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Abstract Swi2/Snf2 ATPases remodel protein:DNA complexes in all of the fundamental

chromosome-associated processes. The single-subunit remodeler Mot1 dissociates TATA box-

binding protein (TBP):DNA complexes and provides a simple model for obtaining structural insights

into the action of Swi2/Snf2 ATPases. Previously we reported how the N-terminal domain of Mot1

binds TBP, NC2 and DNA, but the location of the C-terminal ATPase domain remained unclear

(Butryn et al., 2015). Here, we report the crystal structure of the near full-length Mot1 from

Chaetomium thermophilum. Our data show that Mot1 adopts a ring like structure with a

catalytically inactive resting state of the ATPase. Biochemical analysis suggests that TBP binding

switches Mot1 into an ATP hydrolysis-competent conformation. Combined with our previous

results, these data significantly improve the structural model for the complete Mot1:TBP:DNA

complex and suggest a general mechanism for Mot1 action.

DOI: https://doi.org/10.7554/eLife.37774.001

Introduction
Swi2/Snf2 ATPases are members of the NTP-dependent helicase/translocase superfamily 2 (SF2) and

are well known as the principal ATP hydrolyzing ‘engines’ of chromatin remodelers that govern pro-

cesses such as transcription, replication, and DNA repair (Flaus et al., 2006; Narlikar et al., 2013;

Hopfner et al., 2012; Becker and Workman, 2013). It is generally assumed, that the Swi2/Snf2

ATPase motor translocates on the minor groove of double-stranded DNA and that this universal

core activity generates the force for the large diversity of remodeling reactions catalyzed by Swi2/

Snf2 proteins (Saha et al., 2002; Whitehouse et al., 2003; Zofall et al., 2006; Dürr et al., 2005).

However, very little is known about how groove tracking activity is converted into the diverse

chemo-mechanical remodeling reactions (Hauk and Bowman, 2011; Narlikar et al., 2013;

Blossey and Schiessel, 2018). In the absence of substrates, remodelers have been observed in cata-

lytically inactive resting states (Hauk et al., 2010; Xia et al., 2016; Yan et al., 2016), but it is unclear

how universal auto-inhibited resting states are. Recent work provides some insight into how Swi2/

Snf2 chromatin remodelers interact with and reconfigure nucleosomal substrates (Liu et al., 2017;

Farnung et al., 2017; Ayala et al., 2018; Eustermann et al., 2018; Sundaramoorthy et al., 2018).

However, the architecture and chemo-mechanical mechanisms of the diverse types of remodeling

reactions are not well understood for the great majority of enzymes in this class.

The single subunit remodeler Mot1 (Modifier of transcription 1) is a Swi2/Snf2 enzyme that either

activates or represses transcription in a context-dependent manner by dissociating TATA box-bind-

ing protein (TBP) and Negative Cofactor 2 (NC2) from promoter DNA (Dasgupta et al., 2002;

Zentner and Henikoff, 2013). Mot1 is an essential Swi2/Snf2 enzyme in yeast and the Mot1-TBP-
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NC2 regulatory axis is highly conserved in eukaryotes. The 140 – 210 kDa Mot1 protein has two

functional domains. The N-terminal domain (Mot1NTD) recognizes TBP while the C-terminal domain

(Mot1CTD) contains the catalytic Swi2/Snf2 ATPase that binds the DNA upstream from the TATA box

(Moyle-Heyrman et al., 2012). The structure of the Mot1NTD has been determined by X-ray crystal-

lography in complex with TBP (Wollmann et al., 2011) and in complex with TBP:NC2:DNA

(Butryn et al., 2015). Low-resolution negative stain electron microscopy and chemical crosslinking

coupled to mass spectrometry indicated the approximate location of the Mot1CTD near the opening

of the Mot1NTD horseshoe (Butryn et al., 2015). However, the orientation of the Swi2/Snf2 domain

and consequently the path of DNA remained elusive. As a result, the mechanism of Mot1-mediated

dissociation of TBP complexes is still not well understood.

