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ABSTRACT: Background: MSA is a fatal neurodegener-
ative disease characterized by autonomic failure and severe
motor impairment. Its main pathological hallmark is the
accumulation of α-synuclein in oligodendrocytes, leading to
glial and neuronal dysfunction and neurodegeneration.
These features are recapitulated in the PLP-hαSyn mouse
model expressing human α-synuclein in oligodendrocytes.
At present, there is no effective disease-modifying therapy.
Previous experiments have shown that the aggregation
inhibitor, anle138b, reduces neurodegeneration and behav-
ioral deficits in mouse models of other proteinopathies.
Objectives: To test the therapeutic potential of anle138b
in a mouse model of MSA.
Methods: Two-month-old PLP-hαSyn mice were fed over
a period of 4 months with pellets containing anle138b at
two different doses (0.6 and 2 g/kg) and compared to
healthy controls and PLP-hαSyn mice fed with placebo
pellets. At the end of the treatment, behavioral and histo-
logical analyses were performed.

Results: We observed a reversal of motor function to
healthy control levels when PLP-hαSyn mice were treated
with both doses of anle138b. Histological and molecular
analyses showed a significant reduction in α-synuclein
oligomers and glial cytoplasmic inclusions in animals fed
with anle138b compared to nontreated mice. These ani-
mals also present preservation of dopaminergic neurons
and reduction in microglial activation in SN correlating
with the α-synuclein reduction observed.
Conclusions: Anle138b reduces α-synuclein accumulation
in PLP-hαSyn mice, leading to neuroprotection, reduction
of microglial activation, and preservation of motor function
supporting the use of anle138b in a future clinical trial
for MSA. © 2018 The Authors. Movement Disorders pub-
lished by Wiley Periodicals, Inc. on behalf of International
Parkinson and Movement Disorder Society.
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Multiple system atrophy (MSA) is a rare and progres-
sive neurodegenerative disorder characterized by auto-
nomic failure and severe motor impairment leading to
death a few years after symptom onset.1 No treatment

to stop or reduce disease progression is available; only
mitigation of some clinical symptoms may be achieved.2

MSA, together with Parkinson’s disease (PD) and
dementia with Lewy bodies, constitutes the family of
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synucleinopathies, characterized by misfolding and
accumulation of α-synuclein (α-syn).3-5 In MSA, α-syn
accumulates in the cytoplasm of oligodendrocytes, form-
ing the so-called glial cytoplasmic inclusions (GCIs),
thus differing from PD where α-syn mainly accumulates
in neurons in Lewy bodies.3-5 α-syn accumulation in
MSA leads to glial and neuronal dysfunction, neuroin-
flammation and finally neurodegeneration.1 MSA is
divided in two different subtypes depending on the main
areas affected by neurodegeneration. The Parkinson’s
variant or MSA-P is characterized by striatonigral
degeneration (SND), whereas the cerebellar variant or
MSA-C reflects olivopontocerebellar atrophy (OPCA).1

The PLP-hαSyn transgenic mouse model recapitulates
most of the clinical and pathophysiological features of
MSA by overexpressing human α-syn under the oligo-
dendrocyte PLP (myelin proteolipid protein) promoter,
which leads to GCI formation, microglial activation,
and selective neurodegeneration.6-16

Microglial activation and neuroinflammation consti-
tute important pathological features of MSA.17-19 Simi-
larly to the human pathology, PLP-hαSyn mice develop
progressive microglial activation, initially triggered by
α-syn pathology in a region-specific manner.13,15 In a
recent publication from our group, significant micro-
glial activation was observed in the SN of MSA trans-
genic mice compared to healthy control animals at
5 months of age, and this activation was linked to
abnormal neuroinflammatory response.15 PLP-hαSyn
mice also develop progressive SND characterized by a
30% reduction in the number of dopaminergic neurons
(tyrosine hydroxylase positive [TH+] neurons) in the
SNc compared to healthy control animals. This neuro-
nal loss is already present at 4 months of age and is fol-
lowed by a significant reduction in density of
dopaminergic terminals and in number of medium
spiny neurons in the striatum at 12 months of age.15,20

SN and striatum are both essential for motor control,
and the loss of neurons in these two brain areas leads
to motor impairment in these mice.12,15

According to several studies, under physiological con-
ditions α-syn is mainly located in the pre-synaptic termi-
nals of the neurons predominantly as a monomer.21

