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Abstract

Latent trait models have a mathematical representation that provides a link be-
tween person and item parameters and the probability of a response in categories.
The usefulness of specific models is mainly determined by the motivation of mod-
els, the interpretation of parameters and the narratives around models. The focus
is on the partial credit model, for which differing and contradicting motivations,
interpretations and narratives have been given over time. It is shown that the
model can be derived by assuming that binary Rasch models hold for binary vari-
ables that are always present in multi-categorical response models. An alternative
derivation is based on binary Rasch models for latent variables that compare ad-
jacent categories. It is shown that the PCM can generally be characterized as a
model that conditionally compares two categories from the set of response cat-
egories. The representation as an adjacent categories model can be seen as just
a specific parameterization. It is demonstrated that the confusion of these alter-
native binary variables in the PCM can be misleading and generate inappropriate
interpretation of parameters.

Keywords: Ordered responses, latent trait models, item response theory, partial credit
model, polytomous Rasch model, Rasch model

1 Introduction

Ordered latent trait models have a long tradition in psychometrics. Comprehensive
overviews were given by Nering and Ostini (2011), Van der Linden (2016), see also
von Davier and Carstensen (2007). The dominating models for ordered responses are
Samejima’s graded response model (Samejima, 1997), the polytomous Rasch model
Andersen (1977), the partial credit model (Masters, 1982) and the rating scale model
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(Andrich, 1978). The models can be grouped into two classes of models. The graded
response model is a cumulative response model, which is distinctly different from the
other models, which are from the class of adjacent categories models. Moreover, the
polytomous Rasch model is equivalent to the partial credit model, the latter is just a
reparameterization. The rating scale model is a simplified version of the polytomous
Rasch model, which uses a restricted parameterizaion.

We focus on adjacent categories models and mostly use the partial credit parame-
terization. We also consider briefly the graded response model. This is necessary to
clarify the differences between model classes, which are sometimes blurred in the lit-
erature. We do not consider explicitly the sequential model (Tutz, 1990; Verhelst et al.,
1997), which builds a third class of ordered response models.

The starting point is the construction of ordered models from binary response mod-
els, which have been thoroughly investigated in the literature. They play a crucial role
in all of the models but are most important in the partial credit model since ignoring
them might yield an insufficient and misleading interpretation of parameters. One ob-
jective is to show how easy ordered latent trait models that are in common use can be
derived from assuming that binary Rasch models hold for specific dichotomizations of
the response categories. The main tool that is used is that any polytomous response
can be uniquely represented by a sequence of binary variables for which realizations
have the simple structure (1,. . . ,1,0,. . . ,0), that is, a sequence of ones is followed by a
sequence of zeros. The structure has been investigated before, among others by An-
drich (1978), Andrich (2013), but it has not been used that any latent trait model has
this structure.

In the partial credit model a second type of binary variables is present, they rep-
resent the choice between adjacent categories. It is shown that the focus on adjacent
categories is arbitrary. A general characterization is given that shows that the model
is a structured collection of binary conditional models, in which the binary variables
do not determine the response in adjacent categories but in a selected set of pairs of
categories. The use of adjacent categories just yields a specific parametrization. In
addition we consider the interpretation of parameters and possible processes behind
models. In particular processes behind the partial credit model seem not to have been
always distinguished clearly from processes behind the graded response model and the
sequential model.

2 Models for Ordered Responses obtained from Split Vari-

ables

Let Ypi ∈ {0, 1, . . . , k}, p = 1, . . . , P , i = 1, . . . , I , denote the ordinal response of
person p on item i. It is assumed that the categories {0, 1, . . . , k} are ordered and that
there is a response model P (Ypi = r), r = 0, . . . , k.

Various motivations for ordered models have been given. For example, Samejima’s
graded response model (Samejima, 1997) can be derived from an underlying continu-
ous trait. Rather than referring to motivations of this sort we start with binary variables
that are contained in the response Ypi and aim at constructing ordinal models from
them.
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TABLE 1: Binary variables that represent an ordinal response Ypi ∈ {0, 1, 2, 3}, Left:
dummy coding, right: split variables.

Dummy Coding Split Coding

Ypi (Y
(1)
pi , Y

(2)
pi , , Y

(3)
pi ) Ypi (Y

(1)
pi , Y

(2)
pi , , Y

(3)
pi )

0 (0,0,0) 0 (0,0,0)
1 (1,0,0) 1 (1,0,0)
2 (0,1,0) 2 (1,1,0)
3 (0,0,1) 3 (1,1,1)

2.1 Split Variables

Since Ypi ∈ {0, 1, . . . , k} one has a polytomous response, which is not unidimen-
sional but multidimensional. There are several ways to define (univariate) binary vari-
able that represent Ypi in multidimensional form. A common version uses variables
Y

(1)
pi , . . . , Y

(k)
pi , with Y (r)

pi defined by Y (r)
pi = 1 if Ypi = r, and Y (r)

pi = 0, otherwise.
Then one obtains

Ypi = r ⇔ (Y
(1)
pi . . . , Y

(k)
pi ) = (0, . . . , 0, 1, 0, . . . , 0).