Here, we report the crystal structure of the near full-length Mot1 protein from Chaetomium ther-

mophilium. Our structure reveals the location and orientation of the Swi2/Snf2 domain and, sup-

ported by mutagenesis studies, suggests a new type of resting state. Our data allow us also to

derive a model for the Mot1 remodeler in complex with TBP and DNA.

Results and discussion

Architecture of CtMot1
We crystallized the near full-length Mot1 protein from Chaetomium thermophilum. The construct

covers the entire Mot1NTD and Mot1CTD domains but lacks 50 amino acids from the C-terminus

(Figure 1A). We determined the structure of this construct (residues 1–1836, Mot1DC) harboring a

point mutation in the Walker B motif (E1434Q) by Se-SAD to 3.2 Å (Table 1).

The CtMot1 enzyme is a ring-shaped protein (Figure 1B). The CtMot1NTD consists of 16 HEAT

repeats (HR) with insertions at four sites and is similar to the much smaller Encephalitozoon cuniculi

orthologue (EcMot1NTD) with some notable differences. The helices forming the HEAT repeats are

not extended in number but in length and the insertion elements into the HEAT repeats are longer.

Thus, genome compaction in E. cuniculi did not alter the overall architecture of Mot1, which appears

to be highly conserved in evolution, consistent with its critical function.

The structure reported here is the first to visualize the position and orientation of the Swi2/Snf2

ATPase domain in Mot1. The ATPase domain contains two characteristic lobes connected by a short

hinge helix. Each lobe consists of a RecA-like subdomain (1A or 2A) that harbors the SF2-specific

sequence motifs responsible for ATP and DNA binding as well as Swi2/Snf2-specific helical subdo-

mains 1B, 2B, and ‘brace’ that emanate from 1A, 2A and the C-terminus of 2A, respectively. Lobe 1

of the CtMot1CTD contacts the C-terminus of CtMot1NTD via HR16, a small insertion within HR12,

and a ~ 45 amino acids linker. This highly hydrophobic surface has a total area of 2500 Å2. The tip of

subdomain 1B interacts with HR1, thus lobe 1 effectively closes the ring structure of CtMot1. The

architectural constraints imposed by a ring explain the conservation of the number of HEAT ele-

ments among Mot1 proteins. Lobe 2 binds the cleft between lobe 1 and HR1/2. The ~1900 Å2 inter-

face between lobe 2 and the remainder of CtMot1 is dominated by hydrogen bonds and salt

bridges.

In some remodelers, the brace is directly followed by a ‘bridge’ element (Hauk et al., 2010), also

referred to as NegC (Clapier and Cairns, 2012) or SnAC (Sen et al., 2011; Xia et al., 2016). While

EcMot1 does not possess this element, in CtMot1 it is 64 amino acids long (residues 1822 – 1886).

The bridge can act as a positive or negative auto-regulatory element via mechanisms that are not

understood (Wang et al., 2014; Xia et al., 2016; Yan et al., 2016; Clapier and Cairns, 2012;

Carroll et al., 2014; Sen et al., 2011). The bridge was almost entirely omitted from our crystalliza-

tion construct and the only included residues (1822 –1836) together with the C-terminal expression

tag are not visible in the electron density maps.

In summary, the structure reveals the architecture of the CtMot1 protein. It forms a ring-like struc-

ture in which the substrate-interacting HEAT repeat ‘arch’ binds both lobes of the ATPase domain

from opposing sites.
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Apo CtMot1 adopts an auto-inhibited resting state
In all species tested (H. sapiens, S. cerevisiae, C. thermophilum, E. cuniculi), Mot1’s ATPase is

robustly activated by TBP:DNA complexes, but very little if at all by DNA alone (Auble et al., 1997;