Although its function is still unknown, a possible role
in neurotransmitter release, synaptic function, and plas-
ticity has been suggested.22,23 Misfolding, oligomeriza-
tion, and aggregation of α-syn are crucial events in the
pathophysiology of synucleinopathies.24 In MSA, the
origin of α-syn inclusions in oligodendrocytes is still
unknown and under discussion given that it is not clear
whether or not mature oligodendrocytes express
α-syn.25-27 In the last years, several publications have
shown the ability of α-syn to be transferred from cell to
cell and spread through brain parenchyma in a prion-
like manner.28-33 Based on this, possible neuron-
oligodendrocyte transfer of α-syn has been suggested in

addition to the controversial oligodendrocytic origin of
the misfolded α-syn.34 Several studies in the last few
years have shown that α-syn oligomers constitute the
main neurotoxic species for disease progression instead
of large fibrillar deposits or inclusions.35-39 According
to all these studies, the inhibition of α-syn oligomeriza-
tion constitutes a promising approach to fight the
spreading of synucleinopathies and an important effort
has been made in this direction.21,40,41 The use of small
molecules to target α-syn oligomerization and aggrega-
tion has shown promising results in preclinical models
of PD as is the case of anle138b, a small compound
with high bioavailability and low toxicity.42 This com-
pound can be delivered orally and penetrates the
blood–brain barrier, entering the brain with high effi-
cacy.42 Thus, administration of anle138b as a food
additive results in adequate and stable drug exposure.43

Anle138b has been shown effective in reducing disease
progression in models of PD, prion disease, tauopathy,
and Alzheimer’s disease (AD) by inhibiting protein
aggregation.42-45 Based on this, we hypothesized that it
could also be of use to attenuate disease progression in
MSA. In order to test this hypothesis, we fed PLP-hαSyn
transgenic MSA mice with food pellets containing two
different doses of anle138b followed by behavioral and
histological analyses at the end of the treatment.

Material and Methods
Animals and Treatments

PLP-hαSyn mice overexpressing wild-type (WT) human
α-syn under the PLP promoter, an oligodendroglial-
specific promoter, and generated in a C57/BL6 back-
ground16 were used in this study. Animals were kept
under temperature-controlled, pathogen-free conditions
on a light/dark 12-hour cycle. All the experiments were
performed according to the ethical guidelines with the
permission of the Austrian Federal Ministry of Science
and Research (permission BMFWF-66.011/0141-WF/
v/3b/2016). Two-month-old male transgenic mice were
randomized in three different groups: one fed with placebo
food pellets (n = 10; ssniff Spezialdiäten GmbH, Soest,
Germany), another fed with pellets containing anle138b at
0.6 g/kg of food (n = 8; ssniff Spezialdiäten GmbH), and a
last group fed with pellets containing 2 g of anle138b per
kg of food (n = 10; ssniff Spezialdiäten GmbH). The dose
of 2 g of anle138b per kg of food was used in previous
experiments in mice43 and establishes during the wake
phase a concentration of 60 μM in the brain. Two-month-
old C57/BL6 healthy nontransgenic animals (WT) fed with
placebo pellets were used as a healthy control (n = 10).
Food pellets were provided to the animals throughout the
whole experiment. After 4months of treatment, behavioral
analyses were performed followed by sacrifice of the ani-
mals and brain extraction.
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Behavioral Tests
Challenging Beam Test

At the end of the treatment, animal cages were ran-
domly numbered by the animal caretaker and behav-
ioral analyses were performed by the researcher blinded
to genotype and treatment. Motor performance and
coordination were analyzed with a modified version of
the traditional beam test adapted from a previously
published method.46,47 Five performances were video
recorded per animal, and the number of slips per step
with the hind limbs was measured. The best three per-
formances were used for statistical analyses.

Tissue Processing and Histology
After behavioral analyses were performed, animals

were perfused intracardially with phosphate buffered
saline (PBS [pH 7.4]; Sigma-Aldrich, St. Louis, MO)
under deep thiopental anesthesia and brains were
extracted. For molecular analyses, brains were snap fro-
zen in liquid nitrogen and stored at –80 �C. For histo-
logical analyses, brains were postfixed overnight in 4%
paraformaldehyde (pH 7.4; Sigma-Aldrich) at 4 �C.
After fixation, brains were washed in PBS and then
transferred to 30% sucrose (in PBS) until they sank.
Finally, brains were frozen using 2-methylbutan
(Sigma-Aldrich) and stored at –80 �C for further ana-
lyses. In order to perform histological analyses, brains
were serially cut in 40-μm-thick coronal sections using
a freezing microtome (Leica Microsystems, Wetzlar,
Germany) and stored free-floating in a cryoprotectant
buffer at –20 �C. One series was directly mounted on
slides and stained with cresyl violet.