Thus, if Ypi = r only the variable Y (r)
pi has value one, all others have the value zero,

see Table 1, left column. The downside of this set of variables is that it does does not
use the ordering of categories.

Therefore, we will consider an alternative set of variables. Let the whole set of
variables be defined by

(Y
(1)
pi = 1, . . . , Y

(r)
pi = 1, Y

(r+1)
pi = 0, . . . , Y

(k)
pi = 0) if Ypi = r. (1)

The definition implies that only outcomes of the form (1, . . . , 1, 0, . . . , 0) can occur,
see Table 1, right column. Vectors of this form, which are given by a sequence of ones
followed by a sequence of zeros, form a Guttman space, the corresponding variables
are called Guttman variables, see, for example, Andrich (2013).

It is easy to derive the marginal distributions of the variables, which are given by

Y
(r)
pi =

{
1 Ypi ∈ {r, . . . , k}
0 Ypi ∈ {0, . . . , r − 1}. (2)

Therefore, the variable Y (r)
pi represents the dichotomization of the response categories

into the subsets {0, . . . , r − 1} and {r, . . . , k}. Y (r)
pi = 1 indicates that the response

is in category r or in a higher one. Since the variables code the splitting of the set of
categories into two groups of adjacent categories, we will also refer to them as split
variables.

One could also have started with the definition of the split variables (2) and derive
that (1) holds. Our starting point was the definition of the binary variables given in (1)
since it makes clear that the representation of the ordinal responses Ypi as a vector of
Guttman variables entails that the variables are split variables.

In summary, split variables form a Guttman space, and if one represents the re-
sponse by a Guttman space the Guttman variables are split variables. For the link
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between the split variables and the response in k + 1 categories one has the equiva-
lence

Ypi = r ⇔ (Y
(1)
pi . . . , Y

(k)
pi ) = (1, . . . , 1, 0, . . . , 0),

where Y (r)
pi is the last of the sequence of binary variables with a value 1. It should be

emphasized that the Guttman space is a general concept. Although it has been used in
the literature to describe adjacent categories models it is not linked to a specific model.
It is just one way to represent ordered responses in multivariate form. In the following
we will always use the coding of polytomous variables through the split variables,
which form the Guttman space.

It is obvious that split variables are not independent. The covariance between two
split variables is given by cov(Y

(r)
pi , Y

(s)
pi ) = P (Ypi ≥ s) − P (Ypi ≥ r)P (Ypi ≥ s) =

P (Ypi ≥ s)(1 − P (Ypi ≥ r)) for r < s. It is seen that cov(Y
(r)
pi , Y

(s)
pi ) = 0 only if

P (Ypi ≥ r) = 1.
The split variables defined in (2) refer to the ordering of categories because they

use adjacent categories. In the following it is first shown how ordered latent trait model
may be derived by assuming binary Rasch models to hold for the split variables.

2.2 Assuming Rasch models for the Split Variables

The binary split variables (2) distinguish between low and high categories, more con-
crete, Y (r)

pi distinguishes between Ypi < r and Ypi ≥ r. The simplest and most widely
used latent trait model is the binary Rasch model. Therefore, one might assume that
the binary variables Y (r)

pi , which build the ordinal response, are determined by binary
Rasch models. One implicitly accounts for the ordering of categories since Y (r)

pi uses
the ordering. In concrete parameterization, one assumes

P (Y
(r)
pi = 1) = F (θp − δir), (3)

where F (η) = exp(η)/(1 + exp(η)) is the logistic distribution function, θp is a person
parameter and δir the item difficulty connected to the dichtomization Ypi < r and
Ypi ≥ r. The assumption that in all of the binary models the same person parameters
is present serves to obtain a simple one-dimensional model. In fact, it is easily derived
that assuming (3) yields for the ordinal response Samejima’s graded response model,

P (Ypi ≥ r) = F (θp − δir), r = 1, . . . , k,

see Samejima (1997, 2016). Consequently, the item difficulties have to fulfill δi1 ≤
· · · ≤ δik, since δir > δi,r+1 for any r would yield negative probabilities. This con-
ceptualization of the model differs from the usual motivation from a latent continuous
response that is observed only in categories. It also shows that Guttman variables play
a role in models that differ from the partial credit model.

2.3 Assuming Rasch Models Conditionally

An alternative way to obtain an ordered response model is to assume that Rasch models
hold for the split variables given other splits have specific values. Let us consider the
assumption

P (Y
(r)
pi = 1|Y (1)

pi = 1, . . . , Y
(r−1)
pi = 1, Y

(r+1)
pi = 0, . . . , Y

(k)
pi = 0) = F (θp− δir). (4)
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It means that the Rasch model holds for the split into categories Ypi < r and Ypi ≥ r
given all splits for lower categories (into Ypi < s and Ypi ≥ s, s < r) are in favor of the
higher category and all splits for higher categories (into Ypi < s and Ypi ≥ s, s > r)
are in favor of the lower category.