Adamkewicz et al., 2000; Wollmann et al., 2011; Chicca et al., 1998). Interestingly, some Mot1

species are activated by TBP alone and do not require DNA, although a more robust activation is

generally observed in the presence of both DNA and TBP. This suggests that the conformation of

the Mot1CTD is structurally coupled to TBP binding to the Mot1NTD and that Mot1 alone is in an inac-

tive state (Adamkewicz et al., 2000; Moyle-Heyrman et al., 2012). Indeed, comparison of

CtMot1CTD to other SF2 enzymes shows that lobe 2 is flipped ~180˚ from an ‘active’ conformation in

which the ATPase and DNA-binding motifs would be properly aligned, that is lobe 1’s motifs I-III are

properly situated in the ATP-binding cleft, while lobe 2’s motifs IV-VI are situated on the outside and

are fully solvent-exposed (Figure 1C). As more Swi2/Snf2 domain structures have become available,

it has become evident that many show an auto-inhibited conformation with misaligned lobes 1 and 2

linker
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latch insertions linker RecA1A RecA2A
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Figure 1. Structure of the Chaetomium thermophilum Mot1. (A) Domain organization of CtMot1. The HEAT repeats are in yellow. The latch is in pink,

other insertions of CtMot1NTD and the linker are in brown. RecA-like subdomains of CtMot1CTD are in orange (1A) and green (2A). Swi2/Snf2-specific

insertions 1B and 2B are in dark blue. Brace and bridge elements are in light blue and red, respectively. The boundary of the crystallization construct

(residue 1836) is marked with the dotted line. (B) Cartoon representation of the structure. N- and C-termini are labelled N and C, respectively. HEAT

repeats 1, 2, and 16 are labelled HR1, HR2, and HR16, respectively. Missing residues of the latch are represented by the dotted line. (C) Surface

representation of CtMot1CTD lobe 1 (orange) and 2 (green). Regions where helicase motifs are located on each lobe are colored in red. (D) Side-by-side

comparison of CtMot1CTD (top panel) and SsoRad54 (Dürr et al., 2005) (bottom panel). CtMot1NTD is represented as yellow surface. If not stated

otherwise, all panels have color coding as in A.

DOI: https://doi.org/10.7554/eLife.37774.002

The following figure supplement is available for figure 1:

Figure supplement 1. Auto-inhibited conformations of Swi2/Snf2 domains.

DOI: https://doi.org/10.7554/eLife.37774.003
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(Figure 1—figure supplement 1) (Dürr et al., 2005; Hauk et al., 2010; Xia et al., 2016; Yan et al.,

2016). For example, the DNA binding site of the Saccharomyces cerevisiae Chd1 Swi2/Snf2 domain

is directly occluded by the chromodomain, providing a means of specific activation of the enzyme by

interaction with a nucleosomal substrate (Hauk et al., 2010; Farnung et al., 2017) (Figure 1—figure

supplement 1A). Intriguingly, the ‘resting’ conformation of CtMot1CTD is very similar to the crystallo-

graphic conformation of the Sulpholobus solfataricus Rad54 Swi2/Snf2 domain (Dürr et al., 2005)

(Figure 1D and Figure 1—figure supplement 1B). The functional relevance of the SsoRad54 Swi2/

Snf2 domain conformation remained unclear because the crystallized and functionally analyzed frag-

ment of SsoRad54 comprised only the isolated Swi2/Snf2 domain.

Table 1. Data collection and refinement statistics for the CtMot1 structure.

