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Abstract. The essential dimension is a numerical invariant of an algebraic group G

which may be thought of as a measure of complexity of G-torsors over fields. A recent the-
orem of N. Karpenko and A. Merkurjev gives a simple formula for the essential dimension
of a finite p-group. We obtain similar formulas for the essential p-dimension of a broad
class of groups, which includes all algebraic tori.

1. Introduction

Throughout this paper p will denote a prime integer, k an arbitrary base field and G

an a‰ne algebraic group (i.e., an a‰ne group scheme of finite type) over k. We do not as-
sume that G is smooth. Unless otherwise specified, all fields are assumed to contain k and
all morphisms between them are assumed to be k-homomorphisms. Morphisms between
algebraic k-groups are assumed to be defined over k.

Let K be a field and H 1ðK;GÞ be the nonabelian cohomology set with respect to the
finitely presented faithfully flat (fppf) topology. Equivalently H 1ðK ;GÞ is the set of isomor-
phism classes of G-torsors over SpecðKÞ. If G is smooth, then one may identify H 1ð�;GÞ
with the first Galois cohomology functor. We say that a A H 1ðK;GÞ descends to an inter-
mediate field k HK0 HK if it lies in the image of the natural map H 1ðK0;GÞ ! H 1ðK ;GÞ.
The minimal transcendence degree trdegkðK0Þ, where a descends to K0, is called the essen-

tial dimension of a and is denoted by the symbol edðaÞ. The essential dimension of the group

G is the supremum of edðaÞ, as K ranges over all field extensions of k and a ranges over
H 1ðK ;GÞ. This numerical invariant of G has been extensively studied in recent years; see,
e.g., [BuR], [R1], [R2], [BF], [Me1].

For many groups G the essential dimension edðGÞ is hard to compute, even over the
field k ¼ C of complex numbers. Given a prime p, it is often easier to compute the essential
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p-dimension, edðG; pÞ, which is defined as follows. The essential p-dimension edða; pÞ of

a A H 1ðK ;GÞ is the minimal value of edðaLÞ, as L ranges over all finite field extensions of
K of degree prime to p. The essential p-dimension edðG; pÞ of G is then the supremum
of edða; pÞ taken over all fields K containing k and all a A H 1ðK ;GÞ. For details on this
notion, see [RY] or [Me1]. Clearly 0e edðG; pÞe edðGÞ. It is also easy to check that if
l=k is a finite extension of degree prime to p, then

edðG; pÞ ¼ edðGl ; pÞ;ð1Þ

see [Me1], Proposition 1.5. Here, as usual, Gl :¼ G �Spec k SpecðlÞ for any field extension
l=k.

A representation c : G ! GLðVÞ is called generically free if there exists a non-empty
G-invariant open subset U HV such that the scheme-theoretic stabilizer of every point of
UðkalgÞ is trivial. Such a representation gives rise to an upper bound on the essential dimen-
sion,

edðG; pÞe edðGÞe dimðVÞ � dimðGÞ;ð2Þ

see [Me1], Theorem 4.1, [R1], Theorem 3.4, [BF], Lemma 4.11.

N. Karpenko and A. Merkurjev [KM] recently showed that the inequalities (2) are in
fact sharp for finite constant p-groups, assuming that the base field k contains a primitive
pth root of unity (note that this implies char k 3 p). The purpose of this paper is to estab-
lish a similar result for a large class of groups which includes all algebraic tori.

Let ksep be a fixed separable closure of k. Recall that an algebraic group G over a field
k is called diagonalizable if it is isomorphic to a closed subgroup of Gn

m for some nf 0; G is
said to be of multiplicative type if Gksep

is diagonalizable, see, e.g., [V2], Section 3.4. Smooth
connected groups of multiplicative type are precisely the algebraic tori. We will say that a
k-group of multiplicative type is split over a field extension l=k if it is diagonalizable over l.

Recall that the order of an a‰ne algebraic group F is defined as jF j ¼ dimk k½F �.
A‰ne algebraic groups of finite order are called finite. We will say that a representation
c : G ! GLðVÞ of an algebraic group G is p-faithful if its kernel is finite and of order
prime to p.

