryption.

LVM is secondary to understand disk encryption and the sealing process. Therefore, we omit a

thorough discussion of its role. During the installation of a new Linux system with full encryp-

tion, the system disk splits into two data partitions: partition1 one for the static boot files and

partition2 for the encrypted operating system, as well as other software, and user data. In fact,

there is an additional ‘partition’ respectively logical volume for memory-swapping as well as

possible additional volumes for user data or whatever. Since those logical volumes are located

within the encrypted partition2 we simply discuss the boot and encrypted partition in the

following:

1. After dividing the disk into two partitions, the LUKS header is written to partition2. The

LUKS header consists of 8 key-slots. Each of them can store a copy of the master-key which

is encrypted with a keyphrase. The keyphrase may be manually entered or automatically

read from a keyfile [12]. We store the keyfile within the unencrypted boot-partition1. The

master-key is used to encrypt the data area of partition2, but itself is never persistently

stored anywhere (see Fig 1).

2. During the boot process, the initrdwith the core operating system contents is loaded

from the unencrypted partition1 and control moves to LUKS. Usually, a user submits now
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a keyphrase. Instead, the TS system reads the key-file from the unencrypted partition1 and

compares it with the matching keyslot-entry in the LUKS header. With the verified pass-

phrase it decrypts the encrypted master-key and stores it in Random Access Memory

(RAM). Since data in RAM are volatile on power loss, one has to redo the decryption proce-

dure during every system boot (see Fig 2).

3. The processor transparently reads and writes from and to partition2 using the master-key

as long as the master-key resides in RAM. Data on partition2 will always be encrypted;

decrypted data only exist in volatile memory (see Fig 3).

4. The sealing process starts immediately upon booting a production ready TS and erases the

LUKS keyslot as well as the encrypted master-key. The master-key still resides in volatile

memory and the system remains operative but the keyfile containing the keyphrase is

meaningless since neither a keyslot nor an encrypted version of the master-key exists (see

Fig 4).

5. The master key vanishes from volatile memory If the system is rebooted or power is down

(either willingly or e.g. upon theft of the server or disk). The key file still exists on the unen-

crypted partition1 but without the corresponding LUKS keyslot containing the encrypted

master-key. The only way to decrypt partition2 is by brute force (see Fig 5).

Fig 1. Initial layout of the LUKS encrypted disk.

https://doi.org/10.1371/journal.pone.0202752.g001

Fig 2. The master-key is decrypted using the passphrase and stored in volatile memory.

https://doi.org/10.1371/journal.pone.0202752.g002
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6. As described up to now, the sealing process prevents effectively any access to the system

and storage by third parties. But, it does not yet solve the basic problem. An administrator

might have a backup of the LUKS header and restore it to regain disk access. The following

trick overcomes this problem: We establish a two stage setup consisting of a physical server,

a virtual machine hosted on it, and two LUKS-encrypted physical disks.

7. The physical server boots from disk1 and performs the sealing. After sealing, it reencrypts

the second disk using the keyfile stored in that disk’s partition1. LUKS reencryption creates

a new master-key that is stored encrypted with the given keyfile. While the system adminis-

trator knows that keyfile he does not know the newly generated master-key. It cannot be

revealed from the already sealed physical host server either.

8. Finally the physical server starts the virtual machine which boots from disk2 and performs

the self-sealing process (see Fig 6) too.

Fig 3. Operational system state with transparent data de- and encryption.

https://doi.org/10.1371/journal.pone.0202752.g003

Fig 4. Sealed operational state.

https://doi.org/10.1371/journal.pone.0202752.g004
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2.3 Applications and customization

1. The system administrator implements an apache2 web server configured for https traffic

that provisions the sealing logs and system verification data. If required apache2 also

enables secure data input and output as well as system independent user authentication.

2. Depending on the TS’s further configuration and initialization procedures, ssh access is

configured and secured.

Fig 5. Inaccessible disk state after reboot or power down.

https://doi.org/10.1371/journal.pone.0202752.g005

Fig 6. The complete Trusted Server with dual stage sealing.

https://doi.org/10.1371/journal.pone.0202752.g006
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3. The TS virtual machine also provides additional services and operative user applications

that are needed.

4. Following good practice for configuring a server, IPtables firewall and host access control

reduce access and allowed network traffic to the required minimums.

2.4 System verification

1. When the TS is installed, full disk images of the physical host and the virtual machine are

stored in a safe place.

2. Anyone can fully inspect these disk images to validate the TS installation and state.

3. Each step of the sealing process is logged. The log-files provide comprehensive status infor-

mation on the host and the virtual machine disk of the sealed TS:

• The system writes SHA-512 hashes from all files on the disks and to the sealing log.

• It lists essential configuration files in the sealing log.

• It archives configuration folders in compressed format.

