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Abstract

The ensemble method random forests has become a popular classification tool in bioinfor-

matics and related fields. The out-of-bag error is an error estimation technique often used to

evaluate the accuracy of a random forest and to select appropriate values for tuning param-

eters, such as the number of candidate predictors that are randomly drawn for a split,

referred to as mtry. However, for binary classification problems with metric predictors it has

been shown that the out-of-bag error can overestimate the true prediction error depending

on the choices of random forests parameters. Based on simulated and real data this paper

aims to identify settings for which this overestimation is likely. It is, moreover, questionable

whether the out-of-bag error can be used in classification tasks for selecting tuning parame-

ters like mtry, because the overestimation is seen to depend on the parameter mtry. The

simulation-based and real-data based studies with metric predictor variables performed in

this paper show that the overestimation is largest in balanced settings and in settings with

few observations, a large number of predictor variables, small correlations between predic-

tors and weak effects. There was hardly any impact of the overestimation on tuning parame-

ter selection. However, although the prediction performance of random forests was not

substantially affected when using the out-of-bag error for tuning parameter selection in the

present studies, one cannot be sure that this applies to all future data. For settings with met-

ric predictor variables it is therefore strongly recommended to use stratified subsampling

with sampling fractions that are proportional to the class sizes for both tuning parameter

selection and error estimation in random forests. This yielded less biased estimates of the

true prediction error. In unbalanced settings, in which there is a strong interest in predicting

observations from the smaller classes well, sampling the same number of observations

from each class is a promising alternative.

Introduction

Random forests (RF) [1] have become a popular classification tool in bioinformatics and

related fields. They have also shown excellent performance in very complex data settings. Each

tree in a RF is constructed based on a random sample of the observations, usually a bootstrap
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sample or a subsample of the original data. The observations that are not part of the bootstrap

sample or subsample, respectively, are referred to as out-of-bag (OOB) observations. The OOB

observations can be used for example for estimating the prediction error of RF, yielding the

so-called OOB error. The OOB error is often used for assessing the prediction performance of

RF. An advantage of the OOB error is that the complete original sample is used both for con-

structing the RF classifier and for error estimation. By contrast, with cross-validation and

related data splitting procedures for error estimation a subset of the samples are left out for RF

construction, which is why the resulting RF classifiers are less performant. Another advantage

of using the OOB error is its computational speed. In contrast to cross-validation or other data

splitting approaches, only one RF has to be constructed, while for k-fold cross-validation k RF

have to be constructed [2, 3]. The use of the OOB error saves memory and computation time,

especially when dealing with large data dimensions, where constructing a single RF might last

several days or even weeks. These reasons might explain the frequent use of the OOB error for

error estimation and tuning parameter selection in RF.

The OOB error is often claimed to be an unbiased estimator for the true error rate [1, 3, 4].

However, for two-class classification problems it was reported that the OOB error can overesti-

mate the true prediction error depending on the choices of RF parameters [2, 5]. The bias can

be very substantial, as shown in the latter papers, and is also present when using classical

cross-validation procedures for error estimation. It was thus recommended by Mitchell [5] to

use the OOB error only as an upper bound for the true prediction error. However, Mitchell [5]

considered only settings with completely balanced samples, sample sizes below 60 and two

response classes, limiting the generality of his results.

Besides the fact that trees in RF are constructed on a random sample of the data, there is a

second component which differs between standard classification and regression trees and the

trees in RF. In the trees of a RF, not all variables but only a subset of the variables are consid-

ered for each split. This subset is randomly drawn from all candidate predictors at each split.

The size of this subset is usually referred to as mtry. The purpose of considering random sub-

sets of the predictors instead of all predictors is to reduce the correlation between the trees,

that is, to make them more dissimilar. This reduces the variance of the predictions obtained

using RF. In practical applications, the most common approach for choosing appropriate val-

ues for mtry is to select the value over a grid of plausible values that yields the smallest OOB

error [6–8]. In literature on RF methodology, the OOB error has also frequently been used to

choose an appropriate value for mtry [9, 10]. In principle, other procedures like (repeated)

cross-validation may be applied for selecting an optimal value for mtry, but the OOB error is

usually the first choice for parameter tuning. This is due to the fact that, unlike many other

approaches such as cross-validation, the whole data can be used to construct the RF and much

computational effort is saved since only one RF has to be built for each candidate mtry value.

Implementations exist that use the OOB error to select an appropriate value for mtry. In the

statistical software R [11], for example, the function tuneRF from the package randomForest

[12] automatically searches over a grid of mtry values and selects the value for mtry for which

the OOB error is smallest. The latter approach is only valid, if the bias of the OOB error does

not depend on the parameter mtry. If, by contrast, the bias of the OOB error does depend on

this parameter, the mtry value minimizing the OOB error cannot be expected to minimize the

true prediction error and will thus be in general suboptimal, making the OOB error based tun-

ing approaches questionable. To date there are no studies investigating the reliability of the

OOB error for tuning parameters like mtry in RF.

The main contribution of this paper is three-fold: (i) the bias and its dependence on mtry in

settings with metric predictor variables are quantitatively assessed through studies with differ-

ent numbers of observations, predictors and response classes which helps to identify so-called
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“high-risk settings”, (ii) the reasons for this bias and its dependence on mtry are studied in

detail, and based on these findings, the use of alternatives, such as stratified sampling (which

preserves the response class distribution of the original data in each subsample), is investi-

gated, and (iii) the consequences of the bias for tuning parameter selection are explored.

This paper is structured as follows: In the section “Methods”, simulation-based and real-

data based studies are described after briefly introducing the RF method. The description

includes an outline of the simulated and real data, the considered settings and several different

error estimation techniques that will be used. The results of the studies are subsequently

shown in the section “Results”, where also some additional studies are presented, and finally

recommendations are given. The results are discussed in the section “Discussion” and the

main points are condensed in the section “Conclusions”.

Methods

In this section, the RF method and the simulation-based and real-data based studies are

described. Simulated data is used to study the behavior of the OOB error in simple settings, in

which all predictors are uncorrelated. This provides insight to the mechanisms which lead to

the bias in the OOB error. Based on these results, settings are identified, in which a bias in the

OOB error is likely. Subsequently, to assess the extent of the bias in these settings in practice,

complex real world data is used.

Random forests and its out-of-bag error

RF is an ensemble of classification or regression trees that was introduced by Breiman [1]. One

of the two random components in RF concerns the choice of variables used for splitting. For

each split in a tree, the best splitting variable from a random sample of mtry predictors is

selected. If the chosen mtry value is too small, it might be that none of the variables contained

in the subset is relevant and that irrelevant variables are often selected for a split. The resulting

trees have poor predictive ability. If the subset contains a large number of predictors, in con-

trast, it is likely that the same variables, namely those with the largest effect, are often selected

for a split and that variables with smaller effects have hardly any chance of being selected.

Therefore, mtry should be considered a tuning parameter.

The other random component in RF concerns the choice of training observations for a tree.

Each tree in RF is built from a random sample of the data. This is usually a bootstrap sample or

a subsample of size 0.632n. Therefore not all observations are used to construct a specific tree.

The observations that are not used to construct a tree are denoted by out-of-bag (OOB) obser-
vations. In a RF, each tree is built from a different sample of the original data, so each observa-

tion is “out-of-bag” for some of the trees. The prediction for an observation can then be

obtained by using only those trees for which the observation was not used for the construction.

A classification for each observation is obtained in this way and the error rate can be estimated

from these predictions. The resulting error rate is referred to as OOB error. This procedure was

originally introduced by Breiman [13] and it has become an established method for error esti-

mation in RF.

Simulation-based studies

The upward bias of the OOB error in different data settings with metric predictor variables

was systematically investigated by means of simulation studies.

Settings were considered with
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• different associations between the predictors and the response. Either none of the predictors

were associated with the response (the corresponding studies termed null case) or some of

them were associated (power case);

• different numbers of predictors, p 2 {10, 100, 1000};

• different numbers of response classes, k 2 {2, 4}. The studies are termed binary if k = 2 and

multiclass if k = 4;

• different response class ratios. An equal number of observations of each response class was

used (balanced settings) for k 2 {2, 4}. For k = 2 two additional settings with unequal response

class sizes were simulated (binary unbalanced and binary extremely unbalanced). In the first

setting (binary unbalanced), the smaller class comprised 30% of the observations. In the sec-

ond setting (binary extremely unbalanced), the smaller class comprised approximately 17%

(ratio 1:5) of the observations.