Theorem 1.1. Let G be a group of multiplicative type over an arbitrary field k. As-

sume that G has a Galois splitting field of p-power degree. Then

edðG; pÞ ¼ min dimðcÞ � dim G;

where the minimum is taken over all p-faithful representations c of G. Moreover, if G is an

extension of a p-group by a torus, then edðGÞ ¼ edðG; pÞ.

The quantity min dimðcÞ which appears in the statement of Theorem 1.1 can be con-
veniently described in terms of character modules; see Corollary 5.1. We give several appli-
cations of these results in Sections 5 and 6. Further applications of Theorem 1.1 can be
found in [Me2], [BM] and [M].
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Note that Theorem 1.1 allows us to compute edðG; pÞ for any group G of multiplica-
tive type over k. Indeed, we can always choose a finite field extension k 0=k of degree prime
to p such that Gk 0 has a Galois splitting field of p-power degree. In view of (1),

edðG; pÞ ¼ edðGk 0 ; pÞ;

and the latter number is given by Theorem 1.1.

2. Preliminaries on groups of multiplicative type

Throughout this section, A will denote an algebraic group of multiplicative type over
a field k, XðAÞ :¼ Homksep

ðAksep
;Gm;ksep

Þ the character group of Aksep
, and G :¼ Galðksep=kÞ

the absolute Galois group of k. Here X ðAÞ is a continuous ZG-module. Moreover,
X ð�Þ defines an anti-equivalence between algebraic k-groups of multiplicative type and
continuous ZG-modules; see, e.g., [W], §7.3. Let Diag denote the inverse of X , so that
Diag

�
X ðAÞ

�
FA.

Given a field extension l=k, A is split over l if and only if the absolute Galois group
Galðlsep=lÞ acts trivially on X ðAÞ. If a torsion-free ZG-module P has a basis which is per-
muted by G, then it is called a permutation module, and DiagðPÞ is a quasi-split torus.

We will write A½p� for the p-torsion subgroup fa A A j ap ¼ 1g of A. Clearly A½p� is
defined over k. If A is a finite algebraic group of multiplicative type, then jAj ¼ jX ðAÞj (by
Cartier duality).

It is well known how to construct a maximal split subtorus of an algebraic torus, see
for example [W], §7.4. The following is a variant of this construction for algebraic groups of
multiplicative type. Set

SplitkðAÞ :¼ Diag
�
X ðAÞG

�
;

where X ðAÞG is the module of co-invariants, defined as the largest quotient of X ðAÞ with
trivial G-action. Clearly SplitkðAÞ is split over k.

Lemma 2.1. If A½p�3 f1g and A is split over a Galois extension l=k of p-power de-

gree, then SplitkðAÞ3 f1g.

Proof. If B is a k-subgroup of A, then SplitkðBÞH SplitkðAÞ, so it su‰ces to show
that SplitkðA½p�Þ3 f1g. Hence, we may assume that A ¼ A½p� or equivalently, that X ðAÞ is
a finite-dimensional Fp-vector space on which the p-group Galðl=kÞ acts. Any such action is
upper-triangular, relative to some Fp-basis e1; . . . ; en of X ðAÞ; see, e.g., [S], Proposition 26,
p. 64. That is,

gðeiÞ ¼ ei þ ðFp-linear combination of eiþ1; . . . ; enÞ

for every i ¼ 1; . . . ; n and every g A Galðl=kÞ. The quotient of X ðAÞ by the linear span of
e2; . . . ; en has trivial G-action. Hence the module of co-invariants X ðAÞG is non-trivial. We
conclude that SplitkðAÞ ¼ Diag

�
XðAÞG

�
is non-trivial as well. r
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Let G be an algebraic group whose centre ZðGÞ is of multiplicative type. Then we
define CðGÞ :¼ Splitk

�
ZðGÞ½p�

�
. Note that this definition depends on the prime p, which

we assume to be fixed throughout.

Lemma 2.2. Let N be a subgroup of A defined over k. Assume that A has a Galois

splitting field l=k of p-power degree. Then N XCðAÞ ¼ f1g if and only if N is finite and its

order is prime to p.