Although the assumption seems less natural than the assumption that split variables
themselves follow a Rasch model it is an assumption that yields a widely used model.
It is not hard to show that if (4) holds one obtains the polytomous Rasch model (PRM)
or partial credit model (PCM),

P (Ypi = r) =
exp(rθp −

∑r
l=1 δil)∑k

s=0 exp(
∑s

l=1(θp − δil))
, (5)

where
∑0

k=1(θp − δik) = 0. A more accessible form of the model is given by

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k. (6)

The representations (5) and (6) are known as the partial credit parameterizations
of the model. An equivalent model is obtained by using the reparameterization δil =
δi + τil, l = 1, . . . , k, where

∑k
l=1 τil = 0. The representation

P (Ypi = r) =
1

γpi
exp(

r∑

l=1

{θp−δi−τil}) =
1

γpi
exp(r(θp−δi)−

r∑

l=1

τil) r = 1, . . . , k,

with γpi =
∑k

s=0 exp(
∑s

l=1 θp−δi−τil) is usually referred to as the polytomous Rasch
model, see also Andrich (1978).

One may also use used the weaker assumption

P (Y
(r)
pi = 1|Y (r−1)

pi = 1, Y
(r+1)
pi = 0) = F (θp − δir), (7)

and assume merely that the variables (Y
(1)
pi , . . . , Y

(k)
pi ) form a Guttman space. The

weaker condition Y
(r−1)
pi = 1, Y

(r+1)
pi = 0 in (7) can be used since in a Guttman

space the condition is equivalent to the more general condition Y (1)
pi = 1, . . . , Y

(r−1)
pi =

1, Y
(r+1)
pi = 0, . . . , Y

(k)
pi = 1 used in (4). For the interpretation of parameters it does

not matter which condition is used, the stronger or the weaker one. However, one can
and should use that the variables are split variables because, as shown in Section 2.1,
the representation of ordinal responses in a Guttman space means that the Guttman
variables are split-variables (given in (2)). One consequence is that both conditions
Y

(r−1)
pi = 1, Y

(r+1)
pi = 0 and Y (1)

pi = 1, . . . , Y
(r−1)
pi = 1, Y

(r+1)
pi = 0, . . . , Y

(k)
pi = 0 mean

that all the dichotomized decisions with the exception of Y (r)
pi are already fixed. Thus,

the condition Y (r−1)
pi = 1, Y

(r+1)
pi = 0 is equivalent to Ypi ∈ {r− 1, r}. The same holds

for the stronger restriction. With all the dichotomized decisions with the exception of
Y

(r)
pi being fixed by the condition, the split variable Y (r)

pi distinguishes only between the
categories r − 1 and r. More formally one obtains

P (Y
(r)
pi = 1|Y (r−1)

pi = 1, Y
(r+1)
pi = 0) = P (Ypi = r|Ypi ∈ {r − 1, r}). (8)
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That means assuming a Rasch model model for the conditional variables Y (r)
pi |Y (r−1)

pi =

1, Y
(r+1)
pi = 0 is equivalent to assuming a Rasch model for Ypi|Ypi ∈ {r − 1, r}.
Derivations of the polytomous Rasch model from Guttman variables were also

given by Andrich (1978), Luo (2005), Andrich (2013). However, they use a different
representation, in particular, they do not use that Guttman variables are split variables
and try to infer the existence of Guttman spaces by investigating various spaces. They
do not use that Guttman spaces are just a recoding of ordered responses as shown in
Section 2.1. Nevertheless, since the Guttman variable in an orderd response model are
unique they must have implicitly considered the same variables.

An important difference of the present derivation and the derivation given by An-
drich (1978, 2013) is that in the latter it is argued that the thresholds δi1, . . . , δik should
be ordered to obtain a sensible model. In the derivation given here there is no necessity
that thresholds should be ordered.

3 Alternative Constructions of the Partial Credit Model

The model form (6), which directly compares the probabilities of obtaining categories
r − 1 and r, seems to suggest an alternative and simple way to construct the PCM
from the comparison of two categories and therefore a binary choice. In the follow-
ing it is shown that the PCM can indeed be constructed rather generally from binary
choices that refer to pairs of categories. It makes the PCM a general model for pairs of
categories.

3.1 The Partial Credit Model as a Model for Pairs of Categories

Let us again assume that one wants to construct an ordered latent trait model from
binary models. One might indeed think of adjacent categories and model the preference
for the higher category as a function of the person parameter, which should be the
same for all pairs of adjacent categories in order to obtain a one dimensional model.
However, one might also think of alternative pairs of categories. Let us, for example,
consider the pairs (0, 1), (0, 2), . . . , (0, k) and postulate

log

(
P (Ypi = r)

P (Ypi = 0)

)
= rθ̃p − δ̃ir, r = 1, . . . , k,

where the ability is scaled by r yielding the ability rθ̃p for the comparison of categories
r and 0. The scaling reflects the difference between categories, r = r − 0. The
model simply compares the preference of category r over category 0. As in the PCM
it is a conditional preference as seen from the equivalent representation that makes the
condition obvious,

P (Ypi = r|Ypi ∈ {0, r}) = F (rθ̃p − δ̃ir). (9)

The model is a collection of conditional binary models for the pairs
(0, 1), (0, 2), . . . , (0, k). The interesting point is that the model (9) is equivalent
to the PCM, it is just an alternative representation, however, a representation that does
not use adjacent categories.
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The construction principle to obtain an ordinal model from the comparison of a
pair of categories applies much more generally. One can choose among quite different
sets of pairs of categories.