• different numbers of observations, n 2 {nsmall, 100, 1000}, with nsmall = 20 for binary balanced
studies, nsmall = 30 for binary unbalanced studies, nsmall = 60 for binary extremely unbalanced
studies and nsmall = 40 for multiclass balanced studies.

Since one of the aims was to investigate the bias in dependence on mtry, several RFs with

different mtry values were constructed for each setting. The grid of considered mtry values

was {1, 2, 3, . . ., 10} for p = 10, {1, 10, 20, 30, . . ., 100} for p = 100 and {1, 5, 10, 50, 100, 200,

300, . . ., 1000} for p = 1000. Note that for mtry = 1 there is no selection of an optimal predictor

variable for a split, while for mtry = p the RF method coincides with the bagging procedure

which selects the best predictor variable from all available predictors [14]. A large number of

trees, referred to as ntree, should be chosen especially if the data are composed of a large num-

ber of predictors. It is usually chosen by considering a compromise between accuracy and

computational speed. The OOB error stabilized at around 250 trees in convergence studies of

Goldstein et al. [15], and they concluded that 1000 trees might be sufficiently large for their

genome-wide data set. Also in the studies of Dı́az-Uriarte and De Andres [16] the results for

RF with 1000 trees were almost the same as those for RF with 40000 trees, and in the high-

dimensional settings of Genuer et al. [17] RF with 500 trees and 1000 trees yielded very similar

OOB errors. In accordance with these findings the number of trees was set to 1000 in all stud-

ies of this paper (including at most * 7000 predictors). Each setting was repeated 500 times

to obtain stable results.

Only metric predictor variables were considered in the studies. In the null case study, the

predictors X1, . . ., Xp were independent and identically distributed (i.i.d.), each following a

standard normal distribution (see Tables 1 and 2). In the power case study, both, predictors

associated with the response and predictors not associated with the response were considered.

The predictors not associated with the response followed a standard normal distribution. The

distribution of predictors with association was different for each response class. The predictor

values for observations from class 1 were always drawn from a standard normal distribution.

The predictor values for observations from class 2 (or classes 2, 3, and 4 in settings with k = 4

response classes) were drawn from a normal distribution with variance 1 and a mean different

from zero. Tables 1 and 2 give an overview of the distribution of predictors in the response

classes for settings with k = 2 and k = 4 response classes, respectively. Let us consider the set-

ting with p = 10 and k = 4 as an example (Table 2). The first two predictors X1 and X2 are asso-

ciated with the response, while the other predictors X3, . . ., X10 are not. Accordingly, X3, . . .,

X10 always follow a standard normal distribution, while the distribution of X1 and X2 depends

on whether the observation comes from class 1 or from a different class. If the observation

Overestimation of random forest’s out-of-bag error
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comes from class 1 the distribution of X1 and X2 is N(0, 1), and if it comes from class r 2 {2, 3,

4} the variables Xj, j = 1, 2 follow a normal distribution N(μrj, 1) with μrj drawn independently

from N(0.4, 1). Randomly drawing the mean separately for X1 and X2 and for each repetition

of the study makes sure that predictors with different effect strengths are considered.

Despite considering metric predictors with different effect strengths, the settings are sim-

plistic because all predictors are uncorrelated. Although assuming no correlations between any

of the predictors is not realistic, such settings are important to understand the mechanisms

which lead to a bias in the OOB error. The OOB error in more complex settings that include

correlated predictors will be explored by means of real data.

Table 1. Simulation design: Two response classes.

Study No. predictors Predictors Class 1

N(μ1, 1)

Class 2

N(μ2, 1)

Null case p 2 {10, 100, 1000} X1, . . ., Xp μ1 = 0 μ2 = 0

Power case p = 10 X1 μ1 = 0 μ2 * N(0.75, 1)

X2 μ1 = 0 μ2 * N(0.75, 1)

X3, . . ., X10 μ1 = 0 μ2 = 0

p = 100 X1 μ1 = 0 μ2 * N(0.75, 1)

..

. ..
. ..

.

X10 μ1 = 0 μ2 * N(0.75, 1)

X11, . . ., X100 μ1 = 0 μ2 = 0

p = 1000 X1 μ1 = 0 μ2 * N(0.1, 1)

..

. ..
. ..

.

X50 μ1 = 0 μ2 * N(0.1, 1)

X51, . . ., X1000 μ1 = 0 μ2 = 0

Distribution of predictors in class 1 and class 2 of the simulated data setting with k = 2 response classes.

https://doi.org/10.1371/journal.pone.0201904.t001

Table 2. Simulation design: Four response classes.

Study No. predictors Predictors Class 1

N(μ1, 1)

Class 2

N(μ2, 1)

Class 3

N(μ3, 1)

Class 4

N(μ4, 1)

Null case p 2 {10, 100, 1000} X1, . . ., Xp μ1 = 0 μ2 = 0 μ3 = 0 μ4 = 0

Power case p = 10 X1 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

X2 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

X3, . . ., X10 μ1 = 0 μ2 = 0 μ3 = 0 μ4 = 0

p = 100 X1 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

..

. ..
. ..

. ..
. ..

.

X10 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

X11, . . ., X100 μ1 = 0 μ2 = 0 μ3 = 0 μ4 = 0

p = 1000 X1 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

..

. ..
. ..

. ..
. ..

.

X50 μ1 = 0 μ2 * N(0.4, 1) μ3 * N(0.4, 1) μ4 * N(0.4, 1)

X51, . . ., X1000 μ1 = 0 μ2 = 0 μ3 = 0 μ4 = 0

Distribution of predictors in class 1, class 2, class 3 and class 4 of the simulated data setting with k = 4 response classes.

https://doi.org/10.1371/journal.pone.0201904.t002
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Real data-based studies

Based on the results from simulated data, real data sets were considered in which the overesti-

mation of the OOB error is expected to be most pronounced. As will be seen later, a relevant

bias of the OOB error is likely to occur in data settings with huge numbers of predictors, p,

and small numbers of observations, n. Such settings are typically prevalent with genomic data.

Therefore high-dimensional genomic data from the real world are considered for further

investigations.

New data for evaluation can easily be generated with simulated data. In contrast to that, in

real data applications, the original data has to be split up in order to obtain an independent

test data set useable for evaluation. Thus, six genomic data sets were selected that are large

enough to randomly split the data into a training and a test set (Table 3). These data sets were

often used by various authors for classification purposes [16, 18, 19] and are briefly described

in the following. Note that no pre-selection of data sets based on the results obtained for this

data was performed, and the results of all six analyzed data sets are reported [20].

Data. The first considered data is the Colon Cancer data of Alon et al. [21]. The expression

levels of 40 tumor and 22 normal colon tissues for 6500 human genes were measured. The con-

sidered data set contains the expression of the 2000 genes with highest minimal intensity

across the 62 tissues measured using the Affymetrix technology.

Two versions of the Breast Cancer data of van’t Veer et al. [22] were considered. The first

version of this data was previously analyzed by Dı́az-Uriarte and De Andres [16] and contains

k = 3 response classes: 33 patients developed distant metastases within 5 years, 44 remained

disease-free for over 5 years and 18 patients had BRCA1 germline mutations. Missing data was

imputed by using 5-nearest neighbor imputation. Further details on transformations of the

original data are given in the supplement to the paper of Dı́az-Uriarte and De Andres [16].

The second version which is considered in this paper is a subset of the data set provided by

Dı́az-Uriarte and De Andres [16]. This subset does not contain the 18 patients with BRCA1
germline mutations. A differentiation is thus only made between the patients that developed

distant metastases within 5 years (n = 33) and patients that remained disease-free for over 5

years (n = 44), meaning the number of response classes is k = 2.

The fourth considered data set is the Prostate Cancer data of Singh et al. [23]. From 1995 to

1997 samples of prostate tumors and adjacent non-tumor prostate tissue were collected from

patients undergoing radical prostatectomy at the Brigham and Women’s Hospital. High-

quality expression profiles were obtained from 50 non-tumor prostate samples and 52 tumor

specimens. The oligonucleotide microarrays contained probes for approximately 12600 genes.

The Embryonal Tumor data of Pomeroy et al. [24] includes 60 patients with embryonal

tumors of the central nervous system from whom biopsies were obtained before receiving

treatment. The data was used to differentiate between patients who are alive after treatment

(n = 21) and those who succumbed to their disease (n = 39) (data set C in [24]). RNA was

Table 3. Overview over high-dimensional genomic data sets.