Proof. If the order of N LA is finite and prime to p then clearly N XCðAÞ ¼ f1g,
because CðAÞ is a p-group. Conversely, suppose the order of N is either infinite or is finite
but divisible by p. Then N½p�3 f1g, and N½p� is split by l. By Lemma 2.1,

f1g3 SplitkðN½p�ÞL SplitkðA½p�Þ ¼ CðAÞ;

as desired. r

Now suppose l=k is a Galois splitting field of A and c : A ! GLðVÞ is a
k-representation. Then we can decompose Vl ¼

L
w AL

VðwÞ, where LLXðAÞ is the set of

weights and VðwÞHVl is the weight space associated to w A L, i.e., the subspace of Vl ,
where A acts via w. The Galois group G ¼ Galðl=kÞ permutes L and the weight spaces
VðwÞ.

Lemma 2.3. Let dw ¼ diml VðwÞ. Then there exists an l-basis

D ¼ fe
w
j j w A L; j ¼ 1; . . . ; dwg

of Vl such that e
w
j A VðwÞ and ge

w
j ¼ e

gw
j for every g A G.

Proof. We may assume that G acts transitively on L. Then d ¼ diml VðwÞ is inde-
pendent of w A L.

Choose a weight w0 A L. The stabilizer G0 of w0 in G acts semi-linearly on the l-vector
space Vðw0Þ. By the no-name lemma [Sh], Appendix 3, there exists a basis e1; . . . ; ed of
Vðw0Þ such that each ei is preserved by G0. Now for w A L and j ¼ 1; . . . ; d, set e

w
j :¼ gðejÞ,

where g A G takes w0 to w. It is now easy to see that the e
w
j are well defined and form an

l-basis of Vl with the desired property. r

Corollary 2.4. Suppose A is split by a Galois extension l=k and c is an irreducible

representation of A. Then dimc divides ½l : k�.

Proof. By our construction G ¼ Galðl=kÞ permutes the l-basis D of Vl . Since V is
k-irreducible, this permutation action is transitive. Hence, jDj ¼ dimc divides jGj ¼ ½l : k�.

r

Let D be as in Lemma 2.3 and consider the k-torus T :¼ DiagðZ½D�Þ, which is split
over l and quasi-split over k. By our construction T is equipped with a representation

r : T ,! GLðVÞ:
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In the basis D of Vl , this representation is given by rðtÞ � e
w
j ¼ wðtÞew

j . Note that by Galois
descent, r is defined over k. One easily checks that r is generically free (this can be done
over l).

We also remark that the original representation c : A ! GLðVÞ can be written
as a composition c ¼ r � ĉc, where ĉc : A ! T is induced by the map Z½D� ! XðAÞ of
G-modules, sending e

w
j to w.

Lemma 2.5. Every faithful representation c : A ! GLðVÞ of A is generically free.

Proof. As we saw above, c ¼ r � ĉc, where r : T ! GLðVÞ is generically free. If c is
faithful, then ĉc : A ! T is injective, and hence, c is generically free. r

Lemma 2.6. Let N be a closed subgroup of A, l=k be a Galois splitting field of A and

G ¼ Galðl=kÞ. Then

min dimc ¼ min rankðPÞ;

where the minimum on the left-hand side is taken over all k-representations c of A with

kernel N, and the minimum on the right is taken over all homomorphisms f : P ! X ðAÞ of

ZG-modules, with P permutation and cokernelð f Þ ¼ X ðNÞ.

Proof. Given c : A ! GLðVÞ with kernel N, write c : A !ĉc T ,!r GLðVÞ as above,
where T is a quasi-split k-torus of dimension dim T ¼ rank X ðTÞ ¼ dimc which splits
over l. Then ker ĉc ¼ N and the cokernel of the induced map XðĉcÞ : X ðTÞ ! X ðAÞ of
ZG-modules is X ðNÞ.

Conversely, if P is a permutation ZG-module, then we can embed the torus DiagðPÞ
in GLn, where n ¼ rank P ([V2], Section 6.1). A map f : P ! XðAÞ of ZG-modules with
cokernel X ðNÞ then yields a representation A ! DiagðPÞ ,! GLn with kernel N. r

3. A lower bound on essential p-dimension

Consider an exact sequence of algebraic groups over k

1 ! C ! G ! Q ! 1ð3Þ

such that C is central in G and isomorphic to mr
p for some rf 0. Given a character

w : C ! mp, we will, following [KM], denote by Rep w the set of irreducible representations

f : G ! GLðVÞ

such that fðcÞ ¼ wðcÞ Id for every c A C.