Data collection

Space group P21

Unit cell

a, b, c (Å) 93.2, 96.9, 129.7

a, b, g (˚) 90.0, 97.6, 90.0

Resolution (Å) 48.7 (3.3–3.2)*

Total reflections 239071 (10913)

Unique reflections 36422 (1888)

Rmeas [%] 14.4 (88.7)

I/sI 11.8 (2.6)

CC1/2 0.99 (0.79)

Completeness (%) 97.1 (68.8)

Redundancy 6.6 (5.8)

Refinement

Resolution (Å) 48.7 (3.3–3.2)

No. reflections 36410 (2930)

Rwork 0.19 (0.42)

Rfree 0.24 (0.42)

No. atoms 12390

Protein 12390

Ligand/ion 0

Water 0

B factors (Å2)

Protein 75

Ligand/ion

Water

R.M.S deviations

Bond lengths (Å) 0.002

Bond angles (˚) 0.463

Ramachandran plot

Favored [%] 97

Allowed [%] 3

Outliers [%] 0

* Values in parentheses are for highest-resolution shell.

DOI: https://doi.org/10.7554/eLife.37774.004
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Although the precise orientation of lobe 2 might be additionally determined by the bridge ele-

ment that is missing in the structure, our structural data suggest that the auto-inhibited resting state

of CtMot1 is stabilized by the interactions between subdomain 2A and HR1/2. To test this, we

mutated ion pairs (R4-D1720, R45-D1716) and a hydrophobic loop (L1658A/Y1659A) to destabilize

the resting state (Figure 2A and B). Basal ATPase activity of the point mutants was greatly increased

compared to wild-type CtMot1 (WT) and was not further stimulated by DNA and TBP (Figure 2C

and Figure 2—figure supplement 1A). CtMot1DC did not show increased basal ATPase rates and

was not activated by TBP alone. However, its ATPase activity in the presence of DNA-containing

complexes exceeded that of the WT enzyme. To find out whether this elevated ATPase activity of

the mutants translates into productive disruption of the substrate complexes, we performed remod-

eling assays. Notably, despite an increase in the ATP hydrolysis rate, the ability of CtMot1DC to dis-

sociate TBP:DNA complexes was impaired (Figure 2D). Assays performed under less efficient

dissociation conditions that allowed the TBP:DNA complexes to persist confirmed that all other

tested mutants (L1658A/Y1659A, R4D and D1720R) indeed behaved as the WT (Figure 2—figure

supplement 1B and C). This shows that the bridge element acts in response to TBP binding and,

similarly to SnAC in Snf2 (Xia et al., 2016), ensures productive coupling of ATP hydrolysis to the

remodeling reaction.

Taken together, our data show that Mot1 adopts a resting state with low catalytic activity by sta-

bilizing lobe 2 of the Swi2/Snf2 domain in an inactive conformation relative to lobe 1. Mobilization

of lobe 2 from its auto-inhibited state explains the activation of Mot1’s ATPase by TBP and TBP:

DNA complexes.
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Figure 2. Analysis of CtMot1 mutants. (A) View at the interface between RecA2A (green cartoon), HR1/2 (yellow surface), and lobe 1 (orange/blue

surface). Residues analyzed in this study are shown as sticks and labelled accordingly. (B) Cartoon model showing the positions of mutations in the

Mot1NTD (red spheres on yellow surface) and in lobe 2 (green spheres on green surface). Left: orientation as in the CtMot1 crystal structure. Right:

CtMot1 with ATPase modeled as in the S. cerevisiae Chd1:nucleosome complex, that is the ATP hydrolysis-competent conformation (Farnung et al.,

2017). (C) ATPase activity of the mutants. Error bars represent standard deviations from three technical replicates. CtMot1WT is labelled as WT,

CtMot1DC as DC. (D) Electrophoretic mobility shift assay showing ATP-dependent dissociation of Mot1:TBP:DNA and TBP:DNA complexes. All CtMot1

constructs form ternary complexes with labelled DNA and TBP (M:T:D). In the presence of ATP and unlabeled competitor DNA (DNA*), wild-type

CtMot1 (WT), L1658/Y1659, R4D, and D1720R mutants fully disrupt M:T:D and T:D complexes (lanes 5, 9, 11, and 13, respectively), whereas CtMot1DC

(DC) is less efficient (lane 7).

