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Objectives: To evaluate heart rate deceleration capacity, an elec-
trocardiogram-based marker of autonomic nervous system activity, 
as risk predictor in a medical emergency department and to test its 
incremental predictive value to the modified early warning score.
Design: Prospective cohort study.
Setting: Medical emergency department of a large university hospital.
Patients: Five thousand seven hundred thirty consecutive patients 
of either sex in sinus rhythm, who were admitted to the medical 
emergency department of the University of Tübingen, Germany, 
between November 2010 and March 2012.
Interventions: None.
Measurements and Main Results: Deceleration capacity of heart 
rate was calculated within the first minutes after emergency 
department admission. The modified early warning score was 

assessed from respiratory rate, heart rate, systolic blood pres-
sure, body temperature, and level of consciousness as previously 
described. Primary endpoint was intrahospital mortality; second-
ary endpoints included transfer to the ICU as well as 30-day 
and 180-day mortality. One hundred forty-two patients (2.5%) 
reached the primary endpoint. Deceleration capacity was highly 
significantly lower in nonsurvivors than survivors (2.9 ± 2.1 ms vs 
5.6 ± 2.9 ms; p < 0.001) and yielded an area under the receiver-
operator characteristic curve of 0.780 (95% CI, 0.745–0.813). 
The modified early warning score model yielded an area under the 
receiver-operator characteristic curve of 0.706 (0.667–0.750). 
Implementing deceleration capacity into the modified early warn-
ing score model led to a highly significant increase of the area 
under the receiver-operator characteristic curve to 0.804 (0.770–
0.835; p < 0.001 for difference). Deceleration capacity was also 
a highly significant predictor of 30-day and 180-day mortality as 
well as transfer to the ICU.
Conclusions: Deceleration capacity is a strong and independent 
predictor of short-term mortality among patients admitted to a medi-
cal emergency department. (Crit Care Med 2015; 43:1079–1086)
Key Words: cardiac autonomic function; electrocardiogram; 
emergency department; heart rate variability; risk stratification

In most healthcare systems around the world, emergency 
departments (EDs) are the frontline venue to provide 
acute medical treatment. However, deficits in ambulatory 

care, demographic changes, and the rising complexity of dis-
eases led to a dramatic increase in the number of admissions 
over the past years (1, 2). So-called ED overcrowding became 
a serious healthcare problem directly affecting the quality of 
patient care and mortality (3, 4). A recent population-based 
study showed an increase of intrahospital mortality by 79% 
when waiting times exceeded 6 hours (5).

Rapid risk stratification at first contact to define appropri-
ate treatment priorities is of key importance to overcome lim-
ited resources. Current concepts of initial risk stratification are 
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based on clinical judgment, vital signs, including respiratory 
rate, heart rate, arterial blood pressure (BP), and body tem-
perature, and neurological status. For clinical practice, these 
variables can be combined using a multivariable scoring sys-
tem such as the “modified early warning score” (MEWS) (6–8). 
The MEWS can be quickly assessed within minutes by nursing 
staff before completion of any laboratory or other diagnostic 
tests. However, although the MEWS has been shown to sig-
nificantly predict adverse events, it lacks both sensitivity and 
specificity for clinical decision making. Therefore, comple-
mentary approaches for risk stratification at first contact are 
of great clinical interest.

Essential information about the current condition of a 
patient can be derived from the functional status of the auto-
nomic nervous system (ANS). The ANS is an integrated neu-
ral network connecting all vital organ systems. Severe damage 
of any organ within the network leads to a global change in 
the functional status of the ANS. Analyzing autonomic mod-
ulations of the sinus node by means of heart rate variabil-
ity (HRV) has practical appeal as beat-to-beat intervals can 
be obtained noninvasively by a routine electrocardiogram 
(ECG) (9). Over the last decades, numerous measures have 
been proposed to assess HRV including standard measures in 
time and frequency domains (9) as well as complexity mea-
sures such as sample entropy (SampEN) or the multiscale 
sample entropy (MSE) index (10–13). Previous studies indi-
cated that a depressed HRV has prognostic implications in 
various diseases, including myocardial infarction (14), heart 
failure (15), sepsis (16, 17), pulmonary diseases (18), stroke 
(19), hemorrhagic shock (20), renal failure (21), and trauma 
patients (22).