Theorem 3.1. Suppose a sequence of k-groups of the form (3) satisfies the following

condition:

gcdfdimðfÞ j f A Rep wg ¼ minfdimðfÞ j f A Rep wg
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for every character w : C ! mp. Then

edðG; pÞfmin dimðcÞ � dim G;

where the minimum is taken over all finite-dimensional representations c of G such that cjC is

faithful.

Proof. Denote by C � :¼ HomðC; mpÞ the character group of C. Let V be a ge-
nerically free Q-module, and U LV an open dense Q-invariant subvariety such that
U ! U=Q is a Q-torsor. Then let E ! Spec K be the generic fibre of this torsor, and
let b : C � ! BrpðKÞ denote the homomorphism that sends w A C � to the image of
E A H 1ðK ;QÞ in BrpðKÞ under the map

H 1ðK;QÞ ! H 2ðK ;CÞ !w� H 2ðK; mpÞ ¼ BrpðKÞ

given by composing the connecting map with w�. Then there exists a basis w1; . . . ; wr of C �

such that

edðG; pÞf
Pr

i¼1

ind bðwiÞ � dim G;ð4Þ

see [Me1], Theorem 4.8, Example 3.7. Moreover, by [KM], Theorem 4.4, Remark 4.5,

ind bðwiÞ ¼ gcd dimðcÞ;

where the greatest common divisor is taken over all (finite-dimensional) representations c

of G such that cjC is scalar multiplication by wi. By our assumption, gcd can be replaced by
min. Hence, for each i A f1; . . . ; rg we can choose a representation ci of G with

ind bðwiÞ ¼ dimðciÞ

such that ðciÞjC is scalar multiplication by wi.

Set c :¼ c1 l � � �lcr. The inequality (4) can be written as

edðG; pÞf dimðcÞ � dim G:ð5Þ

Since w1; . . . ; wr form a basis of C �, the restriction of c to C is faithful. This proves the
theorem. r

4. Proof of the main result

The following lemma generalizes [MR], Lemma 4.1.

Lemma 4.1. Let A be an algebraic group of multiplicative type over a field k, and let

BHA be a closed subgroup of ( finite) index prime to p. Then edðA; pÞ ¼ edðB; pÞ.
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Proof. The inequality edðB; pÞe edðA; pÞ follows from [Me1], Corollary 4.3, since
dim A ¼ dim B.

To prove the opposite inequality, set Q :¼ A=B and let K=k be a field extension.
In view of the exact sequence H 1ðK;BÞ ! H 1ðK ;AÞ ! H 1ðK;QÞ, it su‰ces to show that
every Q-torsor X ! SpecðKÞ splits over some finite field extension L=K whose degree is
prime to p.

Since Q is a finite group, it follows that K½X � is isomorphic to a direct product of
local rings ðA1;m1Þ; . . . ; ðAr;mrÞ each of which is finite-dimensional over K . Since

Pr

i¼1

dimK Ai ¼ dimK K ½X � ¼ jQj

is prime to p, after renumbering A1; . . . ;Ar we may assume that dimK A1 is prime to p.
Note that ðm1ÞN ¼ 0 for some N f 1. Let L :¼ A1=m1 be the residue field. For each i < N

the quotient ðm1Þ i=ðm1Þ iþ1 is an L-vector space and we have

dimK A1 ¼
PN�1

i¼0

dimKðm1Þ i=ðm1Þ iþ1:

We conclude that the degree ½L : K� divides dimK A1, hence is prime to p. Note that the
projection K ½X � ! A1 ! L yields an L-point of X . Thus X splits over L. r

Proposition 4.2. Let G be an algebraic group of multiplicative type over k, T its max-

imal k-torus, and l=k a minimal Galois splitting field of T. Let N HG be a finite k-subgroup

whose order is coprime to both ½l : k� and jG=T j. Let p : G ! G=N be the natural projection.