Data set No. response classes, k No. pre-dictors, p Considered mtry values Size of original data

Colon Cancer 2 2000 {1, 10, 100, 500, 1000, 2000} 62

Breast Cancer 3 4869 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 4869} 95

Breast Cancer 2 4869 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 4869} 77

Prostate Cancer 2 6033 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6033} 102

Embryonal Tumor 2 7129 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7129} 60

Leukemia 2 7129 {1, 10, 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7129} 72

https://doi.org/10.1371/journal.pone.0201904.t003
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extracted from frozen specimens and was analyzed with oligonucleotide microarrays contain-

ing 7129 probes from 6817 genes.

The Leukemia data [25] consists of 47 patients with acute lymphoblastic leukemia (ALL)

and 25 patients with acute myeloid leukemia (AML). The considered data set comprises both,

training samples and test samples from Golub et al. [25]. The samples were assayed using Affy-

metrix Hgu6800 chips and data on the expression of 7129 genes are available.

Settings. Different settings which were created by modifying the original real data sets

were investigated. The aims together with the modifications are outlined in the following:

Aim 1: To quantitatively assess the overestimation in the OOB error and its consequences for

selecting an optimal value for mtry using the OOB error. For this purpose, the original data

was used without making any modifications to the data. This study is referred to as “Real

data study”.

Aim 2: To investigate the behavior of the OOB error on data sets with realistic data structures

but without any associations between the predictors and the response. To create a data set

with realistic data structures, the matrix containing the values of the predictor variables of

the real data sets was used and the response values of the original data sets were randomly

permuted to break any associations between the predictors and the response. The studies

with the permuted response are termed “Real data null case study with correlations”, where

the term correlation refers to the correlations between the predictor variables. Note that the

data sets obtained in this way only differ to the original data in that none of the predictors

are associated with the response, while in the original data some of the predictors are possi-

bly associated.

Aim 3: To investigate the effect of correlations on the bias in the OOB error in realistic data set-

tings. For this purpose, each predictor variable was permuted separately to create indepen-

dence between them. This also breaks possible associations between the predictors and the

response. This setting is called “Real data null case study without correlations”. Note that,

in order to assess the effect of correlations, the results for this study cannot be compared to

the results obtained for the real data study (described above) because in the real data study
some of the predictors are possibly associated with the response, while in the real data null
case study without correlations this is not the case. This makes it impossible to decide

whether differences are due to the correlations between predictors or are due to the fact

that some of the predictors are associated in one study but not in the other. However, the

results of the real data null case study without correlations can be compared to those of the

real data null case study with correlations, in which there are correlations between predictors

but none of the predictors is associated with the response.

Only a part of the observations was used to construct the RF (training set) while the other part

was used for assessing the performance of the RF (test set). The number of trees was always set

to 1000. For the data sets with k = 2 response classes, the training set consists of n = 20 observa-

tions that were randomly drawn, and for the Breast Cancer data (i.e. the only data set with

k = 3), the training set consists of n = 30 observations. In contrast to the simulation studies, the

response class ratio in the training set was not fixed. However, a minimum of 8 observations

were required from each response class to prevent too few observations from a response class.

With only n = 20 observations, this means that the response class distribution is nearly bal-

anced and that only slight class imbalances can occur in the considered settings. Note that we

chose to use only 20 and 30 observations, respectively, to train RF since these are settings in

which a bias in the OOB error is most likely, as will be shown in the rest of this paper.

Overestimation of random forest’s out-of-bag error
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Although modern studies include far more observations, such small sample sizes are still

encountered in practice [26].

For all settings RF with different mtry values were constructed. The grid of mtry values was

{1, 10, 100, 500, 1000, 2000, . . ., p}, with p denoting the total number of predictors. Table 3

shows the grids for the considered data sets. Each setting was repeated 1000 times.

Alternative strategies for error estimation

The following strategies for error estimation were considered as possible alternatives to the

OOB error:

• Test error: This error rate was computed using observations that are not part of the set of n
observations that were considered for constructing the RF. Since these observations are usu-

ally referred to as test observations, the resulting error rate is referred to as test error. In the

simulation studies, data for 10000 additional observations (test observations) was generated

in order to estimate the prediction error of the RF. The response class distributions were the

same in the two samples of size 10000 and n. In the real data studies, the n observations used

to construct the RF (n = 20 for k = 2, n = 30 for k = 3) were randomly sampled from all avail-

able observations, while making sure that at least 8 observations from each response class

were sampled. In order to have the same response class distribution in the two sets, as test set

the largest subset of the remaining observations was used in which the response class distri-

bution equals that in the sample of n observations.

• Stratified OOB error: In this paper, the OOB error was also computed for a RF based on a

stratified sampling scheme. This strategy was also investigated in the studies of Mitchell [5].

In this stratified sampling scheme, trees were grown on subsamples of size b0.632nc, in

which the response class distribution of the original data of n observations is preserved in

each subsample. The OOB error was computed based on the OOB observations as usual. In

this paper, it is referred to as the stratified OOB error. Note that, in contrast to the test error,

the (stratified) OOB error uses the n observations for both constructing the RF and estimat-

ing its prediction error.

• Cross-validation (CV) error: In contrast to the OOB error, CV is a strategy for estimating the

error rate of an arbitrary classification method and is not specific to RF. In all studies 10-fold

CV was used. Thus, for each constructed RF, the data was first partitioned into 10 sets of

equal size. Each of the 10 sets was then used once for computing the error rate of the RF,

while the other 9 sets were used for creating the RF. The CV error was computed as the aver-

age of the 10 error rates. While the test and OOB error (stratified and unstratified) estima-

tion strategies use all of the n observations to construct the RF, in l-fold CV the n
observations are split into a training and a test set and only the n(l − 1)/l training observa-

tions are used to construct a RF. This means that the CV error is computed from l models

that are fit based on only a subset of the data. Thus, the CV error slightly overestimates the

true prediction error that would be obtained for a model that was fit based on all n observa-

tions [27].

• Stratified cross-validation (CV) error: For computing the stratified CV error the data of size n
was randomly split into l = 10 sets in a way, that within each set the distribution of response

classes is the same as in the original data. The error estimation was then done in exactly the

same way as was described for the CV error.

Since the test error is an accurate estimate for the generalization error, it is treated as a “gold

standard” in this paper against which the OOB and CV errors (stratified and unstratified) are
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compared. In simulation studies, one should prefer estimating the error rate by means of an

additional large independent test sample. In real data settings, in contrast, the number of

observations is limited and is usually not sufficient to enable splitting the data into a training

set and a large test set. Moreover, sample sizes are rather small and it is often desired to use all

available information for building a model which has high predictive ability. Thus, in real data

applications it is rarely the case that there is a large test set available from which the error rate

can be computed (prior to externally validating the prediction model), and different

approaches to estimating the error rate, such as cross-validation procedures, have to be

applied.

Random forest implementation and computational issues

The original RF version of Breiman and its implementation in the R package randomForest

[12] was used for all studies. Note that stratified sampling will be investigated in the studies as

possible solution to overcome the problem of the bias in the OOB error. In the RF implemen-

tation of Liaw and Wiener [12], one can specify a vector which contains the number of

observations to be drawn from each class via the argument sampsize in the function

randomForest. In the presence of categorical predictors, this RF version is biased with

respect to split selection, because predictors with many possible cutpoints are preferentially

selected [28–31]. This is, however, not a problem in the studies presented in this paper,

because here exclusively metric predictors are considered. Nevertheless, to make sure that the

results do not depend on the RF version considered, the RF version of Hothorn et al. [32] was

used for some simulation settings in addition. This RF version, while computationally chal-

lenging, is unbiased with respect to split selection. Moreover, subsampling (i.e., sampling from

the original data without replacement) was used in all studies instead of bootstrapping in

order to avoid possible biases induced by the bootstrap [5, 29]. As was suggested, subsamples

of size b0.632nc were used, where n denotes the number of observations [29]. Trees were

always grown to full size. For this purpose default values for the parameters controlling tree

size were not changed in the original RF version. In contrast to that, the parameters controlling

tree size in the RF version of Hothorn et al. [32] were set to the most extreme values, such that

early stopping was prevented.