Let P = {(s1, r1), (sk, rk)} denote a set of k pairs of categories, for which si < ri,
i = 1, . . . , k, and si, ri ∈ {0, . . . , k}. Let the model for proportions of probabilities be
defined by

log(
P (Ypi = r)

P (Ypi = s)
) = (r − s)θ̃p − δ̃irs, (s, r) ∈ P, (10)

or equivalently by

P (Ypi = r|Ypi ∈ {s, r}) = F ((r − s)θ̃p − δ̃irs) (s, r) ∈ P. (11)

The predictor on the right hand includes a scaling that reflects the difference between
categories and the item parameters depend on the considered pair. Since P contains k
pairs the number of item parameters is the same as in the PCM, namely k.

It is easy to see that a further condition is needed to make (11) a sensible model.
For example, if a category, say 0, is not present in the considered pairs one will not
obtain a probability for category 0. Therefore, only non-redundant sets of category
pairs are considered admissible. Non-redundant sets of pairs are those for which the
restrictions on probabilities specified in (11) are independent. For a concise definition
let the model be given in matrix form

D log(π) = θ,

where πT = (π0, . . . , πk), πr = P (Ypi = r), is the vector of probabilities,
log(π)T = (log(π1), . . . , log(πk)) are the logarithms of probabilities, and θ is a vec-
tor that contains the right hand terms in (10). The matrix D generates the differ-
ences between the logarithms of probabilities. One row in the matrix D has the
form (0, . . . , 0,−1, 0, . . . , 1, . . . , 0), where the −1 is in column s and 1 is in column r
(starting with 0 since a row vector has length k + 1 ), which generates the difference
log(πr))− log(πs). The model is based on a non-redundant set of pairs if the matrixD
has k independent rows. As shown in the Appendix the following proposition holds.

Proposition 3.1 Let P be a set of non-redundant pairs of categories. Then the model
for proportions of probabilities given in (10) is equivalent to the partial credit model.

That means any set of non-redundant pairs can be used to define the partial credit
model. The partial credit model in the adjacent categories formulation (6) is just one
specific parameterization that uses adjacent categories.

It should be noted that Proposition 3.1 goes beyond a simple reparameterization
of the partial credit model. It shows that the comparison of pairs of categories is a
necessary and sufficient condition for the PCM. It is straightforward to derive that
it is a necessary condition since (10) follows after some simple reformulation if one
assumes that the PCM holds. This has been used before, for example by Wilson (1992),
Wilson and Masters (1993). However, Proposition 3.1 shows that comparison of pairs
of categories is also a sufficient condition. If one specifies that the comparison of
pairs for a sufficiently large set of pairs follows a Rasch model one obtains that the
PCM holds. Thus the PCM can be constructed from comparing a non-redundant pair
of categories. It makes the PCM a structured collection of conditional binary Rasch
models for any non-redundant pairs of categories.
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3.2 Interpreting Parameters of the Partial Credit Model

The interpretation of the parameters of the PCM has undergone changes over the years.
In early versions of the PCM the model was interpreted as a model for consecutive
steps (Masters, 1982) and parameters were interpreted as difficulties in these steps.
However, the conditioning on adjacent categories shows that it cannot be a model for
consecutive steps. A model for consecutive steps is the sequential or step model, which
is a genuine sequential processing model and has a quite different form (Molenaar,
1983; Tutz, 1990; Verhelst et al., 1997). Thus, interpretation of parameter should not
refer to consecutive steps.

There are a least two alternative ways to obtain an interpretation. One starts from
the model as representing probabilities for response categories or one refers to the
hidden variables that are determined by Rasch models. We consider both approaches,
but for simplicity, confine ourselves to the adjacent categories parameterization, which
is the most widely used one.
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FIGURE 1: Probability response curves for items with five categories; left: δi3 = −5
(upper panel) and δi3 = −10 (lower panel); right: δi3 = 5 (upper panel) and δi3 = 10

(lower panel)

Let us consider the representation (6), which can also be given in the form

P (Ypi = r)

P (Ypi = r − 1)
= eθp−δir , r = 1, . . . , k. (12)

It directly parameterizes the comparison of probabilities of adjacent categories. In
achievement tests θp represents the ability and it is obvious that an increase in θp in-
creases the probability of the higher category of the pair of categories. Since θp is the
same in all comparisons this holds for all pairs of adjacent categories. Consequently,
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larger person parameters yield higher scores. The item parameters can be seen as
thresholds because they are the intersection points of the successive pairs of category
probability curves as seen from the examples in Figure 1. They have also be described
as the points which have a 50% probability of a response in either category, which holds
only if consideration is restricted to two categories. The interpretation as thresholds
will be unproblematic if it refers only to the property that P (Ypi = r−1) = P (Ypi = r)
for θp = δir but does not mean that steps or transitions are involved, a point that was
emphasized by Andrich (2015) and will also be discussed later.