Immunohistological Analyses
Free-floating sections were stained following standard

protocols. To analyze the number of GCIs, representa-
tive sections, including striatum and SN, were stained
with the following antibodies: rat antihuman α-syn
15G7 (1:200; Enzo Life Sciences, Farmingdale, NY)
and mouse antioligomeric human α-syn 5G4 (1:1,000;
LINARIS GmbH, Mannheim, Germany). To analyze
the number of dopaminergic neurons (TH+ neurons) in
the SNc, serial sections were stained with rabbit anti-
TH antibody (1:1,000; Millipore, Burlington, MA). For
microglial activation analysis, representative sections of
SN were stained with rat anti-CD68 antibody (1:200;
R&D Systems, Minneapolis, MN). Sections were then
incubated with biotinylated secondary antibodies, fol-
lowed by Vectastain ABC reagent (Vector Laboratories,
Burlingame, CA) and 3,30-diaminobenzidine (Sigma-
Aldrich), to visualize the immunohistochemical binding
sites. Stained sections were mounted on slides, dehy-
drated, and coverslipped with Entellan (Merck & Co.,
Merck Kenilworth, NJ). For immunofluorescence,

suitable immunoglobulin Gs, conjugated with Alexa
488 or Alexa 594 (Life Technologies, Carlsbad, CA),
were applied, followed by nuclear staining with
40,6-diamidino-2-phenylindole (1:1,000; Sigma-Aldrich)
and finally coverslipped with mounting medium
Fluromount-G (SouthernBiotech, Birmingham, AL).

Image Analyses
After immunostaining, and preceding the acquisition

of images/stereological counting, all immunofluores-
cence/immunohistochemistry slides were randomly
numbered by the laboratory technician. All measure-
ments were therefore performed by the researcher
blinded to genotype and treatment. Neuroanatomy was
assessed using a Mouse Brain Atlas. Stereological anal-
ysis was performed using the Nikon E-800 microscope
equipped with a Nikon digital camera DXM1200
(Nikon, Tokyo, Japan) and Stereoinvestigator software
(Microbrightfield Europe E.k., Magdeburg, Germany)
as described previously.48 GCI density was assessed by
meander scan throughout the area of interest and
expressed in number of GCI/mm2. The number of TH+

and cresyl violet positive (CV+) neurons in the SNc was
measured by applying the optical fractionator work-
flow. For microglial activation assessment, images were
acquired with a fluorescence microscope (Leica
DMI4000; Leica Microsystems), and the CD68-positive
area was estimated using ImageJ software (National
Institutes of Health, Bethesda, MD). Results are pre-
sented as percentage of CD68 area per SN area.

Continuous Sucrose-Gradient Assay
For continuous gradient centrifugation, a 10% (w/v)

brain homogenate of the midbrain was prepared using
a buffer composed of 50 mM of Tris (pH 7.4),
175 mM of NaCl, 1 mM of MgCl2, 0.1 mM of phenyl-
methylsulfonyl fluoride, 1 mM of N-ethylmaleimide,
0.1% Nonidet P-40 Substitute, ethylenediaminetetraa-
cetic acid–free cOmplete Mini protease inhibitor
(Roche, Indianapolis, IN), and PhosSTOP phosphatase
inhibitor (Roche). Aliquots of the homogenate were fro-
zen in liquid N2 and stored at –80 �C. Total protein
concentration was determined by bicinchoninic acid
assay. For the sucrose gradient analysis, 300 μg of pro-
tein in a final volume of 200 μL were used. To this end,
the brain homogenate was thawed on ice and diluted in
a buffer containing 50 mM of Tris (pH 7.4), 175 mM
of NaCl, 0.1% N-lauroylsarcosine sodium salt (sarco-
syl), and 0.5% sodium deoxycholate. Samples were agi-
tated at 1,200 rpm (ThermoMixer C, Eppendorf ) at
4 �C for 30 minutes. Cellular debris was removed after-
ward by centrifugation for 1 minute at 16.000 g and
4 �C. Sucrose gradients were prepared in a 4-mL
11 × 60 mm polyallomer tube (Beckman Coulter, Brea,
CA). To this end, sucrose solutions containing 50 mM
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of Tris (pH 7.4), 0.1% sarcosyl, and 10%, 20%, 30%,
40%, 50%, or 60% of sucrose were pipetted into the
tube, starting with 200 μL of the 60% sucrose solution
and followed by 400 μL of the 50% to 10% sucrose
solutions. Two hundred microliters of the centrifuga-
tion supernatant was pipetted as the uppermost layer
onto the gradient. Samples were ultracentrifuged in a
SW 60 Ti rotor (Beckman Coulter) at 40,000 rpm and
4 �C for 1 hour. Twelve fractions of 200 μL each were
collected from the top to the bottom of each tube and
subjected to trichloroacetic acid (TCA) precipitation
(10% TCA) overnight at –20 �C. After thawing, sam-
ples were centrifuged at 25,000 g and 4 �C for
15 minutes. Precipitates were washed once with acetone
(–20 �C), centrifuged, and finally resuspended in
Laemmli sample buffer. Samples were boiled at 96 �C
for 5 minutes and subjected to sodium dodecyl sulfate
polyacrylamide gel electrophoresis and western blot-
ting. Antibodies against total α-syn (4B12; BioLegend,
San Diego, CA) and phosphorylated α-syn (pS129;
Abcam, Cambridge, MA) were used to stain the blots.
Images were acquired using the Fusion FX system for
western blot and gel imaging, and quantified with
FUSION CAPT software (V16.09b; Vilber Lourmat
Sté, Collégien, France).