Results

Figs 1–5 show the estimated error rates over a grid of mtry values for the five different error

estimates (test error, OOB error, stratified OOB error, CV error, stratified CV error). In the

following, the bias in the OOB error is quantified based on these results. Further the sources of

the bias and the dependence of this bias on RF parameters and data characteristics are investi-

gated, and finally the consequences of using the OOB error for tuning mtry are assessed.

Quantitative assessment of the bias

For the binary null case study (balanced) the true error rate for new observations is 0.5, given

that new observations come from both response classes equally often. Fig 1 shows the esti-

mated error rates for the binary null case study (balanced). The test error approximates 0.5 very

well in all balanced settings and for all considered mtry values. For small sample sizes (Fig 1a,

1b and 1c; n = 20), the OOB error is larger than the test error which is considered to be a good

estimate of the true prediction error. For larger sample sizes (Fig 1d, 1e and 1f; n = 100), the

difference between the test error and the OOB error is smaller but still present. Finally, if the

sample size is increased to n = 1000 (Fig 1g, 1h and 1i), the OOB error seems to approximate

the test error well. When comparing the results for different parameter settings, it can be seen
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that the overestimation does not only depend on the number of observations but also on the

number of predictors, or rather the ratio of the number of observations and predictors. In set-

tings with both, large predictor numbers and small sample sizes (Fig 1c; n = 20, p = 1000), the

overestimation is most extreme. Depending on the chosen value for mtry, the difference

between the OOB error and the test error lies between 10% and 30% for this setting. In con-

trast, there is no overestimation in settings with large sample sizes and small predictor num-

bers (Fig 1g; n = 1000, p = 10). Exactly the same results are obtained for the CV error. This

suggests that CV is not a reasonable alternative to the OOB error and, moreover, that there is a

common source of the overestimation. In contrast to the OOB error and the CV error, the

stratified OOB error and the stratified CV error approximate the test error very well and are

reasonable alternatives to the unstratified sampling procedures in the considered study.

Fig 1. Error rate estimates for the binary null case study (balanced). Shown are different error rate estimates for the setting with two response classes of equal size and

without any predictors with effect. The error rate was estimated through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified CV error

for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over 500 repetitions was obtained for a range of mtry values. The vertical

grey dashed line in each plot indicates the most commonly used default choice for mtry in classification tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g001
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Comparable results were obtained for the binary power case study (balanced) (Fig 2). How-

ever, the difference between the OOB error (CV error) and the test error is smaller than in the

study without any associations. In particular, there is only a small overestimation for large

mtry values. Moreover, in contrast to the binary null case study (balanced), there is no overesti-

mation in settings with a moderate sample size of n = 100 (Fig 2d, 2e and 2f). Similar results

were also obtained for balanced settings with four response classes (S1 File: Figs S1 and S2).

This shows that the overestimation also occurs in settings with more than two response

classes.

The findings of the binary null case study (balanced) and the binary power case study (bal-
anced) do not transfer to the settings with unbalanced response classes. In the binary null case
study (unbalanced), the OOB error and the CV error are far closer to the test error (Fig 3). For

Fig 2. Error rate estimates for the binary power case study (balanced). Shown are different error rate estimates for the setting with two response classes of equal size

and with both predictors with effect and without effect. The error rate was estimated through the test error, the OOB error, the stratified OOB error, the CV error, and

the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over 500 repetitions was obtained for a range of mtry
values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in classification tasks, that is b

ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g002
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the study with more extreme class imbalance (ratio 1:5) there are hardly any differences

between the error rates estimated by the different strategies (S1 File: Fig S3). Overall, this sug-

gests good performance of these two error estimation techniques in unbalanced data settings.

It is not surprising that the prediction error is much lower than 0.5 in the unbalanced data set-

tings. If for example all observations are classified into the larger class, one achieves an error

rate which equals the proportion of the smaller class. With 30% observations belonging to the

smaller class, the proportion of misclassified observations in a null case study could therefore

be expected to be about 30%. These expectations are in line with the test error in Fig 3.

Some differences between the stratified OOB error and the test error can be observed in

some of the power case settings (Figs 2c, 2f, 2i and 4c). In some balanced settings, the stratified

Fig 3. Error rate estimates for the binary null case study (unbalanced). Shown are different error rate estimates for the setting with two response classes of unequal size

(smaller class containing 30% of the observations) and without any predictors with effect. The error rate was estimated through the test error, the OOB error, the

stratified OOB error, the CV error, and the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over 500

repetitions was obtained for a range of mtry values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in classification

tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g003
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OOB error is larger than the test error especially for mtry values close to one. However, such

small mtry values are not recommended. In the presence of many variables without any effect,

small mtry values prevent the selection of relevant variables yielding RF that have poor perfor-

mance [17, 33].

Additional simulation studies with many predictor variables with effect show that if many

predictors are associated with the response, there is a larger difference between the stratified

procedures and the test error (Fig 6; see S1 File for details on the design). However, in all con-

sidered settings the difference between the stratified procedures and the test error is (substan-

tially) smaller than that between the unstratified procedures and the test error.

Fig 4. Error rate estimates for the binary power case study (unbalanced). Shown are different error rate estimates for the setting with two response classes of unequal

size (smaller class containing 30% of the observations) and with both predictors with effect and without effect. The error rate was estimated through the test error, the

OOB error, the stratified OOB error, the CV error, and the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error

rate over 500 repetitions was obtained for a range of mtry values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in

classification tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g004
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To conclude, based on these results we have identified settings with (i) (nearly) balanced

response classes, (ii) large predictor numbers, (iii) small sample sizes and (iv) a high signal-to-

noise ratio as “high-risk settings” in which a large overestimation in the OOB error can be

expected. By now the bias was quantified for rather simplistic settings which might not be real-

istic. The results for the real world high-dimensional genomic data sets in which (i)–(iv) apply,

are shown in Fig 5. They are in line with the results obtained for the simulation studies: the

OOB error and the CV error substantially overestimate the true prediction error for all data

sets. The difference between the test error and the error estimated by the OOB procedure or

CV is about 5%. CV performs worse than the OOB procedure for the Colon Cancer data, the

Prostate Cancer data and the Leukemia data (Fig 5a, 5d and 5f). This might be related to the

fact that the CV error is computed from models that are fit based on only a subset of the data,

yielding only an upper bound of the prediction error [27]. Both CV and OOB error are very

Fig 5. Error rate estimates for the real data study. Shown are different error rate estimates for six real data sets with two or three response classes, respectively, of

nearly the same size. The error rate was estimated through the test error, the OOB error, the stratified OOB error, the CV error, and the stratified CV error for settings

with different sample sizes, n, and numbers of predictors, p. The mean error rate over 1000 repetitions was obtained for a range of mtry values. The vertical grey dashed

line in each plot indicates the most commonly used default choice for mtry in classification tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g005
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similar for the three remaining data sets. The stratified OOB error and the stratified CV error,

in contrast, have a good performance approximating the test error very well. A marginal over-

estimation can, however, be seen for the stratified CV error and the stratified OOB error for

two of the data sets (Colon Cancer data, Prostate Cancer data).

Sources of the bias

The main source of the systematic deviation between the OOB error and the test error has

already been described in the literature [5]. In the following, this main source is described

before the bias and its dependence on specific parameters are detailed.

In a nutshell, the bias is attributable to the trees’ sensitivity to class imbalance. It is well

known that classification trees are greatly affected by class imbalance in the sense that trees

that were trained on unbalanced samples preferentially classify new observations into the class

from which most training observations come. In the context of RF, where the classification

trees are constructed using a subset of the data, this is also relevant to settings in which there is

an equal number of observations from both classes. Later it will be shown that the impacts of

this problem are even more severe for balanced than for unbalanced settings.