4. The system publishes sealing log, system logs, and the compressed configuration archives to

the (optionally access restricted) Trusted Server’s website. Thus, anyone can compare the

sealed state with the content of the previously disk images disclosed for verification.

2.5 Backup and restore

The disk images created from the host and virtual machine disks can also be used for fast

restore of the Trusted Server’s pre-sealing state in case of a configuration change or system

maintenance.

2.6 Initializing production state

Simple bash-scripts perform the sealing process (section 2.2) automatically on a fully installed

and purposely configured Trusted Server.

2.7 Initialization scripts reference

The following batch-scripts specify our Trusted Server implementation. They can be easily

modified and customized. Their linear stepwise structure intends to provide easy readability of

the sealing log.

2.7.1 Initialization scripts executed on TS-Host.
init_trusted_mode.sh (manually executed by administrator)
set –x
## INIT TRUSTED MODE TS-HOST
## ACTIVATE SEALING AFTER REBOOT AND WRITE OUTPUT TO LOGFILE
echo '/root/init_trusted_mode_reboot.sh > /root/0_init_trusted_mo-
de_host.log 2>&1' >> /root/cron-reboot.sh
## -- REMOVE ONLY LOGON USER --
userdel -f trust
##REMOVE ALLOWED HOST ACCESS PERMISSION AND VERIFY
rm /etc/hosts.allow
cat /etc/hosts.allow
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cat /etc/hosts.deny
reboot

cron-reboot.sh (automatically triggered from /etc/crontab: @reboot)
#!/bin/bash
## cron-reboot TS-Host
mount /dev/sdb1 /mnt
iptables-restore /root/iptables.v4
ip6tables-restore /root/iptables.v6
## INIT TRUSTED MODE AND CREATE HOST SEALING:
/root/init_trusted_mode_reboot.sh > /root/0_init_trusted_mode_host.
log 2>&1

init_trusted_mode._reboot.sh (called from cron-reboot.sh)
set –x
## INIT TRUSTED MODE TS-HOST
reboot
## SWITCH IPTABLES OUTGOING POLICY TO DROP AND DELETE SSH PERMISSION
iptables -P OUTPUT DROP
## [set line number accordingly:]
iptables -D INPUT 4
## LIST IPTABLES
iptables-save
iptables -L –n
ip6tables-save
ip6tables -L –n
cat /etc/hosts.allow
cat /etc/hosts.deny
## REMOVE SSH SERVER
apt-get -y purge openssh-server
apt-get -y autoremove
systemctl status sshd
## REMOVE ONLY LOGON USER - CREATES ERROR IF ALREADY CORRECTLY
REMOVED
userdel -f trust
cat /etc/passwd
cat /etc/shadow
## REMOVE DISK ENCRYPTION KEY --
cryptsetup luksErase /dev/sda2
cryptsetup luksDump /dev/sda2
## PRINT OLD VM KEY INFORMATION
cryptsetup luksDump /dev/sdb2
## AND REENCRYPT TS-VM DISK
cryptsetup-reencrypt -v -d /mnt/keyfile -l 512 /dev/sdb2
## PRINT NEW VM DISK KEY INFORMATION
cryptsetup luksDump /dev/sdb2
## CREATE ARCHIVES OF ETC AND ROOT FOR PUBLISHING
zip -r /mnt/etc-host.zip /etc
zip -r /mnt/root-host.zip /root
## LIST FILES AND SHA3 CHECKSUMS
ls -RlA /
rhash -r--sha3-512 /boot
rhash -r--sha3-512 /etc
rhash -r--sha3-512 /home
rhash -r--sha3-512 /lib
rhash -r--sha3-512 /lib64
rhash -r--sha3-512 /lost+found
rhash -r--sha3-512 /media
rhash -r--sha3-512 /mnt
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rhash -r--sha3-512 /opt
rhash -r--sha3-512 /root
rhash -r--sha3-512 /sbin
rhash -r--sha3-512 /srv
rhash -r--sha3-512 /tmp
## since /usr/bin has X11 -> . recursive link:
rhash --sha3-512 /usr/bin/�

rhash -r--sha3-512 /usr/games
rhash -r--sha3-512 /usr/include
rhash -r--sha3-512 /usr/lib
rhash -r--sha3-512 /usr/local
rhash -r--sha3-512 /usr/sbin
rhash -r--sha3-512 /usr/share
rhash -r--sha3-512 /usr/src
rhash -r--sha3-512 /var
## COPY LOG TO TS-VM BOOT PARTITION
cp /root/0_init_trusted_mode_host.log /mnt
## UNMOUNT TS-VM BOOT PARTITION
umount /mnt
## START TS-VM
virsh start debian9