DOI: https://doi.org/10.7554/eLife.37774.005

The following source data and figure supplement are available for figure 2:

Source data 1. Raw data from the ATPase activity assay used for Figure 2C and Figure 2—figure supplement 1A.

DOI: https://doi.org/10.7554/eLife.37774.007

Source data 2. Raw data from quantification of electrophoretic mobility shift assay used for Figure 2—figure supplement 1B.

DOI: https://doi.org/10.7554/eLife.37774.008

Figure supplement 1. Analysis of CtMot1 mutants.

DOI: https://doi.org/10.7554/eLife.37774.006
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Model of the Mot1:TBP:NC2:DNA complex
The new structure of the near full-length CtMot1 protein together with prior structures enables us to

provide a model for the DNA path in the Mot1-bound protein:DNA complex (Figure 3). The

EcMot1NTD:TBP:NC2:DNA complex can be readily superimposed with CtMot1 through the con-

served structure of the HEAT repeats. Likewise, superimposing SsoRad54:DNA with CtMot1DC via

lobe 1 visualizes how the CtMot1 ATPase could initially contact duplex DNA since in all Snf2/Swi2

protein:substrate structures contacts between nucleic acid and the RecA1 subdomain are preserved.

In the resulting model, localization and orientation of the Swi2/Snf2 domain is in full agreement with

prior EM and CX-MS analyses (Butryn et al., 2015) and with biochemical studies showing that Mot1

covers two helical turns upstream from the TATA box (Darst et al., 2001; Sprouse et al., 2006;

Moyle-Heyrman et al., 2012). Notably, the superimposed DNA segment bound by the ATPase is

an almost direct continuation of the promoter DNA fragment from the EcMot1NTD:TBP:NC2:DNA

crystal structure. Assuming the generally proposed directionality of ATP dependent translocation of

Swi2/Snf2 motor domains on dsDNA (Zofall et al., 2006; Saha et al., 2002; Whitehouse et al.,

2003), the structure of CtMot1 and the specific orientation of lobe 1 now suggests that the Swi2/

Snf2 motor translocates ‘towards’ the TATA box and TBP along the nucleic acid scaffold.

Our model of the Mot1:TBP:NC2:DNA complex suggests where the Swi2/Snf2 domain of Mot1

might engage with upstream DNA and provides new insight into how ATP hydrolysis-associated

events are coupled to dissociation of protein:DNA substrates. Since processive ATP-dependent

translocase activity has not been observed in biochemical studies, Mot1 could exploit short-range

tracking toward TBP. Given the immediate vicinity of the Swi2/Snf2 domain to TBP, very few

Mot1NTD

NC2

upstream

DNA

downstream

DNA

5’

3’

3’

5’

TBP

translocation

Figure 3. Model of the Mot1:TBP:NC2:DNA complex. CtMot1DC was superimposed onto EcMot1NTD:TBP:NC2:

DNA via the HEAT repeats (yellow surface). The path of the upstream DNA was determined by superimposing

SsoRad54:DNA onto CtMot1DC via lobe 1. The TATA box strand from EcMot1NTD:TBP:NC2:DNA as well as the

corresponding strand from SsoRad54:DNA are marked in gray. The non-TATA box strands are in red. Substrate

proteins TBP and NC2 are represented as dark and light gray surfaces, respectively. The black arrow represents

the direction in which Swi2/Snf2 domain is proposed to translocate along the DNA scaffold. CtMot1CTD is color-

coded as in Figure 1.

DOI: https://doi.org/10.7554/eLife.37774.009
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translocation steps could lead to the displacement of TBP by steric collision (Darst et al., 2001;

Auble and Steggerda, 1999; Butryn et al., 2015). In addition, Mot1 could simply displace TBP

from DNA by overwinding or introducing other small distortions into upstream DNA (Moyle-

Heyrman et al., 2012; Butryn et al., 2015). Similar effects have been observed for other transcrip-

tion factors, for which not only binding but also dissociation rates depend on the structure of their

recognition sites affected by the presence of other factors bound nearby (Luo et al., 2014;

Kim et al., 2013). This allosteric effect can be accounted for by local changes to the major and

minor groove width (Kim et al., 2013). Such a scenario is plausible since changes two helical turns

upstream from the TBP binding site could have an immediate allosteric effect on severely bent and

widened TATA box (Tora and Timmers, 2010).