Then

p� : H 1ðK;GÞ ! H 1ðK;G=NÞ

is bijective, for any field extension K=k. In particular, edðGÞ ¼ edðG=NÞ.

Proof. We claim that H 1ðK;GÞ is m-torsion, where m ¼ ½l : k� � jG=T j. Indeed, since
TK is split by a Galois extension of degree dividing ½l : k�, restricting and corestricting in
Galois cohomology yields

½l : k� � H 1ðK ;TÞ ¼ f0g:

On the other hand, since jG=T j � H 1ðK;G=TÞ ¼ f0g, the exact sequence

H 1ðK ;TÞ ! H 1ðK;GÞ ! H 1ðK;G=TÞ

shows that H 1ðK;GÞ is m-torsion, as claimed. Note that N is contained in T and the quo-
tient of G=N by its maximal torus T=N is isomorphic to G=T . So the group H 1ðK;G=NÞ is
m-torsion as well.
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Now let n ¼ jNj and pn : G ! G be given by g ! gn. The induced map

H 1ðK ;GÞ ��!
ðpnÞ�

H 1ðK;GÞ

is multiplication by n. Since H 1ðK;GÞ is m-torsion and by assumption n and m are co-
prime, ðpnÞ� is an isomorphism. Moreover, N lies in the kernel of pn and so ðpnÞ� factors
through p�:

ðpnÞ� : H 1ðK ;GÞ !p� H 1ðK;G=NÞ ! H 1ðK;GÞ:

In particular, p� is injective. A similar argument shows that, composing these maps in the
opposite order, we obtain an isomorphism

H 1ðK;G=NÞ ! H 1ðK;GÞ !p� H 1ðK ;G=NÞ:

Therefore p� is surjective and hence, bijective, as desired. r

Proof of Theorem 1.1. We will first prove edðG; pÞfmin dimðcÞ � dim G, where
the minimum is over p-faithful representations. Since G is split by a Galois extension of
p-power degree, Corollary 2.4 tells us that for any character w of CðGÞ and any f A Rep w,
dimðfÞ is a power of p. By Theorem 3.1, edðG; pÞfmin dimðcÞ � dim G, where c ranges
over representations of G whose restriction to CðGÞ is faithful. By Lemma 2.2 representa-
tions with this property are precisely the p-faithful representations.

We will now show that edðG; pÞe dimc� dim G for any p-faithful representation c

of G. We will proceed in two steps.

Step 1. Suppose G is an extension of a p-group F by a torus T . Since N :¼ kerc
is finite of order prime to p, Proposition 4.2 yields edðGÞ ¼ edðG=NÞ. Now c can be con-
sidered as a faithful representation of G=N. By Lemma 2.5, this representation of G=N is
generically free. By (2),

edðG; pÞe edðGÞ ¼ edðG=NÞe dimc� dimðG=NÞ ¼ dimc� dimðGÞ;

as desired.

Taking c to be of minimal dimension, we also see that in this case we have

edðG; pÞ ¼ edðGÞ;

as asserted in the statement of the theorem.

Step 2. Let G be an arbitrary group of multiplicative type. Let T be the maximal
torus of G, and F 0 be the Sylow p-subgroup of the multiplicative finite group F :¼ G=T .
Recall that F 0 is defined as Diag

�
XðFÞ=Y

�
, where Y is the submodule of elements of order

prime to p.
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Now denote the preimage of F 0 under the projection G ! F ¼ G=T by G 0. Since G 0

is an extension of a p-group by a torus, we know from Step 1 that

edðG 0; pÞe dimcjG 0 � dim G 0 ¼ dimc� dim G:

The index of G 0 in G is finite and prime to p, hence edðG; pÞ ¼ edðG 0; pÞ by Lemma 4.1 and
the desired inequality, edðG; pÞe dimc� dim G follows. r

5. Main theorem in the language of character modules

Let G be a finite group and X a ZG-module. We will call a map of ZG-modules
P ! X a p-presentation of X if P is a permutation, and the cokernel is finite of order prime
to p.

We now restate our Theorem 1.1 in a way that is often more convenient to use.