2.7.2 Initialization script executed on TS-VM.
cron-reboot.sh (automatically triggered from /etc/crontab: @reboot)
#!/bin/bash
# cron-reboot TS-VM
iptables-restore /home/trust/iptables.v4
ip6tables-restore /home/trust/iptables.v6
## INIT TRUSTED MODE AND CREATE VM SEALING LOG
/home/trust/init_trusted_mode.sh > /var/www/log/1_init_trusted_mode.
log 2>&1

init_trusted_mode.sh (called from cron-reboot.sh)
set –x
## REMOVE HOST ACCESS PERMISSION AND VERIFY
rm /etc/hosts.allow
## SWITCH IPTABLES OUTGOING POLICY TO DROP AND DELETE SSH PERMISSION
iptables -P OUTPUT DROP
## [set line number accordingly:]
iptables -D INPUT 5
## LIST IPTABLES AND HOST ACCESS
iptables-save
iptables -L –n
ip6tables-save
ip6tables -L –n
cat /etc/hosts.allow
cat /etc/hosts.deny
## REMOVE SSH SERVER
apt-get -y purge openssh-server
apt-get -y autoremove
systemctl status sshd
## REMOVE ONLY LOGON USER
userdel -f trust
cat /etc/passwd
cat /etc/group
cat /etc/shadow
## REMOVE DISK ENCRYPTION KEY
cryptsetup luksErase /dev/vda2
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cryptsetup luksDump /dev/vda2
## MOVE HOST LOG AND ZIP TO WEBROOT
mv /boot/0_init_trusted_mode_host.log /var/www/log
mv /boot/etc-host.zip /var/www/log
mv /boot/root-host.zip /var/www/log
chown www-data:www-data /var/www
## CREATE ARCHIVES OF /ETC AND /HOME/TRUST FOR PUBLISHING
zip -r /var/www/log/etc-vm.zip /etc
zip -r /var/www/log/trust-vm.zip /home/trust
## CREATE LDAP LOG
date >> /var/www/log/ldap.txt && slapcat -n 0 >> /var/www/log/ldap.
txt && slapcat -n 1 >> /var/www/log/ldap.txt
## SET PERMISSIONS TO APACHE2
chown -R www-data:www-data /var/www
## LIST FILES AND SHA3 CHECKSUMS
ls -RlA /
rhash -r--sha3-512 /boot
rhash -r--sha3-512 /etc
rhash -r--sha3-512 /home
rhash -r--sha3-512 /lib
rhash -r--sha3-512 /lib64
rhash -r--sha3-512 /lost+found
rhash -r--sha3-512 /media
rhash -r--sha3-512 /mnt
rhash -r--sha3-512 /opt
rhash -r--sha3-512 /root
rhash -r--sha3-512 /sbin
rhash -r--sha3-512 /srv
rhash -r--sha3-512 /tmp
## since /usr/bin has X11 -> . recursive link:
rhash --sha3-512 /usr/bin/�

rhash -r--sha3-512 /usr/games
rhash -r--sha3-512 /usr/include
rhash -r--sha3-512 /usr/lib
rhash -r--sha3-512 /usr/local
rhash -r--sha3-512 /usr/sbin
rhash -r--sha3-512 /usr/share
rhash -r--sha3-512 /usr/src
rhash -r--sha3-512 /var
## ENABLE APACHE WEBSERVER
systemctl start apache2
## SEND MAIL
echo $(date) >> /home/trust/date.txt
mail -s "trusted server running@138.245.80.17" bomhard@ibe.med.uni-
muenchen.de <
home/trust/date.txt

3. Results and discussion

3.1 Comparisons of the proposed methods

1. Table 1 summarizes qualitative differences between the Trusted Server’s generic approach

and other common and well-established strategies to privacy-protected personal data evalu-

ations We focus on server- and implementation-related but task-independent criteria:

Administrative Skills, Overhead, Complexity, Adaptability, and Data Quality. It shows the
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Trusted Server’s superiority regarding ease of implementation and usage, flexibility and

negative impact on results.

2. Table 2 provides scenario-independent quantitative information on the additional effort for

data and privacy protection caused by a Trusted Server. Comparison is made to a conven-

tional server operating without any data protection based on typical server-lifecycle param-

eters (Basic installation, Customization, Initialization and Sealing, Backup and Restore,

System updates) and practical usability (System stability, Performance degradation, and

Resource consumption).

3. The Trusted Server provides a new state-of-the-art regarding security and protection.

Table 3 gives an overview on typical operation-related security threats like leakage of for-

eign data or security corruption and general threats like theft, hacking and data transfer.

The most relevant (but only slightly elevated) risk for the TS relates to data transfer.

3.2 Implementation scenarios

3.2.1 Privacy-protected user authentication. Basic user authentication can be imple-

mented using apache2’s file based user- and password database. After TS sealing, no change to

those files is possible except by permitting security-weakening file upload.