Let us assume in the following that we have a sample with an equal number of observations

from both response classes. When constructing trees for a RF we randomly draw subsamples

(or bootstrap samples) of observations from the original balanced sample. The subsample may

comprise for example, 63.2% of the observations contained in the original sample. In contrast

to the original sample, the resulting subsamples generally do not include exactly the same

number of observations from each class, that is, the subsamples are often not exactly balanced

or may even be extremely unbalanced if much more observations from one class are drawn by

chance. The degree of class imbalance in the subsample is directly dependent on the sample

size of the original sample, n. If n is large the chance for a stronger class imbalance in the sub-

sample will be rather small, while for small n, the chance will be large. As an example, Fig 7

shows the degrees of class imbalance in subsamples of size 63.2% that are drawn from balanced

samples of sizes n = 1000, n = 100 and n = 20. The distributions of the frequencies of class 1

observations in the subsamples were determined based on the hypergeometric distribution. As

can be seen, there is a high chance of an extreme class imbalance for small samples. For large

samples (n = 1000), in contrast, there is only a small degree of class imbalance. The class

Fig 6. Error rate estimates for simulation studies with many predictors with effect and n = 20. Shown are different error rate estimates for an additional simulation

study with two response classes of equal size and many predictor variables with effect. The error rate was estimated through the test error, the OOB error, the stratified

OOB error, the CV error, and the stratified CV error for settings with sample size n = 20 and different numbers of predictors, p. The mean error rate over 500

repetitions was obtained for a range of mtry values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in classification

tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g006
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imbalance in the subsamples yields trees that preferentially predict the class most often repre-

sented in the subsample and the more extreme the class imbalance the more extreme the pref-

erential prediction. Thus, the preferential prediction for a class is more pronounced for

smaller samples than for larger samples.

If a prediction shall be obtained for a new observation, all trees in the RF are used to derive

a prediction. Then we expect approximately the same number of trees preferentially predicting

class 1 and trees preferentially predicting class 2. Overall, there is no preferential prediction for

a new observation. In contrast to that, for OOB observations not all trees but only those trees

for which the observation was not part of the subsample, are used to derive the prediction. If

assuming that an observation i comes from class 1, for example, there are more subsamples

without i that contain more observations from class 2 than subsamples without i that contain

more observations from class 1. Accordingly, there are more trees for which observation i is

“out-of-bag” preferentially predicting class 2, which is the wrong class. Again, the sample sizes

play an important role. If the sample size is large, there are not substantially more subsamples

without i that contain more observations from class 2. Then there is hardly any preferential

prediction for the wrong class. In contrast to that, if the sample size is small, say n = 10, there

Fig 7. Class imbalance in subsamples drawn from a balanced original sample. Distribution of the frequency of class

1 observations in subsamples of size b0.632nc, randomly drawn from a balanced sample with a total of (a) n = 1000, (b)

n = 100, and (c) n = 20, observations from classes 1 and 2.

https://doi.org/10.1371/journal.pone.0201904.g007
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are substantially more subsamples without i that contain more observations from class 2, yield-

ing substantially more trees preferentially predicting the wrong class. The mechanism

described above is the reason that the OOB predictions are worse than predictions that are

obtained from the RF if the observation was not used for the construction of the RF. This

mechanism finally leads to an OOB error that is too pessimistic, that is, it overestimates the

error to be expected for new data.

In line with results from the literature, our studies suggest that a large amount of the overes-

timation can be solved by drawing subsamples in which the class distribution of the original

data set is preserved [5]. All trees in the RF will then have the same preference for a class, and

this preference will depend on the class distribution of the original sample. Thus, also the sub-

set of the trees that is used to derive a prediction for an OOB observation have exactly the

same preference for a class, which leads to OOB errors that are unbiased with respect to the

error expected for independent test data. Note that computing the OOB error from an RF

based on stratified subsamples with sampling fractions that are proportional to class sizes

yields the stratified OOB error introduced in the section “Alternative strategies for error esti-

mation”. The results shown in this paper support the findings of Mitchell [5] who claims that

most of the bias can be eliminated by this alternative OOB error estimation.

In the following subsections, the reason for the dependence of the overestimation on data

characteristics and RF parameters are investigated.

Role of the number of observations. The role of the sample size has already been

described in detail. It was seen that large class imbalance in subsamples is especially a problem

for smaller samples. The class imbalance results in trees that tend to more often predict the

class that is more represented in the corresponding in-bag sample, or equivalently, that is less

often represented in the corresponding OOB sample, leading to higher OOB errors. The

dependence of the overestimation on the sample size is seen in the simulation results shown in

the section “Quantitative assessment of the bias”. These show that the bias is almost negligible

for n = 1000, while it is large for n = 20.

Role of mtry. Figs 1 and 2 show that, particularly for balanced data, the difference between

the OOB error and the test error may strongly depend on the parameter mtry. While for bal-

anced data the difference is larger for smaller mtry values (Figs 1 and 2), for unbalanced data

this difference is, in contrast, smaller for smaller mtry values (Figs 3 and 4). The reasons for

this are investigated separately for unbalanced and balanced settings in the following.

Let us first consider the setting with unbalanced data and no associations between the pre-

dictors and the response (null case study). Although there is no association between the predic-

tors and the response in truth, some of the predictors may discriminate in-bag observations

from different classes well by chance. If a large mtry value is used, these predictors are chosen

for a split and the in-bag observations can be separated well. This yields trees that predict both

classes and not only one of the classes (e.g. the most frequent class). In contrast to that, the

well-discriminating predictors are not frequently selected as splitting variables in a tree if mtry
is small. The resulting trees cannot discriminate between in-bag observations from different

classes well and tend to predict the larger class more often. Then the RF, which uses the major-

ity vote of the trees, predicts the larger class for almost all observations. This can also be seen

by inspecting class predictions that are obtained from RFs with different mtry values in empiri-

cal studies. The inspection of class predictions was done using simulation studies and is out-

lined next.

Class predictions were obtained from RFs constructed using 10 observations from class 1

and 20 observations from class 2. The number of predictors, p, was 100. A null case scenario

was simulated in which all predictors X1, . . ., X100 were drawn from a standard normal distri-

bution. Predictions by the RFs were obtained for n = 10000 test observations, with an equal
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number of observations from class 1 and class 2. The proportion of class 1 (minority class) pre-

dictions for the test observations was finally computed. This process was repeated 500 times.

Fig 8 shows the frequency of class 1 predictions over the 500 repetitions for different values of

mtry. A clear trend can be seen that the larger class (class 2 in this simulation study) is more

often predicted if mtry is small. For mtry values close to one, class 2 is almost always predicted.

The OOB error and the test error are almost the same if mtry is very small because most of

the trees in the RF predict the larger class. In contrast to that, the trees do not always predict

the larger class if mtry is large, and the phenomenon that for the OOB observations the trees

tend to predict the opposite class becomes relevant again. This explains the finding that for

large mtry the OOB error is more upwardly biased than for small mtry. However, in contrast

to balanced settings in which the trees tend to predict the opposite class for an OOB observa-

tion, in unbalanced settings most of the trees have the preference for the same class, namely

the largest class in the original sample. This reduces the risk that the trees tend to predict the

opposite class for an OOB observation. Thus, the difference between the test error and the

OOB error is far smaller in the unbalanced simulation settings than in the balanced simulation

settings and is smallest in settings with very extreme class imbalance (S1 File: Fig S4).

Also note that, if mtry is set to 1 the prediction of only one class may yield low error rates

in specific settings. These are settings in which most of the observations, for which the predic-

tions shall be obtained, are from the class that is always predicted by the RF. For example,

if the test data includes 30% of observations from class 1, and the RF always predicts class 2,

then the test error is 30%. The same applies to the OOB error. In the simulated data, for

Fig 8. The trees’ preference for predicting the larger class in dependence on mtry. Fraction of class 1 (minority class

in training sample) predictions obtained for balanced test samples with 5000 observations, each from class 1 and 2, and

p = 100 (null case setting). Predictions were obtained by RFs with specific mtry (x-axis). RFs were trained on n = 30

observations (10 from class 1 and 20 from class 2) with p = 100. Results are shown for 500 repetitions.

https://doi.org/10.1371/journal.pone.0201904.g008
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example, the OOB error is estimated based on observations, in which approx. 70% of the

observations come from class 2 and 30% come from class 1. In the case of small mtry values,

the RF very frequently predicts class 2 (cf. Fig 8), yielding an OOB error close to 30%. This is

also the reason why smaller test and OOB errors were obtained for smaller mtry values than

for larger mtry values in the unbalanced null case scenarios, seen in Fig 3 and Fig S3 (S1 File).

The other error estimation strategies are similarly affected.