Statistical Analyses
All statistical analyses were conducted using the soft-

ware Graph-Pad Prism (version 7; GraphPad Software
Inc., La Jolla, CA). Mean � standard error of the mean
(SEM) was used to present the results. One-way analy-
sis of variance (ANOVA) with a post-hoc Bonferroni
test was used to compare groups if not indicated other-
wise. A P value <0.05 was considered statistically
significant. Correlations were studied using linear
regression analysis.

Results
Anle138b Prevents Motor Deficits and

Neurodegeneration in the PLP-hαSyn Mice
To assess the effect of anle138b on motor function,

motor coordination and balance were analyzed using
the beam challenging test46,47 (Fig. 1). PLP-hαSyn mice
fed with placebo pellets showed a significant increase in
the number of slips per step when traversing the beam
compared to healthy control animals (Fig. 1). However,
PLP-hαSyn mice treated with both doses of anle138b
maintained normal motor function as compared to
healthy control mice (Fig. 1).
To evaluate whether the improvement in motor func-

tion was related to a neuroprotective effect of anle138b
on dopaminergic neurons in the SNc, the number of
TH+ cells was quantified in this region. Stereological
counting showed a clear preservation of dopaminergic

neurons in the SNc of PLP-hαSyn mice treated with
both doses of anle138b compared to healthy controls
(Fig. 2A,B). PLP-hαSyn mice fed with placebo pellets,
however, showed a significant loss of TH+ neurons
compared to all groups (Fig. 2A,B). The neuroprotec-
tive effect of anle138b in SNc was validated by cresyl
violet staining followed by stereological counting of
neurons in this brain area (Supporting Information
Fig. S1A). There was a significant correlation between
the neuroprotective effect of anle138b and improve-
ment in motor function (Fig. 2C and Supporting
Information Fig. S1B).

Anle138b Reduces α-syn Accumulation in
PLP-hαSyn Mice

Next, the effect of anle138b on α-syn aggregation
and intracellular accumulation was assessed. Brain sec-
tions of PLP-hαSyn mice were immunostained by using
antibodies against α-syn, and the number of GCIs per
area in striatum and SN was analyzed. Both doses of
anle138b showed a significant effect on GCI number in
SNc and striatum, where a 30% reduction was observed
(Fig. 3A–C and Supporting Information Fig. S2A,B).
This effect was confirmed with the different antibodies
used in the study (Fig. 3A–C and Supporting Information

FIG. 1. Anle138b treatment prevents motor impairment in PLP-hαSyn
mice. Schematic representation of the beam challenge test used for
behavioral analysis. The number of slips when the animals traverse the
beam were counted and normalized per the number of steps. n = 8 to
10 per experimental group. Error bars indicate SEM. ANOVA, slips per
step/genotype: **P < 0.01; Slips per step/treatment: #P < 0.05;
###P < 0.001 (Bonferroni’s test). WT, wild-type healthy control animals;
TG, PLP-hαSyn mice feed with placebo food pellets; TG + 0.6, PLP-
hαSyn mice feed with pellets containing anle138b at 0.6 g/kg of food;
TG + 2, PLP-hαSyn mice feed with pellets containing anle138b at 2 g/
kg of food. [Color figure can be viewed at wileyonlinelibrary.com]
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Fig. S2A,B). There was a significant correlation between
GCI reduction and preservation of neurons in SNc
(Fig. 3D and Supporting Information Fig. S1C,D and
S2C) as well as motor function (Fig. 3E and Supporting
Information Fig. S2D).
In addition to the effect on the amount of GCIs,