Lightweight Directory Access Protocol (LDAP) [13] replication offers a more transparent and

flexible directory service for storing and authenticating user credentials. Apache2 can authen-

ticate against any LDAP server instead of using its own user and password database. The free

and open source OpenLDAP [14] reference implementation permits uni- or bidirectional syn-

chronization of the LDAP database. The Trusted Server and one or more external primary

servers work with OpenLDAP. This allows secure credential updates to a sealed Trusted

Server. External non-trusted primary OpenLDAP server(s) store all user credentials. The

Table 1. Trusted Server versus established methods.

Trusted Server Double Coding

Pseudonymization

Differential Privacy Secure Multiparty

Computation

DataShield

Administrative

Skills

moderate: any average

system administrator is

able to follow the

instructions

medium: specialized knowledge

about pseudonymization

software is required

high: nondestructive data

obfuscation requires special

skills and good planning

very high: deep knowledge

in cryptography and

mathematics is necessary

medium: specialized

knowledge about

DataShield software and

setup is required

Overhead very low: one sufficiently

performant server for data

provisioning and

evaluation is all needed

even by multiple parties

medium: data provisioning and

evaluation must be separated in

independent infrastructures

plus a third party is required

moderate: the data provider

must obfuscate data and

evaluation has to be

separated in an

independent infrastructure

very high: all participants

have to implement a

complex and highly

resource consuming

computation infrastructure

high: all participants have

to implement a complete

software and hardware

infrastructure

Complexity very low: standard GNU/

Linux operating system

and tools and some simple

shell scripts is all needed

moderate: pseudonymization

software is integrated in an

otherwise conventional

processing chain

high: data obfuscation

algorithms have to be

customized for every type of

use case

very high: the data

processing chain has to be

designed and tailored for

every distinct use case

medium: distributed data

processing requires

careful data

normalization and

customized aggregation

Adaptability very high: almost any

technology and solution

available for GNU/Linux

can be used with low to

zero customization

high: since pseudonymization

does not affect data structures

required process customization

is moderate

medium: possibility and

quality of data obfuscation

depends on data types and

evaluation purposes

very low: implementing

the processing and

encryption chain is

singular for every use case

high: evaluation are

performed on

normalized but otherwise

original data with

standard R programs

Data Quality maximum: exclusive usage

of plain and unaltered data

grants zero influence on

results

high: in most cases

pseudonymization will not, but

might affect evaluation results

medium: obfuscation

reduces data quality, but

that may be irrelevant to

evaluations

very high: since data are

encrypted, but unaltered,

zero degradation can be

achieved

high: normalization and

aggregation after

processing likely will not,

but could affect results

https://doi.org/10.1371/journal.pone.0202752.t001

The Trusted Server: A secure computational environment for privacy compliant evaluations on plain data

PLOS ONE | https://doi.org/10.1371/journal.pone.0202752 September 6, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0202752.t001
https://doi.org/10.1371/journal.pone.0202752


Trusted Server’s OpenLDAP instance triggers unidirectional LDAP replication from the exter-

nal primary OpenLDAP server(s). The system initially and regularly during operation pub-

lishes full LDAP database-dumps on the Trusted Server website. This ensures full control that

OpenLDAP contains only credible users.

Table 3. Systematic risks for privacy and data security in different methods.

Threat Trusted Server Double Coding Pseudonymization Differential Privacy Secure Multiparty

Computation

DataShield

Leakage of

foreign data by

personnel

not possible and easily

verifiable

possible if the trusted third party and

evaluation party work together or if

the trusted third party has access to

personal data

not relevant since

nobody has access to

foreign plain data

depending on

implementation very

unlikely if possible at all,

but difficult to verify

not relevant since

nobody has access to

foreign plain data

Security

corruption by

personnel

very difficult since the

sealed and frozen system

state report is disclosed for

in depth verification

possible at the trusted third party possible by leakage or

manipulation of

obfuscation

algorithms

depending on

implementation very

unlikely, but difficult to

verify

possible at all data

providers’ servers

Theft of disk or

server

full encrypted disk without

LUKS header can only be

decrypted by brute force

attack against the master

key

if disks are full encrypted disk they can only be decrypted by brute force attack against the master key or passphrase

Hacking slightly higher protection

than a properly secured

GNU/Linux server (no user

logon)

the single servers can be protected on state-of-the-art level, but every additional computation and communication

stage and especially added software is a potential security risk and may introduce new vulnerabilities

Man-In-The-

Middle-Attacks

on data transfer

slightly higher risk since

plain personal data could

be accessible

slightly lower risk since no plain but

still person relatable data are

transferred

lower risk since

transferred data are

hardly person

relatable

low risk since only

encrypted data is

transferred

low risk since only

analysis commands and

non-disclosing

summaries are

transferred

https://doi.org/10.1371/journal.pone.0202752.t003

Table 2. Additional effort for data and privacy protection using a Trusted Server.