Let us now consider the balanced null case study, in which there is an equal number of

observations from all classes. When drawing samples for tree construction, it is usually the

case that not exactly the same number of observations is drawn from each class. When drawing

subsamples of size 0.632n from n = 20 observations (10 from each response class), for example,

there is a 50% chance of obtaining subsamples with a different number of observations from

each class (cf. Fig 7). When drawing from n = 100 observations, the chance to obtain an unbal-

anced subsample is about 84%. The trees grown on unbalanced samples tend to predict the

larger class more often, especially if mtry is small. However, in contrast to the settings with an

unbalanced original data, in the case of a balanced original sample there are approximately as

many trees preferentially predicting class 1 as trees preferentially predicting class 2. In the

absence of any associations between the predictors and the response, a new observation would

then be classified to class 1 by 50% of the trees, while the other 50% of the trees classify the

observation to class 2. This is independent of which value for mtry is chosen. Thus, there is no

preferential prediction by the RF for new observations in balanced data settings. The test error

computed from new observations is therefore not affected by different values for mtry if the

original sample is balanced.

The OOB error, in contrast, is affected by the choice of mtry (cf. Fig 1). When obtaining

predictions for an OOB observation i that comes from, say class 2, not all trees of a RF are used

but only the trees that are constructed based on samples in which the observation was out-of-

bag. Most importantly, even if the original sample is completely balanced, in the samples that

do not contain the observation i, the proportion of observations from class 1 is higher on aver-

age than the proportion of observations from class 2. Thus, by construction, an OOB observa-

tion is out-of-bag for trees that tend to more often predict a class different than the true class

the OOB observation belongs to. As explained before, this leads to the high OOB error rates

observed in Fig 1. The OOB errors even exceed 0.5, which is the error rate of a random predic-

tion in the absence of any associations between predictors and the response. As was outlined

in the previous paragraph, the trees’ preference for the larger class in the subsample (i.e., most

often the wrong class for the OOB observation) is stronger when small mtry values are used.

This explains the finding that the OOB error is larger for RFs in which a small mtry value is

used.

So far we focused on the case in which neither of the predictors are associated with the

response. The mechanism described for the null case study may also play a role for the power
case study, especially if there are only few predictors with effect and if the effects are small. In

settings with only few influential predictors and many noise predictors, very small mtry values

lead to trees that frequently select irrelevant variables for a split. Similar to the null case study,

the trees then preferentially predict the class from which most training observations come.

This explains the finding that in the simulation study (including only few relevant variables

with rather small effects) the bias in the OOB error is larger for smaller mtry values in balanced

settings, while the opposite is true for unbalanced settings.

Role of the predictors. The simulation results have shown that the bias in the OOB error

also greatly depends on the total number of predictors. This is again attributable to the trees’

preference for the larger class. It can be shown that the presence of more predictors leads to a

more extreme preference for the majority class. The null case studies presented in the section
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“Role of mtry” and in Fig 8 were repeated for settings with p = 10 and p = 1000. Fig 9 shows the

fraction of class 1 predictions (average of 500 repetitions) for p = 10, p = 100 and p = 1000. It

shows that the preference for predicting class 1 by RF is more pronounced for settings with a

larger number of predictors.

Again, depending on the class imbalance in the data used to construct the RF, a preference

for the larger class can be of advantage or disadvantage for the bias in the OOB error. With

unbalanced training data, a preference for the majority class will lead to a smaller bias in the

OOB error; see the section “Role of mtry”. A larger bias in the OOB error will be obtained in

contrast if the training data is balanced.

Correlations between predictors also play a role, as can be seen when comparing the results

of the real data null case studies with and without any correlations, respectively (Figs 10 and

11). We observe that the bias of the OOB error and the CV error is larger if predictors are

uncorrelated. Intuitively, if predictors are correlated, they contain more or less the same (or at

least similar) information. Thus, there is less information contained in correlated predictors

than in uncorrelated predictors. A similar mechanism occurs that has been described for the

number of predictors: the less information that is contained in the data (e.g. due to a small

number of predictors or high correlations), the less extreme the trees’ preference for one of the

classes and the smaller the bias in the OOB error.

Fig 9. Trees’ preference for predicting larger class in dependence on mtry and number of predictors. Fraction of

class 1 (minority class in training sample) predictions obtained for balanced test samples with 5000 observations from

class 1 and 2, each (null case setting). Predictions were obtained by RFs with specific mtry from a corresponding grid of

mtry values ({1, 2, . . ., 10} for p = 10, {1, 10, 20, . . ., 100} for p = 100, {1, 100, 200, . . ., 1000} for p = 1000). RFs were

trained on n = 30 observations (10 from class 1 and 20 from class 2) with p 2 {10, 100, 1000}. The mean fractions over

500 repetitions are shown. The grey dots indicate the most commonly used default choices for mtry in classification

tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g009

Overestimation of random forest’s out-of-bag error

PLOS ONE | https://doi.org/10.1371/journal.pone.0201904 August 6, 2018 20 / 31

https://doi.org/10.1371/journal.pone.0201904.g009
https://doi.org/10.1371/journal.pone.0201904


Sampling the same number of observations per class in unbalanced

data settings

RF’s preferential prediction of classes from which most training observations come from is a

well-known phenomenon. A natural consequence of the preferential prediction is that new

observations that in truth belong to the majority class have a high chance of correctly being

classified into the larger class by the RF. In contrast to that, new observations from the minor-

ity class have only a small chance of correctly being classified into the smaller class. Therefore,

it is sometimes of interest to measure the prediction performance of RF separately for observa-

tions from either class using the so-called class-specific OOB errors. For a class j, the class-

specific OOB error is calculated analogous to the usual, class-unspecific OOB error, with the

Fig 10. Error rate estimates for the real data null case study with correlations. Shown are different error rate estimates for studies based on six real data sets with

correlated predictors and two or three response classes, respectively, of nearly the same size. The error rate was estimated through the test error, the OOB error, the

stratified OOB error, the CV error, and the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over 1000

repetitions was obtained for a range of mtry values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in classification

tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g010
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difference that not all training observations are considered, but only those from class j. The

class-specific OOB errors as well as the class-specific test error were computed for the binary
extremely unbalanced setting, and are represented by the solid lines in Fig S5 (S1 File; for the

larger class) and Fig S6 (S1 File; for the smaller class). The class-specific OOB and test errors of

the majority class are much smaller than those of the minority class, indicating a strong imbal-

ance regarding the accuracy of RF for predicting observations from the different classes.

An approach called “balanced random forest” [34] tackles this imbalance by drawing the

same numbers of observations with replacement from each class for each tree yielding trees

that do not preferentially predict a specific class. This balanced RF approach is investigated in

this section. The aim of these additional studies is to investigate the class-specific OOB error

(and its bias) of the balanced RF approach and to compare it to the class-specific stratified

Fig 11. Error rate estimates for the real data null case study without correlations. Shown are different error rate estimates for studies based on six real data sets with

uncorrelated predictors and two or three response classes, respectively, of nearly the same size. The error rate was estimated through the test error, the OOB error, the

stratified OOB error, the CV error, and the stratified CV error for settings with different sample sizes, n, and numbers of predictors, p. The mean error rate over 1000

repetitions was obtained for a range of mtry values. The vertical grey dashed line in each plot indicates the most commonly used default choice for mtry in classification

tasks, that is b
ffiffiffipp c.

https://doi.org/10.1371/journal.pone.0201904.g011
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OOB error with sampling fractions proportional to class sizes. In the original balanced RF

approach, for each tree first a bootstrap sample is drawn from the smaller class and subse-

quently, a number of observations equal to the number of observations in the smaller class is

drawn with replacement from the larger class. However, the problems associated with boot-

strap in the case of standard RF can also be expected to occur for balanced RF. Therefore, the

same numbers of observations from each class were drawn without replacement instead. The

setting with the extremely unbalanced class sizes was used for this analysis. A number of n� =

0.75nsmall observations were sampled without replacement from each class, where nsmall

denotes the number of observations from the smaller class. The number n� = 0.75nsmall was

used because using n� = 0.632nsmall would result in very few training observations for each tree

in cases in which the number of observations from the minority class is very small. The con-

stant 0.75 was also recommended by Probst et al. [35], who used many publicly available data

sets to find optimal default values for various tuning parameters and found that subsampling

approximately 75% of observations for the trees in RF delivers good results in the majority of

cases. The dashed lines in Figs S5 and S6 (S1 File) represent the class-specific OOB errors and

the class-specific test error for the larger and the smaller class, respectively.

For both approaches (balanced RF and RF using stratified sampling with sampling fractions

that are proportional to class sizes), the class-specific OOB errors can rarely be distinguished

from the corresponding class-specific test errors. Thus, for both approaches, the class-specific

OOB errors seem to be almost unbiased.