The crucial point in the interpretation of the item parameter is that in (12) just two
categories are compared at a time, although the comparison has effects on all the other
probabilities. The basic tendency is: if δir is small the probability of the lower category,
P (Ypi = r − 1), will be small, if δir is high the probability of the higher category will
be small. This is illustrated in the first row of Figure 1. The panel in the middle is the
reference with sensibly ordered item parameters. In the right panel the threshold δi3 has
been increased to δi3 = 5. Consequently the probability of category 3 is small. In the
left panel the threshold δi3 has been decreased to δir = −5 yielding that the probability
of observing category 2 is very small, but also category 1 has smaller probabilities than
in the middle panel. One can also look at extreme cases. If all other parameters are
fixed one obtains P (Ypi = r) = 0 if δir →∞, and P (Ypi = r − 1) = 0 if δir → −∞.
However, it has not only consequences for the adjacent categories as illustrated by the
second row in Figure 1 (δi3 = −10 in the left panel, δi3 = 10 in the right panel). It is
seen that if P (Ypi = 2) tends to zero also the probabilities P (Ypi = 0), P (Ypi = 1) will
tend to zero (left panel). If P (Ypi = 3) tends to zero also P (Ypi = 4) will tend to zero
(right panel). Thus, although the thresholds determine only the proportion between
adjacent categories they have a strong impact on the other probabilities. Therefore, the
common interpretation that δir is a threshold that determines the preference of category
r over r − 1 is rather misleading since it does not make it explicit that the comparison
holds only for these categories. Actually it is a conditional comparison, given the
response is in categories categories r − 1 or r.

For the clarification of the interpretation of parameters it is useful to consider the
nature of the binary responses that are modeled as Rasch models more closely. At
first sight it seems that they are simple binary variables but since they use just two
categories they are actually conditional variables given by

Y
(r)
pi =

{
1 Ypi ≥ r given Ypi ∈ {r − 1, r}
0 Ypi < r given Ypi ∈ {r − 1, r}. (13)

For these variables the binary Rasch models are assumed to hold. Important features
of these variables are that they are latent and conditional. Since with ordinal responses
there is one observed response in one category only the condition is never observed and
consequently variables are latent. Of course, latent models may be used to interpret
parameters and this has been done in the literature. Andrich (2015) argued that the
item parameters can be interpreted exactly as they are in the binary case, namely as
difficulty parameters. The interpretation is based on the hidden Rasch models and uses
the different conceptualization of the PCM that was outlined before in several papers
(Andrich, 1978, 2013). A crucial element in these derivations and the interpretation of
parameters is that the latent binary variables form a Guttman space. However, as has
been shown in Section 2.1 the Guttman space in latent trait model is observable. One
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should not confuse the conditional binary variables given in (13) with the variables that
show the Guttman structure. The former are latent and are never observed whereas the
latter are observable.

The main problem with the interpretation of model parameters obtained from the
binary models for adjacent categories is due to the presence of the condition in the
variables (13). The model representations (6) and (12) are indeed seductive, they sug-
gest that the condition can be ignored. This is the reason why often the item parameter
(given the person parameter) is seen as determining the “preference of category r over
category r − 1”. The restriction to adjacent categories is simply dropped when inter-
preting parameters. However, the condition is present in the building block of the PCM
and must not be ignored if one uses the Rasch model to interpret parameters.

The crucial condition behind the PCM is

P (Ypi = r|Ypi ∈ {r − 1, r}) = F (θp − δir), (14)

Taking it into account yields a conditional interpretation of parameters, one obtains

θp is the person parameter and δir the item parameter in a binary Rasch model that distin-
guishes between categories r − 1 and r given the response is in category r − 1 or r.

The real problem lies in the nature of the condition. The PCM assumes that the
models hold simultaneously for all pairs of adjacent categories. Thus, when character-
izing the probability of a response in category r one conditions on the outcome of Ypi.
The distribution of Ypi as determined by (14) uses in the condition the outcome of the
variable whose distribution is to be determined.

Let us assume that we have an achievement test with k ordered categories. Taking
(14) seriously means, for example, that δir is the difficulty that a person shows the
highest possible performance (category k) given the person is a high performer, where
high performer is defined by Ypi ∈ {k − 1, k}. In the same way, the model specifies
the probability of observing category 1 given the person is a low performer, where low
performer is defined by Ypi ∈ {0, 1}. The interpretation of the difficulty parameter
in the binary Rasch model implies that one already knows that the person is a poor,
medium or strong performer. Somewhat loosely one can describe the threshold param-
eter as the difficulty that determines the probability of observing high categories given
the location on the response categories is fixed.