However, automated and reliable assessment of HRV in 
the setting of an ED is limited by the huge amount of noise 
and nonstationarities in ECG signals obtained under routine 
clinical conditions. Phase-rectified signal averaging (PRSA) 
is a robust signal processing algorithm that is capable of 
extracting periodic components out of noisy ECG signals. In 
previous studies, PRSA-based deceleration capacity (DC) of 
heart rate has been shown to yield strong and independent 
prognostic information in survivors of acute myocardial 
infarction (23, 24). DC is an integral measure of all decel-
eration-related oscillations of heart rate and considered to 
be a measure of overall tonic autonomic activity. Recently, 
we presented a refinement of the technology, including opti-
mized R-peak detection and filtering techniques, allowing 
for a fully automated assessment of DC from unprocessed 
noisy ECG signals (25).

In the present study, we tested the prognostic power of 
DC in prediction of intrahospital mortality among patients 
admitted to a medical ED and compared it to standard and 
complexity measures of HRV. Furthermore, we aimed to assess 
the incremental value of DC to the MEWS model. We hypoth-
esized that impaired DC was a strong and independent predic-
tor of intrahospital mortality and that implementing DC into 
the MEWS model improved the predictive power of the MEWS 
model alone.

MATERIALS AND METHODS

Participants
Consecutive patients of either sex were prospectively enrolled 
between November 2010 and December 2012 if they were 
admitted to the medical ED of the University of Tübingen, 
Germany. Patients were included if they were 18 years old or 
older and presented in sinus rhythm, which is required for the 
assessment of cardiac autonomic function. Figure 1 shows the 
flowchart of the validation cohort. The study was approved by 
the local ethics committee.

Biosignal Recording
The ED was equipped with six monitoring devices (DASH 
4000/5000 and Teleguard, General Electrics, Fairfield, CT; 
sample frequency, 100 Hz). Nursing staff were advised to 
monitor patients directly after admission. Treating physicians 
were blinded to the study design. Management of patients 
in the ED was not influenced by monitoring. In particu-
lar, monitoring did not delay any diagnostic or therapeutic 
procedures.

Assessment of DC
Technical details of the methodology of automated assess-
ment of DC have been described elsewhere (25). To account 
for the substantial noise and artifacts in the absence of 
manual editing, extensive filtering techniques and trans-
formations were applied to the ECG raw signals to obtain 
the sequence of RR intervals. Briefly, a band-pass filter (4th 
order Chebyshev bandwidth filter 6–18 Hz) was applied to 
the signal followed by a 1st order forward differencing filter. 
Amplitudes were normalized and nonlinearly transformed 
using the Shannon energy envelope. Subsequently, a Hilbert 

Figure 1. Enrollment, follow-up, and analysis of the study.
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transformation and a moving average filter (250 samples) 
were applied followed by a Savitzky-Golay filter (frame 15, 
degree 0). Times of zero-crossing were identified and the 
R-peaks were searched.

The first 10 minutes of the recordings were used for DC 
computation. In case of low signal quality, the time frame was 
gradually extended to a maximum of 30 minutes until at least 
200 anchors suitable for DC computation (see below) were 
detected. This led to an average recording time of 14.3 ± 8.5 
minutes.

The RR time series were checked for the presence of atrial 
fibrillation using a validated automated algorithm (26). 
Recordings with atrial fibrillation were excluded from further 
analysis. The RR time series were transformed by PRSA (27) 
to obtain a modified, more robust version of DC (23). DC is 
an integral measure of the periodic power of all deceleration-
related oscillations of heart rate in the observation period. 
The exact methodologies of PRSA and DC assessment have 
been described elsewhere (27). Briefly, instances within the RR 
interval time series are identified where the heart rate deceler-
ates (so-called anchors). The central part of the PRSA signal is 
then quantified by Haar wavelet analysis to obtain an estimate 
of DC. The PRSA technology allows for several adjustments, 
which make the method more robust to artifacts and noise and 
improve agreement between automatically and manually pro-
cessed ECGs (25). Here, we used T = 4 (instead of 1; equation 
2a in [27]) and s = 5 (instead of 2; equation 8 in [27]). Figure 2 
exemplarily shows the phase-rectified signal of a patient who 
survived the hospital stay (Fig. 2A) and the phase-rectified sig-
nal of a patient who died within the hospital stay (Fig. 2B). In 
the nonsurviving patient (Fig. 2B), oscillations were blunted 
compared with the surviving patient (Fig. 2A).