With respect to predictive ability we note that observations from the smaller class tend to

be much better predicted for the balanced RF, in particular for smaller mtry values, including

the commonly used choice mtry ¼ b ffiffiffipp c. While observations from the larger class have more

accurate predictions when performing stratified sampling with sampling fractions propor-

tional to class sizes, the class-specific test errors of the larger class are also small when sampling

the same numbers (except for the settings with p = 10). Note also that when sampling the same

numbers, the class-specific test errors are almost identical for the two classes for each setting.

This illustrates that sampling the same numbers of observations leads to an equal prediction

performance for both classes.

For p = 10, the class-specific test errors of the larger class are quite high when sampling the

same numbers and almost zero when using sampling fractions that are proportional to the

class sizes. The reason for the former is that there is relatively few signal in the data for p = 10

(only two predictors with effect); the reason for the latter is that the larger class is almost always

predicted when sampling fractions are proportional to class sizes. The latter preference for the

larger class also explains why for p = 10 the overall (class-unspecific) test errors shown in Fig

S7 (S1 File) are much lower using sampling fractions that are proportional to class sizes than

when sampling the same numbers. As expected, no (relevant) systematic differences between

the OOB errors and the corresponding overall test errors can be observed, both when sampling

fractions are proportional to class sizes and sampling the same numbers. For p = 100, the over-

all test errors are similar between the two methods. This is also the case for p = 1000 if large val-

ues for mtry are chosen; if smaller mtry values are chosen, the overall OOB error obtained

when sampling the same numbers is clearly smaller, in particular in the region of

mtry ¼ b ffiffiffipp c.
For unbalanced data, both when sampling the same numbers of observations (balanced RF)

and when using sampling fractions that are proportional to the class sizes, the class-specific

OOB errors are (almost) unbiased with respect to the corresponding class-specific test errors.

Sampling the same numbers of observations from each class yields a RF that has the same pre-

diction performance independent of the class an observation comes from. For observations
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from the smaller class prediction performance is considerably higher than that obtained when

using sampling fractions that are proportional to the class sizes. Nevertheless, for observations

from the larger class, sampling fractions that are proportional to the class sizes performs

slightly better than sampling the same numbers from each class. In unbalanced settings, in

which there is a strong interest in predicting observations from the smaller classes well, sam-

pling the same number of observations from each class might therefore be the method of

choice.

Consequences for tuning mtry
The OOB error is frequently used to tune parameters like mtry. From the studies in the section

“Quantitative assessment of the bias”, we have seen that the unstratified OOB error and the

unstratified CV error often overestimate the true prediction error. Further, it was seen in some

settings that the overestimation depends on mtry. This was not the case for the unstratified

procedures, which were almost unbiased. In the following, the performance of RF when the

mtry value is chosen based on the OOB error, the stratified OOB error, the CV error and the

stratified CV error are compared. The performance was measured by the error rate which was

computed based on an independent test data set. A different performance between RFs

selected based on the stratified and the unstratified error estimation procedures would suggest

that the bias affects tuning parameter selection, or in other words, that a suboptimal model

might be chosen when the OOB error (or unstratified CV) is used for parameter tuning.

In the considered simulation studies and in the real data studies, there were no systematic

differences between the error rates obtained when choosing mtry using the four methods (not

shown). However, for the additional simulation studies with many variables with effect, there

are differences in the settings with p = 1000 and n = 20. Fig 6c shows that a small mtry of 10

yields the RF with the best performance since the test error is smallest when using this mtry
value. The OOB error, however, steadily decreases with larger values for mtry, suggesting that

large values of mtry, such as 1000, should be used instead. Fig 12 shows the performance of the

resulting RFs for 500 repetitions of the studies. For the setting with p = 1000 and n = 20

(Fig 12c) the mean difference in performance between the OOB error and the stratified OOB

error is 1.5%, and the mean difference between the unstratified CV error and the stratified CV

error is 1.9%. The bias in the OOB error thus impacts tuning parameter selection and leads to

Fig 12. The effect of the bias of OOB error on RF’s performance when used for mtry selection. Performance of RF classifiers when mtry was selected

based on the OOB error, the stratified OOB error, the unstratified CV error and the stratified CV error for the additional simulation studies with many

variables with effect. The performance of RF was measured using a large independent test data set.

https://doi.org/10.1371/journal.pone.0201904.g012
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the selection of suboptimal classifiers in this case. However, the impact of the bias is very small

and probably of no relevance in practice. For the two settings with smaller predictor numbers

(p = 10, p = 100), there is again no difference between the four methods (Fig 12a and 12b).

A different concern arising in the context of using the OOB error for choosing the mtry
value is whether using the OOB error both for choosing the mtry value and for error estima-

tion leads to any (additional) bias of the OOB error as an estimate of the generalization error.

Because the data is used twice in this scenario, first, for optimizing the mtry value and, second,

for error estimation, this additional bias might be expected to lead to overoptimism, that is,

too small error estimates. The following two procedures are associated with using the data

twice, for choosing an optimal mtry value and for error estimation: (1) Use as error estimate of

the RF the smallest OOB error obtained in the optimization, that is, the OOB error obtained

for the chosen mtry value; (2) First, choose the mtry value using the OOB error, second, con-

struct a RF using the mtry value chosen in the first step, third, calculate the OOB error of the

latter RF and, lastly, use this OOB error as error estimate of the RF. In general, procedure (1)

can be expected to be associated with a larger optimistic bias than procedure (2) because the

smallest OOB error estimate obtained in the optimization can be expected to be overly small.

For prediction methods different than RF, error estimation and tuning parameter optimiza-

tion is usually performed using CV instead of OOB error estimation. In the latter context,

the biases of procedures (1) and (2) have already been investigated in the literature, where it

was confirmed that the bias of procedure (2) is much less severe than that of procedure (1)

[36–38].

In order to investigate whether the biases of procedures (1) and (2) also apply to OOB error

based optimization of the mtry value, a small simulation study was conducted in which only

the binary power case setting with many variables with effect, p = 1000 and n = 20, was consid-

ered, again using 500 repetitions. This setting was chosen because the variability of the OOB

error is largest for settings with small n and large p. In this analysis, procedures (1) and (2)

were compared with respect to the test error, both when using stratified and unstratified sub-

sampling. The results are shown in Fig S8 (S1 File). For both, stratified and unstratified sub-

sampling, the errors estimated with procedure (1) are smaller than those estimated with

procedure (2), confirming that the overoptimism from procedure (1) is larger than that of

procedure (2). For unstratified subsampling, procedure (1) yielded error estimates that were

slightly larger than the test error. Thus, in the considered setting the negative bias resulting

from choosing the smallest OOB error estimate in procedure (1) was obviously strong

enough to nearly neutralize the strong inherent positive bias of the unstratified subsampling

described before. For stratified subsampling, for which we had observed no (relevant) bias

when using fixed mtry values, there is a large downward bias of the error estimates from proce-

dure (1), while the error estimates from procedure (2) are only slightly smaller than the test

error.

Two main conclusions are drawn from these studies: (i) When choosing the mtry value

using the OOB error, stratified subsampling can yield downwardly biased error rate estimates

if the stratified OOB error that is smallest across all mtry values is used as an estimate of the

generalization error; (ii) This bias can be greatly reduced by constructing a new RF using the

mtry value that was chosen based on the stratified OOB error, and reporting the stratified

OOB error of the new RF as an estimate of the generalization error. The latter point can be jus-

tified by the very small downward bias from procedure (2) that is observed for stratified sub-

sampling in the analysis, even so the simulation setting with the highest variability of the OOB

error estimates was used. Nevertheless, the gold standard procedure is using stratified CV for

error estimation, choosing an optimal mtry value using the stratified OOB error in each itera-

tion of the stratified CV.
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Discussion

Although it was shown that the OOB error may overestimate the true prediction error [2, 5],

the OOB error is still often used in practice as an estimate of the true prediction error in classi-

fication tasks (see e.g. [39–41]).