Interestingly, while Mot1’s ATPase orientation suggests that it ‘pulls’ DNA from TBP and over-

winds DNA at the substrate, the reverse architecture is seen for the multisubunit INO80 remodeler:

here the motor appears to pump DNA into the nucleosome and to underwind DNA at the substrate

(Eustermann et al., 2018). Thus, our results suggest that Swi2/Snf2 proteins can use DNA transloca-

tion in different ways to disrupts protein:DNA interfaces.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene
(Chaetomium thermophilum)

CtMot1 this paper UniProtKB:
G0S6C0
_CHATD

gene cloned
from a cDNA library

Cell line
(Escherichia coli)

Rosetta(DE3) Novagen Merck: 70954

Cell line
(Escherichia coli)

B843(DE3) Novagen Merck: 69041

Recombinant
DNA reagent

pETDuet-1 Novagen Merck: 71146 used to express
full-length CtMot1
(1–1886) and its
point mutants

Recombinant
DNA reagent

pET21b Novagen Merck: 69741 used to express
CtMot1 (1–1836)
and CtMot1
(1–1836, E1434Q)

Chemical
compound, drug

L(+)-Selenomethionine Acros Organics Acros Organics:
259960010

42 mg/mL final
concentration

Chemical
compound, drug

SelenoMethionine
Medium Base plus
Nutrient Mix

Molecular Dimensions Molecular Dimensions:
MD12-501

Chemical
compound, drug

Adenosine 50-
triphosphate disodium
salt hydrate (ATP)

Sigma-Aldrich Sigma: A2383-10G

Chemical
compound, drug

b-Nicotinamide adenine
dinucleotide reduced
disodium salt hydrate
(NADH)

Sigma-Aldrich Sigma: 10107735001

Chemical
compound, drug

Phospho(enol)pyruvic
acid monopotassium
salt (PEP)

PanReac
AppliChem

AppliChem: A2271

Chemical
compound, drug

Pyruvate kinase/lactic
dehydrogenase enzymes
from rabbit muscle

Sigma-Aldrich Sigma: P0294

Software,
algorithm

XDS Kabsch, 2010,
doi: 10.1107/S0907444909047374

Software,
algorithm

PHENIX Adams et al., 2010,
doi:10.1107/S0907444909052925

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

Coot Emsley et al., 2010,
doi: 10.1107/S0907444910007493

Software,
algorithm

UCSF Chimera Pettersen et al., 2004
, doi: 10.1002/jcc.20084

http://www.rbvi.ucsf.edu/chimera/

Software,
algorithm

ImageJ 1.51 k Schneider et al., 2012,
doi: 10.1038/nmeth.2089

quantification of
electrophoretic shift assay

Software,
algorithm

OriginPro 2015 OriginLab,
Northampton, MA

Sequence-
based reagent

48 bp dsDNA Biomers 50–CAGTACGGCCG
GGCGCCCGGCA
TGGCGGCCTATAAAA
GGGGGTGGAAT–3’

Sequence-
based reagent

48 bp 6-FAM
labelled dsDNA

Biomers 50–CAGTACGGCCGGGCGCCCG
GCATGGCGGCCTATAAAA
GGGGGTGGAAT–3’

Sequence-
based reagent

36 bp dsDNA Biomers 50–CGGCCGGGCGCCCGG
CATGGCGGCCTAT
AAAAGGGC–3’