sucrose-gradient analysis showed a significant reduction
of α-syn oligomers in midbrains of PLP-hαSyn mice
treated with anle138b (Fig. 3F,G). This reduction was
observed not only in total α-syn oligomers, but also in
pathological phosphorylated α-syn oligomers (Fig. 3F,
G), thus confirming the modulatory effect of the small
molecule on α-syn oligomerization.

Anle138b Reduces Microglial Activation in
PLP-hαSyn Mice

To assess the effect of anle138b treatment on micro-
glial activation, we performed immunofluorescence
microscopy for CD68, a lysosomal marker indicative of
phagocytic activity of microglia49 associated with α-syn
accumulation.15,50-52 In agreement with previous
results,15 significant microglial activation was observed
at this stage in the SN of the PLP-hαSyn placebo group
compared to healthy control animals (Fig. 4A,B). In
contrast, both doses of anle138b significantly reduced
microglial activation in the SN back to its normal levels
as observed in healthy control mice (Fig. 4A,B). There
was a significant correlation between the reduction of
microglial activation in SN, GCI reduction (Fig. 4C and

Supporting Information Fig. S2E), preservation of neu-
rons (Fig. 4D and Supporting Information Fig. S1E), as
well as motor function (Fig. 4E).

Discussion

Aggregation and accumulation of misfolded proteins
constitute a key factor in the progression of several neu-
rodegenerative diseases. Thus, the use of compounds or
therapies capable of reducing or blocking abnormal
protein aggregation represents a promising strategy to
attenuate the clinical progression in these disorders.
Synucleinopathies are pathologically characterized by
the abnormal aggregation and accumulation of α-syn,
and, in recent years, different approaches have been
developed to target this process.3-5,21,40,41 The use of
small molecules and immunotherapy constitute two of
the main strategies with therapeutic potential according
to preclinical in vivo and in vitro models.53,54 Small
molecules present important advantages such as their
high oral bioavailability and blood–brain barrier pene-
tration and their ability to act inside cells.53

Here we show that anle138b, which targets specifi-
cally oligomers, reduces α-syn accumulation in a mouse
model of early-stage MSA, thus corroborating the olig-
omer modulation effect on α-syn previously observed in
PD models and the general effect observed also in
Abeta, tau, and prion aggregation mouse models.42-45

An important advantage of this small molecule, from a

FIG. 2. Anle138b prevents dopaminergic neuronal loss in the SNc of PLP-hαSyn mice. (A) Representative images of SN sections stained against
TH. Scale bar, 400 μm. (B) Stereological counting of the total number of dopaminergic (TH+) neurons in the entire SNc in the different groups. n = 4 to
5 per experimental group. Error bars indicate SEM. ANOVA, TH+ neurons/genotype: ****P < 0.0001; TH+ neurons/treatment: ###P < 0.001 (Bonferroni’s
test). (C), Correlation analysis of number of TH+ neurons in the SNc and number of slips per step. P = 0.0021; R2 = 0.4349. [Color figure can be viewed
at wileyonlinelibrary.com]
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therapeutic point of view, is that it does not bind to
α-syn monomers, therefore preserving its physiological
functions.42 At the molecular level, anle138b blocks
the formation of toxic α-syn oligomers,42 which, in

pathological conditions, can induce neuronal damage
through the formation of pores in the cell membrane
and mitochondria21,39,55,56 and trigger the activation of
microglial cells.52,57-59 Because formation of α-syn