In line with previous studies, patients were stratified accord-
ing to DC to following risk categories: DC category 0 = low risk 
(> 4.5 ms); DC category 1 = intermediate risk (2.5–4.5 ms); 
and DC category 2 = high risk (≤ 2.5 ms) (23).

Assessment of Standard and Complexity Measures 
of HRV
For assessment of standard and complexity measures of HRV, 
the first 30 minutes of the recordings were analyzed. In cases 
of lower recording time, the total length of the recording was 
used. Measures of HRV were calculated for segments of 256 
RR intervals and subsequently averaged. Segments with exces-
sive artifact burden (> 50%) were disregarded. We assessed fol-
lowing standard measures of HRV in the time and frequency 
domain in line with recommendations of the task force (9): 
the standard deviation of all normal-to-normal intervals 
(SDNNs), the HRV index, the root mean square of the succes-
sive difference, the power in the low frequency (LF; 0.04–0.15 
Hz) and high frequency (HF) ranges (0.15–0.4 Hz), and the 
ratio between LF and HF. We also assessed two complexity 
measures of HRV, SampEn and the MSE index. For calculation 
of SampEn, we used m = 2 and r = 6 ms in line with previous 
reports (12). MSE index was defined as the summation of the 
SampEn values for scales 1–4 (12).

Assessment of the MEWS
The MEWS was calculated from physiological variables, 
including respiratory rate, heart rate, systolic BP, and body 
temperature and level of consciousness at ED admission, as 
previously described (7). The MEWS can range from 0 (lowest 
risk) to 14 (highest risk).

Study Endpoints
The primary endpoint was intrahospital mortality. Secondary 
endpoints were total mortality at 30 and 180 days as well trans-
fer to the ICU during the hospital stay.

Follow-Up
Intrahospital deaths were monitored via the electronic hospi-
tal information system. Patients were followed up at intervals 
of 30 and 180 days after admission to the ED. Information 

about the patient’s status after 
ED discharge was also derived 
from the hospital information 
system in patients who were 
readmitted to the hospital. The 
status at 30 days after admis-
sion to the ED was available in 
all patients. The status at 180 
days after admission to the ED 
was available in 97.5% of the 
patients. Patients who were lost 
to follow-up were censored at 
the date of latest contact.

Statistical Analyses
Continuous variables are 
presented as the mean and 
sd and were compared using 
the Mann-Whitney U test. 
Qualitative data are expressed 

Figure 2. Representative phase-rectified signals from 10-min recordings of heartbeat intervals in one patient 
who survived the hospital stay (A) and one patient who died during the hospital stay (B). In the surviving patient, 
the amplitude of the phase-rectified signal is significantly greater compared with the nonsurviving patient. 
Bolded points = values of phase-rectified signal used for computation of deceleration capacity (DC), i = index 
of phase-rectified signal X(i).



Eick et al

1082 www.ccmjournal.org	 May	2015	•	Volume	43	•	Number	5

as percentages and were analyzed using the chi-square test. 
Receiver-operator characteristic (ROC) curves were con-
structed for all tested predictors by plotting 1 – specificity 
versus sensitivity. ROC curves were quantified by the area 
under the curve (AUC). To test the difference between ROC 
curves, we used bootstrapping based on the creation of 
pseudo-replicate datasets by random resampling of the data-
set n times for error estimation (n = 1,000 in this study) (28). 
The association of risk variables with the primary endpoint 
was tested by univariable and multivariable logistic regres-
sion analyses. Multivariable analyses were adjusted for age 
and gender. In logistic regression analyses, coefficients were 
standardized by the procedure suggested by Menrad (29). To 
test the incremental prognostic value of DC on top of the 
MEWS model, we implemented C-statistic and integrated 
discrimination improvement (IDI) score (30). Mortality 
rates were estimated by the Kaplan-Meier method (31). Odds 
ratios are presented with 95% CIs. Differences were consid-
ered statistically significant when p value is less than 0.05. 
Statistical analyses were performed using CRAN R 2.15.2 and 
SPSS 20.0 (SPSS: IBM, Armonk, NY).