Let us comment briefly on the step metaphor. Andrich (2015) gives various reasons
why the step metaphor is incompatible with the PCM and writes that the model “does
not characterize the process by which the person being assessed reaches a location
on the continuum”. One reason he gives is that the probability of a response in any
category is a function of all the thresholds, which led to the characterization as a divide
by total model (Thissen and Steinberg, 1986). The dependence of the probabilities
on all the thresholds is obvious from denominator in (5) and has been illustrated in
Figure 1. However, the reasoning is not compulsory if one allows for conditional
steps. Andrich also outlined that in an achievement test with binary variables and
response categories incorrect and correct one does not assume a transition or step
from incorrect to correct. One only observes a correct or incorrect response. Thus
there seems to be no reason why the step or transition concept should be useful in
polytomous items with more than two levels of performance. Nevertheless, sometimes
the response to items can be seen as solving a problem or not solving a problem. Then
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it is not totally inappropriate that solving a problem corresponds to a transition from
the status unsolved to the status solved. In particular an item with no response can be
seen as incorrect or can be seen as an unsolved problem, it simply remains unsolved.
It takes a transition to obtain the status solved.
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FIGURE 2: Probability response curves for items with four categories; left: ordered item
parameters, middle: δ3 < δ2, right: item parameters inversed, δ3 < δ2 < δ1

3.3 The Ordering of Parameters

There has been some dispute on the question if item parameters in the PCM should be
ordered or not, see, for example, Adams et al. (2012), Andrich (2013). Therefore, when
investigating the properties of the PCM it seems warranted to consider the problem
briefly.

Nothing in the construction of the model from binary variables calls for an order-
ing of categories. Since the variables (13) are conditional and the condition for each
variable is different there is no need that item parameters are ordered. Nevertheless,
Andrich (2015) argues that they should be ordered referring to an “intended order”
and writes “that successive categories are intended to be ordered in the sense that they
successively reflect more of the trait, the implication is that the thresholds which de-
fine the boundaries of the categories are not only expected, but required to increase in
difficulty.” (p. 11). The concept of intended order seems sensible but is also vague and
hardly warrants the conclusion that thresholds are required to be ordered.

Figure 2 shows three items, one with ordered difficulties, δi1 < δi2 < δi3, one
where the order is reversed for two difficulties, δi2 > δi3, and one with reversed order,
δi1 > δi2 > δi3. In the case of ordered difficulties for each category there are person
parameters, for which the probability to observe the category is larger than for all other
categories. If δi2 > δi3 the probability of observing category 2 is strongly reduced. In
an achievement test item with these thresholds a person that has at least performance
level 2 has a very large probability to show performance level 3. It is important that
the modes of the probability curves remain ordered, which might be interpreted in the
sense that categories successively reflect more of the trait. In the last item with reversed
order in all of the difficulties the dominating categories are category 0 and 3, which
makes it an almost dichotomous item. Certainly as an item for ordered categories it
is not the best choice since not much information is gained from the other categories.
Nevertheless, probability curves are ordered and therefore the ordering of categories is
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exploited, although information gain could be better. Items with ordered thresholds are
better at exploiting the information provided by ordered categories, however, that does
not mean that thresholds have to be ordered to make it an item for ordered categories.

4 More on the Interpretation of Parameters: Comparing

Models

In the derivation of latent trait models and the interpretation of parameters it is often
helpful to specify a process that is behind the model. In general a process can be seen as
the probabilistic mechanism that generates the response. In some cases it is an attempt
to describe the mental process that determines an individual’s behavior. However, it is
usually unknown how a respondent eventually finds the category he/she prefers. Quite
different processes might be behind the decision process. There have been several
attempts to use binary models as elements in an underlying process. One example are
item response trees, which more recently have been proposed for Likert items. They
are consistent with a “sequential process, according to which a response is constructed
based on a respondent’s answers to a series of mental queries.” (Böckenholt, 2017).
The mental queries correspond to binary decisions, which sum up to a polytomous
response model that are able to include response styles, for more on item response
trees see also De Boeck and Partchev (2012), Böckenholt and Meiser (2017).

Although some caution is warranted the construction of the latent trait models from
binary models considered here might also be seen as potential processes that describe
how responses could have been generated. It seems appropriate to distinguish between
measurement of attitudes or personalities, in which decisions are involved, and profi-
ciency tests, which are linked to success rather than decisions.

Let us first consider rating scales that refer to attitudes or personalities. Both mod-
els considered here use the dichotomizations into groups of categories {0, . . . , r − 1}
and {r, . . . , k} represented by the split variables Y (r)

pi .
In the graded response model one might assume that respondents evaluate all the

possible dichotomizations, which are determined by binary Rasch models with the
same person parameter θp. Moreover, the dichotomizations have to be compatible, that
means, if a person decides that Ypi ≥ 5 he/she should also decide Ypi ≥ 3. More
general,

if Ypi ≥ r is preferred over Ypi < r also Ypi ≥ s should be preferred over Ypi < s for
all s < r , or equivalently, if Y (r)

pi = 1 then one has Y (s)
pi = 1 for all s < r (which is the

Guttman property).