Issue Comment Additional effort

Basic installation Two servers, host and virtual machine, have to be installed,

LUKS-disk encryption needs to be set up and sealing scripts

have to be installed.

about factor 3

Customization Task-specific software installation and configuration is

required on the virtual machine only and in a conventional

fashion.

none

Initialization and

Sealing

Depends on installation size, disk- and system performance.

Values relate to a fully functional standard Debian GNU/Linux

system on two different hardware platforms.

25 minutes on older 2CPU/

8GB/SATA Laptop

15 minutes on 12CPU/

32GB/SAS Server

Backup & Restore Duration depends on disk and interface performance and

installation size.

Any data uploaded after sealing at least decryption keys have to

be uploaded again after sealing.

+ second disk restore

+ sealing

+ data or key upload

System update Full restore and sealing is needed, update times itself are equal

to unsecured server but have to be applied to host and virtual

machine.

+ restore

+ double updates

+ sealing

System stability No instability or otherwise different behavior compared to our

conventional servers was observed during one year of

operation on several servers.

none

Performance

degradation

Possible impact on performance by LUKS disk encryption or

the virtual machine is not observable on any modern hardware.

not observable

Resource

consumption

Moderately better equipment is required. + second disk

+ 4 GB RAM for host

https://doi.org/10.1371/journal.pone.0202752.t002
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Thus a Trusted Server can be used with changing access permissions to the provided ser-

vices without need for a new setup and sealing. While it is possible to control, that only entitled

users can access a Trusted Server’s web-based service, there is no control if a certain user really

accesses and uses the web-service allowing for access-restricted yet anonymous online

services.

3.2.2 Large data storage. Only after the sealing process, person-related plain data must

be uploaded to the trusted server’s storage. As consequence, every change or system crash

requests a new data upload. To avoid long processing times for large datasets (for example

when analyzing full human genomes), encrypted disks attached to the Trusted Server before

sealing carry the sensitive data. After sealing, the data provider uploads the decryption key to

the Trusted Server. The disk can be newly mounted in a short time.

3.2.3 Intentional emergency ‘backdoor’. Specific scenarios request maximum data and

privacy protection as well as an opportunity for secure controlled system access. Sending an

encrypted copy of the master-key created during virtual machine disk reencryption to a

trusted instance allows for secure controlled system access. Splitting the encrypted master-key

into several parts enhances security and control when it’s parts are sent to different third par-

ties. Only the active cooperation of all parties allows system decryption.

3.2.4 Automated restore. Many professional servers provide watchdog background pro-

grams. They monitor the proper operation of the server automatically. Thus, server malfunc-

tion or unresponsiveness trigger a forced cold-reset on hardware level. The server reboots and,

if configured for boot over network on disk-boot failure, automatically restores the disk images

and starts the initialization scripts.

3.3 Usage examples

3.3.1 Privacy protected Domain Name Server. Server providing Domain Name Services

(DNS) store and provide matching internet domain names and corresponding internet proto-
col (IP) network addresses. Whenever a user submits an internet domain name to the internet

browser, a request is sent to a DNS server to provide the IP address of the corresponding

server. The DNS server gets and may store the requesting users IP address and requested

domain, which can be privacy sensitive information. A Trusted Server set up as an intermedi-

ate so-called DNS proxy server redirects requests to a public DNS server, providing its own

network address together with the requested domain name and forwarding the returned net-

work address to the original requesting client. Person-related clients’ IP addresses are not sub-

mitted to the public DNS server.

3.3.2 Yao’s millionaires’ problem. In 1982 Andrew C. Yao introduced the Millionaires’

Problem to theoretical informatics: "Two millionaires wish to know who is richer; however,

they do not want to find out inadvertently any additional information about each other’s

wealth. How can they carry out such a conversation?" [15]. Yao’s solution relies on complex

multiparty algorithms and is one of the initial formulations of secure multiparty computa-

tion. The Trusted Server permits implementing an extremely simple solution: It uploads

data over a SSL-encrypted web form containing two fields, one for the name and one for the

value of assets along with a submission button. On every input, the TS adds the name-value

pair to a table in human readable form, perfectly protected by its privacy design. A script

sorts the table by value and publishes only the names to a text file on the Trusted Server’s

website.

Thus, the TS not only transforms one of the challenges of theoretical informatics to com-

mon-level information technology but also provides a highly generic solution. The approach

also works for large numbers of submissions without significant increase in resource
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consumption. It can be used either open-to-the-public or, using LDAP replication, for a closed

access-controlled user group.

3.3.3 Anonymous webmail server. A simple transport encrypted web application with a

text submission form runs on the Trusted Server. The text submission may be open to the pub-

lic, or OpenLDAP authentication controls access. A nickname, comment and optionally a

return email-address may be provided. Upon submission the content of the form is sent to a

preconfigured email address. This can be used to provide a secure portal e.g. for whistleblowers

or anonymous patients’ reports in clinical studies. Combined with LDAP authentication input

may be restricted to a limited user group, while retaining full anonymity at least, if the submis-

sion form is used from a public non person-related computer e.g. in an internet cafe.