Corollary 5.1. Let G be a group of multiplicative type over k, l=k be a finite Galois

splitting field of G, and Gp be a Sylow p-subgroup of Galðl=kÞ. Then

edðG; pÞ ¼ min rankðker fÞ;

where the minimum is taken over all p-presentations f : P ! XðGÞ of X ðGÞ, viewed as a

ZGp-module.

Proof. Let k 0 ¼ lGp . Then Galðl=k 0Þ ¼ Gp. Since ½k 0 : k� is finite and prime to p,
equation (1) tells us that edðG; pÞ ¼ edðGk 0 ; pÞ. By Theorem 1.1

edðGk 0 ; pÞ ¼ min dimðcÞ � dim G;

where the minimum is taken over all p-faithful representations c of Gk 0 . By Lemma 2.6

min dimðcÞ � dim G ¼ min rankðPÞ � dim G ¼ min rankðker fÞ;

where the minimum on the right is taken over all p-presentations f : P ! XðGÞ, as in the
statement of the theorem. r

Example 5.2. Let T be a torus of dimension < p � 1. Then edðT ; pÞ ¼ 0, because
there is no non-trivial integral representation of dimension < p � 1 of any p-group ([AP]).

Example 5.3. Let l=k be a Galois extension with Galois group the symmetric group
G ¼ Spr for some rf 1. Let T be a torus with character lattice

X ðTÞ ¼ fa A Zpr j a1 þ � � � þ apr ¼ 0g

where G naturally permutes a1; . . . ; apr . Let Gp be a Sylow p-subgroup of G. In [MR],
Section 6 and Proposition 7.2, it is shown that the minimal rank of a permutation module
with a p-presentation to XðTÞ, viewed as ZGp-module, is p2r�1. Thus by Corollary 5.1,

edðT ; pÞ ¼ p2r�1 � pr þ 1:
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For our next example, recall that an algebraic group G over k is called special if it
satisfies H 1ðl;GÞ ¼ 0 for all field extensions l=k.

Example 5.4. Let T be an algebraic torus and let G be the Galois group of a Galois
splitting field of T . It is a deep result of J.-L. Colliot-Thélène and J.-J. Sansuc (see [CTS],
Proposition 7.4, and [BR], Theorem 1.1) that T is special i¤ X ðTÞ is an invertible ZG-
module (i.e., a direct summand of a permutation ZG-module). The following local-global
argument, which considers each prime separately, gives a new, shortened proof of this
result.

Proof. Assume T is special. Then edðT ; pÞ ¼ 0 for all primes p. By Corollary 5.1
we know X ðTÞðpÞ is a permutation ZðpÞGp-lattice for each Sylow p-subgroup Gp of G.
Here ZðpÞ denotes the localization of the ring of integers at the prime ideal ðpÞ and
X ðTÞðpÞ :¼ XðTÞ �Z ZðpÞ. So by [CR], 31.7, XðTÞ is an invertible ZGp-module for each
Sylow p-subgroup Gp of G and all primes p. Thus by [CW], Lemma 1, XðTÞ is an invertible
ZG-module. The converse argument is easy. r

6. Forms of mn

Proposition 6.1. Let A be a twisted form of mpn over k and let l=k be a minimal Galois

splitting field. Then edðA; pÞ ¼ pr, where pr is the highest power of p dividing ½l : k�.

Proof. Let Gp be a Sylow p-subgroup of Galðl=kÞ and f : P ! XðAÞ be a
p-presentation of X ðAÞ, viewed as ZGp-module. Note that, on the one hand, XðAÞ is a cy-
clic p-group, and on the other hand, the index ½X ðAÞ : fðPÞ� is finite and prime to p. We
thus conclude that f is surjective.

If L is a basis of P, permuted by Gp, then some element l A L maps to a generator a

of XðAÞ. Moreover, Gp acts faithfully on XðAÞ and jLjf jGpljf jGpaj ¼ jGpj. Conversely
we have a surjective homomorphism Z½Gpa� ! XðAÞ that sends a to itself. So the minimal
value of rankðPÞ is jGpj. Now apply Corollary 5.1. r

Remark 6.2. For char k 3 p, Proposition 6.1 was previously known in the following
special cases:

For twisted cyclic groups of order 4 it is due to M. Rost [Ro] and in the case of cyclic
groups of order 8 to G. Bayarmagnai [B]. The case of constant cyclic groups of arbitrary
prime power order is due to M. Florence [F].