Sample Size Calculation
The sample size was defined by the number of endpoints with 
a maximum of 10,000 patients to be screened. Based on pre-
vious work, we postulated that 10 endpoints per risk predic-
tor should be on hand (32). We aimed to include a sample 
size with at least 100 patients reaching the primary endpoint, 
which allows for multivariable analysis with more than 10 vari-
ables to be included.

RESULTS
Table 1 shows the patients’ characteristics. Main causes for 
admission to the ED were cardiovascular and gastrointestinal 
diseases followed by oncologic, hematologic, and pulmonary 
diseases. During the hospital stay, 142 patients died (2.5%). 
After 30 and 180 days, these figures were 196 (3.4%) and 436 
patients (7.6%), respectively. As shown in Table 2, nonsurviv-
ing patients were older and had higher heart rates and respi-
ratory rates but lower systolic, mean, and diastolic arterial 
blood pressures and low levels of consciousness. Correspond-
ingly, the MEWS score was substantially higher in nonsurviv-
ing than surviving patients (3.5 ± 1.7 vs 2.3 ± 1.4; p < 0.001).

Table 3 shows the statistical association of markers of 
HRV with intrahospital mortality. DC was significantly lower 
in nonsurvivors than survivors (2.9 ± 2.1 ms vs 5.6 ± 2.9 ms; 
p < 0.001). Also standard and complexity measures of HRV 
were highly significantly associated with the primary end-
point. Nonsurviving patients had lower levels of time and fre-
quency domain measures of HRV (p < 0.001 for all) as well as 
lower levels of SampEn and MSE-index (p < 0.001 for both). 
Table 3 also shows the areas under the ROC curves for pre-
diction of intrahospital mortality. Among all HRV measures 
tested, DC yielded the greatest area under the curve followed 
by the HRV index and the MSE index.

Table 4 shows the univariable and multivariable logistic 
regression analyses for prediction of intrahospital mortality. 
On univariable analysis, the MEWS and all measures of HRV 
were significantly associated with intrahospital mortality. 
On multivariable analysis, however, only the MEWS and DC 
provided independent prognostic information (standardized 
coefficients of 1.14 and 0.85, respectively; p < 0.001 for both). 
All other markers of HRV were not independently associated 
with intrahospital mortality.

Figure 3 shows the ROC curve analyses for prediction of 
intrahospital mortality by DC, the MEWS, and the combi-
nation of DC and the MEWS. DC yielded an AUC of 0.780 
(95% CI, 0.745–0.813; p < 0.001) (Fig. 3A). The MEWS model 
yielded an AUC of 0.706 (0.667–0.750; p < 0.001) (Fig. 3B). 
Implementing DC into the MEWS model led to a highly sig-
nificant increase of the AUC to 0.804 (0.770–0.835; p < 0.001 
for difference) (Fig. 3B). The relative IDI was 60% (p < 0.001).

Using the established risk categories, DC classified 3,595 
(62.7%), 1,157 (20.2%), and 901 (15.7%) patients as low-risk 
(DC category 0), intermediate-risk (DC category 1), and high-
risk patients (DC category 2), respectively. Of these, 26 (0.7%), 
39 (3.4%), and 77 patients (7.9%) died during the hospital 
stay (p < 0.001). We also assessed whether DC was a predic-
tor of long-term mortality. Figure 4 shows cumulative 180-day 
mortality rates of patients stratified by DC categories. At 30 
days, cumulative mortality rates were 0.9%, 5.5%, and 10.1% 
in the low-, intermediate-, and high-risk groups, respectively 
(p < 0.001). At 180 days, these figures were 2.7%, 12.0%, and 
21.0%, respectively (p < 0.001).