3.4 Use case: A standard problem in epidemiological research

The example simulates the following situation:

Data collected in three centers provide the input to a prognostic model. There is a high

interest in the model but reluctance to share the data openly. The data may contain sensitive

information on patient mix, treatment strategies, and respective outcomes. The TS provides an

elegant solution to this problem.

Utilizing R-package plumber [16] with a problem-specific R-script allows to restrict the

user to the predefined R-function calls when performing the analysis and providing the results.

That assures non-disclosure of information, that should not be shared openly.

For demonstration purposes and reproducibility we take the openly available dataset GBSG

from the R-package mfp [17]. The dataset consists of 686 patients and we split it into three

consecutive parts of about 228 patients representing the data of three different clinics. The

analysis studies the influence of age (age) and the expression of progesterone receptor (PRM).

The TS provides the results of the analysis in a list which consists of the regression coeffi-

cients c1 for the fractional polynomials of age (f1) and c2 for the fractional polynomials of prm

(f2) as well as the modified cumulative baseline hazards function (CBH). Both information

allow to calculate group specific survival curves: S(t|age,prm) = exp{-CBH(t)�exp[c1�f1(age)

+c2�f2(prm)].

The standard CBH is a step function with jumps at each event time.Publishing the CBH in

this form may allow to reidentify individual patients by observed event times. Therefore we

use a smoothed form of the CBH which blurs observed event times. This deidentifying step is

given in the code line www<-lowess(haz,f = 0.1). This is a very practical approach that needs

more thinking in a real scenario.

In the following we two R-scripts. The first R-script (plumber.R) starts the plumber server,

which is remotely accessed over the apache2 proxy.
plumber.R
library(plumber)
r <- plumb("<. . ...demo.R>")
r$run(port = 8000)

The second script (demo.R) contains the analysis which mainly rely on three functions.

The function getPacman attaches the library which manages the specific library attachments

needed for the analysis. The function readDat concatenates the individual csv data files in

the working directory to a common data object in R. The line with the hash mark before the

evalrfc function is a decorator which can be interpreted by plumber defining the call the server

should respond to. The function evalrfc provides the specific analysis data steps, returning the

data that are responded, when the interface is called. After defining the functions, the script

performs the following steps: attaching pacman, attaching the specific libraries over pacman

and reading the data.
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The evaluation is started and results are provided by calling the URL:

"https://<ipAddressOrDomainName>:<port>/evalrfc"
demo.R

getPacman <- function()
{
if (!"pacman" %in% installed.packages())
install.packages("pacman")
library(pacman)

}
readDat <- function(dir)

{
setwd(dir)
all_files <- list.files()
dats <- lapply(all_files, read.csv)
dat <- do.call(rbind, dats)
return(dat)

}
#� @get /evalrfc
evalrfc <- function()

{
result <- mfp(Surv(rfst, cens) ~ fp(age, df = 2, select = 0.05) +

fp(prm, df = 4, select = 0.05), family = cox, data = dat)
coef <- summary(result)$coefficient
haz <- basehaz(result)
www<-lowess(haz,f = 0.1)
res <- list(coef = coef,basehaz = www)
return(res)

}
getPacman()
p_load(mfp)

dat <- readDat("path to data")

3.5 Security considerations

3.5.1 Decryption resistance. Any grade of privacy protection and security is relative.

This of course is also valid for the TS. Its grade of protection depends on the quality and

irrevocability of the Virtual Machine disk2 encryption. LUKS is cryptographically strong

[18] and without the key-slot keys it is impossible to decrypt the disk except by brute force—

that is finding the decryption key by trial and error [19]. Successful brute-force attacks

against strong encryption are limited to a few intelligence agencies in the world, if possible

at all. This in most scenarios is meaningless, since those agencies will have access to the pro-

tected data anyway.

3.5.2 Technical limitations.

1. Server BIOS and the CPU-Microcode are closed source and potentially contain undocu-

mented functions and backdoors. This implies that today’s real-world computing hardware

cannot achieve absolute trust-to-the-last.

2. The cryptographic strength of encryption techniques for Solid-State-Disks (SSD) is cur-

rently under discussion [20]. Exploiting proprietary wear leveling technology to obtain and

restore a LUKS header with deleted passphrases under rare circumstances might be possible

for specialists. Therefore, SSD must not be used in a Trusted Server if maximum protection

even from highly skilled attackers is mission-critical. Using SSD with additional hardware

encryption may solve the problem. This approach still needs validation.
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3.5.3 Tamper-resistance. After testing and approval, the system administrators activate

the initialization scripts. At that point the administrators could change binaries or add

scripts in the physical host or Virtual Machine. This intervention could break security, for

example by sending out the secret key and LUKS-header created during Virtual Machine disk

reencryption.