Example 6.3. Let char k ¼ p. D. Tossici and A. Vistoli [TV], Question 4.1 (2), asked
if the essential dimension of every algebraic k-group of order pn is e n. The following
example, with n ¼ 2 and p > 2, answers this question in the negative.

Let l=k be a cyclic extension of degree p; set G :¼ Galðl=kÞ. (For example, we can
take k and l to be finite fields of orders p and pp, respectively.) Now let M FZ=p2Z be
the G-module obtained by identifying G with the unique subgroup of

AutðZ=p2ZÞFZ=pðp � 1ÞZ
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of order p. By construction G ¼ DiagðMÞ is a form of mp2 defined over k, whose minimal
Galois splitting field is l. Proposition 6.1 now tells us that

edðGÞ ¼ edðG; pÞ ¼ ½l : k� ¼ p > 2. r

7. Twisted p-groups

In this section we will use Theorem 3.1 to extend the Karpenko–Merkurjev Theorem
to arbitrary (possibly twisted) finite p-groups as follows.

Theorem 7.1. Assume that char k 3 p and k contains a primitive pth root of unity.

Let G be a finite p-group defined over k, which becomes constant over some Galois extension

l=k such that ½l : k� is a power of p. Then

edðGÞ ¼ edðG; pÞ ¼ min dimc;

where c runs through all faithful k-representations of G.

Proof. The inequalities edðG; pÞe edðGÞemin dimc follow from (2), since by
[BF], Proposition 4.13, every faithful representation of G is generically free. Hence it suf-
fices to show that edðG; pÞfmin dimc.

Since char k 3 p the centre of G is of multiplicative type, the subgroup

CðGÞ ¼ Splitk

�
ZðGÞ½p�

�

is well-defined (as in Section 2) and is isomorphic to mr
p for some rf 1.

We claim that the dimension of every irreducible k-representation c of G is a power
of p. To prove this claim, denote by z a primitive root of unity of order equal to the expo-
nent of GðlÞ. Since k contains a primitive pth root of unity, l 0 :¼ lðzÞ is Galois over k and
of p-power degree. Thus we may replace l by l 0, i.e., assume that l contains z.

Now c decomposes over l as a direct sum of absolutely irreducible representations
of the abstract p-group GðlÞ. All direct summands in this decomposition have the same di-
mension, equal to a power of p. By [K], Theorem 5.22, the number of direct summands in
this decomposition is also a power of p, and the claim follows.

Now Theorem 3.1 can be applied. It tells us that edðG; pÞfmin dimc, where the
minimum is taken over all representations c of G whose restriction to CðGÞ is faithful.
Let N be the kernel of such a representation. We claim that N XCðGÞ ¼ f1g implies that
N is trivial. If G is constant, we have CðGÞ ¼ ZðGÞ½p� since k contains a primitive pth root
of unity, and the claim is a standard elementary fact about p-groups. The general case fol-
lows from Lemma 2.1 applied to A ¼ ZðGÞ½p�XN. r

Remark 7.2. Theorem 7.1 allows one to compute edðG; pÞ, at least in principle, for
any étale algebraic group G over k, provided charðkÞ3 p.
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To carry out this computation, we first pass to a suitable Galois extension L=k of de-
gree prime to p such that L contains a primitive pth root of unity and GL becomes constant
over a Galois extension E=L of p-power degree.

We claim that GL has a Sylow p-subgroup S defined over the field L. Indeed, the
p-group GalðE=LÞ permutes the Sylow subgroups of GðEÞ. By the Sylow Theorems, the
number of such subgroups is prime to p. Thus at least one of them is fixed by the p-group
GalðE=LÞ. This proves the claim.

Now we have edðG; pÞ ¼ edðGL; pÞ ¼ edðS; pÞ, and edðS; pÞ is given by Theorem 7.1.

Acknowledgement. The authors are grateful to A. Merkurjev and the referee for nu-
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