TABLE 1. Patients’ Characteristics and 
Outcomes of the Study Population 

No. of patients 5,730

Age 61.2 ± 17.7

Female (%) 2,605 (45.5)

Main causes for emergency department admission, n (%)

  Cardiovascular 3,427 (59.8)

  Gastrointestinal 565 (9.9)

  Oncological and hematologic 214 (3.7)

  Pulmonary 412 (7.2)

  Endocrinologic 128 (2.2)

  Infectiologic 178 (3.1)

  Renal 49 (0.9)

  Other 757 (13.2)

Admission to ICU (%) 366 (6.4)

Duration of hospital stay (d) 6.1 ± 8.9

Intrahospital deaths (%) 142 (2.5)

Deaths at 30 days (%) 196 (3.4)

Deaths at 180 days (%) 436 (7.6)
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Cause of admission had no significant influence on the pre-
dictive value of DC. DC was a significant predictor of mortality 
in the 3,427 patients admitted for cardiovascular causes (AUC, 
0.767 [0.707–0.827]; p < 0.001) as well as in the 2,303 patients 
admitted for noncardiovascular causes (AUC, 0.768 [0.725–
0.811]; p < 0.001). Furthermore, DC was significantly lower 
in the 366 patients who were transferred to the ICU during 
their hospital stay than in patients who were not transferred 
(3.8 ± 2.7 ms vs 5.7 ± 2.9 ms; p < 0.001).

DISCUSSION
The main findings of our study indicate that DC is a strong 
predictor of intrahospital mortality in patients admitted to a 
medical ED. Its prognostic value was independent of estab-
lished measures of HRV and significantly improved the MEWS 
model, which is an established scoring system for early risk 
stratification in the ED. The predictive power of DC was com-
parable for patients admitted for cardiovascular and noncar-
diovascular diseases. DC was also a strong predictor of 30-day 
and 180-day mortality.

Previous studies have shown that reduced HRV is associ-
ated with poor outcome in various cardiac and noncardiac dis-
eases (14–16, 18–21). However, only very few studies tested the 
clinical usefulness of HRV as clinical tool for risk prediction in 
a medical ED (33). DC differs from standard measures of HRV 
in several aspects. First, due to its underlying signal processing 
algorithm, DC is robust to artifacts, noise, and nonstationari-
ties. This is of particular advantage when analyzing biological 
signals that are recorded under uncontrolled conditions in the 

setting of an ED (25). Second, DC is an integral measure of all 
deceleration-related periodic components of HRV, irrespective 
of their frequency. Thus, DC is not driven by any specific phys-
iological mechanism but rather influenced by alterations of the 
vagal, sympathetic, vascular, and humoral systems. Thereby, 
DC differs from traditional spectral measures of HRV, which 
assess the spectral power in distinct frequency bands. Global 
measures of HRV, such as SDNN or HRV index, also include 
nonperiodic patterns of HRV, which might not be directly 
related to autonomic mechanisms.

In contrast to previous studies (23), DC was assessed from 
short-term ECG recordings, which raises both methodologi-
cal and physiological questions. First, the number of segments 
entering the PRSA-averaging process is much smaller com-
pared to a full 24-hour Holter recording that might limit the 
capability of eliminating noise and artifacts. Second, short-
term DC does not reflect ultra and very low-frequency oscilla-
tions. DC as assessed in the present study should therefore be 
interpreted as measure of short-term cardiovascular control.