Thorough review of the published logs and comparison of the TS’ state after installation

and its state after sealing are crucial. The SHA-3 hashes and log files published on the TS’s

website allow to detect changes and to reveal most manipulations.

For maximum trust, transparency and control, disk images should be crated immediately

before the sealing is initialized and securely provided to the concerned parties. Ideally repre-

sentatives of all parties personally attend the sealing and receive their disk images. Video self-

surveillance of the TS and sealing process may be disclosed over the TS website, too.

3.5.4 Vulnerabilities. Aside from added security by sealing, a Trusted Server shares all

vulnerabilities and contact surfaces with a conventional server having an identical setup.

Therefore, we recommend additional security measures:

1. Remove Gnome Virtual File System and any other auto-mounters for external storage to

prevent code injection from scripts running automatically when an external USB storage or

CD/DVD is inserted and external ports are needed for some reason.

2. Specific scenarios recommend to use means like hardening, creating custom kernels, to use

SELinux or AppArmour. Applications installed on the Trusted Server need a careful inter-

nal security check, too.

3. Disclosing a full disk image for review allows corrupting the SSL transport encryption by a

man-in-the-middle attack [21], since the private SSL key is disclosed. SSL encryption itself is

not affected, as the session encryption keys are created independently from the identifying

SSL key. However the identity of the Trusted Server needs approval by additional means.

4. A Cold-Boot [22], DMA [23] or removable media attack on the Trusted Server is possible

either. Therefore, securing the server physically is a prerequisite e.g. by gluing or soldering

in RAM-modules and physically removing or destroying CD disk drives and external ports

like USB. These measures are the same as needed just to secure a conventional server with

disk encryption in a given setting.

5. Additional protection and security is achieved by using a server-vault or strongroom with

strict access management.

6. A physical self-destruction mechanism triggered by any human access to the server-vault

may protect the TS even against the strongest attackers.

4. Conclusion

The TS overcomes human-centric paradigms in privacy protection concepts. All current

approaches base on either trust or mistrust in single or multiple real persons. Accordingly,

they establish either a network of trust, which spreads information over multiple semi-

trusted instances of human-driven institutions or use complex computation schemes of fully

encrypted data so nobody needs to trust anyone but himself or herself. Compared to standard

non-privacy-protected solutions both approaches require highly customized workflows.

The TS may request moderately prolonged downtimes for maintenance and changes. Com-

pared to multi stage approaches this compensates by quick and easy setup as well as minimized

workflow customization.
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The TS provides a conventional computational environment that grants Privacy by Design

independently from any individual. Since the TS behaves—despite self-sealing and irrevocable

encryption—like any standard GNU/Linux based system, it is possible to run well-established

computational solutions with the highest degree of privacy.

Author Contributions

Conceptualization: Nikolaus von Bomhard.

Formal analysis: Bernd Ahlborn.

Investigation: Nikolaus von Bomhard.

Methodology: Nikolaus von Bomhard.

Project administration: Nikolaus von Bomhard.

Resources: Nikolaus von Bomhard, Bernd Ahlborn.

Software: Nikolaus von Bomhard, Bernd Ahlborn.

Supervision: Ulrich Mansmann.

Validation: Nikolaus von Bomhard.

Visualization: Nikolaus von Bomhard.

Writing – original draft: Nikolaus von Bomhard.

Writing – review & editing: Catherine Mason, Ulrich Mansmann.

References
1. Teague V, Culnane C, Rubinstein B. The simple process of re-identifying patients in public health rec-

ords. 2017. [cited 24. July 2018]. https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-

identifying-patients-in-public-health-records

2. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27

April 2016. Official Journal of the European Union L 119/1. http://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A32016R0679

3. World Medical Association Declaration of Helsinki. 2013 Nov 27 [cited 24. July 2018]. https://

jamanetwork.com/journals/jama/fullarticle/1760318

4. Li L, Ota K, Zhang Z, Liu Y. Security and Privacy Protection of Social Networks in Big Data Era. Mathe-

matical Problems in Engineering. vol. 2018. [cited 24. July 2018]. https://www.hindawi.com/journals/

mpe/2018/6872587/

5. Xie D, Peng H, Li L, Yang Y. An efficient privacy-preserving scheme for secure network coding based

on compressed sensing. AEU—International Journal of Electronics and Communications. Volume 79

2017. Pages 33–42, ISSN 1434-8411

6. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27

April 2016. Art. 5. Official Journal of the European Union L 119/1. http://eur-lex.europa.eu/legal-content/

EN/TXT/?uri=CELEX%3A32016R0679

7. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27

April 2016. Art. 4. Official Journal of the European Union L 119/1. http://eur-lex.europa.eu/legal-content/

EN/TXT/?uri=CELEX%3A32016R0679

8. Dwork C, McSherry F, Nissim K, Smith A. Calibrating Noise to Sensitivity in Private Data Analysis. In:

Halevi S, Rabin T, editors. Theory of Cryptography. Springer, 2006. pp. 265–284.