The overestimation is due to the fact that—particularly in the case of balanced data sets—

for a particular observation the in-bag samples used to predict the class of that observation

tend to feature more observations from the other class. Given the trees’ preferential prediction

of the class overrepresented in the training sample this leads to a tendency to predict the oppo-

site class, which in turn leads to the observed overestimation of the error. Due to random vari-

ations, different response class distributions in the in-bag and the OOB samples are more

likely when the original sample is small. This is the reason why in all the studies shown in this

paper, the overestimation in the OOB error was large in small samples. This was also seen in

the studies of Mitchell [5] who considered only a few, very specific settings with small sample

sizes limiting the conclusions that could be drawn from those studies. The current studies not

only confirm the result of Mitchell [5] that the OOB error is biased in balanced settings with

small sample sizes, but they also show that there is hardly any overestimation in large samples,

which is why the OOB error can be regarded as a good estimate of the true prediction error in

large samples. Nevertheless, it is difficult to foresee in which settings the OOB error will be a

good estimate of the true prediction error because there are many factors that affect the bias in

the OOB error and there is an interplay between the factors. These factors are related to both

the data and the parameters of RF.

Concerning parameters in RF, mtry was identified as parameter that has an influence on

the bias of the OOB error. Additional studies were performed (not shown) that suggest that

the parameters controlling the size of trees, in contrast, have no influence on the bias of the

OOB error. Depending on the response class distribution in the original sample, larger

values for mtry might increase (unbalanced settings) or decrease (balanced settings) the bias.

The influence of mtry on the bias in the OOB error might be problematic in the context

of parameter tuning if the OOB error is used for selecting an appropriate value for mtry.

However, although there was a clear influence of mtry on the bias in some of the studies, in

only one of them this has lead to the selection of suboptimal RF classifiers. This can be

explained by the fact that in nearly all studies, it seemed as if the specific choice of mtry
was not crucial. There was a wide range of mtry values that yielded optimal performance,

especially for the high-dimensional genomic data sets with values for mtry larger than 100

yielding very similar performance. However, one cannot be sure that this applies to all future

data sets. Among our studies there was one study with a clear performance peak at a specific

mtry value. In this setting the tuning parameter selection based on the stratified OOB error

yielded slightly more accurate RF models than that based on the classical, that is the unstrati-

fied, OOB error.

With respect to data-dependent factors, the present studies identified the response class dis-

tribution of the original sample, the predictor number, the correlation between predictors as

well as their predictive ability as relevant factors that have an effect on the bias. The studies

reported in the literature consider only settings in which there is an equal number of observa-

tions from all response classes [5]. The results in this paper show that the effect of mtry on the

bias depends on the response class distribution of the original sample. For completely balanced

samples, we observed a more extreme overestimation of the true error rate for smaller values

of mtry. For unbalanced samples the opposite was true. This again underlines that it is difficult

to assess whether there will be any bias in future real data applications and how severe this bias

is because it depends on several different factors acting together.
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In the context of obtaining powerful RF prediction models in the presence of unbalanced

data, it might be worthwhile to consider sampling the same number of observations from each

response class—in particular, if there is a strong interest in obtaining valid predictions for

observations coming from the smaller class as well. This approach was also investigated in this

paper for settings with extreme class imbalance and class-specific and overall error rates were

assessed. The results suggest that sampling the same numbers of observations from each class

could be a promising alternative to using sampling fractions that are proportional to class

sizes, since it yielded unbiased OOB error estimates in the considered settings as well.

Of note, the problem that leads to the overestimation in the error rate is not specific to

OOB estimation in RF, but is relevant to any data splitting procedure, such as cross-validation.

These procedures can be expected to deliver upwardly biased error estimates for any classifica-

tion method that is sensitive towards class imbalance, which is why many of the results apply

to other methods beyond RF as well. In the present studies 10-fold cross-validation also yielded

too pessimistic error rates. Therefore, cross-validation and related procedures are not alterna-

tives for preventing the overestimation. Instead stratified procedures, such as stratified cross-

validation, have been recommended to bypass this problem [42]. The use of stratified cross-

validation for error estimation in the context of RF has not been systematically investigated so

far. In the present studies, stratified cross-validation resulted in good approximations of the

true prediction error of RF in the considered settings.

It should also be noted that error estimates based on data splitting procedures, such as

(stratified) cross-validation estimates or OOB estimates, are, in general, associated with a high

variance [43]. There are, however, no general alternative approaches for estimating the gener-

alization error of a prediction model using a single training data set. A more precise error esti-

mate that is in many cases also more realistic can be obtained using a large external validation

data set. Note that before applying a prediction model in practice, external validation should

always be performed [44, 45].

In benchmarking studies, cross-validation is often applied to compare the performance of

different statistical methods. If it is applied in a non-stratified manner, it might happen that

the performance for RF might appear worse than it actually is. If RF (or a different method

that is sensitive towards class imbalance) is considered as a competing method in a benchmark

study, it is recommended to use stratified cross-validation to avoid misinterpretations on the

performance of RF or other methods that are similarly affected. Note that this problem is rele-

vant especially to settings in which the original data contains (almost) exactly the same number

of observations from the response classes, that is, it is not a problem that is encountered espe-

cially in unbalanced data settings.

In the original RF version of Breiman [1], the trees are constructed based on bootstrap sam-

ples. In the studies of Mitchell [5], the use of bootstrap sampling was shown to further increase

the bias. Irrespective of this, bootstrap sampling has been shown to induce a preferential selec-

tion of certain types of predictors for a split [29]. Therefore, the use of bootstrapping in RF is

disapproved to avoid misleading conclusions, and the R package party, for example, draws

subsamples by default for this reason. Accordingly, the results in this paper are shown for RF

that are always constructed based on subsampling—either unstratified or stratified, the latter

leading to the correction addressed above.

The studies shown in this paper are mainly based on the original RF version of Breiman [1].

Some of the simulation settings were also performed with the RF version based on conditional

inference trees [32] implemented in the R package party to assess whether there are any differ-

ences (results not shown). The results obtained for this RF version were very similar suggesting

that the conclusions drawn from the studies are not specific to the RF version used. Moreover,

the problem is not specific to the use of the error rate as performance measure. Any different
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measure is affected in the same manner. The area under the curve (AUC), for example, repre-

sents the probability that for an observation from the diseased class the predicted probability

of being diseased is higher than for an observation from the class of healthy subjects [46]. It is

often used as an alternative to the error rate for assessing the prediction accuracy in unbal-

anced binary classification settings. However, the AUC computed from OOB observations

similarly underestimates the true AUC, and one cannot circumvent the problem of the biased

OOB error by using a performance measure different than the error rate.

Both the stratified OOB error and the error rate computed from stratified cross-validation

also overestimated the true prediction error in some of our studies with metric predictor vari-

ables. The overestimation was larger if many variables were associated with the response and

only marginal if only few variables were associated. Overall, the overestimation through the

stratified procedures was considerably smaller than that obtained through the unstratified pro-

cedures, supporting the use of stratified procedures. Future studies might aim at developing

alternative error estimation strategies that are both unbiased and computationally tractable.

Finally note that the example data sets considered in our studies are all from the medical

field. RF is, however, used in a large variety of application areas and the results and recommen-

dations given in the paper are not limited to applications in the medical field.

Conclusions

Prior to our work, little had been known about the bias of the OOB error, and the OOB error

is still frequently used for error estimation in classification settings. Using simulation-based

and real-data based studies with metric predictor variables, it was shown that the overestima-

tion is not restricted to binary classification settings and that it is largest in settings with

• an equal number of observations from all response classes (i.e., balanced samples),

• small sample sizes,

• a large number of predictor variables,

• small correlations between predictors and

• weak effects.

These factors act together making it difficult to foresee in which settings the OOB error will

greatly overestimate the true prediction error.

The overestimation encountered in settings with metric predictor variables can depend on

the parameter mtry. This might be a problem when the OOB error is used for selecting an

appropriate value for mtry, a procedure frequently performed in practice. Overall, however,

the prediction performance of RF was not substantially affected when using the OOB error for

selecting an appropriate value for mtry in the studies shown in this paper. However, one can-

not be sure that this applies to all future data.

In line with results reported in the literature [5], the use of stratified subsampling with sam-

pling fractions that are proportional to response class sizes of the training data yielded almost

unbiased error rates in most settings with metric predictors. It therefore presents an easy way

of reducing the bias in the OOB error. It does not increase the cost of constructing the RF,

since unstratified sampling (bootstrap of subsampling) is simply replaced by stratified

subsampling.

For any settings that include only metric predictor variables it is thus strongly recom-

mended to use stratified subsampling with sampling fractions that are proportional to class

sizes in place of unstratified sampling that is, by default, used in RF. This reduces the risk for
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misinterpretations regarding the predictive accuracy of RF, and might avoid choosing a value

for mtry that possibly leads to suboptimal performance when using the OOB error for parame-

ter tuning.
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