Protein purification
The sequence of the full-length Mot1 (1 – 1886) was isolated from the Chaetomium thermophilum

cDNA library and cloned into pETDuet-1 vector (Novagen, Germany) harboring N-terminal His6 tag

followed by TEV cleavage site. CtMot1DC(1 – 1836) was cloned into pET21 vector containing PreSci-

ssion protease cleavage site and C-terminal His6 tag. Both constructs were expressed in Escherichia

coli Rosetta(DE3) cells (Novagen) and purified using Ni2+-NTA agarose (QIAGEN, Germany). After

proteolytic cleavage of the expression tags, the proteins were further purified using ion-exchange

chromatography (HiTrap Q HP, GE Healthcare, Germany) and size exclusion chromatography

(HiLoad 16/60 200 pg, GE Healthcare). Proteins were concentrated to ~15 mg/ml in 20 mM Tris pH

7.5, 50 mM NaCl and 15% glycerol and stored at �80˚C. Selenomethionine labelling of CtMot1DC

was performed in E. coli B843 (Novagen) using SelenoMethionine Medium Base and Nutrient Mix

(Molecular Dimensions, UK) supplemented with L(+)-Selenomethionine (Acros Organics, Germany) at

42 mg/L. Purification of selenium-derivatized protein was performed according to the same protocol

as for the native protein.

Crystallization and structure determination
Crystals of selenomethionine-derivatized CtMot1DC were grown at 20˚C by streak seeding in 0.1 M

Tris pH 8.9, 0.2 M ammonium acetate and 13% (w/v) PEG 3350. Plate-like crystals with average

dimensions of 700 � 150 � 30 mm appeared after three days and were cryocooled in liquid nitrogen

using mother liquor supplemented with butanediol at 25% final concentration.

The data were collected at the European Synchrotron Radiation Facility in Grenoble, France at

the peak of Se K-edge at 100K. Images were indexed, integrated, scaled, and merged in space

group P21 to 3.2 Å using XDS package (Kabsch, 2010). The initial model was built manually to the

experimental electron-density derived from SAD phasing using PHENIX AutoSol wizard

(Adams et al., 2010). Alternating cycles of manual building using Coot (Emsley et al., 2010) and

refinement with PHENIX yielded the final model (Rwork/Rfree of 19.0/23.8%) covering 87% of all

residues.

ATPase assay
The assays were performed using an NADH-coupled assay as described (Kiianitsa et al., 2003).

Reactions were performed using 2 mM phosphoenolpuryvate, 25 U/mL of pyruvate kinase/lactic

dehydrogenase mix, 1 mM ATP, and 1 mM NADH at final concentrations. Test samples contained

100 nM dsDNA (50–CAGTACGGCCGGGCGCCCGGCATGGCGGCCTATAAAAGGGGGTGGAAT–30

top strand), 100 nM TBP, 100 nM NC2 and 250 nM CtMot1.
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Electrophoretic mobility shift assays
Electrophoretic mobility shifts were essentially performed as described (Darst et al., 2001) with

some modifications. In the assay shown in Figure 2D, fluorescently labelled dsDNA (40 nM, 50–CAG

TACGGCCGGGCGCCCGGCATGGCGGCCTATAAAAGGGGGTGGAAT–30 top strand with 6-FAM

label on the 5’ end of the reverse strand) was incubated with TBP (10 nM) and Mot1 (25 nM) for 10

min. Unlabeled dsDNA competitor (800 nM, 50–CGGCCGGGCGCCCGGCATGGCGGCCTA

TAAAAGGGC–3’ top strand) was then added directly followed by ATP addition (50 mM) for 10 min.

Samples were loaded onto 6% polyacrylamide gels and run at 160 V and 4˚ for 60 min and imaged

using Typhoon FLA 9000 imager. The assays shown in Figure 2—figure supplement 1B and quanti-

fied in Figure 2—figure supplement 1C were prepared analogously, but TBP was added at a con-

centration of 15 nM and ATP was added for 6 min before loading the reactions on the gel.

Accession numbers
The coordinates and structure factors were deposited in the Protein Data Bank under accession

code 6G7E.
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