That means the person shows a specific sort of consistency when evaluating all the
dichotomizations. The property warrants the conclusion that the process behind the
graded response model is the one consistent with assessment in ordered categories.
A quite different view was propagated by Andrich (2015) (p.13), who writes that the
process behind the adjacent categories models is the one consistent with assessment in
ordered categories.

In the polytomous Rasch model or PCM the Rasch model does not determine the
dichotomizations into subgroups of categories. Instead pairs of categories are at the
heart of the model, therefore possible process models should also consider pairs of
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categories. The conditional choice between adjacent categories comes into play after
the person has narrowed down the decision to categories r−1, r. Thus, given Y (s)

pi = 1

for s = 1, . . . , r − 1 and Y
(s)
pi = 0 for s = r + 1, . . . , k the preference of r over

r − 1 is determined by the binary Rasch model with the same person parameter θp but
thresholds that vary over the categories. The model also implies some consistency in
the conditioning part. When choosing between categories r−1 and r it is assumed that

Ypi ≥ r is preferred over Ypi < r for all s < r and Ypi ≥ s is not preferred over Ypi < s for
all s > r, or equivalently, one has Y (r)

pi = 1 for all s < r and Y (s)
pi = 0 or all s > r.

Unfortunately, the described process model is complicated and not fully convinc-
ing. The main problem is that there is no conceptualization of the process that narrows
down the choice to the alternatives r − 1 and r. It certainly has to be assumed that
this process depends on the trait, for example, if the person parameter is large one
expects pairs of categories between which the choice is made to be close to k. Even
if one postulates a process for the choice of adjacent categories it has no impact on
the model structure since the model is already defined when the response probabilities
given adjacent categories are fixed.

The search for a process is hindered by the structure of the model. As shown
in previous sections the condition involves that the response or outcome is already
partially fixed, that is, given Ypi ∈ {r− 1, r}. The conditional structure seems to make
it impossible to find a simple process that generates the model.

In proficiency tests categories are not determined by decisions but by the perfor-
mance in solving problems. Then, θp is the ability of a person and the item parameters
are item difficulties or thresholds. The dichotomization into the groups of categories
represented by the split variables Y (r)

pi can be seen as representing a performance level.
Let Y (r)

pi = 1 indicate that at least performance level r is obtained, or in dichotomiza-
tions, that Ypi ≥ r.

In the graded response model one postulates consistency of dichotomizations that
refer to the performance, the performance levels are strictly ordered, that is,

if a person has at least performance level r (Y (r)
pi = 1) he/she also has at least performance

level s, s < r.

It should be noted that no history is involved. The model does not assume that
performance levels are reached successively as does the sequential model. Moreover,
it is sufficient to postulate the consistency downwards, that is, nothing is assumed for
the performance levels larger than r. In the Guttman structure Y (r)

pi = 1 means only
that the variables Y (s)

pi = 1, s < r are restricted, there is no restriction on the variables
Y

(s)
pi = 1, s > r.

In the polytomous Rasch model or PCM the performance level r is modeled under
the condition that

a person has at least performance level r− 1 (Y (r−1)
pi = 1) and also Y (s)

pi = 1 for s < r− 1)

but does not have performance level r + 1 (Y (r+1)
pi = 0 and also Y (s)

pi = 0 for s > r + 1).

Again the conditioning makes it a problematic process. Andrich (2015) explicitly
considers the assessment in an item with 3 categories. When interpreting the param-
eters in the polytomous Rasch models he considers the dichotomous responses at the
thresholds of an item with four categories and writes
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“If the assessment ... is in category 2 (a score of 1), the implication is having ex-
ceeded threshold 1 but neither threshold 2 nor threshold 3; likewise, if an assessment
is in category 3 (a score of 2), the implication is having exceeded both thresholds 1
and 2, but not threshold 3. And elegantly, if the response is in the first category (a
score of 0), the number of thresholds exceeded is 0; if the response is in category 4
(score of 3), all three thresholds have been exceeded. This characterization reflects
the severe constraint that order places on the latent, dichotomous, responses at the
thresholds.”

This can be seen as a fitting description of the graded response model referring
to the thresholds in the Guttman variables Y (1)

pi , . . . , Y
(k)
pi . It is indeed the case that

in the graded response model the response is exactly the number of thresholds that
are exceeded though it also the case in the polytomous Rasch model. It is also obvi-
ous that in the graded response model thresholds have to be ordered since otherwise
the model would not be well defined. However, the description was meant to refer to
the polytomous Rasch model and the latent Guttman variables. But the Guttman vari-
ables are observable and not latent. It can also not refer to the conditional variables
Y

(r)
pi |Ypi ∈ {r − 1, r} considered in Section 3. They are indeed latent but for these

variables it does not make any sense to consider which thresholds have been exceeded
given the assessment is in a specific category. Given the assessment is in category r
one can infer that Y (r)

pi |Ypi ∈ {r−1, r} = 1 and Y (r+1)
pi |Ypi ∈ {r−1, r} = 0. But given

the assessment is in category 5 it does not make sense to consider Y (3)
pi |Ypi ∈ {2, 3}

because the condition excludes that category 5 can be the resulting category. The se-
vere constraint in Andrich’s description refers to the Guttman structure, but it ignores
the more important constraint that binary responses are conditional.