In our study, the prognostic performance of DC was statis-
tically superior to that of other measures of HRV. However, it 
needs to be emphasized that direct comparisons between DC 
and other metrics might be difficult. Several requirements for 
assessment of traditional measures of HRV, particularly in the 
frequency domain, were not met, including stationarity of the 
signal and manual preprocessing of the raw data (9). Notably, 
the complexity measures SampEN and MSE index that quan-
tify the amount predictability of the signal were strong predic-
tors of mortality in our population. As previous studies have 

TABLE 2. Statistical Association of Clinical and Physiological Markers With Intrahospital 
Mortality

Variable Survivors Nonsurvivors p

Demographics

  Patient age (yr) 60.9 ± 17.8 70.5 ± 12.9 < 0.001

  Female, % 45.5 43.0 0.386

Physiologic markers

  Heart rate (beats/min) 83.5 ± 24.9 95.6 ± 23.7 < 0.001

  Mean blood pressure (mm Hg) 96 ± 18 84 ± 18 < 0.001

  Systolic blood pressure (mm Hg) 144 ± 26 125 ± 28 < 0.001

  Diastolic blood pressure (mm Hg) 79 ± 19 68 ± 15 < 0.001

  Respiratory rate (breaths/min) 16.5 ± 1.8 17.5 ± 1.9 < 0.001

  Body temperature (°C) 36.2 ± 0.7 36.2 ± 0.8 0.783

Level of consciousness (according to the alert, voice, pain, unresponsive scale) (%)

  Alert 5,454 (97.6) 135 (95.1) < 0.001

  Reaction to voice 37 (0.6) 6 (4.2)

  Reaction to pain 96 (1.7) 1 (0.7)

  Unresponsive 1 (< 0.1) 0 (0)

Modified early warning score (score points) 2.3 ± 1.4 3.5 ± 1.7 < 0.001
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shown that SampEN and MSE index are highly sensitive to 
their respective input variables m, r, and scale (12), future stud-
ies are needed to test whether the prognostic ability of these 
complexity measures might be optimized by refined settings.

We assessed the predictive value of DC and the MEWS 
model by ROC curve analysis, which is independent from 

selection of specific cutoff values. The largest separation of 
ROC curves between DC and the MEWS model occurred 
at high sensitivity levels of 80%. At this level of sensitiv-
ity, the corresponding specificity of DC was substantially 
higher than that of the MEWS model. Hence, DC-based risk 
assessment is particularly useful for a better identification 

TABLE 3. Statistical Association of Markers of Heart Rate Variability With Intrahospital 
Mortality

Variable Survivors Nonsurvivors p

Area Under the  
Receiver-Operator  

Characteristic Curve  
(95% CI) p

Deceleration capacity 5.6 ± 2.9 2.9 ± 2.1 < 0.001 0.780 (0.745–0.813) < 0.001

Standard deviation of all 
normal to-normal intervals

42.7 ± 29.6 29.3 ± 21.4 < 0.001 0.658 (0.608–0.708) < 0.001

Root mean square of 
successive differences 
of all normal-to-normal 
intervals

22.6 ± 12.6 19.8 ± 12.3 < 0.001 0.598 (0.542–0.654) < 0.001

Heart rate variability 
triangular index

6.0 ± 2.9 3.8 ± 2.3 < 0.001 0.744 (0.699–0.789) < 0.001

LF 614.1 ± 1229.3 348.8 ± 783.3 < 0.001 0.662 (0.611–0.712) < 0.001

HF 187.0 ± 270.5 128.0 ± 182.0 < 0.001 0.602 (0.548–0.656) < 0.001

LF/HF 3.8 ± 4.2 2.5 ± 3.2 < 0.001 0.654 (0.606–0.701) < 0.001

Sample entropy 1.8 ± 0.5 1.4 ± 0.5 < 0.001 0.677 (0.625–0.729) < 0.001

Multiscale entropy index 5.0 ± 2.1 3.2 ± 2.0 < 0.001 0.736 (0.689–0.783) < 0.001

LF = power in the low-frequency range, HF = power in the high-frequency range.