FIG. 3. Anle138b reduces α-syn accumulation in PLP-hαSyn mice (A) Representative images of striatal sections stained with the antibody 15G7 against
human α-syn. Red arrows indicate individual GCI. Scale bar, 25 μm. (B,C) GCI density in SNc and STR (striatum) of PLP-hαSyn mice determined by ste-
reological counting of brain sections stained with 15G7 and expressed in GCI/mm2. n = 8 to 10 per experimental group. Error bars indicate SEM.
ANOVA, GCI density/treatment: ##P < 0.01; ###P < 0.001 (Bonferroni’s test). (D) Correlation analysis between the density of GCIs in the SNc and the
number of TH+ neurons in the same region. P = 0.0041; R2 = 0.5415. (E) Correlation analysis of density of GCIs in the SNc and number of slips per step.
P = 0.0001; R2 = 0.4546. (F) Representative blots of midbrain samples obtained after sucrose-gradient centrifugation. Total α-syn (upper panel) and
phosphorylated α-syn (lower panel) levels were analyzed in the different fractions. (G) Quantification of total α-syn (upper panel) and phosphorylated
α-syn (lower panel) levels in the oligomeric fractions. n = 4 per experiental group. Error bars indicate SEM. Groups were compared by unpaired two-
tailed t test. *P < 0.05. [Color figure can be viewed at wileyonlinelibrary.com]
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oligomers is blocked, also less α-syn fibrils are gener-
ated. In accord with this, our data show that oral
administration of anle138b reduces α-syn oligomers in
midbrains of PLP-hαSyn mice and leads to a 30%
reduction in the number of GCI in the striatum and SN
of MSA mice, two brain areas associated with motor
function. We also demonstrate that the reduction of
α-syn accumulation prevents loss of dopaminergic
nigral neurons and motor impairment, thus confirming
the therapeutic effect of anle138b observed also in PD
models.42,44 Finally, our data show that the decrease of
α-syn aggregation in the SN is associated with a reduc-
tion of microglial activation back to the levels observed
in healthy control animals in this brain region, which
also correlates with the neuroprotective effect of
anle138b on dopaminergic cells and preservation of
motor function.
The results presented here demonstrate that anle138b

treatment is beneficial in early-stage MSA as modeled by
young PLP-hαSyn mice.15 However, efficacy of anle138b
was less prominent in a model of pathologically

advanced MSA.60 In that study, the potential of anle138b
was evaluated in 1-year-old PLP-hαSyn mice treated with
the mitochondrial toxin, 3-nitropropionic acid (3-NP), to
trigger full-blown MSA-like pathology, with spreading of
GCI, SND, and OPCA and strong microglial activa-
tion.12 Behavioral analyses showed significant motor
improvement after short-term treatment with anle138b;
however, no significant changes in α-syn aggregate load
or cell death were observed in these animals.60 The vari-
able efficacy of anle138b in the two studies may be attrib-
uted to short (1 month) versus long-term (4 months)
treatment, but also reflect the fact that PLP-hαSyn ani-
mals had sustained different degrees of neurodegenera-
tion in the absence or presence of 3-NP exposure.
Moreover, the limited efficacy of anle138b in our first
experiment may have been attributed to the addition of
toxin-induced acute oxidative stress that cannot be coun-
teracted by the administration of anle138b, given that it
has no antioxidant properties. In contrast, to clarify the
antiaggregation and neuroprotective potential of
anle138b, a different, preventive approach was used in

FIG. 4. Anle138b reduces microglial activation in PLP-hαSyn mice. (A) Representative immunofluorescence images of SN sections stained against
CD68. Scale bar, 150 μm. (B) CD68-positive (CD68+) area in the different groups, determined by ImageJ analysis (National Institutes of Health,
Bethesda, MD) and expressed as the % of the total area of the SN. n = 6 to 9 per experimental group. Error bars indicate SEM. ANOVA, CD68+ area/
genotype: ****P < 0.0001; CD68+ area/treatment: ##P < 0.01; ####P < 0.0001 (Bonferroni’s test). (C) Correlation analysis of CD68+ area in the SN and
density of GCIs (15G7) in the same brain region. P = 0.0017; R2 = 0.4288. (D) Correlation analysis between the CD68+ area in the SN and the number
of TH+ neurons in the SNc. P = 0.0027; R2 = 0.4862. (E) Correlation analysis of CD68+ area in the SN and number of slips per step. P = 0.0033;
R2 = 0.2689. [Color figure can be viewed at wileyonlinelibrary.com]
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the present study, where chronic administration of the
compound started before nigral degeneration of dopami-
nergic neurons occurred and in the absence of other non-
αSyn-dependent deleterious stimuli.
In summary, our study shows that oral administra-

tion of anle138b with initiation in the early disease
stages constitutes a promising approach to prevent dis-
ease progression in MSA (Fig. 5). Our observations and
previous studies have demonstrated the potential of
anle138b in different neurodegenerative disorders, and
the data presented here support further development of
anle138b for future clinical applications in patients suf-
fering from MSA or related synucleinopathies.
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