The description given by Andrich (2015) can be seen as a description of a possi-
ble process behind the graded response model but not behind the polytomous Rasch
model. It might not have been intended as a description of a process model although
the wording “having exceeded thresholds” hints at some sort of process. It also seems
to imply some transition or step. The important point here is that it does not provide a
process model for the PCM, which seems hard to obtain.

5 Concluding Remarks

It has been demonstrated that the interpretation of the parameters and the process be-
hind the PCM and polytomous Rasch model are sometimes misleading. In the early
times of the PCM it seems to have been confused with the sequential model. In the
more recent literature there is a tendency to confuse it with the graded response model.
However, the model is distinctly different from these two models and one should be
careful when interpreting parameters.

When interpreted appropriately the PCM has various strengths. It allows for suf-
ficient statistics of item and person parameters so that a conditional maximum likeli-
hood procedure for the estimation of parameters is readily available (Andersen, 1977;
Andrich, 2010). It exploits the ordering of categories as seen, for example, by the
ordering of modes of probability curves. It does not impose an ordering of item pa-
rameters, which is an advantage over the graded response model because estimation
problems are avoided and the model can be extended, for example to include response
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styles (Tutz et al., 2018) without having to account for clumsy restrictions. Moreover,
as has been shown, the model can be seen as a general model that parameterizes pairs
of categories by Rasch models. Here we do not investigate the implications of this
property but it can be used, for example, to obtain extended models when the cate-
gories are divided into disagreement and agreement categories. One can parameterize
pairs of categories within the groups of categories and link the categories by specifying
a model for two categories, one from the disagreement group, one from the agreement
group. The models within groups can be used to include response style parameters that
reflect the tendency to middle and extreme categories.

Appendix: Proof of Proposition 3.1

We again considered the specific model that uses the pairs (0, 1), (0, 2), . . . , (0, k) and
postulate that P (Ypi = r|Ypi ∈ {0, r}) = F (rθ̃p − δ̃ir) holds for r = 1, . . . , k. For
simplicity it is called the category zero model. Simple reparameterization shows that it
is equivalent to the PCM.

In matrix form the model is given by D(0) log(π) = θ(0); D(0) is a (k × (k + 1))
matrix that can be partitioned into D(0) = (−1|I), where 1T = (1, . . . , 1) is a vector
of length k and I is a (k × k) unit matrix.

Let us now consider a general model D log(π) = θ, where D has k inde-
pendent rows. Let D̃ denote the (k × k)-matrix obtained by deleting the first col-
umn in D̃. Then the model can alternatively be given by D̃ log(π(0)) = θ, where
π(0) = (π1/π0, . . . , πk/π0), πr = P (Ypi = r). This follows from the representation
log(πr) − log(πs) = log(πr/π0) − log(πs/π0). The vector π(0) can also be used to
define the category zero model for the pairs (0, 1), (0, 2), . . . , (0, k) and be given in
simpler form by log(π(0)) = θ(0).

Therefore, one has

θ = D log(π) = D̃ log(π(0)) = D̃θ(0),

which links the parameter of the general model to the parameters of the category zero
model.

Let span{r1, . . . , rk} denote the space that is spanned by the row vectors
r1, . . . , rk of D, and span{r(0)1 , . . . , r

(0)
k } denote the space that is spanned by the row

vectors r(0)1 , . . . , r
(0)
k ofD(0). Since each vector rl is contained in span{r(0)1 , . . . , r

(0)
k },

and both spaces have the dimension k the spaces are identical. Let us now consider
the k-dimensional vectors r̄1, . . . , r̄k that are obtained by deleting the first compo-
nent of the vectors. In the same way r̄(0)1 , . . . , r̄

(0)
k are obtained from r

(0)
1 , . . . , r

(0)
k

by deleting the first component. Since span{r1, . . . , rk} = span{r(0)1 , . . . , r
(0)
k } also

span{r̄1, . . . , r̄k} = span{r̄(0)1 , . . . , r̄
(0)
k } holds. Since span{r̄(0)1 , . . . , r̄

(0)
k } = Rk and

span{r̄1, . . . , r̄k} are the rows of D̃ the k × k matrix D̃ has full rank. Therefore, it is
invertible and θ(0) = D̃

−1
θ.

That means the parameters θ(0) and θ can be transformed into each other and the
general model and the category zero model are equivalent. Since the category zero
model is equivalent to the PCM the same holds for the general model.
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