TABLE 4. Univariable and Multivariable Binary Logistic Regression Analysis for Prediction 
of Intrahospital Mortality

Variable

Univariable Analysis Multivariable Analysis

OR (95% CI) z p OR (95% CI) z p

Modified early warning score 1.28 (1.22–1.35) 9.7 < 0.001 1.14 (1.09–1.19) 5.8 < 0.001

deceleration capacity 0.75 (0.71–0.79) 10.0 < 0.001 0.81 (0.74–0.89) 4.3 < 0.001

Standard deviation of all 
normal to-normal intervals

0.83 (0.79–0.89) 5.5 < 0.001 1.01 (0.92–1.11) 0.2 0.835

Root mean square of 
successive differences of all 
normal-to-normal intervals

0.93 (0.87–0.98) 2.5 0.012 1.05 (0.97–1.13) 1.2 0.213

Heart rate variability triangular 
index

0.76 (0.72–0.81) 8.3 < 0.001 0.91 (0.75–1.11) 0.9 0.358

LF 0.90 (0.84–0.97) 2.9 0.003 1.01 (0.92–1.10) 0.2 0.879

HF 0.92 (0.86.0.98) 2.5 0.011 0.98 (0.90–1.07) 0.4 0.687

LF/HF 0.88 (0.82–0.94) 3.9 < 0.001 0.99 (0.93–1.07) 0.1 0.886

Sample entropy 0.83 (0.78–0.88) 6.3 < 0.001 0.99 (0.89–1.09) 0.3 0.778

Multiscale entropy index 0.77 (0.72–0.82) 8.6 < 0.001 1.01 (0.83–1.23) 0.1 0.913

OR = odds ratio, LF = power in the low-frequency range, HF = power in the high-frequency range.
Multivariable analysis adjusted for age and gender; standardized coefficients presented.
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of low-risk patients who could be treated with less priority. 
This was also confirmed when using DC risk categories. DC 
greater than 4.5 ms classified almost two thirds of patients 
as low-risk patients. These patients were at very low risk of 
death (0.7%; 26 deaths in 3,595 patients). By contrast, DC 

less than or equal to 2.5 ms identified a smaller high-risk 
group of 978 patients (17% of admitted patients) who were 
at an almost 12-fold risk of death compared with the low-
risk group. Our findings therefore suggest that these patients 
should be treated with high priority. In this context of note, 
impaired DC at admission also predicted later transfer to the 
ICU. Extended follow-up to 6 months revealed that impaired 
DC was also a strong predictor of late mortality. Patients with 
DC less than or equal to 2.5 ms at admission had a cumulative 
6-month mortality rate of 21%, indicating that these patients 
should be closely monitored after discharge. Importantly, risk 
predictive power of DC was equally strong in both cardio-
vascular and noncardiovascular patients. It needs to be men-
tioned that the used cutoff values have been derived from 
24-hour Holter recordings in postinfarction patients. Post 
hoc analyses revealed an optimum cutoff value of 3.2 ms for 
DC in the study population, which needs to be validated in 
further studies.

The limitations of our study need to be recognized. First, 
autonomic function by means of HRV can only be assessed in 
patients with sinus rhythm. Second, our study was performed 
in a medical ED. Further investigations are necessary to deter-
mine whether DC provides prognostic value in different set-
tings. Furthermore, we did not compare the predictive value of 
DC to biochemical markers such as the sensitive troponins or 
C-reactive protein. We also cannot rule out that assessment of 
other markers might have influenced triage in our ED. Finally, 
as our study was purely observational, it needs to be shown 
whether clinical decision making based on DC and other pre-
dictors leads to a better outcome.

Figure 3. Receiver-operator characteristic curves for prediction of intrahospital mortality. A, Deceleration capacity (DC). B, The modified early warning 
score (MEWS) as well as the combination of the MEWS and DC. The difference between the area under the receiver-operator characteristic curve (AUC) 
of the MEWS and the combination of the MEWS and DC was highly significant (p < 0.001).

Figure 4. Cumulative 180-day mortality rates in patients stratified by 
deceleration capacity (DC) risk categories. The numbers of patients in the 
individual groups involved in the analysis at 0, 45, 90, 135, and 180 days 
are shown under the graph.
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CONCLUSIONS
In conclusion, assessment of the ANS activity by DC provides 
strong and independent prognostic information in patients 
admitted to a medical ED. DC can be obtained fully automati-
cally within minutes at first contact and significantly improves 
established risk stratification models. The technology is inexpen-
sive, readily available, and can be implemented in existing moni-
toring devices. Further technical developments might realize the 
integration of the technology into cheaper mobile devices, which 
could be used in waiting halls of ED or in ambulatory settings.
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