9. Mironov I, Pandey O, Reingold O, Vadhan S. Computational Differential Privacy. In: Advances in Cryp-

tology. CRYPTO 2009. Springer, August 2009.

10. Orlandi C. Is multiparty computation any good in practice? 2011 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). Prague, 2011. pp. 5848–5851.

11. Newcastle University—DataShield—Publications. [cited 24. July 2018]. https://research.ncl.ac.uk/

datashield/research/publications/#d.en.748923

The Trusted Server: A secure computational environment for privacy compliant evaluations on plain data

PLOS ONE | https://doi.org/10.1371/journal.pone.0202752 September 6, 2018 18 / 19

https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
https://pursuit.unimelb.edu.au/articles/the-simple-process-of-re-identifying-patients-in-public-health-records
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://jamanetwork.com/journals/jama/fullarticle/1760318
https://jamanetwork.com/journals/jama/fullarticle/1760318
https://www.hindawi.com/journals/mpe/2018/6872587/
https://www.hindawi.com/journals/mpe/2018/6872587/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://research.ncl.ac.uk/datashield/research/publications/#d.en.748923
https://research.ncl.ac.uk/datashield/research/publications/#d.en.748923
https://doi.org/10.1371/journal.pone.0202752


12. Automatically unlock your LUKS-encrypted disk. [cited 19. February 2018]. https://dradisframework.

com/pro/support/guides/customization/auto-unlock-luks-encrypted-drive.html

13. Zeilenga K. Lightweight Directory Access Protocol (LDAP): Technical Specification Road Map. 2006.

[cited 24. July 2018]. https://tools.ietf.org/html/rfc4510

14. OpenLDAP Project. [cited 24. July 2018]. https://www.openldap.org/project/

15. Yao AC. Protocols for Secure Computations. 1982. e-print. https://research.cs.wisc.edu/areas/sec/

yao1982-ocr.pdf. Cited 24. July 2018.

16. plumber: An API Generator for R. [cited 24. July 2018]. https://cran.r-project.org/package=plumber

17. mfp: Multivariable Fractional Polynomials. [cited 24. July 2018]. https://cran.r-project.org/package=mfp

18. Fruhwirth C. New Methods in Hard Disk Encryption. 2005. e-print. http://clemens.endorphin.org/

nmihde/nmihde-A4-os.pdf. Cited 24. July 2018.

19. Cryptsetup FAQ: 6.8 What happens if I overwrite the start of a LUKS partition or damage the LUKS

header or key-slots? [cited 19. February 2018]. https://gitlab.com/cryptsetup/cryptsetup/wikis/

FrequentlyAskedQuestions#5-security-aspects

20. Cryptsetup FAQ: 5.19 What about SSDs, Flash and Hybrid Drives? [cited 19. February 2018]. https://

gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions#5-security-aspects

21. Li X, Li S, Hao J, Feng Z, An B. Optimal Personalized Defense Strategy Against Man-In-The-Middle

Attack. 2017. e-print. https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14318/13817. Cited 24.

July 2018.

22. Wetzels J. Hidden in snow, revealed in thaw: Cold boot attacks revisited. e-print. arXiv:1408.0725.

Cited 24. July 2018.

23. Witherden FD, Memory Forensics over the IEEE 1394 Interface. 2010. e-print. https://freddie.

witherden.org/pages/ieee-1394-forensics.pdf. Cited 24. July 2018.

The Trusted Server: A secure computational environment for privacy compliant evaluations on plain data

PLOS ONE | https://doi.org/10.1371/journal.pone.0202752 September 6, 2018 19 / 19

https://dradisframework.com/pro/support/guides/customization/auto-unlock-luks-encrypted-drive.html
https://dradisframework.com/pro/support/guides/customization/auto-unlock-luks-encrypted-drive.html
https://tools.ietf.org/html/rfc4510
https://www.openldap.org/project/
https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf
https://research.cs.wisc.edu/areas/sec/yao1982-ocr.pdf
https://cran.r-project.org/package=plumber
https://cran.r-project.org/package=mfp
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions#5-security-aspects
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions#5-security-aspects
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions#5-security-aspects
https://gitlab.com/cryptsetup/cryptsetup/wikis/FrequentlyAskedQuestions#5-security-aspects
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14318/13817
https://freddie.witherden.org/pages/ieee-1394-forensics.pdf
https://freddie.witherden.org/pages/ieee-1394-forensics.pdf
https://doi.org/10.1371/journal.pone.0202752

